

Comet Acquires Strategic Queensland Copper Project from

HIGHLIGHTS:

- Comet to acquire 100% of Mt Margaret Copper Project from Glencore
- The Mt Margaret Copper Project successfully produced from open pit mining from 2012 until 2014, when operations were suspended due to the copper price environment and outlook at that time
- Located only 7km from key processing infrastructure at Ernest Henry, where Mt Margaret ore was previously processed into export quality copper concentrate
- JORC open-pit Resources of 13.0Mt at 0.78% copper and 0.24g/t gold with >95% in the Measured and Indicated categories¹
- Near-term production potential 2 open-pit deposits are already pre-stripped
- Significant potential for resource growth through further exploration
- Defined high priority exploration targets both extensional and regional
- The Company to raise approx. \$50 million to fund acquisition and initial post-acquisition pre-development activities

Comet Resources Limited (Comet or Company) (ASX: CRL) is pleased to announce that it has executed a binding agreement to acquire a 100% interest in the Mt Margaret Copper Project and associated regional tenements near Cloncurry, Queensland (Project or Mt Margaret) from Mount Isa Mines Limited, a wholly-owned subsidiary of Glencore Plc (Acquisition).

Managing Director, Matthew O'Kane commented, "Acquisition of the Mt Margaret Copper Project is a truly transformational event for Comet. Mt Margaret is a substantial past-producing copper mine that we've been able to acquire due to portfolio rationalisation of a global tier one mining company. It contains existing Mineral Resources of 13.0Mt at approximately 1% copper equivalent, with over 95% of this resource in the Measured and Indicated categories. The majority of Mt Margaret's Resource sits in two already pre-stripped open-pits providing reduced capex pathways to production."

ACQUISITION OVERVIEW

Comet has entered into a share sale agreement (MTM Acquisition Agreement) with Minerals Mining and Metallurgy Limited (ACN 645 972 309) (MMM), Mount Isa Mines Limited (ACN 009 661 447) (MIM) and Mount Margaret Mining Pty Ltd (ACN 150 366 224) (MTM) pursuant to which MIM has agreed to sell, and MMM has agreed to buy, 100% of the issued capital in MTM (MTM Shares). MTM is the owner of the Project. Neither MMM, MIM or MTM are related parties of the Company.

The consideration for the acquisition of the MTM Shares is:

a non-refundable payment by MMM of \$5,000,000 to MIM; and (i)

comet@cometres.com.au

cometres.com.au

ASX:CRL

Please see Table 2 for a complete composition of the Measured, Indicated and Inferred resources details

² Please see Table 2 for a complete composition of the Measured, Indicated and Inferred resources details

(ii) on completion, the issue by Comet (such issue to be procured by MMM) of 25,000,000 fully paid ordinary shares in the capital of Comet (**Shares**) to MIM (or its nominee) (at an aggregate deemed issue price for those Shares of \$0.20 per Share, equal to an amount of \$5,000,000.

In addition, the Company has entered into a share sale agreement (MMM Acquisition Agreement) with MMM and the current shareholders of MMM (MMM Vendors) pursuant to which the MMM Vendors have agreed to sell, and the Company has agreed to buy, 100% of the issued capital in MMM. The consideration for the acquisition of the MMM Shares is 73,550,000 Shares (Consideration Shares) and 36,775,000 options to acquire Shares (Consideration Options), to be issued to the MMM Vendors and new shareholders of MMM since execution of the MMM Acquisition Agreement as follows:

MMM Shareholders	Number of MMM Shares	Number of Consideration Shares to be received	Number of Consideration Options to be received
Kiandra Nominees Pty Ltd ACN 125 369 995 ATF <jk family="" trust=""></jk>	12,900,000	12,900,000	6,450,000
Valiant Equity Management Pty Ltd ACN 122 958 614 ATF <byass family="" trust=""></byass>	5,400,000	5,400,000	2,700,000
Bilka Two Pty Ltd ACN 636 706 002	2,700,000	2,700,000	1,350,000
Andrea Lee McLure	250,000	250,000	125,000
New Shareholders	52,300,000	52,300,000	26,150,000
Total	73,550,000	73,550,000	36,775,000

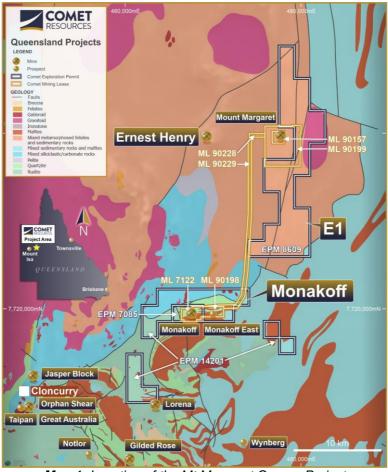
Summaries of the key terms of the MTM Acquisition Agreement and MMM Acquisition Agreement are set out in Annexure A to this announcement.

Mt Margaret is located 7km from key infrastructure at the Ernest Henry Copper-Gold Mine which was recently sold to Evolution Mining Ltd (ASX: EVN) for \$1 billion.³ Comet will acquire 100% of MMM and MTM (the owner of the Project) in exchange for the issuance of 98,550,000 Shares at a deemed issue price of \$0.20 per Shares (on a post-Consolidation basis, details of which are set out below), resulting in an acquisition value of \$19.71 million.

Mt Margaret represents both potential near-term copper production and regional exploration upside. It comprises nine (9) mining, infrastructure and regional exploration tenements hosting known iron oxide copper gold (**IOCG**) style deposits including JORC Measured, Indicated and Inferred Mineral Resources of 13.0Mt at 0.78% copper and 0.24g/t gold (please see Table 2 for a complete composition of the Measured, Indicated and Inferred resources details).

PO Box 866 Subiaco WA 690

cometres.com.au


ASX:CRL

Subiaco WA 6008

³ Refer to announcement of Evolution Mining Ltd (ASX:EVN) dated 17 November 2021.

ASX:CRL

Map 1: Location of the Mt Margaret Copper Project

Over 95% of the Resource is within the Measured and Indicated category (please see Table 2 for a complete composition of the Measured, Indicated and Inferred resources details). Open-pit mining took place at the Project for approximately two years until production was suspended in 2014 due to copper market conditions and outlook at the time. At the time of suspension, two additional open-pits had been pre-stripped covering the majority of the currently defined Resource. Mt Margaret has great potential for optimisation of its open-pit mining plans for prevailing market prices for consideration of a low capital expenditure restart of mining. Extensive geological and geophysical data sets also come with the Project and the Company intends on utilising these to generate drilling targets for resource extension and regional exploration.

The Company has appointed Euroz Hartleys Limited to act as lead manager to the capital raising to fund the Acquisition and the Company's further exploration and pre-development activities. The capital raising will comprise a raising of up to \$50 million with an issue price of \$0.20 per Share (on a post-Consolidation basis) (**Public Offer**) by way of full form prospectus (**Prospectus**). The predominant use of these funds will be used to satisfy the environmental bond requirements for the Project which are currently assessed at approximately \$32.2 million.

Comet will undertake re-compliance with Chapters 1 and 2 of the ASX Listing Rules and, in doing so, will subject to shareholder approval, undertake a consolidation of its issued capital on a ten (10) to one (1) basis (**Consolidation**). The Acquisition will amount to a significant change in the scale of the Company's current activities and, as such, the Company will be required to obtain approval from its shareholders (**Shareholders**) for the Acquisition (see Annexure E for further details).

- PO Box 866 Subiaco WA 690
- cometres.com.au
- ASX:CRL

The Company's securities have been suspended from quotation since 31 January 2022 and will remain suspended from quotation on ASX until the Company has re-complied with Chapters 1 and 2 of the ASX Listing Rules and the Acquisition is completed.

If Shareholders do not approve the Acquisition, the Company will not proceed with the Acquisition and will need to find an alternate means to meet the requirements of Chapter 12 of the ASX Listing Rules.

On completion of the Acquisition, satisfaction of the environmental bonding conditions for the Project (namely payment of \$32,203,375 which relates primarily to rehabilitation of the mined and prestripped pits at the E1 project area) completion of the Public Offer, issue of the consideration for the Acquisition and Share Consolidation, Comet will maintain the following capital structure:

Fully Paid Ordinary Shares: 422,709,009 78,149,718* **Options:**

Debt: Nil

Cash (estimated): \$12.0 million

The Public Offer price of \$0.20 per Share implies a market capitalisation of approximately \$84.5m (see Annexure D containing the Company's pro-forma balance sheet).

MT MARGARET COPPER PROJECT

Mt Margaret consists of a total of six (6) mining and infrastructure licences covering 3,412ha and three (3) exploration tenements covering 46 sub-blocks as detailed in Table 1 (below). The Project consists of two (2) primary project areas (being E1 and Monakoff) joined by a haul road and infrastructure tenement.

The Project is currently owned by MIM via its 100% shareholding in MTM. MIM's ultimate parent is Glencore Plc (Glencore). Mining originally commenced at Mt Margaret in July 2012 after Mt Margaret was acquired from Exco Resources Ltd in June 2011 for \$175 million by Xstrata Plc.4 Approximately \$124 million was subsequently spent on project development and infrastructure.⁵ Xstrata was later acquired by Glencore on 2 May 2013. Glencore ceased mining in 2014 as copper entered into a bear market. Since Glencore's decision to cease mining, the Project has been on 'care and maintenance'.

Copper prices today are approximately 30-40% higher in \$US and 90-100% higher in \$A than the time of the decision to suspend mining at Mt Margaret and, perhaps more importantly, the medium and long-term outlook for copper is positive. Following the Acquisition, Comet aims to expand the current JORC Mineral Resource by drilling strike and depth extensions of current resources and will also undertake a comprehensive review of the Project database to delineate further regional drill targets highlighted by past geophysical and geochemical work.

- cometres.com.au
- ASX:CRL

^{*} This figure does not include 10,500,000 Options held by current and previous Directors exercisable at \$0.018 on or before 30 June 2023. These Options will be cancelled by the Company prior to completion of the Acquisition.

⁴ Refer to announcement of Exco Resources Ltd (ASX:EXCO) dated 30 June 2011.

⁵ Refer to Xstrata Copper press release dated 31 July 2012.

Project Area	Tenement	Area	Area Unit	Grant/Renewal	Expiry		
	ML90157	181.6		In renewal			
E1	ML90199	1655.4	ha	9/12/2011	31/12/2032		
	ML90228	71.1		17/02/2012	28/02/2033		
	EPM8609	27		15/01/1921	14/01/2023		
	EPM14201	17	Sub-blocks	13/10/2004	12/10/2022		
Monakoff	EPM7085	2		13/03/2021	13/03/2023		
IVIONAKON	ML90198	614.4		26/07/2012	31/07/2033		
	ML7122	32.3	ha	15/10/1992	31/10/2032		
Haul road and infrastructure	ML90229	856.8		26/07/2012	31/07/2033		

Table 1 - Licences of the Mt Margaret Project

Deposit	Classification	Tonnage (Mt)	Cu (%)	Au (g/t)
	Measured	4.6	0.70	0.20
E1	Indicated	5.5	0.75	0.23
£1	Inferred	0.4	0.90	0.30
	TOTAL	10.5	0.74	0.22
	Measured	0.0	0.0	0.0
Monakoff	Indicated	2.4	0.95	0.3
IVIONAKOII	Inferred	0.1	0.80	0.20
	TOTAL	2.5	0.94	0.30
Total	Measured + Indicated + Inferred	13.0	0.78	0.24

Table 2 - JORC (2012) Resources

Mt Margaret Copper Mine – E1 Project

The E1 Project consists of 3 currently defined open pit orebodies, E1 North, E1 South and E1 East. E1 North has been mined to the previously defined pit shell parameters prior to the Project being put into care and maintenance. The existing JORC Measured, Indicated and Inferred Resource at E1 is contained within the E1 South and E1 East deposits. Exploration around the E1 Project area will focus on drilling at depth and also along strike from currently defined mineralisation to test for further extensions.

Area	ID	From (m)	To (m)	Interval (m)	Cu (%)	Au (g/t)
	EMMD049	40.00	68.00	28.00	1.31	0.29
E-1 South	EMDT063	214.00	241.00	27.00	0.81	0.24
	ELZD0133	61.00	106.00	45.00	1.28	0.32

- **L** AU +61 (8) 6489 1600
- comet@cometres.com.au
- PO Box 866 Subiaco WA 690
- cometres.com.au
- ASX:CRL

E1- East	EMMD014	56.00	242.00	186.00	1.06	0.33
ET- EQ21	EMMD0105	152.00	278.00	126.00	0.90	0.26
	EMKDT012	214.00	230.00	16.00	1.66	0.53
Monakoff	EMKRC003	79.00	92.00	13.00	1.89	0.65
	EMKRC022	84.00	96.00	12.00	1.85	0.58
Daniel off	ECRC031	20.00	76.00	56.00	1.46	0.41
Monakoff Eaast	EMEDD001	18.00	40.00	22.00	2.41	0.68
EddSl	EMEDD007	4.00	25.00	21.00	1.61	0.57

Table 3 – Significant Drill Intercepts in Unmined Areas

E1 North

E1 North mineralisation occurs in a series of steeply dipping metasediments and metavolcanic lenses bounded by two north-trending faults to the east and west, each dipping inwards and intersecting at depth (See Figure 1 below).

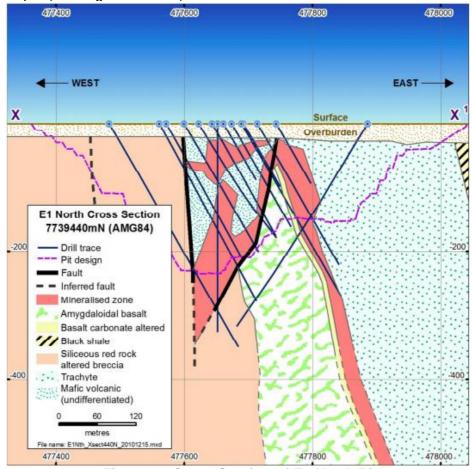


Figure 1 - Cross Section of E1 North Pit

The mineralised sequence is hosted within undifferentiated mafic volcanics and the Company observes that mineralisation is associated with fold hinges. This association can be used to inform exploration on the surrounding tenure. There is considerable geophysical data to suggest that other structures on the Eliza Creek tenement, surrounding the E1 Project mineralisation, represent worthy drill targets. While E1 North has been extensively mined, the

Company observes that exploration at depth is warranted due to the open-ended nature of mineralisation.

Figure 2: E1 North Pit around commencement of mining operations

E1 South and East

E1 East and E1 South deposits are hosted by massive magnetite ironstones which respond well to geophysics. The E1 South deposit is contained in a parallel series of stacked, folded lenses (See Figure 3 below).

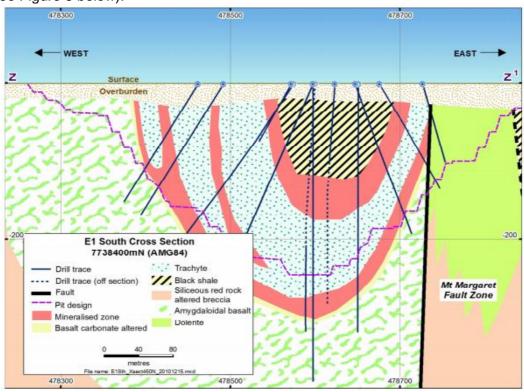


Figure 3 - Cross Section of E1 South Pit

The E1 East deposit is hosted within three steeply dipping lenses (Figure 4 below). The current interpretation is that there is a possible closure of the mineralisation at depth around a fold hinge. This will be tested with exploration drilling programs following settlement of the Acquisition.

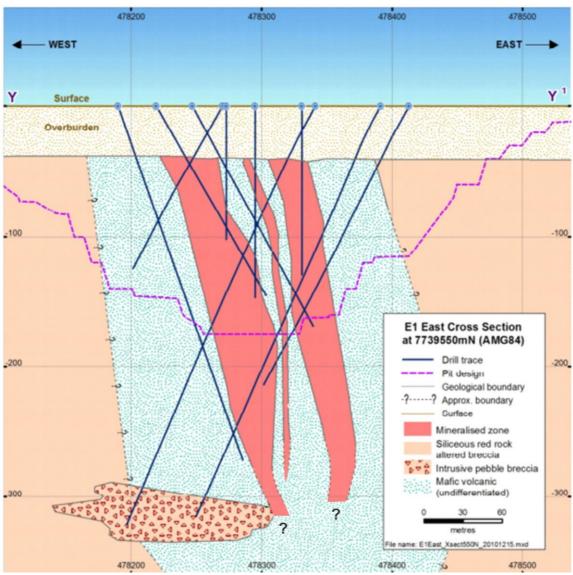


Figure 4 - Cross Section of E1 East Pit

Both the E1 South and East deposits have been pre-stripped but no material mining has occurred.

Mt Margaret Copper Mine - Monakoff Deposit

The Monakoff mineralisation occurs at the contact between the Mt Norna Quartzite and Toole Creek Volcanics in a ~30 metres thick package of altered sediments. The main copper ore occurs in two steep south dipping sheet-like lenses. The larger western lens is magnetite bearing sheared metasediments, while the smaller eastern lens is a replaced dolerite. Immediately below the copper ore is a garnet schist interspersed with BIF, followed by a laminated sericitic metasiltstone that grades into the main Mount Norna footwall sequence.

The Company observes that the Monakoff pit has been partially developed and will assess the appropriateness of a Scoping Study to determine the current feasibility of a small-scale mining operation under the Company's new corporate strategy and prevailing commodity prices.

Regional Exploration

In addition to the drilling that will be conducted around the existing defined JORC Measured and Indicated and Inferred Resources at the E1 Project and Monakoff, following settlement of the Acquisition, the Company intends to complete further assessment of available desktop geophysical and geochemical data prior to embarking on a material regional field exploration campaign.

Geology, Drilling And Resource Estimation

The E1 Project is located within the Cloncurry district (Eastern succession) of the Mt Isa Inlier. The Proterozoic-age rocks of the Cloncurry district were deposited between 1840 and 1720Ma and are comprised of a range of rocks whose parentage includes pelitic meta-sedimentary rocks, felsic volcanics, calc-silicates and meta-evaporites, basalt and clastic sedimentary rocks.

Copper-gold (Cu-Au) mineralisation in the Cloncurry district was introduced by multiple phases of hydrothermal activity associated with Na-Ca alteration and emplacement of large-scale intrusions such as the Williams and Naraku Batholiths. The deposits are not stratigraphically controlled but are usually associated with brittle and brittle-ductile shear and fault structures which acted as conduits for the transport of high temperature (300-500°C) saline fluids into the host rocks.

Several campaigns of drilling have been conducted at the E1 and Monakoff sites with industry standard air core, diamond and reverse circulation RC totalling 86,161m at E1 (502 holes) and 9,312m (142 holes) at Monakoff. No air core holes were used in the mineral resource estimates. The majority of the drilling was completed by EXCO Limited, with some previous drilling conducted by WMC and Mount Isa Mines. Diamond drilling used a combination of HQ and NQ core, and the majority of the RC drilling was conducted with a 5 1/4 inch face sampling bit with samples collected through a cyclone. Samples were generally collected on 1 or 2m intervals for both RC and diamond core. RC samples were riffle split and spear samples and all diamond core was split using a core saw. Half core samples were taken from NQ core and ¼ core was sampled from HQ core. EXCO conducted checks to validate the riffle and spear sampling which showed no bias in either method.

Drill sample recovery was recorded qualitatively into the comments section comments section of the drill logs only when a poor sample was recovered. Sample recovery was generally very good. All RC and diamond core holes were logged for their geological attributes. Data was captured through hard copy logs which were subsequently manually entered into validated Excel spreadsheets on site by the geologists and then electronically transferred to the Datashed SQL database in the EXCO Perth office. More recently, some of the logging information has been entered directly into a hand-held computer and then electronically downloaded into the master database.

- cometres.com.au
- ASX:CRL

Samples were tested at ALS Brisbane for ore grade copper and ore grade gold. The entire sample was crushed to >70% -6mm then pulverised then tested using aqua regia (total digestion) and ICP-AES (copper) and fire assay AAS (gold). Quality control standards, blanks and duplicates were routinely used by EXCO. Runge Limited considered that the overall QAQC results for the E1 resources were acceptable and confirm the validity of the assay data for use in the resource estimate.

Drill holes were picked up in MGA94 Zone 54 coordinates using DGPS to <10cm accuracy in x, y and z. Down hole dip and azimuths were determined at 50m intervals using a Reflex single-shot. Parts of the deposits contain a significant amount of magnetite. Where this has been a problem (due to logged magnetite), the surveys are smoothed. As the dip reading is unaffected, these are used as measured but the azimuths are smoothed from the readings above and below.

The E1 Mineral Resource Estimate was made by Runge Ltd and the Monakoff resource was estimated in house by EXCO. EXCO geologists prepared the initial geological interpretations of the E1 mineralisation which were based on understanding of the host stratigraphy and a nominal 0.2% Cu cut-off grade. The preliminary interpretations were provided to Runge where they were modified slightly to ensure all holes were snapped to the wireframes, the interpreted boundaries were consistent with the observed grade distribution, and that the three-dimensional geometry of the various shapes was robust.

Significant zones of internal dilution were included in places to maintain continuity of the resource wireframes. In the supergene zone of E1 North, a zone of elevated Au mineralisation was observed above the Cu wireframe. A separate wireframe was created to encompass this zone. Resource outlines were generally extrapolated to a distance of 50m from drill hole intersections, unless supported by adjacent drill holes.

Wireframes were generated for the unconformity representing the base of the transported cover sequence, the base of complete oxidation and the top of fresh rock. These surfaces were based on logging of the drill holes.

Drilling at E1 extends to a maximum depth of approximately 400m below surface and the mineralisation was modelled to that depth at E1 South, and to 300m depth at E1 North and E1 East.

The strike length of the Monakoff resource is 715m (from 4940mE to 5655mE) and vertically 150m from approximately 100mRL to -50mRL.

The wireframes of the mineralised zones were used to code the database to allow identification of the resource intersections. Separate intersection files were generated for each resource object. Analysis of sample lengths inside the resource zones was then carried out to determine the optimal length for compositing. The majority of samples were 2m in length, so all samples inside the wireframes were composited to 2m using Surpac software. The "best fit" method of compositing was used to eliminate rejected intervals.

The composites were checked for spatial correlation with the objects, the location of the rejected composites and zero composite values. Individual composite files were created for the major zones in the wireframe models.

The composite sample data for the major resource zones was imported into GeoAccess software.

To assist in the selection of appropriate high-grade cuts, the composite data was loaded in GeoAccess software and log-probability plots were generated for each resource zone and each element. High grade cuts of 11% Cu and 1.3g/t Au were applied to the supergene zone of E1 North. No other zones or elements were cut prior to estimation.

All variography was completed using Surpac software (Version 6.0.2). The 2m composite data from

- cometres.com.au
- ASX:CRL

the major zone (Object 2) was separated into the two main limbs and variography was completed on each limb for the five elements Cu, Au, Co, Fe and U3O8.

E1 South: To determine the nugget variance of the data, an omnidirectional variogram with a 2m lag was used, reflecting the downhole composite spacing. This resulted in a relatively well-structured variogram for all elements, with a nugget variance for Cu of 23% in the East Limb, and 30% in the West Limb. The downhole variogram was fitted to a nested two structure spherical model.

E1 North: Variography was carried out on the 2m composite data from each of the main material types – Supergene (Object 2) and Fresh (Object 4). The five elements Cu, Au, Co, Fe and U3O8 were analysed

Monakoff: Copper and gold values were available for each sample. Grade boundaries were Defined by Exco using a ~1% Cu cutoff grade to capture entire mineralised zone. Grades composited to 1m as 95% of the sampling was completed at 1m intervals. No high grade cut was used.

To determine the nugget variance of the data, an omnidirectional variogram with a 2m lag was used, reflecting the downhole composite spacing. This resulted in a relatively well-structured variogram for all elements, with a nugget variance for Cu of 5% in the Primary and 6% in the Supergene zone. The downhole variogram was fitted to a nested two structure spherical model.

E1 East: Variography was carried out on the 2m composite data from the combined composites of Object 31 and Object 33. The five elements Cu, Au, Co, Fe and U3O8 were analysed. Supervisor software was used for the analysis.

To determine the nugget variance of the data, an omnidirectional variogram with a 2m lag was used, reflecting the downhole composite spacing. This resulted in a relatively well-structured variogram for all elements, with a nugget variance for Cu of 20%. The downhole variogram was fitted to a nested two structure spherical model.

Cu, Au, Co, Fe and U_3O_8 grades were interpolated into a Surpac block model using Ordinary Kriging. The surpac block model used a primary block size of 25m NS by 10m EW by 20m vertical with subcells of 6.25m by 2.5m by 5m. The primary block size was set to approximately half the drill hole spacing of the better drilled portion of the deposit. Grade estimation was carried out in the parent blocks. Sub-blocks were used to allow the model to fit the geometry of the wireframes.

The deposit was estimated using Ordinary Kriging (OK) interpolation constrained by resource outlines based on a nominal 0.3% Cu cut-off grade.

Monakoff resources was reported at 0.5% and 1.0% Cu cut-off.

Drill hole spacing in each block model is as follows;

E1 North: 20 - 50m
E1 East: 30 - 50m
E1 South: 50m
Monakoff: 25m

Bulk density values were measured on whole diamond core using the Water Immersion method. At the E1 deposit, a total of 3,619 values were available for the resource zones. In addition, a total of 8.061 values were available for the waste zones.

Bulk density values within the different material types were interpolated using ID2 with an isotropic search for all domains. Any unfilled blocks were then assigned values based on the mean of the bulk density values in each zone.

- cometres.com.au
- ASX:CRL

Bulk density for Monakoff was calculated from 75 samples using immersion method of half core samples.

The E1 deposits show good continuity of the main mineralised zones allowing the drill hole intersections to be modelled into coherent, geologically robust wireframes. Reasonable consistency is evident in the thickness of the structure, and the distribution of grade appears to be continuous along strike and down dip.

The resource was classified as Measured Mineral Resource in areas of the E1 South and E1 North zones where 20m to 50m spaced drilling defined excellent continuity of mineralisation and geology. Indicated Mineral Resource was defined in areas where drilling allowed confident definition of the geometry and grade of the mineralisation. This was typically at a spacing of 50m by 50m. Inferred Mineral Resource was defined where the drill spacing exceeded 50m by 50m or where less than 4 drill holes defined a zone of mineralisation. Preliminary economic analysis has been carried out by EXCO.

The resource block model has an attribute "class" for all blocks within the resource wireframes coded as "mes" for Measured, "ind" for Indicated and "inf" for Inferred.

The Monakoff deposit is a consistent tabular body in both geological units and grade. This consistency allows more of the resource to be included in the Indicated Resource category.

Indicated: The portion of the deposit generally sampled at least 40m by 40m spacing.

Inferred: The portion of the deposit defined by drilling at generally greater then 40m spacings.

The modelled E1 deposits represent substantial zones of Cu-Au mineralisation. The relatively shallow, broad mineralisation provide excellent targets for open-pit exploitation. Additional infill drilling is required in some areas to improve the confidence in the structural model and the grade continuity. Extensional drilling may also be warranted to test the potential for extensions to both deposits, particularly down plunge. The structural complexity evident at the deposit needs additional work to provide a more robust interpretation in some areas. Selected infill drilling will assist with this.

Extensive metallurgical testwork has been conducted on the E1 and Monakoff ores and both were successfully treated at the nearby Ernest Henry facility.

CAPITAL RAISING AND PROPOSED ISSUE OF SECURITIES

To assist the Company to re-comply with Chapters 1 and 2 of the ASX Listing Rules, the Company intends to undertake the Public Offer (subject to Shareholder approval).

The Company has appointed Euroz Hartleys Limited (ACN 104 195 057 (Euroz Hartleys) as lead manager to the Public Offer. The Public Offer will not be underwritten.

Euroz Hartleys will receive the following fees:

- a cash fee amount equal to 6% of the amount placed under the Public Offer (being \$3,000,000); and
- 15,000,000 options exercisable at \$0.30 per option (on a 1:1 basis) on or before the date which is 48 months from issue (**Lead Manager Options**).

- cometres.com.au
- ASX:CRL

The Company also will pay an introduction fee to Barclay Wells Limited (ACN 009 352 836) (**Barclay Wells**). Barclay Wells will receive the following fees:

- a fee amount equal to 2% of the amount placed under the Public Offer (being \$1,000,000) payable in shares under the same terms and price as the Public Offer, i.e. 5,000,000 shares at a deemed issue price of \$0.20 per share (Introduction Fee Shares); and
- 5,000,000 options exercisable at \$0.30 per option (on a 1:1 basis) on or before the date which is 36 months from issue (**Introduction Fee Options**).

In addition to the Public Offer, the Company intends to issue the following securities (on a post-Consolidation basis and subject to receipt of Shareholder approval) in connection with the Acquisition:

- 1. 98,550,000 Shares to the Vendors as consideration for the Acquisition, in the following proportions:
 - a. 73,550,000 Shares will be issued to the shareholders of MMM; and
 - b. 25,000,000 Shares will be issued to the shareholders of MTM.

36,775,000 options to acquire Shares (**Vendor Options**) to the shareholders of MMM as part consideration for the Acquisition, of which 26,150,000 options will be issued to MMM shareholders who participated in the MMM capital raising in order to fund the cash payment to MIM (refer to details below) and will be exercisable at \$0.20 on or before two years from the issue date and 10,625,000 options will be issued to the founding shareholders of MMM and will exercisable at \$0.30 per option on or before 3 years from the issue date.

- 2. The Lead Manager Options, the Introduction Shares and the Introduction Options.
- 3. 13,500,000 Options to the board of the Company exercisable at \$0.30 per Option within the date that is three years from the issue date, in the following proportions (**Director Options**):
 - a. Matthew O'Kane 8,100,000 Director Options;
 - b. Hamish Halliday 2,700,000 Director Options; and
 - c. Alex Molyneux 2,700,000 Director Options.

Refer to Annexure C for the valuation of the Director Options.

Use of Proceeds

The Company intends to apply funds raised from the Public Offer, together with existing cash reserves, over the first two years following admission of the Company to the Official List of ASX as follows:

Description	Amount (\$)	%
Funds Available		
Company cash balance	\$300,000	0.6%
Public Offer funds	\$50,000,000	99.4%
Completion of Public Offer	\$50,300,000	100.0%
Application of Funds	Amount (\$)	%
Expenditure on Comet's existing assets	1,250,000	2.5%
Expenditure on the Project	7,500,000	14.9%
Payment of Environmental Bond	32,203,375	64.0%
Working capital (including assumed liabilities and provision for consolidation overrun, corporate and general administration and transaction stamp duty)	5,846,625	11.6%
Transaction Fees	3,500,000	7.0%
Total	50,300,000	100.0%

The above table is a statement of current intentions as of the date of this announcement. As with any budget, intervening events and new circumstances have the potential to affect the manner in which the funds are ultimately applied. The Board reserves the right to alter the way funds are applied on this basis. Please see Annexure B for other Key Risks and Dependencies.

Pro Forma Capital Structure

The indicative capital structure of the Company upon completion of the Acquisition, based on the Company's current securities on issue and assuming the \$50,000,000 is raised under the Public Offer, will be as follows:

	Shares	%	Options	%
Current issued capital	691,590,087		78,747,184	
Current issued capital after Consolidation	69,159,009	16.4	7,874,718	10.1
Capital Raising ¹	250,000,000	59.1	Nil	-
Consideration Shares ²	98,550,000	23.3	Nil	-
Vendor Options ³	Nil	-	36,775,000	47.0
Board and Management Options ⁴	Nil	-	13,500,000	17.3
Lead Manager Options ⁵	Nil	-	15,000,000	19.2
Introduction Options ⁶	Nil	-	5,000,000	6.4
Introduction Shares ⁷	5,000,000	1.2	Nil	-
Total	422,709,009	100.0	78,149,718 ⁸	100.0

- cometres.com.au
- ASX:CRI

Notes:

- 1. Assumes \$50,000,000 is raised under the Public Offer at \$0.20 per Share.
- 2. Assumes a deemed issue price of \$0.20 per Share for total Share consideration of \$19,710,000.
- 3. Comet will issue 36,775,000 Vendor Options to the shareholders of MMM as part consideration for the Acquisition. 26,150,000 options will be exercisable at \$0.20 per option (on a 1:1 basis) on, or before, 2 years from being issued and 10,625,000 options will be exercisable at \$0.30 per option (on a 1:1 basis) on, or before, 3 years from being issued.
- 4. Comet proposes to issue 13,500,000 options to its board and management exercisable at \$0.30 per option (on a 1:1 basis) on, or before, 3 years from being issued.
- 5. Comet proposes to issue 15,000,000 options to the lead manager exercisable at \$0.30 on or before the date which is 48 months from issue.
- 6. Comet proposes to issue 5,000,000 options to Barclay Wells exercisable at \$0.30 on or before the date which is 36 months from issue.
- 7. Comet proposes to issue 5,000,000 shares to Barclay Wells at a deemed issue price of \$0.20 per share to satisfy the 2% introduction fee payable to Barclay Wells.
- 8. This figure does not include 10,500,000 Options held by current and previous Directors exercisable at \$0.018 on or before 30 June 2023. These Options will be cancelled by the Company prior to completion of the Acquisition.

Other information required by Annexure A of Guidance Note 12

Previous issued securities in the 6 months preceding this announcement:

Neither the Company nor MTM has completed any issue of securities in the past 6 months.

MMM is in the process of issuing 52,300,000 shares at an issue price of \$0.10 per share pursuant to a recently completed capital raise for a total of \$5,230,000 in gross proceeds. \$5,000,000 of the funds raised were used by MMM to pay MIM the non-refundable deposit pursuant to the MTM Acquisition Agreement, \$210,000 was applied towards costs of the capital raising and \$20,000 was added to working capital.

<u>Issues of securities prior to the Company's re-admission to the Official List:</u>

The Company and MTM will not issue any additional securities prior to the Company's re-admission to the Official List. MMM will only complete the issue of 52,300,000 shares as noted above and not issue any further shares prior to the Company's re-admission to the Official List.

Voting power in the Company following the Acquisition:

Following the completion of the Acquisition, no person will acquire control of or voting power of 20% or more in Comet.

<u>Description of the government licences, permits and other regulatory approvals that the target requires in order to operate its business model:</u>

As a special purpose vehicle to hold MTM, MMM does not require government licences, permits and other regulatory approvals in order to operate its business model. MTM is the holder of three exploration permits for minerals and six mining leases granted under the Mineral Resources Act 1989 (Qld) which are required in order to operate its business model. The exploration permits and mining leases have been validly granted with respect to native title. MTM is also authorised to take underground water pursuant to a granted water licence.

- cometres.com.au
- ASX:CRL

Enquiries that the Company has undertaken in relation to the assets and liabilities, financial position and performance, profits and losses, and prospects of the target:

The Company has undertaken appropriate enquiries into the assets and liabilities, financial position and performance, profits and losses, and prospects of MMM and MTM. The Company's enquiries into the business of MMM and MTM, and the tenements comprising the Mt Margaret Copper Project, consisted of the Company's management and an independent geologist review previous exploration and geological data made available in a data room by Glencore regarding the Mt Margaret Copper Project, confirming MTM's interests in the tenements comprising the Mt Margaret Copper Project, and undertaking a general corporate legal review of MMM and MTM. Based on the board's experience and background, it considered that the proposed Acquisition compared favourably to recent third-party re-compliance listing transactions involving mineral exploration assets, given the existing JORC (2012) mineral resource and the further exploration potential of the Mt Margaret Copper Project.

All of the material and accessible information available to the directors of the Company in relation to the Acquisition has been included in this announcement.

<u>Shares under the Public Offer being issued to directors, material parties or family members of the directors:</u>

The Company will seek shareholder approval for the following participation of the directors in the Public Offer:

- up to 250,000 Shares at \$0.20 (totalling \$50,000) to Matthew O'Kane (or his nominee);
- up to 250,000 Shares at \$0.20 (totalling \$50,000) to Hamish Halliday (or his nominee); and
- up to 250,000 Shares at \$0.20 (totalling \$50,000) to Alexander Molyneux (or his nominee).

Continuous disclosure obligations:

The Company confirms that it is in compliance with its continuous disclosure obligations under ASX Listing Rule 3.1.

INDICATIVE TIMETABLE

An indicative timetable for the Acquisition and associated events is set out below:

Event	Date*
Announcement of Acquisition	4 April 2022
Notice of Meeting for the Acquisition sent to Shareholders	20 April 2022
Lodgement of Prospectus with the ASIC	6 May 2022
Opening date of Public Offer	16 May 2022
Shareholders meeting to approve the Acquisition	19 May 2022
Closing date of Public Offer	22 May 2022
Settlement of Acquisition and the Public Offer	3 June 2022
Re-quotation on ASX	17 June 2022

*Please note that this timetable is indicative only and the Directors of the Company reserve the right to amend the timetable as required.

The Company requests that its securities remain suspended until completion of the Acquisition and re-compliance with Chapters 1 and 2 of the ASX Listing Rules.

Release of this announcement has been approved by the Board of Comet Resources Limited.

MATTHEW O'KANE

Managing Director Comet Resources Limited

(08) 6489 1600

comet@cometres.com.au

cometres.com.au

Suite 9, 330 Churchill Avenue Subiaco WA 6008

PO Box 866 Subiaco WA 6904

This announcement has been authorised for release by the Board of Comet Resources Limited.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Results and Mineral Resources Estimates is based on information compiled or reviewed by Ms Elizabeth Laursen (B. ESc (Hons)., GradDipAppFin, MAIG, MSEG). Ms Laursen is a member of the Australian Institute of Geoscientists. Ms Laursen has sufficient experience that is relevant to the style of mineralisation, type of deposit under consideration and to the activity that they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration, Results, Mineral Resource and Ore Reserves'. Mrs Laursen consents to the inclusion in this report of the matters based on their information in the form and context in which they appear.

COMPETENT PERSONS DISCLOSURE

Ms Laursen is a Director of Metals Mining and Metallurgy Limited.

- cometres.com.au
- ASX:CRL

ANNEXURE A - ACQUISITION AGREEMENTS

MTM Acquisition Agreement - MMM, MTM, MIM and Comet

The material terms and conditions of the MTM Acquisition Agreement are as follows:

(a) Acquisition

MMM has agreed to acquire, and MIM has agreed to sell, the MTM Shares, free from encumbrances and with all rights attached or accruing to the MTM Shares as at completion for the consideration set out below.

Title to and risk in the MTM Shares remains solely with MIM until completion and passes to MMM on completion.

(b) Consideration

The consideration for the acquisition of the MTM Shares is:

- (i) a non-refundable payment by MMM of \$5,000,000 to MIM (Cash Payment); and
- (ii) on completion, the issue by Comet (such issue to be procured by MMM) of 25,000,000 Shares to MIM (or its nominee) (at an aggregate deemed issue price for those Shares of \$0.20 per Share, equal to an amount of \$5,000,000.

(c) Conditions Precedent

Completion of the MTM Acquisition Agreement is subject to the satisfaction (or waiver) of the following conditions precedent:

- (i) Comet receiving conditional approval from ASX for its securities to be reinstated for trading following Completion and Comet re-complying with the new listing requirements in Chapters 1 and 2 of the ASX Listing Rules;
- (ii) Comet receiving valid, binding and irrevocable applications for up to \$50,000,000 under the Public Offer;
- (iii) Comet receiving ASX conditional approval to re-admit the securities of Comet to official quotation on ASX, on terms and conditions reasonably acceptable to Comet; and
- (iv) MTM having entered into and completed agreements with each relevant MIM group member for, at MIM's discretion, the cancellation, waiver, release or forgiveness of all indebtedness as between MTM and each relevant MIM group member such that as at completion, no outstanding indebtedness is owed to or from MTM from or to another MIM group member.

The parties must use their respective best endeavours to obtain satisfaction of the Conditions Precedent (including procuring the performance of third parties) as soon as reasonably practicable and otherwise on or before 5pm (Perth time) on 23 June 2022 (**CP Satisfaction Date**), unless extended by written agreement of the parties.

(d) **Board composition**

At completion, the Board of Comet will comprise:

- (i) the directors of Comet as at the date of the MTM Acquisition Agreement (except to the extent any of those directors resigns or is replaced); and
- (ii) one additional director to be nominated by MIM.

Subiaco WA 6008

Suite 9, 330 Churchill Avenue

(e) Completion

Completion of the MTM Acquisition Agreement, including the issue of the consideration to MIM (or its nominee) must occur on the date that is 5 business days after the date of satisfaction (or waiver) of the last of the Conditions Precedent, or such other time and date that the parties agree.

(f) Termination rights

Prior to Completion, any party may terminate the MTM Acquisition Agreement by written notice to the other party, if it is not then in default of its obligations under the MTM Acquisition Agreement:

- if the Conditions Precedent have not been satisfied or have otherwise become incapable of being satisfied in accordance with their terms, by the CP Satisfaction Date (as that date may have been extended by written agreement of the parties);
- (ii) if another party commits a material default of its obligations under the MTM Acquisition Agreement and fails to remedy that default within 10 business days after notice of the breach by the non-defaulting party;
- (iii) if a representation or warranty provided to it by another party under (as applicable) is or becomes materially false or misleading in any material respect;
- (iv) in the case of MMM, if MTM is or becomes "insolvent" as defined in the MTM Acquisition Agreement (**Insolvent**);
- (v) in the case of MIM, if MMM is or becomes Insolvent or fails to pay the Cash Payment when due.

The terms of the acquisition will otherwise contain provisions considered standard for an agreement of this nature (including representations and warranties and confidentiality provisions).

MMM Acquisition Agreement - MMM, the Company and the MMM Vendors

The material terms and conditions of the MMM Acquisition Agreement are as follows:

(a) Acquisition

Comet will acquire 100% of the equity on issue in MMM from the shareholders of MMM.

(b) Consideration

The consideration for the acquisition of 100% of the equity on issue in MMM is:

- (i) 73,550,000 Shares (Consideration Shares): and
- (ii) 36,775,000 unlisted options to acquire Shares exercisable as follows:
 - i. 26,150,000 options exercisable at \$0.20 per option (on a 1:1 basis) on, or before, 2 years from being issued; and
 - ii. 10,625,000 options exercisable at \$0.30 per option (on a 1:1 basis) on, or before, 3 years from being issued,

(together, the Vendor Options).

(c) Conditions Precedent

Settlement of the acquisition is conditional upon the satisfaction or waiver of the following conditions:

- (i) Comet obtaining Shareholder approval for the purposes of ASX Listing Rules and the Corporations Act for the issue of the consideration, the Shares to be issued to MTM and the Shares to be issued under the Public Offer:
- (ii) Comet preparing a full form prospectus, lodging it with the ASIC and raising up to \$50,000,000 under the Prospectus through the issue of Shares at \$0.20 each;
- (iii) Comet receiving conditional approval for its Shares to be re-admitted to official quotation on the ASX after settlement and completion of the Public Offer, subject to conditions reasonably capable of being satisfied by Comet; and
- (iv) the parties obtaining all other necessary shareholder and regulatory approvals required to complete the transaction the subject of the MMM Acquisition Agreement and the MTM Acquisition Agreement pursuant to the Corporations Act, the ASX Listing Rules or otherwise.

If the Conditions have not been satisfied or waived by 5:00pm (WST) on 23 June 2022 End Date), or such other date agreed by the parties, any party may terminate the MMM Acquisition Agreement by notice in writing to the other parties in which case the parties will be released from their obligations under the MMM Acquisition Agreement, other than in respect of any breaches that occurred prior to termination (which shall survive termination.

Settlement (d)

Settlement will occur on that, or such other date as the parties may agree.

Assumption of obligations under MTM Acquisition Agreement (e)

Immediately following Settlement, the Company agrees to:

- issue the 25,000,000 Shares to MIM; and (i)
- replace MIM's current financial assurance bond in relation to the Mount Margaret (iii) Project (of approximately \$32.2 million),

in accordance with the terms of the MTM Acquisition Agreement.

The terms of the acquisition will otherwise contain provisions considered standard for an agreement of this nature (including representations and warranties and confidentiality provisions).

ANNEXURE B - KEY DEPENDENCIES AND RISKS

KEY DEPENDENCIES

The key dependencies influencing the viability of the Acquisition are:

- (a) the Company's capacity to re-comply with Chapters 1 and 2 of the ASX Listing Rules to enable re-admission to quotation of the Company's Shares;
- (b) completion of the Acquisition;
- (c) tenure access;
- (d) commodity price volatility and exchange rate risk;
- (e) ability to meet resource and reserves and exploration targets;
- (f) raising sufficient funds to satisfy expenditure requirements, exploration and operating costs; and
- (g) minimising environmental impact and complying with health and safety requirements.

KEY RISKS

(a) Completion risk

Pursuant to the Agreement, the Company will acquire 100% of the right, title and interest in the Tenements, the exercise and completion of which is subject to the fulfilment of certain conditions. There is a risk that the conditions for completion of the Acquisition cannot be fulfilled and, in turn, that completion of the Acquisition does not occur.

If the Acquisition is not completed, the Company will incur costs relating to advisors and other costs without any material benefit being achieved.

(b) Re-quotation of Shares on ASX

The Acquisition constitutes a significant change in the nature and scale of the Company's activities and the Company needs to re-comply with Chapters 1 and 2 of the ASX Listing Rules as if it were seeking admission to the Official List of ASX.

Trading in the Company's Shares is currently suspended and will remain suspended until the Company re-complies with Chapters 1 and 2 of the Listing Rules following completion of the Acquisition. The Acquisition is conditional on the Company obtaining all necessary regulatory and Shareholder approvals to effect the Acquisition and satisfying all other requirements of ASX for the reinstatement to Official Quotation of the Company's Shares on the ASX (among other things).

There is a risk that the Company may not be able to meet the requirements of the ASX for requotation of its Shares on the ASX. Should this occur, the Shares will not be able to be traded on the ASX until such time as those requirements can be met, if at all. Shareholders may be prevented from trading their Shares until such time as it does re-comply with the ASX Listing Rules.

(c) Dilution risk

The Company currently has 691,590,087 Shares on issue (before the Consolidation). Pursuant to and contemporaneous with the Acquisition, the Company proposes to issue a number of additional securities as set out in the capital structure pro-forma table in the announcement above.:

Following completion of the Acquisition, the existing Shareholders will retain approximately 16.36% of the Company's issued Share capital;

- i. the Vendors will hold approximately 23.30% of the Company's issued Share capital; and
- ii. the investors under the Public Offer will hold approximately 59.10% of the Company's issued Share capital; and
- iii. Barclay Wells will hold approximately 1.2% of the Company's issued Share capital.

(d) Exploration

Potential investors should understand that mineral exploration and development are high-risk undertakings. There can be no assurance that exploration of the Project, or any other tenements that may be acquired in the future, will result in the discovery of an economic ore deposit. Even if an apparently viable deposit is identified, there is no guarantee that it can be economically exploited.

The future exploration activities of the Company may be affected by a range of factors including geological conditions, limitations on activities due to seasonal weather patterns, unanticipated operational and technical difficulties, industrial and environmental accidents, native title process, changing government regulations and many other factors beyond the control of the Company.

The success of the Company will also depend upon the Company having access to sufficient development capital, being able to maintain title to its projects and obtaining all required approvals for its activities. In the event that exploration programmes prove to be unsuccessful this could lead to a diminution in the value of the Tenements, a reduction in the cash reserves of the Company and possible relinquishment of the Project.

The exploration costs of the Company are based on certain assumptions with respect to the method and timing of exploration. By their nature, these estimates and assumptions are subject to significant uncertainties and, accordingly, the actual costs may materially differ from these estimates and assumptions. Accordingly, no assurance can be given that the cost estimates and the underlying assumptions will be realised in practice, which may materially and adversely affect the Company's viability.

(e) Tenement applications and license renewal

The Company cannot guarantee additional applications for tenements made by the Company will ultimately be granted, in whole or in part. Further the Company cannot guarantee that renewals of valid tenements will be granted on a timely basis, or at all. There is a risk that regulatory and environmental approvals required to convert exploration licences into mining leases may not be obtained or may be revoked.

(f) Mine development

Possible future development of a mining operation at the Project is dependent on a number of factors including, but not limited to, the acquisition and/or delineation of economically recoverable mineralisation, favourable geological conditions, receiving the necessary approvals from all relevant authorities and parties, seasonal weather patterns, unanticipated technical and operational difficulties encountered in extraction and production activities, mechanical failure of operating plant and equipment, shortages or increases in the price of consumables, spare parts and plant and equipment, cost overruns, access to the required level of funding and contracting risk from third parties providing essential services.

If the Company commences production, its operations may be disrupted by a variety of risks and hazards which are beyond its control, including environmental hazards, industrial accidents,

- cometres.com.au
- ASX:CRL

technical failures, labour disputes, unusual or unexpected rock formations, flooding and extended interruptions due to inclement of hazardous weather conditions and fires, explosions or accidents. No assurance can be given that the Company will achieve commercial viability through the development or mining of its projects and treatment of ore.

(g) Additional requirements for capital

The funds to be raised under the Public Offer are considered sufficient to meet the immediate objectives of the Company. Additional funding may be required in the event costs exceed the Company's estimates and to effectively implement its business and operational plans in the future to take advantage of opportunities for acquisitions, joint ventures or other business opportunities, and to meet any unanticipated liabilities or expenses which the Company may incur. If such events occur, additional funding will be required.

Following completion of the Public Offer, the Company may seek to raise further funds through equity or debt financing, joint ventures, licensing arrangements, or other means. Failure to obtain sufficient financing for the Company's activities may result in delay and indefinite postponement of their activities and the proposed commercialisation, marketing and international expansion strategy. There can be no assurance that additional finance will be available when needed or, if available, the terms of the financing may not be favourable to the Company and might involve substantial dilution to Shareholders.

(h) Reliance on key personnel

The Company's future depends, in part, on its ability to attract and retain key personnel. It may not be able to hire and retain such personnel at compensation levels consistent with its existing compensation and salary structure. Its future also depends on the continued contributions of its executive management team and other key management and technical personnel, the loss of whose services would be difficult to replace. In addition, the inability to continue to attract appropriately qualified personnel could have a material adverse effect on the Company's business.

(i) Native title and Aboriginal heritage

In relation to Tenements which the Company has an interest in or will in the future acquire such an interest, there may be areas over which legitimate common law native title rights exist. Without more detailed research into the sites and how they might be affected by future works, it is impossible to anticipate whether such approvals will be forthcoming or what conditions might attach to such approval.

The ability of the Company to gain access to tenements (through obtaining consent of any relevant landowner), or to progress from the exploration phase to the development and mining phases of operations may be adversely affected if the Company is unable to negotiate access to areas of interest within the Project area. The Directors will closely monitor the potential effect of native title claims or Aboriginal heritage matters involving tenements in which the Company has or may have an interest.

ANNEXURE C - VALUATION OF DIRECTOR OPTIONS

The Director Options to be issued to Mr O'Kane, Mr Halliday and Mr Molyneux, have been valued by internal management, using the Black & Scholes option model and based on the assumptions set out below. The Director Options were ascribed the following value:

Assumptions:	
Valuation date	25 February 2022
Market price of Shares	21 cents (last traded and consolidated)
Exercise price	30 cents
Expiry date (length of time from issue)	2 years from date of issue
Risk free interest rate	1.8% (10Y AUS Govt. Bond Yield)
Volatility (discount)	100% (assumed)
Indicative value per Director Option	\$0.09305
Total Value of Director Options	\$1,256,175.00
Matthew O'Kane	\$753,705.00
Hamish Halliday	\$251,235.00
Alex Molyneux	\$251,235.00

Note: The valuation noted above is not necessarily the market price that the Director Options could be traded at and is not automatically the market price for taxation purposes.

ANNEXURE D - PRO	O FOR	MA BAL	Α.	ICE SH	EΕ	Т						
		nt Margaret at ompletion	С	RL Audited 31/12/21		RL Post Bal te Events to 31/12/21		L Unaudited 1/12/21 CRL	Pi	roforma Adj	To	otal Post Acq
Current Assets												
Cash and cash equivalents	\$	-	\$	927,879	\$	-	\$	927,879	\$	44,000,000	\$	44,927,879
Trade and other receivables	\$	-	\$	13,118	\$	-	\$	13,118	\$	-	\$	13,11
Prepayments	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total Current Assets			\$	940,997	\$	-	\$	940,997	\$	44,000,000	\$	44,940,99
Non-Current Assets												
Av for sale asset (IG)	\$	-	\$	2,000	\$	-	\$	2,000	\$	8,000,000	\$	8,002,000
Investment in JV	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Exploration and Evaluation	\$	-	\$	1,107,728	\$	-	\$	1,107,728	\$	24,716,561	\$	25,824,289
Total Non-Current Assets	\$	-	\$	1,109,728	\$	-	\$	1,109,728	\$	32,716,561	\$	33,826,28
Total Assets	\$	-	\$	2,050,725	\$	-	\$	2,050,725	\$	76,716,561	\$	78,767,280
Current Liabilities												
Trade and other payables	\$	-	\$	414,084	\$	-	\$	414,084	\$	-	\$	414,084
Provisions	\$	-	\$	46,949	\$	_	\$	46,949	\$	-	\$	46,949
Bond	\$	32,203,075	\$	-	\$	-	\$	32,203,075	\$	-	\$	32,203,07
Total Current Liabilities	\$	32,203,075	\$	461,033	\$	-	\$	32,664,108	\$	-	\$	32,664,10
Non-Current Liabilities												
Other Liabilities	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total Non-Current Liabilities	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total Liabilities	\$	32,203,075	\$	461,033	\$	-	\$	32,664,108	\$	-	\$	32,664,108
Net Assets	-\$	32,203,075	\$	1,589,692	\$	-	-\$	30,613,383	\$	76,716,561	\$	46,103,178
Equity	•	_	•	40.000.01=	•		•	10.000.01:	•	70 712 22	•	00 000 - :
Issued capital	\$	2	\$	18,288,642	\$	-	\$	18,288,644	\$	70,710,000	\$	88,998,64
Cost of issued Capital	\$	-	\$	-	\$	-	\$	-	-\$	3,500,000		3,500,00
Reserves	\$	-	\$	1,548,098	\$	-	\$	1,548,098	\$	12,476,727	\$	14,024,82
Accumulated losses	-\$	32,203,077	-\$	18,247,048	\$	-	-\$	50,450,125	-\$	2,970,166	-\$	53,420,29
Total Equity	-\$	32,203,075	\$	1,589,692	\$	-	-\$	30,613,383	\$	76,716,561	\$	46,103,17

Note: The accounting treatment for the acquisition of the Mt Margaret Project as shown above is being treated under IFRS as an "Asset Acquisition". This will be reviewed by the party engaged to prepare the IAR as part of the preparation of the prospectus and is therefore subject to confirmation and or variation based on their professional judgement.

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

ANNEXURE E - SHAREHOLDER AND REGULATORY APPROVALS

(a) RE-COMPLIANCE WITH ASX LISTING RULES CHAPTERS 1 AND 2

Since the Acquisition will amount to a significant change in the scale of the Company's activities, the Company is required to obtain Shareholder approval for the Acquisition and must re-comply with Chapters 1 and 2 of the ASX Listing Rules.

(b) SHAREHOLDER APPROVALS

A notice of meeting seeking Shareholder approval for the resolutions required to give effect to the Acquisition will be sent to Shareholders in due course. It is expected that the Company will convene a general meeting to be held in April 2022 (**General Meeting**) to facilitate Shareholder approval for the following matters in respect of the Acquisition:

- (i) approval for a change in scale of the Company's activities;
- (ii) approval for the Consolidation;
- (iii) the issue of up to 250,000,000 Shares under the Public Offer;
- (iv) the issue of 98,550,000 Consideration Shares to the Vendors;
- (v) the issue of 36,775,000 Vendor Options to the shareholders of MMM;
- (vi) the issue of 13,500,000 Director Options in the following proportions:
 - a. Matthew O'Kane 8,100,000 Director Options;
 - b. Hamish Halliday 2,700,000 Director Options; and
 - c. Alex Molyneux 2,700,000 Director Options;
- (vii) the issue of 15,000,000 options to Euroz Hartleys; and
- (viii) the issue of 5,000,000 Shares and 5,000,000 Options to Barclay Wells.

(c) REQUIREMENTS FOR REGULATORY AND SHAREHOLDER APPROVALS GENERALLY

The Company notes that:

- (a) the Acquisition requires Shareholder approval under the ASX Listing Rules and therefore may not proceed if that approval is not forthcoming;
- (b) the Company is required to re-comply with ASX's requirements for admission and quotation and therefore the Acquisition may not proceed if those requirements are not met:
- (c) if the Company does not complete the Acquisition and re-comply with ASX's requirements for admission and quotation, the Company's securities will not be reinstated to trading until such

time as the Company has demonstrated to ASX that it satisfies Chapter 12 of the ASX Listing Rules:

- (i) ASX has an absolute discretion in deciding whether to re-admit the Company to the Official List and to quote its securities and therefore the Acquisition may not proceed if ASX exercises that discretion; and
- (ii) investors should take account of these uncertainties in deciding whether to buy or sell the Company's securities.

Furthermore, the Company:

- (a) notes that ASX takes no responsibility for the contents of this announcement; and
- (b) confirms that it is compliant with its continuous disclosure obligations under ASX Listing Rule 3.1.

ANNEXURE F - JORC CODE, 2012 EDITION - TABLE 1

Section 1 Sampling Techniques and Data

(1)		
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Both RC and Diamond drilling have been conducted to industry standard. Diamond drilling used a combination of HQ core and NQ core. RC drilling used a 5^{1/4} inch face sampling drill bit with samples collected through a cyclone. Sampling was generally collected on 1 or 2m intervals for both diamond an RC drilling with minor sampling to geological boundaries for the core samples. RC samples were riffle split and spear sampled. EXCO conducted checks to validate the riffle and spear sampling which showed no bias in either method.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling was a combination of HQ and NQ standard tube. RC drilling used a 5^{1/4} inch face sampling drill bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill sample recovery was recorded qualitatively into the comments section of the drill logs only when a poor sample was recovered. Sample recovery was generally very good. No relationship between sample recovery and grade has been found.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All RC and diamond core holes were logged for their geological attributes. Data was captured through hard copy logs which were subsequently manually entered into validated Excel spreadsheets on site by the geologists and then electronically transferred to the Datashed SQL database in the EXCO Perth office. More recently, some of the logging information has been entered directly into a hand-held computer and then electronically downloaded into the master database.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field 	 Half NQ diamond core and ¼ HQ core was sampled. RC samples were riffle and spear sampled. The entire sample was crushed to >70% -6mm then pulverised.

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

	 duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Samples were tested at ALS Brisbane for ore grade copper and ore grade gold using aqua regia (total digestion) and ICP-AES (copper) and fire assay AAS (gold). The methods are considered appropriate for the ore type. Quality control standards, blanks and duplicates were routinely used by EXCO. Runge Limited considered that the overall QAQC results for the E1 resources were acceptable and confirm the validity of the assay data for use in the resource estimate.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Data was verified by Runge Limited during the E1 resources estimation phase and again by comet Resources during acquisition due diligence. EMMD186 and EMMD189 at E1 were twinned. Hole EMMD189 was included in the resource estimate and 186 was not. Assay data has not been adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes were picked up using DGPS to <10cm accuracy in x, y and z. Holes were picked up in MGA 94 Z 54 coordinates Down hole dip and azimuths were determined at 50m intervals using a Reflex single-shot. Parts of the deposits contain a significant amount of magnetite. Where this has been a problem (due to logged magnetite), the surveys are smoothed. As the dip reading is unaffected, these are used as measured but the azimuths are smoothed from the readings above and below.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole spacing in the E1 North pit is 20 – 50m Drill holes spacing at E1 East is 30-50m Drill hole spacing at E1 South is 50m Drill hole spacing at Monakoff is 25m
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill holes were oriented as close to perpendicular to the mineralisation as possible.
Sample security	The measures taken to ensure sample security.	Sample security measures are unknown.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All drill hole data was internally reviewed by EXCO Resources Ltd. All drilling data was thoroughly reviewed by Runge Limited prior to the mineral resource estimation completed in 2010. Comet Resources has reviewed the raw drilling & assay data as well as the data created by Runge Limited for the resource estimation.

ABN 88 060 628 202

▲ AU +61 (8) 6489 1600

PO Box 866 Subiaco WA 6904

Section 2 Reporting of Exploration Results

Calledia		
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The E1 North deposit is held within Mining Licence 90157, E1 East and south withing Mining Licence 90199 and the Monakoff deposit within Mining Licence 7122 and 90198. Several other Licences surrounding these two ML's are held. All Licences are in good standing with no known encumbrances.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The majority of the drilling at the E1 mines and Monakoff was completed by EXCO Limited Some drilling was conducted by WMC and Mount Isa Mines.
Geology	Deposit type, geological setting and style of mineralisation.	The E1 Project is located within the Cloncurry district (Eastern succession) of the Mt Isa Inlier. The Proterozoic-age rocks of the Cloncurry district were deposited between 1840 and 1720Ma and are comprised of a range of rocks whose parentage includes pelitic meta-sedimentary rocks, felsic volcanics, calc-silicates and meta-evaporites, basalt and clastic sedimentary rocks. Copper-gold (Cu-Au) mineralisation in the Cloncurry district was introduced by multiple phases of hydrothermal activity associated with Na-Ca alteration and emplacement of large-scale intrusions such as the Williams and Naraku Batholiths. The deposits are not stratigraphically controlled but are usually associated with brittle and brittle-ductile shear and fault structures which acted as conduits for the transport of high temperature (300-500°C) saline fluids into the host rocks.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Appendix A
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Results have been length weighted. No metal equivalents have been reported.

Calledia		Committee
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Drill holes were oriented as close to perpendicular to the mineralisation as possible.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to the E1 Drilling and Monakoff Drilling Figures following this table.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The information presented in Appendix A represents the majority of the drill holes used to calculate the resource estimate and their significant intercepts. Reported significant intercepts were a minimum of 1.0m @ 1% Cu. A lower intercept was reported. The list of intercepts in Appendix A is not exhaustive as it is not practical to report every intercept. Some Air Core drill holes are presented in Appendix A and these holes were excluded from any resource estimates. Other RC and diamond drill holes have been included in Appendix A but were excluded from the resource estimate due to lack of data (downhole survey or assay).
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All applicable data for the exploration drilling and resource have been reported within this Table 1. Other exploration methods have been used including IP at prospects outside of E1 and Monakoff. Mining was conducted at the E1 north and E1 east deposits after the completion of the mineral resource estimate. Mining at E1 east was not completed. Some mining was conducted at the main Monakoff deposit.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Comet resources is planning further drilling to test for lateral and depth extensions at E1 and Monakoff.

Section 3 Estimation and Reporting of Mineral Resources

Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	The database has been reviewed several times initially by EXCO, by Runge for the E1 resource estimation and then by Glencore. Comet has reviewed the database and spot checked assays back to original ALS assay reports.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	No site visit has been conducted by the competent person due to Covid-19 travel restrictions.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral	EXCO geologists prepared the initial geological interpretations of the mineralisation for Runge. These

L AU +61 (8) 6489 1600

comet@cometres.com.au

⋒ ASX:CRL

(3)(10)(10)	ACING Code englanding	Commentary
Dimensions	deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	were based on understanding of the host stratigraphy and a nominal 0.2% Cu cut-off grade. The preliminary interpretations were provided to Runge where they were modified slightly to ensure all holes were snapped to the wireframes, the interpreted boundaries were consistent with the observed grade distribution, and that the three dimensional geometry of the various shapes was robust. Significant zones of internal dilution were included in places to maintain continuity of the resource wireframes. In the supergene zone of E1 North, a zone of elevated Au mineralisation was observed above the Cu wireframe. A separate wireframe was created to encompass this zone. Resource outlines were generally extrapolated to a distance of 50m from drill hole intersections, unless supported by adjacent drill holes. Wireframes were generated by EXCO for the unconformity representing the base of the transported cover sequence, the base of complete oxidation and the top of fresh rock. These surfaces were based on logging of the drill holes. The Mineral Resource Estimate for Monakoff was conducted internally by EXCO. Equates to grade boundary as geological boundaries are quite sharp. Where a geological boundary exists, it correlates to a grade boundary.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 Drilling extends to a maximum depth of approximately 400m below surface and the mineralisation was modelled to that depth at E1 South, and to 300m depth at E1 North and E1 East. Monakoff: Strike length of 715m (from 4940mE to 5655mE) and 150m vertical interval from ~100mRL to -50mRL.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of byproducts. Estimation of deleterious elements or other nongrade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 The wireframes of the mineralised zones were used to code the database to allow identification of the resource intersections. Separate intersection files were generated for each resource object. Analysis of sample lengths inside the resource zones was then carried out to determine the optimal length for compositing. The majority of samples were 2m in length, so all samples inside the wireframes were composited to 2m using Surpac software. The "best fit" method of compositing was used to eliminate rejected intervals. The composites were checked for spatial correlation with the objects, the location of the rejected composites and zero composite values. Individual composite files were created for the major zones in the wireframe models. The composite sample data for the major resource zones was imported into GeoAccess software. To assist in the selection of appropriate high grade cuts, the composite data was loaded in GeoAccess software and log-probability plots were generated for each resource zone and each element. High grade cuts of 11% Cu and 1.3g/t Au were applied to the supergene zone of E1 North. No other zones or elements were cut prior to estimation. All variography was completed using Surpac software (Version 6.0.2). The 2m composite data from the major zone (Object 2) was separated into the two main limbs and variography was completed on each limb for the five elements Cu, Au, Co, Fe and U3O8. E1 South: To determine the nugget variance of the

L AU +61 (8) 6489 1600

ABN 88 060 628 202

Subiaco WA 6008

comet@cometres.com.au

PO Box 866 Subjaco WA 6904

cometres.com.au

A A SY-CRI

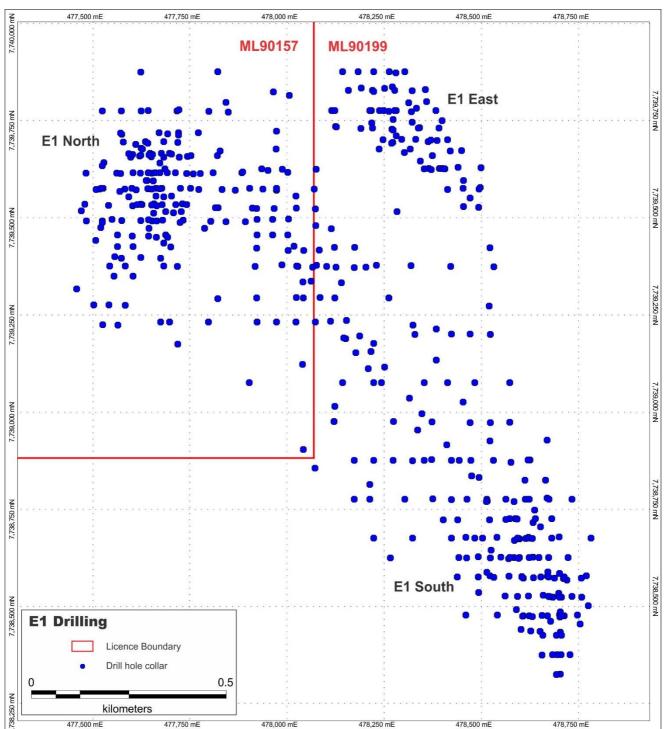
College College		
		data, an omnidirectional variogram with a 2m lag was used, reflecting the downhole composite spacing. This resulted in a relatively well-structured variogram for all elements, with a nugget variance for Cu of 23% in the East Limb, and 30% in the West Limb. The downhole variogram was fitted to a nested two structure spherical model. E1 North: Variography was carried out on the 2m composite data from each of the main material types – Supergene (Object 2) and Fresh (Object 4). The five elements Cu, Au, Co, Fe and U3O8 were analysed Monakoff: Copper and gold values were available for each sample. Grade boundaries were Defined by Exco using a ~1% Cu cutoff grade to capture entire mineralised zone. Grades composited to 1m as 95% of the sampling was completed at 1m intervals. No high grade cut was used. To determine the nugget variance of the data, an omnidirectional variogram with a 2m lag was used, reflecting the downhole composite spacing. This resulted in a relatively well-structured variogram for all elements, with a nugget variance for Cu of 5% in the Primary and 6% in the Supergene zone. The downhole variogram was fitted to a nested two structure spherical model. E1 East: Variography was carried out on the 2m composite data from the combined composites of Object 31 and Object 33. The five elements Cu, Au, Co, Fe and U3O8 were analysed. Supervisor software was used for the analysis. To determine the nugget variance of the data, an omnidirectional variogram with a 2m lag was used, reflecting the downhole composite spacing. This resulted in a relatively well-structured variogram for all elements, with a nugget variance for Cu of 20%. The downhole variogram was fitted to a nested two structure spherical model. Cu, Au, Co, Fe and U3O8 grades were interpolated into a Surpac block model used a primary block size of 25m NS by 10m EW by 20m vertical with sub-cells of 6.25m by 2.5m by 5m. The primary blocks size was set to approximately half the drill hole spacing of the better drilled portion of the deposit. Grade
Moisture Cut-off	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. The basis of the adopted cut-off grade(s) or	No comment was made in the resource reports regarding dry or wet tonnes. The deposit was estimated using Ordinary Kriging
parameters	quality parameters applied.	(OK) interpolation constrained by resource outlines based on a nominal 0.3% Cu cut-off grade. Monakoff resources was reported at 0.5% and 1.0% Cu cut-off.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining	The E1 North pit was mined by open cut methods. The E1 East pit has been pre-stripped and the Monakoff deposit was mined by open cut methods. All mines were traditional open cut, load & haul with ore taken to the nearby Ernest Henry processing facility.

comet@cometres.com.au

	assumptions made.	
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	The E1 and Monakoff deposits have been partially mined since the 2010 resource report was published. The ore was successfully treated at the Ernest Henry facilities 7km west of the E1 open pit.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 The E1 and Monakoff deposits have been partially mined since the 2010 resource report was published. A hard rock waste dump has been established north of the E1 North pit and southeast of the Monakoff pit.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Bulk density values were measured on whole diamond core using the Water Immersion method. At the E1 deposit, a total of 3,619 values were available for the resource zones. In addition, a total of 8,061 values were available for the waste zones. Bulk density values within the different material types were interpolated using ID2 with an isotropic search for all domains. Any unfilled blocks were then assigned values based on the mean of the bulk density values in each zone. Bulk density for Monakoff was calculated from 75 samples using immersion method of half core samples.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The E1 deposits show good continuity of the main mineralised zones allowing the drill hole intersections to be modelled into coherent, geologically robust wireframes. Reasonable consistency is evident in the thickness of the structure, and the distribution of grade appears to be continuous along strike and down dip. The resource was classified as Measured Mineral Resource in areas of the E1 South and E1 North zones where 20m to 50m spaced drilling defined excellent continuity of mineralisation and geology. Indicated Mineral Resource was defined in areas where drilling allowed confident definition of the geometry and grade of the mineralisation. This was typically at a spacing of 50m by 50m. Inferred Mineral Resource was defined where the drill spacing exceeded 50m by 50m or where less than 4 drill holes defined a zone of mineralisation. Preliminary economic analysis has been carried out by EXCO. The resource block model has an attribute "class" for all blocks within the resource wireframes coded as "mes" for Measured, "ind" for Indicated and "inf" for Inferred. The Monakoff deposit is a consistent tabular body in both geological units and grade. This consistency allows more of the resource to be included in the Indicated Resource category.

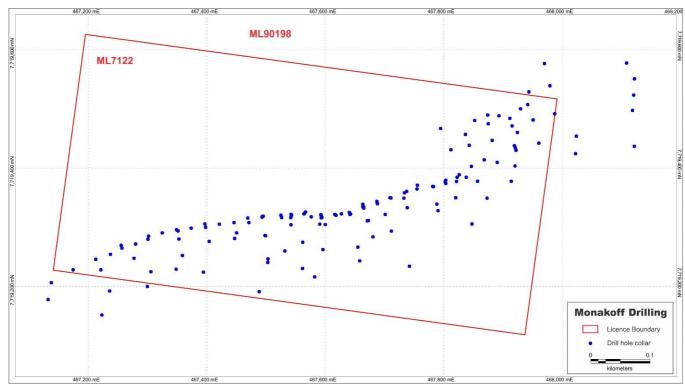
▲ AU +61 (8) 6489 1600

comet@cometres.com.au



Criteria	JOHO Code agricultura	Commentary
		 Indicated: The portion of the deposit generally sampled at least 40m by 40m spacing. Inferred: The portion of the deposit defined by drilling at generally greater than 40m spacings.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The Resource estimate was reviewed by Glencore when they acquired the project in 2011. The resources for E1 and Monakoff have been published in Glencore's annual Resources and Reserves Report and were published as JORC 2012 resources due to no material change in the projects since Runge completed the estimation in 2010.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	The modelled E1 deposits represent substantial zones of Cu-Au mineralisation. The relatively shallow, broad mineralisation provide excellent targets for open-pit exploitation. Additional infill drilling is required in some areas to improve the confidence in the structural model and the grade continuity. Extensional drilling may also be warranted to test the potential for extensions to both deposits, particularly down plunge. The structural complexity evident at the deposit needs additional work to provide a more robust interpretation in some areas. Selected infill drilling will assist with this.

- cometres.com.au


ASX:CRL

▲ AU +61 (8) 6489 1600

ASX:CRL

- cometres.com.au

ANNEXURE G - TABLE OF DRILL HOLES

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EHMET20	477658	7739536	148	150.6	-75	85	92.0	148.0	56.0	NA	1.63
E1	EHMET21	477731	7739536	148	129.4	-70	272	23.0	128.0	105.0		1.82
E1	ELZC0043	477525	7739775	148	54.0	-90	0	NSI				
E1	ELZC0044	477717	7739775	147	60.0	-90	0	48.0	50.0	2.0		0.92
E1	ELZC0045	478216	7739777	147	60.0	-90	0	45.0	55.0	10.0		0.53
E1	ELZC0047	477518	7739574	148	60.0	-90	0	NSI				
E1	ELZC0048	477726	7739576	148	60.0	-90	0	22.0	29.0	7.0	0.18	0.62
E1	ELZC0052	477718	7739375	148	90.0	-90	0	NSI				
E1	ELZC0053	477918	7739375	148	60.0	-90	0	29.0	32.0	3.0		0.26
E1	ELZC0054	478319	7739377	146	63.0	-90	0	52.0	53.0	1.0	0.05	0.27
E1	ELZC0057	477719	7739175	148	54.0	-90	0	NSI				
E1	ELZC0060	478121	7738976	147	100.0	-90	0	NSI				
E1	ELZC0062	478522	7738578	148	60.0	-90	0	42.0	60.0	18.0	0.33	0.65
E1	ELZC0078	477625	7739776	147	70.0	-90	0	45.0	50.0	5.0		0.54
E1	ELZC0091	478670	7738578	148	100.0	-90	0	48.0	84.0	36.0	0.19	0.74
E1	ELZC0092	478770	7738578	148	100.0	-90	0	50.0	68.0	18.0	0.17	0.77
E1	ELZC0093	478669	7738928	147	100.0	-90	0	NSI			0.2.	
E1	ELZC0095	478669	7738779	147	100.0	-60	270	44.0	58.0	14.0	0.02	0.37
E1	ELZC0096	478115	7739776	147	100.0	-90	0	NSI	30.0	11.0	0.02	0.57
E1	ELZC0106	478460	7738478	148	100.0	-60	270	NSI				
E1	ELZC0107	478541	7738478	148	100.0	-60	270	NSI				
E1	ELZC0107	478701	7738478	148	100.0	-60	270	94.0	100.0	6.0	0.15	0.73
E1	ELZC0108	478460	7738478	147	100.0	-60	270	38.0	96.0	58.0	0.13	0.30
		478540				-60					0.09	
E1 E1	ELZC0110 ELZC0111	478621	7738678	147 147	100.0	-60	270 270	32.0 NSI	54.0	22.0	0.21	1.06
			7738678						00.0	60.0	0.22	0.00
E1	ELZC0112	478700	7738678	147	100.0	-60	270	28.0	88.0	60.0	0.22	0.86
E1	ELZC0113	478143	7739876	147	100.0	-60	270	NSI				
E1	ELZC0114	478223	7739876	147	100.0	-60	270	NSI				
E1	ELZC0116	478236	7739677	147	100.0	-60	270	NSI				
E1	ELZC0117	478317	7739677	147	100.0	-60	270	NSI				
E1	ELZC0118	478303	7739876	146	100.0	-60	270	NSI				
E1	ELZC0123	478123	7739015	147	102.0	-60	270	NSI				
E1	ELZC0124	478042	7738904	147	100.0	-60	270	NSI				
E1	ELZC0125	478213	7738813	147	100.0	-60	270	NSI				
E1	ELZC0126	478266	7738625	148	100.0	-60	270	NSI				
E1	ELZC0127	478513	7738775	147	94.0	-60	270	40.0	64.0	24.0	0.17	0.69
E1	ELZC0137	478703	7738326	148	100.0	-60	90	36.0	44.0	8.0		0.37
E1	ELZC0138	478623	7738476	148	100.0	-60	270	58.0	62.0	4.0		0.40
E1	ELZC0139	478503	7738676	147	100.0	-60	270	NSI				
E1	ELZC0140	478733	7738776	147	100.0	-60	270	46.0	82.0	36.0		0.28
E1	ELZC0141	478413	7739076	146	100.0	-60	270	NSI				
E1	ELZC0142	478023	7739556	147	100.0	-60	225	48.0	54.0	6.0	0.01	0.23
E1	ELZC0144	478283	7739516	147	100.0	-60	225	NSI				
E1	ELZC0145	478363	7739696	146	100.0	-60	225	72.0	90.0	18.0	0.35	0.72
E1	ELZD0001	477543	7739376	148	279.0	-60	270	29.9	31.3	5.2		1.32
	and							42.1	49.7	7.6	0.15	0.46
E1	ELZD0003	477683	7739376	148	399.0	-60	270	133.6	134.3	0.7	0.03	0.47
E1	ELZD0010	477674	7739232	148	196.0	-60	270	16.9	18.0	1.1	2.20	5.50
								No				
E1	ELZD0011	478005	7739815	147	176.6	-60	270	Assays				
E1	ELZD0040	477508	7739443	149	265.8	-60	90	261.0	262.5	1.5	0.32	0.60
E1	ELZD0041	477529	7739643	148	207.0	-60	90	NSI				

- ▲ AU +61 (8) 6489 1600
- comet@cometres.com.au
- PO Box 866 Subiaco WA 6904
- cometres.com.au
- A A SY-COL

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	ELZD0099	478571	7738578	148	336.8	-60	270	131.2	138.0	6.8	0.26	0.83
	and							145.0	154.2	9.2	0.15	0.74
	and							175.5	185.7	10.2	0.17	0.69
E1	ELZD0100	478281	7739777	146	360.0	-60	270	243.0	260.0	17.0	0.31	1.13
E1	ELZD0119	478782	7738676	147	419.8	-60	270	379.0	385.0	19.0	0.21	0.98
E1	ELZD0131	478713	7738476	148	197.3	-60	90	60.0	70.7	10.7	0.12	1.09
E1	ELZD0133	478604	7738576	148	252.0	-50	90	61.0	106.0	45.0	0.32	1.28
E1	ELZD0134	478531	7738876	147	216.1	-60	270	136.0	156.3	20.3	0.22	0.65
E1	ELZD0135	478312	7739797	146	291.0	-60	315	NSI				
E1	EMAC001	478191	7739834	147	50.0	-90	0	NSI				
E1	EMAC002	478251	7739833	146	46.0	-90	0	NSI				
E1	EMAC003	478271	7739837	146	44.0	-90	0	NSI				
E1	EMAC009	478353	7739626	146	51.0	-90	0	NSI				
E1	EMAC010	478392	7739627	146	53.0	-90	0	50.0	53.0	3.0	0.15	0.93
E1	EMAC011	478532	7739374	146	42.0	-90	0	NSI				
E1	EMAC014	478520	7739273	145	45.0	-90	0	NSI				
E1	EMAC016	478523	7739200	146	55.0	-90	0	NSI				
E1	EMAC017	478423	7739201	146	26.0	-90	0	NSI				
E1	EMAC018	477951	7739622	147	42.0	-90	0	36.0	42.0	6.0	0.01	0.37
E1	EMAC019	477988	7739625	147	30.0	-90	0	NSI				
E1	EMAC020	477987	7739379	147	30.0	-90	0	NSI				
E1	EMAC021	478028	7739375	147	48.0	-90	0	NSI				
E1	EMAC022	478076	7739378	147	40.0	-90	0	NSI				
E1	EMAC023	478126	7739373	147	33.0	-90	0	NSI				
E1	EMAC024	478173	7739373	147	51.0	-90	0	48.0	51.0	3.0	0.01	0.21
E1	EMAC025	478230	7739372	147	63.0	-90	0	NSI	31.0	3.0	0.01	0.21
E1	EMAC026	478230	7739378	146	57.0	-90	0	NSI				
E1	EMAC020	478329	7739200	146	28.0	-90	0	NSI				
		1										
E1	EMAC028	478471	7739201	146	40.0	-90	0	NSI	04.0	4.0	0.44	1 11
E1	EMDT008	477525	7739492	148	253.1	-60	90	80.0	84.0	4.0	0.44	1.41
	and	477644	7720575	110	254.0	-90	0	92.0	94.0	2.0	0.80	2.02
E1	EMDT061	477641	7739575	148	264.0	-90	0	40.0	86.0	46.0	0.17	1.47
E1	EMDT063	478604	7738576	148	276.8			214.0	241.0	27.0	0.24	0.81
	including						_	52.0	56.0	4.0	0.20	3.75
E1	EMDT065	478648	7738626	148	325.0	-90	0	244.0	255.0	11.0	0.28	1.10
E1	EMDT066	478573	7738626	148	262.0	-60	270	34.0	58.0	24.0	0.23	0.79
	and							196.0	216.0	6.0	0.21	1.00
E1	EMDT067	478593	7738526	148	252.3	-60	270	54.0	74.0	20.0	0.17	0.79
E1	EMDT073	477653	7739493	148	222.0	-90	0	32.0	44.0	12.0	0.39	1.17
	including							32.0	34.0	2.0	0.62	2.15
	and							128.0	146.0	18.0	0.51	1.66
E1	EMDT077	477622	7739615	148	216.3	-60	90	26.0	80.0	54.0	0.25	0.82
	including							50.0	52.0	2.0	1.18	3.14
	and							152.0	190.0	38.0	0.29	0.74
	including							173.0	182.0	9.0	0.45	1.45
E1	EMDT080	477583	7739575	148	222.0	-60	90	161.0	208.0	47.0	0.33	0.99
	including							179.0	181.0	2.0	0.47	2.14
	and							207.0	208.0	4.0	0.49	1.87
E1	EMDT081	477611	7739689	148	222.0	-60	90	118.0	137.0	19.0	0.39	1.37
	including							124.0	128.0	4.0	0.67	2.30
E1	EMDT191	477627	7739534	148	165.0	-60	90	50.0	52.0	2.0	0.24	3.71
	and							120.0	149.0	29.0	0.53	1.73
	including			1				136.0	140.0	4.0	0.81	2.42
E1	EMDT197	477683	7739554	148	182.4	-90	0	24.0	166.0	142.0	0.39	1.48
	including							24.0	30.0	6.0	0.60	3.90

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
	and							92.0	102.0	10.0	0.76	2.25
E1	EMDT202	477663	7739576	148	166.2	-70	90	44.0	146.0	102.0	0.67	1.67
	including							64.0	70.0	6.0	1.35	5.60
	and							105.0	105.0	1.0	0.75	6.56
E1	EMDT203	477663	7739556	148	194.3	-90	0	76.0	80.0	4.0	0.63	2.24
	and	1						121.0	131.0	10.0	0.41	1.58
F1	and	477502	7720276	140	142.0	00	0	149.0	185.0	34.0	0.43	1.55
E1 E1	EMDT210 EMDT214*	477583 477601	7739376 7739576	148 148	142.8 267.3	-90 -90	0	121.0 188.0	125.0 219.0	4.0	0.04	0.41
ET	including	477001	7739370	140	207.5	-90	0	204.0	205.0	31.0 1.0	0.14	1.42
	and							223.0	225.0	2.0	0.61	2.13
E1	EMDT216	477678	7739576	148	192.4	-90	0	31.9	168.0	136.1	0.68	1.41
	including	477070	7733370	170	132.4	30		76.0	114.0	38.0	0.88	2.85
E1	EMDT217	477640	7739596	148	237.3	-90	0	140.0	225.0	85.0	0.37	1.19
	including						_	185.0	186.0	1.0	1.07	4.18
E1	EMDT219	477672	7739641	148	252.3	-90	0	174.0	206.0	32.0	0.44	1.34
E1	EMDT223	477657	7739513	148	198.4	-90	0	137.0	150.0	13.0	0.44	1.55
E1	EMDT225	478123	7739776	147	198.4	-61	92	184.0	198.4	14.4	0.15	0.58
E1	EMDT231	478220	7739828	147	276.5	-90	0	184.0	266.0	82.0	0.28	1.06
E1	EMM001	477549	7739496	149	253.7	70.21	90	70.0	72.0	2.0	0.39	1.38
						-						
E1	EMM002	477527	7739576	149	315.4	71.67	90	NSI				
E1	EMM003	477597	7739656	148	342.6	76.94	90	188.0	200.0	12.0	0.49	1.87
	and							202.0	214.0	12.0	0.29	1.07
E1	EMM004	477635	7739696	148	240.6	80.21	90	164.0	172.0	8.0	0.55	1.36
E1	EMM005	477866	7739571	148	141.3	62.53	270	101.4	109.4	8.0	0.28	2.69
E1	EMM006	477938	7739574	148	246.4	61.83	270	188.0	198.0	10.0	0.19	0.54
E1	EMM007	477650	7739657	148	171.1	59.67	90	27.0	39.0	12.0	0.66	3.75
	including							35.0	37.0	2.0	0.41	12.15
	and							81.0	157.0	74.0	0.55	1.82
E1	EMM008	478359	7739799	146	381.3	- 57.27	270	150.0	160.0	10.0	0.41	1.39
E1	EMM009	478322	7739747	146	207.4	- 55.41	270	82.0	84.0	2.0	0.49	2.11
E1	EMM010	478399	7739750	146	312.4	60.93	270	130.0	200.0	4.0	0.18	0.62
						-						
E1	EMM011	478386	7739699	146	224.4	62.78	270	142.0	152.0	10.0	0.43	1.13
E1	EMM012	478454	7739596	146	174.5	61.55	271	156.0	160.0	4.0	0.08	0.34
E1	EMM013	478471	7739551	147	146.4	59.23	270	NSI				
E1	EMM014	478589	7738726	149	201.5	74.46	90	144.0	156.0	12.0	0.18	0.66
E1	EMM015	478515	7738770	147	300.4	75.66	90	222.0	232.0	10.0	0.29	1.04
E1	EMM016	478587	7738726	148	240.6	- 78.12	270	162.0	220.0	58.0	0.17	0.67
E1	EMM017	478513	7738770	147	192.4	- 82.67	270	62.0	90.0	28.0	0.15	0.51
E1	EMM018	478633	7738627	148	210.2	- 76.14	90	102.0	120.0	18.0	0.28	1.24

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EMM019	478614	7738674	148	340.0	80.39	270	288.0	310.0	22.0	0.23	0.84
E1	EMM020	478483	7738676	148	204.2	64.83	270	130.0	134.0	4.0	0.06	0.98
E1	EMM021	478584	7738626	148	270.5	82.12	270	252.0	258.0	6.0	0.25	1.12
E1	EMM022	478523	7738625	148	201.2	64.12	270	166.0	174.0	8.0	0.23	0.86
E1	EMM023	478652	7738705	148	180.2	70.62	90	50.0	60.0	10.0	0.38	1.61
	and					_		134.0	140.0	6.0	0.31	1.11
E1	EMM024	478634	7738574	148	249.7	85.34	90	138.0	148.0	10.0	0.31	1.07
E1	EMM025	478525	7738645	148	249.5	82.31	270	210.0	220.0	10.0	0.23	0.76
E1	EMM026	478659	7738529	148	213.5	74.63	270	117.0	143.0	26.0	0.34	0.83
	and							191.0	205.0	16.0	0.24	0.99
E1	EMM027	478693	7738325	148	45.4	- 74.17	270	NSI				Ì
E1	EMM028	478514	7738588	139	50.0	-55	190	30.0	32.0	2.0	NA	2.55
E1	EMM029	478590	7738492	139	65.0	-80	276	29.0	43.0	14.0	NA	1.29
E1	EMM030	478678	7738461	131	90.0	-55	180	58.0	71.0	13.0	NA	1.02
E1	EMM031	478775	7738502	148	150.5	-61	292	27.0	42.0	15.0	NA	1.67
	and							76.0	113.0	37.0	NA	1.17
E1	EMM032	478374	7739660	122	60.0	-55	155	45.0	56.0	11.0	NA	0.78
E1	EMM033	478280	7739711	121	60.0	-55	43	No Assays				
								No				
E1 E1	EMM034 EMM035	478272 478673	7739694 7738526	121 131	55.0 110.5	-60 -60	24 165	Assays	95.0	8.0	0.30	0.92
E1	EMM036	478720	7738567	131	100.1	-60	160	87.0 9.0	26.0	17.0	0.30	1.31
C1	including	4/6/20	7736307	131	100.1	-60	100	11.0	12.0	1.0	0.28	5.93
E1	EMM037	478671	7738588	131	160.1	-65	283	38.0	39.0	1.0	1.54	NA
E1	EMM038	478711	7738572	131	90.0	-60	75	8.0	26.0	18.0	0.23	0.80
E1	EMM039	478627	7738437	139	65.0	-70	225	34.0	39.0	5.0	0.39	1.16
E1	EMM040	478218	7739744	121	70.0	-55	95	37.0	39.0	2.0	NA	0.70
E1	EMM041	478343	7739646	121	135.0	-68	90	29.0	55.0	26.0	0.48	1.69
	and							83.0	108.0	25.0	0.34	1.04
E1	EMM042	478448	7739674	136	165.0	-57	230	112.0	144.0	32.0	0.41	1.27
E1	EMMD001	477572	7739615	148	279.2	-60	96	170.0	224.0	54.0	0.44	1.38
E1	EMMD002	477677	7739666	148	251.2	-90	0	70.0	106.0	36.0	0.46	1.34
	and							121.0	152.0	31.0	0.51	1.51
E1	EMMD003	477603	7739532	148	213.5	-60	96	20.0	48.0	28.0	0.46	2.06
	including							34.0	38.0	4.0	0.36	5.07
	and							148.0	175.0	27.0	0.43	1.37
E1	EMMD004	477638	7739596	148	222.1	-60	90	81.0	169.0	88.0	0.49	1.82
E1								84.0	117.0	33.0	0.92	3.63
E1	EMMD005	478247	7739701	147	192.3	-61	87	98.0	139.0	41.0	0.39	1.29
E1	EMMD006	478262	7739774	147	306.2	-90	0	236.0	264.0	28.0	0.27	0.79
E1	EMMD007	478277	7739829	146	225.3	-60	270	94.0	148.0	54.0	0.22	0.74
E1	EMMD008	478440	7739630	146	150.3	-60	266	72.0	108.0	36.0	0.43	1.29
E1	EMMD009	478499	7739629	146	201.3	-60	270	NSI				
E1	EMMD010	478370	7739700	146	163.0	-60	267	104.0	135.0	31.0	0.27	1.00
E1	EMMD011	478383	7739776	146	393.4	-59	267	137.0	239.0	102.0	0.17	0.66
E1	EMMD012	478356	7739830	146	360.6	-60	270	NSI				
E1	EMMD013	478400	7739627	146	172.0	-90	0	66.0	142.0	76.0	0.38	1.24

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EMMD014	478213	7739776	147	297.4	-90	0	56.0	240.0	184.0	0.33	1.07
E1	EMMD015	478183	7739876	147	200.0	-70	270	93.0	94.0	1.0	0.11	0.46
E1	EMMD016	478158	7739828	147	276.6	-75	87	252.0	264.0	12.0	0.57	1.83
E1	EMMD017	478406	7739626	146	101.0	-60	90	75.0	76.0	1.0	0.01	1.72
E1	EMMD018	478405	7739626	146	139.3	-60	270	48.0	52.0	4.0	0.39	2.03
E1	EMMD019	478413	7739701	146	241.4	-60	270	178.0	184.0	6.0	0.25	0.97
E1	EMMD020	478333	7739782	146	247.8	-60	212	162.0	186.0	24.0	0.33	1.31
E1	EMMD021	477522	7739576	148	378.0	-90	0	NSI				
E1	EMMD022	477470	7739518	149	369.3	-65	90	250.0	265.0	15.0	0.37	1.27
E1	EMMD023	477524	7739634	148	401.6	-60	90	NSI				
E1	EMMD024	477573	7739396	148	207.9	-60	90	88.0	90.0	2.0	0.24	0.57
E1	EMMD025	477574	7739715	148	411.6	-70	90	NSI				
E1	EMMD026	477520	7739476	148	358.9	-80	90	267.0	267.0	1.0	0.23	1.94
E1	EMMD027	478280	7739874	146	246.7	-70	270	NSI				
E1	EMMD028	477584	7739275	148	143.9	-60	90	NSI				
E1	EMMD029	477541	7739276	149	192.0	-60	90	85.0	86.0	1.0	0.48	1.78
E1	EMMD030	478454	7739529	146	120.3	-60	270	NSI				
E1	EMMD031	478493	7739527	146	178.2	-60	270	No Assays				
E1	EMMD032	477503	7739276	149	267.7	-60	90	NSI				
E1	EMMD033	477565	7739224	148	145.6	-60	90	83.0	84.0	1.0	0.07	0.42
E1	EMMD034	477526	7739225	149	295.3	-60	90	NSI				
E1	EMMD037	478423	7738774	147	237.7	-60	270	No Assays				
E1	EMMD038	478703	7738434	148	139.5	-60	180	70.0	74.0	4.0	0.29	1.11
E1	EMMD039	478637	7738747	147	174.7	-60	90	36.0	38.0	2.0	0.11	1.16
E1	EMMD040	478699	7738534	148	221.3	-75	174	43.0	53.0	10.0	0.11	1.28
E1	EMMD042	478491	7738628	148	191.1	-60	270	113.0	147.0	34.0	0.16	0.59
E1	EMMD043	478462	7738624	148	173.1	-60	270	76.0	81.0	5.0	0.24	1.83
								No		0.0		
E1	EMMD044	478576	7738871	147	178.5	-60	90	Assays				
E1	EMMD045	478598	7738673	147	321.5	-80	200	278.0	293.0	15.0	0.26	0.89
E1	EMMD046	478372	7738878	147	200.1	-60	270	134.0	138.0	4.0	0.40	1.43
E1	EMMD047	478701	7738585	148	249.7	-70	200	57.0	82.0	25.0	0.28	0.97
E1	EMMD048	478754	7738455	148	149.4	-75	180	51.0	52.0	1.0	0.03	0.23
E1	EMMD049	478623	7738626	147	283.8	-80	200	40.0	68.0	28.0	0.29	1.31
E1	EMMD050	478601	7738440	148	101.2	-75	180	23.0	43.0	20.0	0.28	1.10
E1	EMMD051	478651	7738436	148	152.3	-75	180	59.0	63.0	4.0	0.30	1.28
E1	EMMD052	478598	7738626	148	375.6	-90	0	278.0	293.0	15.0	0.25	0.85
E1	EMMD053	478703	7738486	148	182.2	-75	180	79.0	91.0	12.0	0.24	0.85
E1	EMMD054	478623	7738676	147	354.0	-90	0	177.0	211.0	34.0	0.28	0.90
E1	EMMD055	477652	7739615	148	324.3	-90	0	108.0	132.0	24.0	0.92	2.85
	and							142.0	152.0	10.0	1.21	4.35
	and							156.0	272.0	117.0	0.37	1.24
E1	EMMD056	478596	7738675	147	382.4	-75	270	296.0	306.0	10.0	0.28	1.00
E1	EMMD057	477688	7739456	148	116.1	-90	0	62.0	92.0	30.0	0.31	2.86
	including	47	77000-5	4				64.0	68.0	4.0	0.69	13.30
E1	EMMD058	477744	7739658	148	96.0	-90	0	NSI	210 -	70.5	0.00	
E1	EMMD059	477623	7739535	148	282.4	-90	0	140.0	218.0	78.0	0.36	1.27
E1	and	477732	7739494	148	297.1	-62	270	28.0 134.0	52.0 186.0	24.0 52.0	0.40	1.72
E1	EMMD061	478573	7738726	147	447.9	-90	0	202.0	238.0	36.0	0.38	0.80
E1	EMMD062	477648	7739666	148	308.2	-90	0	31.4	64.0	32.6	0.23	5.02
		1,,,,,,	,,55000	± +0	300.2	50	٠	۲. د	57.0	52.0	7	5
E1	including							31.4	40.0	8.6	0.77	13.36

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EMMD064	477683	7739696	148	164.9	-60	90	32.0	46.0	14.0	0.09	0.26
								No				
E1	EMMD065	477723	7739656	148	86.7	-60	90	Assays				
E1	EMMD066	477673	7739616	148	186.2	-60	90	98.0	112.0	14.0	0.76	2.05
E1	EMMD067	477713	7739616	148	254.4	-60	90	62.0	172.0	110.0	0.27	0.86
	including	477560	7722456	4.40	2247			166.0	172.0	6.0	1.03	3.47
E1	EMMD068	477563	7739456	148	224.7	-60	90	142.0	144.0	2.0	0.20	1.20
E1	EMMD069	477540	7739533	148	253.1	-60	90	174.0	228.0	54.0	0.28	1.01
E1	EMMD070 EMMD071	477603 478713	7739426	148	156.0	-60	90	34.0	36.0	2.0	0.05	0.54
E1	1		7738576	148	143.6	-63	90	26.0	38.0 102.0	12.0	0.32	1.78
E1	and	478648	7738626	148	201.2	-72	90	76.0 148.0	158.0	26.0 10.0	0.31	1.08 0.94
E1	EMMD073	477479	7739535	148	313.1	-60	90	248.0	274.0	26.0	0.25	1.12
E1		477479	7739426		202.6	-60	90	174.0	176.0		0.31	0.49
E1	EMMD074 EMMD075	477603	7739426	148 148	231.0	-60	90	112.0	114.0	4.0 2.0	0.19	2.56
LI	and	477003	7733010	140	231.0	-00	90	192.0	218.0	26.0	0.56	1.58
E1	EMMD076	478733	7738526	148	108.1	-63	90	64.0	68.0	4.0	0.29	1.10
E1	EMMD077	477561	7739615	148	315.0	-60	90	206.0	238.0	32.0	0.39	1.21
E1	EMMD078	478723	7738626	147	102.6	-75	90	60.0	64.0	4.0	0.25	2.05
E1	EMMD079	477509	7739573	148	267.4	-60	90	232.0	260.0	28.0	0.42	1.21
E1	EMMD080	478656	7738375	148	87.1	-60	270	34.0	40.0	6.0	0.38	1.17
E1	EMMD081	478673	7738576	148	274.7	-90	0	54.0	82.0	28.0	0.31	1.12
E1	EMMD082	478705	7738376	148	104.3	-72	90	34.0	40.0	6.0	0.26	1.10
E1	EMMD083	478693	7738425	148	150.6	-90	0	64.0	76.0	12.0	0.61	1.20
E1	EMMD084	477484	7739492	149	321.1	-60	78	236.0	238.0	2.0	0.28	1.09
E1	EMMD085	477483	7739616	148	402.0	-60	90	284.0	288.0	4.0	0.27	0.93
E1	EMMD086	477643	7739616	148	201.3	-60	90	26.0	44.0	18.0	0.51	2.72
	including							26.0	28.0	2.0	0.72	4.54
E1	EMMD087	477683	7739656	148	247.0	-60	90	174.0	228.0	54.0	0.51	1.59
	including							204.0	208.0	4.0	2.17	5.22
E1	EMMD088	477579	7739695	148	237.7	-60	90	164.0	170.0	6.0	0.43	1.32
E1	EMMD089	477642	7739693	148	181.7	-60	90	NSI				
								No				
E1	EMMD090	477718	7739694	148	129.7	-60	90	Assays				
E1	EMMD091	477701	7739425	148	75.7	-90	0	NSI				
E1	EMMD092	478631	7738474	148	105.1	-70	270	50.0	60.0	10.0	0.29	1.03
E1	EMMD093	478670	7738476	148	126.6	-90	0	84.0	96.0	12.0	0.29	0.92
E1	EMMD094	478747	7738477	148	84.1	-60	90	38.0	40.0	2.0	0.33	0.49
E1	EMMD095	478532	7738575	148	189.0	-60	270	42.0	50.0	8.0	0.49	2.18
E1	EMMD096	478521	7738723	147	150.0	-67	270	32.0	36.0	4.0	0.23	0.94
E1	EMMD097	478596	7738624	148	276.0	-67	270	242.0	250.0	8.0	0.29	1.18
E1	EMMD098	478681	7738676	147	120.8	-60	90	70.0	74.0	4.0	0.30	0.76
E1	EMMD099	478631	7738675	147	183.0	-60	90	80.0	84.0	4.0	0.33	1.19
E1	EMMD100	478585	7738670	147	159.1	-60	90	124.0	128.0	4.0	0.36	0.97
E1	EMMD101	478695	7738376	148	168.9	-90	0	46.0	52.0	6.0	0.23	0.98
E1	EMMD102	478728	7738376	148	84.4	-67	90	34.0	36.0	2.0	0.25	0.64
E1	EMMD103	478658	7738426	148	114.0	-67	270	54.0	62.0	8.0	0.29	1.06
E1	EMMD104	478497	7739578	146	193.6	-65 65	270	76.0	78.0	2.0	0.11	0.73
E1	EMMD105	478341	7739732	146	351.5	-65	270	152.0	278.0	126.0	0.26	0.90
E1	EMMD106	478391	7739732	146	345.7	-65	270	218.0	272.0	54.0	0.37	1.02
E1	EMMD107	478125	7739735	147	156.5	-60	90	No Assays				
E1	EMMD108	478123	7738476	148	90.1	-63	270	38.0	44.0	6.0	0.27	1.13
E1	EMMD109	478492	7738576	148	124.0	-60	270	92.0	110.0	18.0	0.21	0.71
		- T/UTJZ	1130310					. ,,,,,			U.Z.I	U./ I

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EMMD111	478688	7738573	148	166.9	-67	90	104.0	112.0	8.0	0.21	0.91
E1	EMMD112	478757	7738573	148	95.8	-60	90	50.0	54.0	4.0	0.26	1.52
E1	EMMD113	477741	7739614	148	108.2	-60	90	46.0	106.0	60.0	0.56	1.97
								No				
E1	EMMD114	477810	7739616	148	255.6	-60	90	Assays				
F4	50.40.4D4.45	477004	7720646	4.47	402.2	60	00	No				I
E1	EMMD115	477884	7739616	147	103.3	-60	90	Assays No				
E1	EMMD116	477574	7739776	147	345.4	-60	90	Assays				Į I
E1	EMMD117	477822	7739877	147	366.9	-60	90	NSI				
E1	EMMD118	477798	7739774	147	507.9	-60	90	NSI				
E1	EMMD119	477624	7739876	147	297.2	-60	90	224.0	228.0	4.0	0.41	1.57
E1	EMMD120	478561	7738526	148	70.2	-65	270	28.0	32.0	4.0	0.38	2.06
E1	EMMD121	478621	7738527	148	138.8	-67	270	78.0	92.0	14.0	0.33	1.12
E1	EMMD122	478677	7738525	148	234.1	-80	270	196.0	214.0	18.0	0.26	0.84
E1	EMMD123	478706	7738524	148	138.3	-67	90	84.0	90.0	6.0	0.33	1.22
E1	EMMD124	478758	7738524	148	81.0	-60	90	38.0	44.0	6.0	0.29	0.63
E1	EMMD125	478706	7738426	148	114.3	-72	90	52.0	62.0	2.0	0.24	0.91
E1	EMMD126	478656	7738420	148	129.3	-72	270	68.0	78.0	10.0	0.24	1.14
E1	EMMD127	477822	7739526	148	249.2	-60	90	52.0	60.0	8.0	0.33	2.92
ET	and	4//022	7739320	140	249.2	-00	90	68.0	86.0	18.0	0.12	2.38
E1	EMMD128	477922	7739524	148	97.4	-60	90	70.0	72.0	2.0	0.13	
E1	EMMD129	477922	7739324	148	254.3	-60	90	66.0	72.0	6.0	0.01	0.30 1.22
E1	EMMD130	477922	7739422	147	268.0	-60	90	NSI	72.0	6.0	0.14	1.22
	t											
E1 E1	EMMD131 EMMD132	477822	7739292	148	237.6	-90	0	NSI 66.0	69.0	2.0	0.07	0.25
		477922	7739294	147	253.0	-90			68.0	2.0	0.07	0.35
E1 E1	EMMD133	478023	7739295	147	297.2	-90	0	NSI				
	EMMD134	478040	7739123	147	294.6	-60	270	NSI 106.0	120.0	110	0.25	2.22
E1	EMMD135	477910	7739525	148	366.0	-65	270	106.0	120.0	14.0	0.25	2.23
E1	EMMD136	477886	7739618	147	377.8	-60	270	142.0	148.0	6.0	0.44	1.36
E1	EMMD137	478127	7739734	147	315.6	-70	90	224.0	226.0	2.0	0.06	0.26
E1	EMMD138	477815	7739526	148	310.5	-60	270	160.0	162.0	2.0	0.13	0.37
E1	EMMD139	478269	7739692	147	159.0	-60	270	NSI	166.0	20.0	0.20	1.10
E1	EMMD140	478322	7739828	146	313.5	-60	270	146.0	166.0	20.0	0.28	1.19
E1	EMMD141	478320	7739773	146	354.2	-60	270	80.0	104.0	24.0	0.26	0.84
	and	477022	7720572	4.40	246.0	60	270	170.0	176.0	6.0	0.37	2.24
E1	EMMD142	477832	7739573	148	316.0	-60	270	58.0	66.0	8.0	0.23	1.69
E1	EMMD143	477776	7739614	148	137.5	-60	90	NSI	222.0	20.0	0.00	0.60
E1	EMMD144	477827	7739672	148	339.7	-65	270	204.0	232.0	28.0	0.23	0.60
E1	EMMD145	477787	7739473	148	188.6	-60	270	NSI	66.0	6.0	0.42	1 17
E1	EMMD146	477758	7739613	148	221.5	-90	0	60.0	66.0	6.0	0.42	1.47
E1	EMMD147	478270	7739728	147	176.8	-60	270	58.0	68.0	10.0	0.47	2.06
E1	EMMD148	478219	7739731	147	169.0	-60	90	96.0	134.0	38.0	0.35	1.15
E1	EMMD149	478190	7739730	147	288.7	-70	90	246.0	250.0	4.0	0.19	1.17
E1	EMMD150	477620	7739659	148	205.1	-60	90	No Assays				Į I
	LIVIIVIDISO	477020	7733033	140	203.1	- 00	30	No				
E1	EMMD151A	477628	7739677	148	190.1	-60	315	Assays				Į I
E1	EMMD152	478073	7739524	147	354.3	-60	270	302.0	306.0	4.0	0.28	1.98
E1	EMMD153	477686	7739627	148	317.4	-60	90	36.0	50.0	14.0	0.53	1.71
	and							74.0	100.0	26.0	0.59	1.83
	and							202.0	298.0	96.0	0.26	0.75
E1	EMMD154	477665	7739532	148	211.1	-60	125	30.0	50.0	20.0	0.43	1.67
	-							No				-
E1	EMMD155	477569	7739568	148	191.4	-60	260	Assays				
E1	EMMD156	478701	7738584	148	140.4	-60	85	86.0	98.0	12.0	0.31	0.89

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

ふ ASX:CRL

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EMMD157A	478706	7738476	148	141.4	-60	125	66.0	78.0	12.0	0.21	0.81
E1	EMMD158	478606	7738475	148	140.4	-60	240	25.0	36.0	11.0	0.32	1.16
E1	EMMD159	478550	7738626	148	140.4	-60	300	38.0	44.0	6.0	0.25	0.87
E1	EMMD160	478338	7739731	146	133.0	-60	55	NSI				
E1	EMMD161	478302	7739668	147	130.0	-60	225	NSI				
E1	EMMD162	477643	7739495	148	159.4	-70	90	NSI				
E1	EMMD163	478701	7738524	148	130.3	-75	90	No Assays				
E1	EMMD164	478570	7738623	148	81.1	-60	270	No Assays				
E1	EMMD165	478331	7739702	147	129.2	-70	270	No Assays				
E1	EMMD166	478238	7739776	147	120.2	-75	270	No Assays				
E1	EMMD167	478075	7739625	147	291.4	-60	270	NSI				
E1	EMMD168	477973	7739724	147	294.8	-60	270	116.0	122.0	6.0	0.16	1.24
E1	EMMD169	478121	7739424	147	378.3	-60	270	278.0	280.0	2.0	0.17	0.80
E1	EMMD170	478123	7739294	147	334.0	-60	270	112.0	118.0	6.0	0.02	1.01
E1	EMMD171	478223	7739177	146	321.4	-60	270	176.0	178.0	2.0	0.10	3.38
E1	EMMD172	478421	7739375	146	330.3	-60	270	No Assays				
E1	EMMD173	478522	7739423	146	249.7	-90	0	66.0	68.0	2.0	0.50	0.12
E1	EMMD177	477973	7739572	147	264.5	-60	270	224.0	244.0	20.0	0.18	0.67
E1	EMMD178	477973	7739572	147	366.7	-70	270	280.0	290.0	10.0	0.36	0.94
E1	EMMD179	477973	7739576	147	387.1	-80	270	334.0	344.0	10.0	0.28	0.69
E1	EMMD180	477967	7739524	147	210.4	-60	270	166.0	180.0	14.0	0.23	0.69
E1	EMMD181	478023	7739525	147	273.3	-60	270	234.0	240.0	6.0	0.25	0.76
E1	EMMD182	477935	7739627	147	285.0	-60	270	238.0	242.0	4.0	1.32	2.34
E1	EMMD183	478074	7739480	147	306.0	-60	270	278.0	282.0	4.0	0.17	0.67
E1	EMMD184	478153	7739236	146	174.4	-60	270	112.0	116.0	4.0	0.03	0.79
E1	EMMD185	478216	7739156	146	197.4	-60	270	160.0	164.0	4.0	0.10	1.25
E1	EMMD186	478335	7738954	147	110.4	-60	270	26.0	28.0	2.0	0.28	0.95
E1	EMMD187	478347	7738996	147	236.9	-60	270	192.0	194.0	2.0	0.07	0.57
E1	EMMD188	478411	7738916	147	269.4	-60	270	244.0	252.0	8.0	0.24	0.35
E1	EMMD189	478475	7738836	147	165.0	-60	270	142.0	144.0	2.0	0.18	2.45
E1	EMMD190	478475	7738836	147	62.4	-60	270	32.0	36.0	6.0	0.20	0.90
E1	EMMD191	477963	7739496	147	179.7	-60	270	110.0	116.0	6.0	0.23	1.18
E1	EMMD192	478187	7739196	146	164.9	-60	270	116.0	118.0	2.0	0.04	0.80
E1	EMMD193	478251	7739116	146	193.7	-60	270	162.0	164.0	2.0	0.02	0.69
E1	EMMD194	477923	7739456	148	124.7	-60	270	42.0	44.0	2.0	0.37	1.50
E1	EMMD195	478315	7739036	146	254.9	-60	270	182.0	184.0	2.0	0.01	0.60
E1	EMMD196 EMMD197	478243	7739076	147	236.9	-60	270	124.0	126.0	2.0	0.02	0.57
E1		478443	7738876	147	246.4	-60	270	NSI				
E1 E1	EMMD199 EMMD200	477965 477923	7739824 7739496	147 148	252.7 118.5	-90 -60	0 270	NSI 50.0	62.0	12.0	0.20	1.57
E1	EMMD201	477963	7739496	148	156.9	-60	270	78.0	98.0	20.0	0.20	0.65
E1	EMMD202	477903	7739436	147	189.1	-60	270	80.0	94.0	14.0	0.22	0.63
E1	EMMD203	478043	7739416	147	214.9	-60	270	150.0	152.0	2.0	0.14	1.69
E1	EMMD204	478025	7739376	147	161.9	-60	270	64.0	66.0	2.0	0.02	0.33
E1	EMMD205	478102	7739375	147	249.0	-60	270	152.0	154.0	2.0	0.28	0.87
E1	EMMD206	478062	7739337	147	165.0	-60	270	60.0	66.0	6.0	0.04	0.82
E1	EMMD207	478084	7739295	147	108.0	-60	270	44.0	60.0	16.0	0.16	0.35
E1	EMMD208	478066	7739373	147	162.6	-60	270	116.0	120.0	4.0	0.11	0.34
E1	EMMD209	478083	7739417	147	263.3	-60	270	194.0	198.0	4.0	0.24	0.63
E1	EMMD210	478002	7739456	147	256.8	-60	270	140.0	156.0	16.0	0.29	1.62
E1	EMMD211	478004	7739497	147	202.9	-60	270	164.0	178.0	14.0	0.24	0.71

- ▲ AU +61 (8) 6489 1600
- comet@cometres.com.au
- PO Box 866 Subiaco WA 6904
- cometres.com.au
- A A SY-COL

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EMMD212	477904	7739576	148	192.3	-60	270	146.0	164.0	18.0	0.13	0.75
E1	EMMD213	478041	7739335	147	90.4	-60	270	40.0	44.0	4.0	0.02	0.43
F4	50.40.45.34.4	470043	7720204	4.47	420.4	60	270	No				
E1	EMMD214	478042	7739294	147	129.4	-60	270	Assays	104.0	10.0	0.12	0.50
E1	EMMD215	478140	7739333	147	204.5	-60	270	174.0	184.0	10.0	0.12	0.50
E1 E1	EMMD216 EMMD217	478209	7739112	146 146	132.3	-60 -60	270	100.0 84.0	114.0	14.0	0.39	0.49
<u> </u>	EIVIIVIDZ17	478177	7739153	140	147.1	-60	270	No	106.0	22.0	0.11	0.53
E1	EMMD218	478151	7739189	146	85.2	-60	270	Assays				
E1	EMMD219	478112	7739234	146	112.0	-60	270	44.0	50.0	6.0	0.09	0.57
E1	EMMD220	478146	7739191	146	129.4	-60	270	70.0	78.0	8.0	0.00	0.67
E1	EMMD222	478684	7738524	148	173.0	-78	270	122.0	142.0	20.0	0.29	1.03
E1	EMMD227	478365	7739627	146	120.1	-60	90	50.0	106.0	56.0	0.37	1.13
E1	EMMD228	478413	7739574	146	150.6	-90	0	72.0	74.0	2.0	0.23	0.59
E1	EMMD229	478420	7739673	146	250.5	-60	270	184.0	198.0	14.0	0.22	0.57
E1	EMMD230	478223	7739825	147	238.8	-60	180	116.0	138.0	22.0	0.38	1.06
E1	EMMD231	477459	7739317	148	774.1	-60	30	723.0	724.0	1.0	0.69	0.64
E1	EMMD232	477849	7739772	146	648.0	-63	226	278.0	297.0	19.0	0.99	1.67
		including						279.0	281.0	2.0	6.01	5.34
E1	EMRC001	477753	7739660	148	60.0	-60	90	NSI				
E1	EMRC002	477702	7739664	148	78.0	-60	90	76.0	78.0	2.0	NA	1.04
E1	EMRC003	477654	7739663	148	127.0	-60	90	74.0	98.0	24.0	0.32	1.12
E1	EMRC004	477603	7739663	148	157.0	-60	90	56.0	74.0	18.0	0.58	1.64
		and						94.0	98.0	4.0	0.56	4.08
E1	EMRC005	477665	7739492	148	120.0	-60	90	50.0	66.0	16.0	0.09	0.38
E1	EMRC006	477624	7739493	148	100.0	-60	90	94.0	96.0	2.0	0.76	2.53
E1	EMRC007	477574	7739493	148	116.0	-60	90	110.0	114.0	4.0	0.26	1.28
E1	EMRC016	477593	7739665	148	114.0	-90	0	NSI				
E1	EMRC017	477821	7739661	148	120.0	-60	270	NSI				
E1	EMRC019	477803	7739491	148	60.0	-60	270	NSI				
E1	EMRC020	477842	7739490	148	84.0	-60	270	50.0	52.0	2.0	0.28	1.22
E1	EMRC021	477893	7739490	148	60.0	-60	270	38.0	40.0	2.0	0.04	0.34
E1	EMRC022	477798	7739232	148	78.0	-60	270	NSI				
E1	EMRC023	477923	7739232	147	60.0	-60	270	NSI				
E1	EMRC024	477973	7739232	147	102.0	-60	270	NSI				
E1	EMRC025	478023	7739232	147	60.0	-60	270	NSI				
E1	EMRC026	478073	7739232	147	60.0	-60	270	NSI				
E1	EMRC027	477698	7739232	148	78.0	-60	270	30.0	32.0	2.0	0.01	0.53
E1	EMRC028	477903	7739076	147	78.0	-60	270	NSI		0.0	0.00	
E1	EMRC029	478143	7739076	147	78.0	-60	270	48.0	56.0	8.0	0.02	0.22
E1	EMRC030	478223	7739076	147	78.0	-60	270	NSI				
E1	EMRC031	478353	7739076	146	78.0	-60	270	NSI				
E1	EMRC032	478483	7739076	146	84.0	-60	270	NSI				
E1	EMRC033	478573	7739076	146	78.0	-60	270	NSI				
E1	EMRC034	478173	7738876	147	150.0	-60 -60	270	NSI				
E1	EMRC035	478223	7738876	147	60.0	-60 60	270	NSI				
E1	EMRC036	478273	7738876	147	78.0	-60 -60	270	NSI				
E1	EMRC037	478353	7738876	147	60.0	-60	270	NSI				
E1	EMRC038	478423	7738876	147	60.0	-60 -60	270	NSI	46.0	0.0	0.17	0.77
E1	EMRC040	478473	7738876	147	96.0	-60	270	38.0 NSI	46.0	8.0	0.17	0.77
E1 E1	EMRC040	478173 478213	7738776 7738776	147 147	78.0 90.0	-60 -60	270					
	EMRC041	1					270	NSI				
E1 E1	EMRC042	478303	7738776	147	102.0	-60	270	NSI				
	EMRC043	478463	7738776		78.0	-60 60	270	NSI 108.0	1240	26.0	0.07	0.50
E1	EMRC044	478563	7738776	147	150.0	-60	270	108.0	134.0	26.0	0.07	0.59

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EMRC045	478613	7738776	147	60.0	-60	270	NSI				
E1	EMRC046	478223	7738676	148	102.0	-60	270	NSI				
E1	EMRC047	478323	7738676	148	102.0	-60	270	NSI				
E1	EMRC048	478423	7738676	148	102.0	-60	270	90.0	94.0	4.0	0.09	0.35
E1	EMRC054	478593	7738676	147	168.0	-60	270	96.0	100.0	4.0	0.11	0.99
E1	EMRC055	477525	7739488	148	132.0	-90	0	NSI				
E1	EMRC056	477725	7739488	148	108.0	-90	0	22.0	30.0	8.0	0.19	0.85
E1	EMRC057	477645	7739663	148	90.0	-60	270	32.0	34.0	2.0	0.18	0.85
E1	EMRC058	477643	7739776	147	150.0	-60	90	64.0	68.0	4.0	0.15	0.69
E1	EMRC059	477612	7739572	148	102.0	-60	270	50.0	54.0	4.0	0.24	0.67
E1	EMRC060	477673	7739575	148	144.0	-60	90	66.0	72.0	6.0	0.84	3.26
E1	EMRC062	477773	7739573	148	102.0	-90	0	62.0	76.0	14.0	0.07	0.43
								No				
E1	EMRC063	478604	7738576	147	174.0	-90		Assays				
E1	EMRC064	478673	7738626	148	150.0	-60	90	98.0	106.0	8.0	0.27	1.04
E1	EMRC065	478648	7738626	148	168.0	-90	0	118.0	150.0	32.0	0.09	0.71
E1	EMRC066	478573	7738626	147	150.0	-60	270	NSI				
E1	EMRC068	478673	7738526	148	168.0	-60	270	116.0	126.0	10.0	0.16	0.82
E1	EMRC069	477571	7739719	148	90.0	-60	270	NSI				
E1	EMRC070	477670	7739719	148	120.0	-60	270	NSI				
E1	EMRC071	477721	7739719	148	140.0	-60	270	34.0	56.0	22.0	0.09	0.29
E1	EMRC072	477771	7739719	147	90.0	-60	270	50.0	58.0	8.0	0.06	0.25
E1	EMRC074	477555	7739350	148	114.0	-60	90	78.0	92.0	14.0	0.12	0.50
E1	EMRC075	477603	7739350	148	150.0	-60	90	36.0	38.0	4.0	0.11	0.73
E1	EMRC076	477721	7739778	147	132.0	-60	90	58.0	70.0	12.0	NA	0.20
E1	EMRC078	477692	7739616	148	114.0	-60	90	32.0	36.0	4.0	0.72	2.16
E1	and					-60	90	74.0	84.0	10.0	0.38	1.21
E1	EMRC079	477651	7739533	148	150.0			40.0	70.0	30.0	0.31	2.18
		including						56.0	62.0	6.0	0.59	5.01
E1	EMRC081	477611	7739689	148	126.0	-60	90	NSI				
E1	EMRC082	477643	7739453	148	138.0	-60	90	20.0	28.0	8.0	0.09	1.68
E1	EMRC190	477652	7739574	148	85.0	-70	270	54.0	70.0	16.0	0.57	2.46
E1	EMRC192	477614	7739534	148	67.0	-90	0	24.0	30.0	6.0	0.18	1.41
E1	EMRC193	477679	7739534	148	105.0	-66	90	32.0	94.0	62.0	0.75	2.22
		including						40.0	52.0	12.0	1.09	3.48
E1	EMRC194	477714	7739534	148	78.0	-56	90	NSI				ı
E1	EMRC195	477664	7739450	148	90.0	-58	90	48.0	66.0	18.0	0.40	2.72
		including						62.0	64.0	2.0	0.45	8.92
E1	EMRC196	477742	7739534	148	82.0	-59	270	36.0	82.0	46.0	0.59	1.74
E1	EMRC198	477661	7739616	148	102.0	-60	90	50.0	60.0	10.0	0.48	1.84
		including						52.0	54.0	2.0	0.88	3.25
E1	EMRC199	477708	7739513	148	91.0	-90	0	50.0	62.0	12.0	0.45	1.77
		and						72.0	82.0	10.0	0.29	1.03
E1	EMRC200	477693	7739450	148	54.0	-60	90	NSI				
E1	EMRC201	477556	7739400	148	114.0	-58	90	84.0	86.0	2.0	0.04	0.26
E1	EMRC204	477703	7739556	148	148.0	-90	0	24.0	122.0	98.0	0.34	1.17
E1	EMRC205	477728	7739516	148	90.0	-90	0	38.0	40.0	2.0	0.35	1.29
E1	EMRC206	477688	7739516	148	155.0	-90	0	28.0	42.0	14.0	0.69	1.99
		including						32.0	34.0	2.0	0.72	4.28
E1	EMRC207	477723	7739656	148	178.0	-90	0	102.0	124.0	22.0	0.53	1.51
E1	EMRC208	477693	7739716	148	139.0	-90	0	66.0	74.0	8.0	0.09	0.25
E1	EMRC211	478633	7738716	147	79.0	-60	90	60.0	68.0	8.0	0.17	0.66
E1	EMRC212	478493	7738536	148	120.0	-90	0	96.0	98.0	2.0	0.09	0.47
E1	EMRC213	477751	7739576	148	100.0	-90	0	86.0	92.0	2.0	0.08	0.32
E1	EMRC215	477655	7739596	148	137.0	-60	90	98.0	100.0	2.0	0.42	0.50

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EMRC218	477592	7739554	148	111.0	-60	90	54.0	78.0	24.0	0.68	2.42
E1	EMRC220	477683	7739435	148	102.0	-90	0	70.0	89.0	16.0	0.08	0.59
		including						78.0	82.0	4.0	0.03	1.14
E1	EMRC221	477601	7739453	148	144.0	-60	90	53.0	71.0	18.0	0.11	0.41
E1	EMRC222	477644	7739473	148	150.0	-60	90	56.0	58.0	2.0	1.85	6.42
E1	EMRC224	477680	7739494	148	120.0	-90	0	22.0	26.0	4.0	0.15	3.64
		and						106.0	110.0	4.0	0.72	2.08
E1	EMRC226	478273	7739726	147	102.0	-90	0	84.0	88.0	4.0	0.26	0.80
E1	EMRC227	478683	7738376	148	132.0	-60	270	38.0	52.0	14.0	0.25	1.00
E1	EMRC228	478653	7738576	148	90.0	-90	0	30.0	58.0	28.0	0.27	1.05
E1	EMRC229	478295	7739702	147	147.0	-90	0	40.0	82.0	42.0	0.59	1.75
		including						42.0	46.0	4.0	0.53	3.63
E1	EMRC230	478371	7739624	146	147.0	-90	0	44.0	48.0	4.0	0.29	1.43
E1	EMRC232	478273	7739753	146	162.0	-90	0	50.0	54.0	4.0	0.26	1.09
E1	EMRC234	478249	7739776	147	84.0	-90	0	44.0	50.0	6.0	0.06	0.98
E1	EMRC235	478277	7739776	146	114.0	-90	0	84.0	94.0	10.0	0.26	1.08
E1	EMRC236	478002	7739617	147	150.0	-60	270	40.0	48.0	8.0	0.16	0.29
E1	EMRC240	477623	7739661	148	242.0	-90	0	104.0	114.0	10.0	0.37	1.34
		and						178.0	180.0	2.0	0.75	2.30
E1	EMRC241	478263	7739876	146	252.0	-60	237	158.0	162.0	4.0	0.57	1.18
E1	EMRC242	478453	7739576	146	126.0	-60	270	67.0	74.0	6.0	0.16	0.62
E1	EMRC246	477721	7739714	148	120.0	-60	90	NSI	40.0	6.0	0.40	0.64
E1	EMRC247	477675	7739396	148	80.0	-60	90	42.0	48.0	6.0	0.12	0.64
E1	EMRC248	477623	7739398	148	150.0	-60	90	44.0	46.0	2.0	0.21	0.79
E1	EMRC249	478494	7739574	146	48.0	-60	270	No Assays				
E1	EMRC250	478375	7738777	147	150.0	-60	270	NSI				
E1	EMRC251	478373	7738875	147	150.0	-60	270	70.0	72.0	2.0	0.03	0.53
E1	EMRC252	478322	7738976	147	200.0	-60	270	74.0	80.0	6.0	0.03	0.90
	LIVINCESE	470274	7730370	147	200.0	- 00	270	No	00.0	0.0	0.14	0.50
E1	EMRC253	478624	7738876	147	200.0	-60	90	Assays				
E1	EMRC254	478572	7738974	147	200.0	-60	90	NSI				
E1	EMRC255	478523	7738972	147	200.0	-60	90	138.0	144.0	6.0	0.48	0.02
E1	EMRC256	478373	7738975	147	198.0	-60	270	NSI				
E1	EMRC257	478620	7738876	147	174.0	-60	90	NSI				
E1	EMRC288	478612	7738825	147	150.0	-60	90	NSI				
E1	EMRC289	478665	7738825	147	80.0	-60	90	NSI				
E1	EMRC290	478674	7738776	147	96.0	-60	90	64.0	70.0	6.0	0.01	0.64
E1	EMRC291	478623	7738776	147	150.0	-60	90	48.0	54.0	6.0	0.01	0.37
E1	EMRC292	478681	7738726	147	76.0	-60	90	NSI				
E1	EMRC293	478639	7738726	147	123.0	-60	90	36.0	52.0	14.0	0.08	1.28
		including						50.0	52.0	2.0	0.05	3.07
E1	EMRC294	478584	7738769	147	132.0	-60	90	74.0	76.0	2.0	0.16	0.66
E1	EMRC295	478438	7738723	147	100.0	-60	270	NSI				
E1	EMRC296	478402	7738723	147	120.0	-60	270	NSI				
E1	EMRC297	478442	7738625	148	113.0	-60	270	102.0	106.0	4.0	0.31	0.99
E1	EMRC298	478438	7738575	148	110.0	-60	270	54.0	56.0	2.0	0.03	1.00
E1	EMRC299	478072	7738855	147	88.0	-60	45	NSI				
E1	EMRC300	478592	7738725	147	150.0	-60	90	94.0	96.0	2.0	0.31	1.06
E1	EMRC301	478563	7738724	147	145.0	-70	270	104.0	114.0	10.0	0.25	0.66
E1	EMRC311	477843	7739797	146	143.0	-60	270	54.0	60.0	6.0	0.56	0.05
E1	EMRC312	477972	7739677	147	143.0	-60	270	50.0	52.0	2.0	0.58	1.38
E1	EMRC313	478070	7739574	148	150.0	-60	270	86.0	88.0	2.0	0.14	0.76
	1											
E1	EMRC314	478114	7739473	144	150.0	-60	270	42.0	48.0	6.0	1.93	0.13

▲ AU +61 (8) 6489 1600

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
E1	EMRC316	478203	7739373	147	120.0	-60	270	NSI				
E1	EMRC317	478494	7738832	146	150.0	-60	270	62.0	72.0	10.0	0.22	0.85
E1	EMRC318	478522	7738926	145	150.0	-60	270	140.0	142.0	2.0	0.06	0.46
E1	EMRC319	478471	7738973	145	150.0	-60	270	90.0	92.0	2.0	0.17	0.60
E1	EMRC320	478453	7739025	146	150.0	-60	270	NSI				
E1	EMRC321	478384	7739134	146	150.0	-60	270	NSI				
E1	EMRC322	478324	7739224	147	100.0	-60	270	NSI				
E1	EMRC323	478262	7739294	144	72.0	-60	270	NSI				
MK	5000E	467255	7719270	202	7.0	-90	0	0.0	3.5	3.5		1.74
MK	5050E	467301	7719285	208	15.0	-90	0	2.0	6.0	4.0		3.11
MK	5100E	467348	7719296	208	11.0	-90	0	0.0	4.0	4.0		2.42
MK	5150E	467396	7719306	211	12.0	-90	0	4.0	6.0	2.0		2.17
MK	5200E	467446	7719308	211	12.0	-90	0	4.0	6.0	2.0		2.09
MK	5225E	467469	7719316	207	10.0	-90	0	2.0	8.0	6.0		0.57
MK	5250E	467493	7719318	207	11.5	-90	0	0.0	2.0	2.0		0.95
MK	5282E	467525	7719321	207	13.2	-90	0	2.0	4.0	2.0		3.51
MK	5300E	467543	7719321	207	15.5	-90	0	0.0	3.0	3.0		2.40
MK	5325E	467566	7719326	198	11.0	-90	0	2.0	4.0	2.0		0.55
MK	5350E	467593	7719321	198	18.0	-90	0	2.0	10.0	8.0		2.85
MK	5375E	467618	7719321	198	26.0	-90	0	0.0	14.0	14.0		2.57
MK	including	467642	7710222	100	27.5	00	0	8.0	10.0	2.0		6.46
MK MK	5400E 5425E	467642 467663	7719323 7719339	198 196	27.5 17.0	-90 -90	0	4.0 0.0	6.0 4.0	2.0 4.0		3.17 1.22
MK	5450E	467688	7719339	196	22.0	-90	0	4.0	10.0	6.0		2.00
MK	5475E	467711	7719340	196	19.0	-90	0	2.0	4.0	2.0		2.29
MK	5500E	467734	7719358	200	16.0	-90	0	2.0	4.0	2.0		2.83
MK	5525E	467756	7719371	195	6.0	-90	0	NSI	4.0	2.0		2.03
MK	5550E	467781	7719369	195	9.5	-90	0	3.5	9.5	6.0		3.04
MK	5575E	467804	7719380	195	10.0	-90	0	0.0	6.0	6.0		5.02
MK	5600E	467826	7719389	195	19.5	-90	0	NSI	0.0	0.0		3.02
MK	ECRC049	468122	7719437	207	60.0	-60	0	NSI				
MK	EMKDD001	467542	7719322	221	63.5	-90	360	0.0	27.0	27.0	0.54	1.69
		including						0.0	2.0	2.0	0.79	2.36
MK	EMKDD002	467495	7719319	224	69.3	-90	360	4.0	36.0	32.0	0.61	2.11
		including						10.0	13.0	3.0	0.71	3.44
MK	EMKDD003	467671	7719311	212	75.1	-60	360	48.0	56.0	8.0	0.52	1.53
MK	EMKDD004	467499	7719286	223	96.1	-60	330	48.0	49.0	1.0	3.30	7.53
		and						52.0	62.0	10.0	0.71	2.32
		including						53.0	55.0	2.0	0.99	3.59
MK	EMKDD005	467532	7719260	218	230.4	-60	360	94.0	104.0	10.0	0.52	1.89
MK	EMKDD006	467503	7719241	185	127.7	-60	360	106.5	112.9	6.4	0.55	1.78
MK	EMKDD007	467561	7719231	216	192.2	-50	10	116.0	130.0	14.0	0.52	0.70
MK	EMKDD008	467596	7719263	213	119.4	-50	360	90.3	92.0	1.7	0.47	1.72
MK	EMKDD009	467655	7719267	211	118.5	-50	360	92.0	100.0	8.0	0.41	1.31
MK	EMKDD010	467701	7719322	209	98.8	-52	360	58.0	66.0	8.0	0.47	1.53
MK	EMKDD011	467788	7719340	205	77.5	-68	360	46.0	54.0	8.0	0.63	1.85
MK	EMKDD012	467820	7719350	207	89.6	-56	360	60.0	70.0	10.0	0.65	1.52
	54 AVB = 2 · ·	46-5-5	7746645		40- 1			No				
MK	EMKDD013	467673	7719312	212	105.1	-60	0	Assays				
MK	EMKDD014	467712	7719294	209	105.0	-70	360	NSI				
MK	EMKDD015	467498	7719286	223	104.8	-60	170	No Assavs				
MK	EMKDT010	467742	7719286	212	230.5	-60	180	Assays 186.0	187.0	1.0	0.33	1.09
MK	EMKDT010	467658	7719234	212	230.5	-60	360	171.0	172.0	1.0	0.33	1.09
		+0/036	1113243		L 431.4	-00	. 300	1/1.0	1 1/2.0	1.0	U.44	1.20

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
MK	EMKRC001	467790	7719328	207	109.0	-60	360	68.0	70.0	2.0	0.74	2.34
MK	EMKRC002	467738	7719333	208	120.0	-70	360	53.0	55.0	2.0	0.45	1.39
MK	EMKRC003	467447	7719281	229	109.0	-75	360	79.0	92.0	13.0	0.65	1.89
		including						82.0	83.0	1.0	1.52	3.19
MK	EMKRC004	467404	7719276	232	124.0	-70	360	64.0	75.0	11.0	0.44	1.49
MK	EMKRC005A	467590	7719306	218	121.0	-90	0	89.0	96.0	7.0	0.40	1.08
MK	EMKRC006	467875	7719475	207	48.0	-60	346	26.0	28.0	2.0	1.15	1.87
MK	EMKRC007	467882	7719447	207	90.0	-60	346	66.0	68.0	2.0	0.70	1.64
MK	EMKRC008	467951	7719482	204	90.0	-60	346	NSI				
MK	EMKRC009	467848	7719306	211	156.0	-60	346	120.0	122.0	2.0	0.61	1.93
MK	EMKRC013	467305	7719225	224	132.0	-60	346.5	84.0	86.0	2.0	0.71	2.39
MK	EMKRC014	467235	7719193	219	132.0	-60	346.5	98.0	102.0	4.0	0.63	1.97
MK	EMKRC015	467890	7719410	207	46.0	-60	346.5	16.0	22.0	6.0	0.15	0.62
MK	EMKRC016	467921	7719434	204	48.0	-60	346.5	NSI				
MK	EMKRC017	467961	7719442	204	46.0	-60	346.5	36.0	42.0	6.0	0.07	0.47
MK	EMKRC018	467942	7719508	207	46.0	-60	346.5	NSI				
MK	EMKRC019	467915	7719472	203	47.0	-60	360	32.0	34.0	1.0	0.17	0.43
MK	EMKRC020	467837	7719457	208	50.0	-60	360	20.0	22.0	2.0	0.08	1.24
MK	EMKRC021	467843	7719439	210	80.0	-60	360	16.0	18.0	2.0	0.03	0.35
MK	EMKRC022	467920	7719438	204	118.0	-60	346	84.0	96.0	12.0	0.58	1.85
MK	EMKRC023	467812	7719431	210	80.0	-60	360	NSI				
MK	EMKRC024	467795	7719467	206	40.0	-60	360	NSI				
MK	EMKRC025	467944	7719529	204	60.0	-60	360	16.0	18.0	2.0	0.02	1.15
MK	EMKRC026	467988	7719492	202	80.0	-60	360	NSI				
MK	EMKRC027	467980	7719539	201	60.0	-60	360	NSI				
MK	EMKRC028	467970	7719577	202	40.0	-60	360	NSI				
MK	EMKRC029	467174	7719228	203	47.0	-60	360	16.0	17.0	1.0	0.29	0.58
MK	EMKRC030	467131	7719178	202	77.0	-60	360	66.0	72.0	6.0	0.11	0.39
MK	EMKRC031	467137	7719207	202	59.0	-60	360	28.0	30.0	2.0	0.68	2.01
MK	EMKRC032	467221	7719228	206	62.0	-60	360	36.0	41.0	5.0	1.03	2.79
	2	including	7713220		02.0			38.0	39.0	1.0	1.44	4.32
MK	EMKRC033	467222	7719152	199	157.0	-60	360	146.0	149.0	3.0	0.63	1.77
MK	EMKRC037	468122	7719551	186	47.0	-60	360	NSI	143.0	3.0	0.03	1.77
MK	EMKRC038	468121	7719523	187	47.0	-60	360	MS				
MK	EMKRC039	468119	7719498	188	53.0	-60	360	NSI				
MK	EMKRC040	468024	7719454	187	47.0	-60	360	NSI				
MK				187	59.0		i					
MK	EMKRC041 EMKRC042	468023 467277	7719425 7719248	209	77.0	-60 -60	360 360	NSI NSI				
MK	EMKRC043	467299	7719248	203	179.0	-60	360	124.0	130.0	5.0	0.32	1.13
MK	EMKRC044	467348	7719200	210	155.0	-60	360	105.0	114.0	9.0	0.62	1.13
MK	EMKRC045	467394	7719225	202	161.0	-60	360	121.0	131.0	10.0	0.02	1.38
MK	EMKRC046	467873	7719349	192	149.0	-60	360	99.0	103.0	4.0	0.43	1.26
									103.0	4.0	0.52	1.20
MK	EMKRC047 EMKRC048	467922	7719430	192	53.0	-60	360	NSI	F6.0	1.0	0.49	1.02
MK		467921	7719404	188	77.0	-60	360	55.0	56.0	1.0	0.48	1.02
MK	EMKRC049	467914	7719378	190	107.0	-60	360	73.0	77.0	4.0	0.36	0.81
MK MK	MKD01	467358	7719253	228	130.1	-60	344	74.0	80.0	6.0	0.62	1.55
	MKD02	467838	7719385	212	239.6	-60	346	10.0	36.0	26.0	0.29	1.18
NAV	MKD03	including	7710464	204	105.5		226	18.0	20.0	2.0	0.73	4.75
MK	MKD03	467925	7719461	204	105.5	-60	336	67.0	78.0	11.0	0.51	1.54
MK	MKD04	467592	7719322	213	24.5	-60	346	0.0	19.0	19.0	0.82	1.83
B 414	AAVD05	including	7746005	212	10.5		246	1.0	4.0	4.0	1.10	3.79
MK	MKD05	467823	7719385	212	18.5	-60	346	5.0	14.0	9.0	0.79	1.59
MK	MKD06	467564	7719323	220	18.1	-60	346	5.0	16.0	11.0	0.51	3.33
		including					_	6.0	7.0	1.0	0.51	10.66
MK	MKD07	467594	7719317	214	30.0	-60	346	3.0	28.0	25.0	0.63	2.36

Comet Resources Limited

└ AU +61 (8) 6489 1600

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
		including						8.0	10.0	2.0	0.77	5.13
MK	MKD08	467665	7719335	215	21.0	-60	346	0.0	20.0	20.0	0.66	1.16
MK	MKDH1	467562	7719275	220	135.0	-60	346	77.2	90.6	13.4		2.10
MK	MKDH2	467503	7719247	220	127.0	-60	346	95.4	98.8	3.4		2.20
MK	MKDH3	467680	7719284	210	114.0	-60	346	76.8	80.2	3.4		1.60
MK	MKDH4	467582	7719216	217	250.0	-60	346	241.1	246.3	5.2		0.20
MK	MKDH5	467857	7719378	208	35.0	-60	346	26.8	31.7	4.9		0.74
MK	MKR01	467912	7719484	206	54.0	-60	360	29.0	34.0	5.0	0.76	2.70
		including						30.0	31.0	1.0	0.94	4.55
MK	MKR02	467822	7719378	211	42.0	-60	360	15.0	21.0	6.0	0.55	2.21
MK	MKR03	467733	7719349	210	42.0	-60	360	20.0	23.0	3.0	0.32	1.23
MK	MKR04	467641	7719325	216	54.0	-60	360	0.0	22.0	22.0	0.28	1.49
MK	MKR05	467593	7719316	215	60.0	-60	360	6.0	29.0	23.0	0.57	3.07
		including						10.0	11.0	1.0	0.70	15.30
MK	MKR06	467542	7719305	219	60.0	-60	360	29.0	34.0	5.0	0.58	1.78
MK	MKR07	467450	7719291	229	54.0	-60	360	40.0	42.0	2.0	0.39	0.85
MK	MKR08	467352	7719280	230	54.0	-60	360	33.0	37.0	4.0	0.52	2.00
MK	MKR09	467300	7719280	225	36.0	-60	360	9.0	16.0	7.0	0.44	1.19
MK	MKR10	467894	7719489	208	45.0	-60	360	18.0	22.0	4.0	0.23	0.37
MK	MKR11	467874	7719490	207	27.0	-60	360	8.0	9.0	1.0	0.44	0.91
MK	MKR12	467853	7719481	207	21.0	-60	360	6.0	9.0	3.0	0.39	0.76
MK	MKR13	467930	7719501	207	45.0	-60	360	0.0	3.0	3.0	0.18	0.59
MK	MKR14	467869	7719414	209	27.0	-60	360	5.0	7.0	2.0	0.01	0.43
MK	MKR15	467847	7719403	211	27.0	-60	360	4.0	8.0	4.0	0.15	0.43
MK	MKR16	467803	7719377	209	21.0	-60	360	4.0	14.0	10.0	1.01	3.12
		including						5.0	9.0	4.0	1.23	4.08
MK	MKR17	467783	7719369	205	27.0	-60	360	7.0	17.0	10.0	0.93	1.75
		including						9.0	10.0	1.0	1.25	3.44
MK	MKR18	467687	7719344	213	27.0	-60	360	0.0	11.0	11.0	0.64	1.76
MK	MKR19	467663	7719335	215	33.0	-60	360	3.0	19.0	16.0	0.45	1.47
		including						13.0	15.0	2.0	0.62	3.97
MK	MKR20	467616	7719322	215	27.0	-60	360	0.0	21.0	21.0	0.51	1.39
		including						15.0	16.0	1.0	0.44	6.70
MK	MKR21	467564	7719323	220	27.0	-60	360	6.0	15.0	9.0	0.64	5.52
		including						6.0	9.0	3.0	0.79	13.50
MK	MKR22	467542	7719317	220	27.0	-60	360	10.0	21.0	11.0	0.52	1.42
MK	MKR23	467526	7719317	221	33.0	-60	360	7.0	23.0	16.0	0.49	2.92
		including						9.0	11.0	2.0	0.80	9.03
MK	MKR24	467493	7719317	224	27.0	-60	360	3.0	14.0	11.0	0.37	1.41
MK	MKR25	467398	7719300	231	27.0	-60	360	15.0	23.0	8.0	0.49	2.33
		including						17.0	18.0	1.0	0.71	5.15
MK	MKR26	467212	7719246	220	18.0	-60	360	5.0	7.0	2.0	1.00	2.70
MK	MKR27	467237	7719255	222	18.0	-60	360	6.0	10.0	4.0	0.95	1.91
MK	MKR28	467256	7719265	223	18.0	-60	360	4.0	11.0	7.0	0.58	1.67
MK	MKR29	467279	7719272	223	18.0	-60	360	9.0	11.0	2.0	0.20	0.84
MK	MKR30	467324	7719291	227	24.0	-60	360	8.0	11.0	3.0	0.28	0.79
MK	MKR31	467351	7719294	230	24.0	-60	360	9.0	17.0	8.0	0.16	1.58
MK	MKR32	467373	7719299	231	24.0	-60	360	9.0	18.0	9.0	0.49	1.95
		including						16.0	17.0	1.0	0.97	3.40
MK	MKR33	467421	7719306	231	24.0	-60	360	3.0	17.0	14.0	0.47	2.07
MK	MKR34	467471	7719308	225	30.0	-60	360	17.0	21.0	4.0	0.63	2.28
MK	MKR35	467576	7719318	217	30.0	-60	360	4.0	9.0	5.0	0.44	1.12
		and						14.0	18.0	4.0	0.74	2.57
MK	MKR36	467617	7719321	215	42.0	-60	360	0.0	30.0	30.0	0.51	1.34
	1	including						0.0	4.0	4.0	174.00	3.84

└ AU +61 (8) 6489 1600

comet@cometres.com.au

Deposit	HoleID	Easting	Northing	RL	Depth (m)	Dip	Azi	From (m)	To (m)	Width (m)	Au (ppm)	Cu (%)
MK	MKR37	467627	7719323	215	30.0	-60	360	0.0	22.0	22.0	0.32	1.32
MK	MKR38	467641	7719322	215	42.0	-70	360	14.0	18.0	4.0	0.45	1.71
MK								28.0	41.0	13.0	0.29	0.39
MK	MKR39	467665	7719333	214	36.0	-70	360	0.0	28.0	28.0	0.41	2.00
		including						3.0	4.0	1.0	0.91	7.46
		and						13.0	15.0	2.0	0.39	4.24
MK	MKR40	467688	7719340	212	30.0	-70	360	10.0	22.0	12.0	0.47	2.34
		including						11.0	15.0	4.0	0.71	3.96
MK	MKR41	467709	7719350	212	24.0	-70	360	3.0	11.0	8.0	0.38	2.24
MK	MKR42	467737	7719361	209	18.0	-70	360	0.0	5.0	5.0	0.65	2.17
MK	MKR43	467755	7719365	207	18.0	-70	360	4.0	7.0	3.0	0.38	1.37
MK	MKR44	467803	7719374	208	36.0	-70	360	11.0	26.0	15.0	0.61	1.88
		including						13.0	15.0	2.0	1.12	3.58

NSI No Significant Intercept

NA No Assay

- cometres.com.au
- A ASY-CRI

Subiaco WA 6008