

Exceptional Drill Results from Nil Desperandum and Lady Fanny 24m @ 5.0% Cu, 1.3 g/t Au Inc. 12m @ 8.1% Cu, 2.2 g/t Au

Carnaby Resources Limited (ASX: CNB) (**Carnaby** or the **Company**) is pleased to announce exceptional exploration results at the Greater Duchess Copper Gold Project in Mt Isa, Queensland.

Highlights

- <u>Nil Desperandum Prospect:</u> NLDD084 has intersected the continuation of the high-grade breccia pipe shoot 70m down plunge from discovery hole NLDD044 with a result of 24m @ 5.0% copper, 1.3 g/t gold from 313m including 12m @ 8.1% copper, 2.2 g/t gold.
- Lady Fanny Prospect: Exceptional drill results and visual intersections continue to be received including new results of 22m @ 2.4% Cu, 0.5 g/t Au in LFRC019, 19m @ 2.4% Cu, 0.9 g/t Au in LFRC010 and 43 m of strong copper sulphide visuals in LFRC120 (See Figures 4, 5 & 6).

The Company's Managing Director, Rob Watkins commented: **"We are in the** early stages of unearthing the scale and significance of the Nil Desperandum and Lady Fanny discoveries. The drill results and visuals coming in from the ongoing drilling continue to point towards a major new resource and development project at the Greater Duchess Copper Gold Project."

Managing Director Rob Watkins and Chairman Peter Bowler inspecting the spectacular drill core from **NLDD084** onsite at Greater Duchess, Qld.

ASX Announcement 4 April 2022

Fast Facts

Shares on Issue 143.5M

Market Cap (@ \$1.235) \$177M

Cash \$25.8M¹

¹Based on cash of A\$5.8 million as at 31 December 2021 and A\$20m gross proceeds from recent Placement, see ASX release dated 24 January 2022.

Board and Managemen

Peter Bowler, Non-Exec Chairman

Rob Watkins, Managing Director

Greg Barrett, Non-Exec Director & Company Secretary

Paul Payne, Non-Exec Director

Company Highlights

- Proven and highly credentialed management team
- Tight capital structure and strong cash position
- Nil Desperandum and Lady Fanny Iron Oxide Copper Gold discoveries within the Greater Duchess Copper Gold Project, Mt Isa inlier, Queensland.
- Greater Duchess Copper Gold Project, numerous camp scale IOCG deposits over 1,022 km² of tenure
- Projects near to De Grey's Hemi gold discovery on 442 km² of highly prospective gold and lithium tenure
- 100% ownership of the Tick Hill Gold Project (granted ML's) in Qld, historically one of Australia highest grade and most profitable gold mines producing 511 koz at 22 g/t gold

Registered Office

78 Churchill Avenue Subiaco Western Australia 6008

T: +61 8 9320 2320

www.carnabyresources.com.au

GREATER DUCHESS COPPER GOLD PROJECT

New RC and diamond drilling results and further visual copper sulphide estimations from ongoing drilling at the Nil Desperandum and Lady Fanny copper gold discoveries are presented below and in Appendix 1 & 2.

Drilling continues with two drill rigs, a dedicated RC and a dedicated diamond drill rig.

NIL DESPERANDUM PROSPECT (CNB 82.5%, DCX 17.5%)

Carnaby continues to extend the Nil Desperandum high-grade discovery to the southwest targeting extensions of the high-grade breccia shoot and drill testing Induced Polarisation (IP) chargeability anomalies that have been shown to correlate exceptionally well with copper sulphide mineralisation.

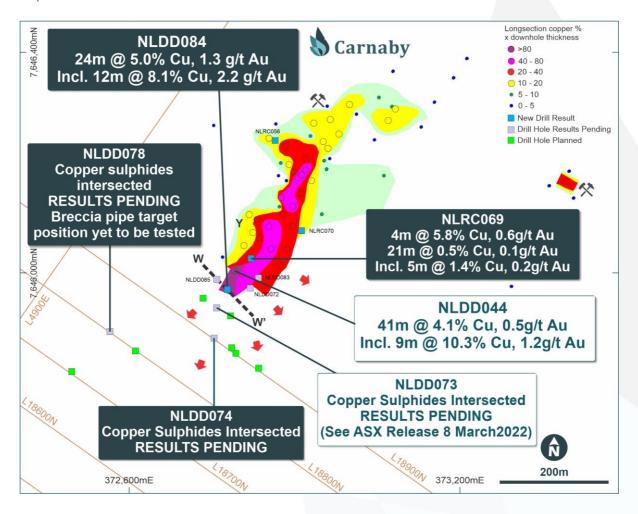


Figure 1. Nil Desperandum Plan coloured by copper % times down hole width, also showing location of new results and planned holes.

It is becoming clear that the high-grade breccia shoot intersected in NLDD044 and NLDD084 is a new high-grade plunging pipe-like breccia shoot separate from the shallower, previously defined breccia shoot. Both shoots appear to have similar plunges to the SSW and remain completely open at depth (Figure 1). The breccia shoots appear to have formed within a broader SW trending mineralised corridor which is also completely open.

NLDD084

Diamond drill hole NLDD084 has intersected the down plunge continuation of the high-grade breccia shoot **70m down plunge** from the original discovery hole NLDD044 that intersected **41m @ 4.1% copper** (See ASX release 29 December 2021) (Figure 1).

NLDD084 intersected;

31m @ 3.9% copper, 1.0 g/t gold from 313m, Including 24m @ 5.0% copper, 1.3 g/t gold from 313m Including 12m @ 8.1% copper, 2.2 g/t gold from 322m

Figure 2. NLDD084 drill section.

Figure 3. NLDD084 diamond drill core showing high-grade copper mineralisation from 322m to 336m.

The result confirms the excellent continuity of the high-grade breccia shoot and the orientation of the high-grade copper gold mineralisation hosted in a moderately south east dipping structure.

The copper gold mineralisation is hosted within a brecciated biotite schist with occasional polymictic clasts of mostly quartz and is composed of matrix fill chalcopyrite with lesser pyrrhotite (Figure 3).

The intersection angle of the vertical drilling to the breccia shoot results in true widths being approximately 70% of the downhole width of intercepts reported. This is consistent with the geological interpretation and has been observed in multiple diamond core holes through the mineralisation.

The plunge of the high-grade breccia shoot is interpreted to be controlled by and bounded to the west by a steeply dipping fault named the Western Bounding Fault (Figure 2). Angled diamond drilling is planned to commence shortly to test the western bounding fault structure in order to better define the western boundary of the high-grade breccia shoot.

A down dip hole NLDD072 was collared further north however drifted south onto the NLDD084 drill section and has intersected broad zones of matrix fill and breccia copper sulphide mineralisation with results pending (Figure 2).

Results are also pending from NLDD073 (See ASX release 8 March) which intersected the highgrade breccia shoot further down plunge from NLDD084.

NLRC069

RC drill hole NLRC069 has intersected the high-grade breccia shoot ~**70m up plunge** from the original discovery hole NLDD044 that intersected 41m @ 4.1% copper (Figure 1). The result of **4m @ 5.8% copper, 0.6 g/t gold** in NLRC069 is interpreted to represent the start of the high-grade breccia shoot showing excellent continuity with the high-grade results in NLDD044 and NLDD084.

NLRC069 intersected;

4m @ 5.8% copper, 0.6 g/t gold from 210m and 21m @ 0.5% copper, 0.1 g/t gold from 243m including 5m @ 1.4% copper, 0.2 g/t gold from 246m

NLDD074

Diamond drill hole NLDD074 was drilled 85m down plunge of NLDD073 and intersected a 5m quartz vein with chalcopyrite copper mineralisation with results pending. The quartz-chalcopyrite vein is similar in appearance to the quartz-chalcopyrite vein intersected in NLDD073 however is less brecciated. It is interpreted that the main high-grade breccia target position is further east of this hole and follow up drilling is underway to target the main high-grade plunge position. The large quartz-chalcopyrite vein has been intersected in three holes and appears to have good continuity. It has formed within, and is continuous along, the moderate southeast dipping structure.

NLDD078

Diamond drill hole NLDD078 was drilled to target the L18800N IP chargeability anomaly over 200m southwest of the high-grade discovery hole NLDD044 (Figure 1).

NLDD078 intersected several narrow zones of matrix and breccia copper sulphide mineralisation in a steeply dipping shear with results pending. Evidence of copper sulphide mineralisation in this hole is highly encouraging.

NLDD078 is the first of two planned holes to test the L18800N IP chargeability anomaly and was drilled first to test the up-dip geology sequence. The second planned deeper hole will target the conceptual breccia shoot position where the steep narrow copper sulphide mineralisation intersected in NLDD078 potentially flattens out and brecciates. This conceptual target is analogous to the NLDD044 discovery hole where the high-grade breccia shoot is located on the eastern side of the IP chargeability anomaly.

Also considered highly encouraging in NLDD078 is the appearance of significant increases in brecciation and alteration throughout broad intervals of the drill hole. Associated multiple overprinting alteration episodes have been observed including overprinting haematite-kspar and late haematite.

These geological indicators are suggesting that the SW extension of the Nil Desperandum mineralised corridor is highly prospective and ongoing diamond drilling will continue to step out and test the IP chargeability anomalies.

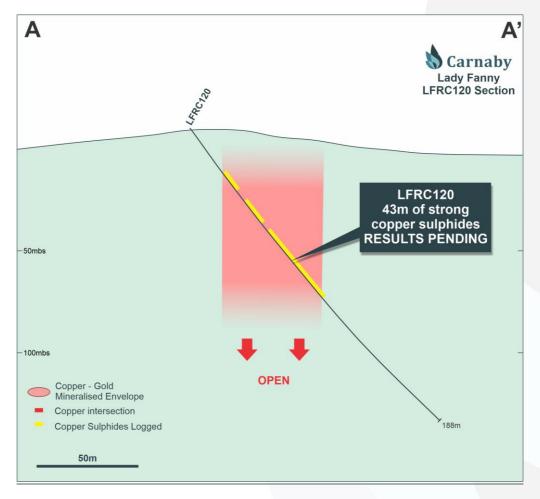
LADY FANNY PROSPECT (CNB 100%)

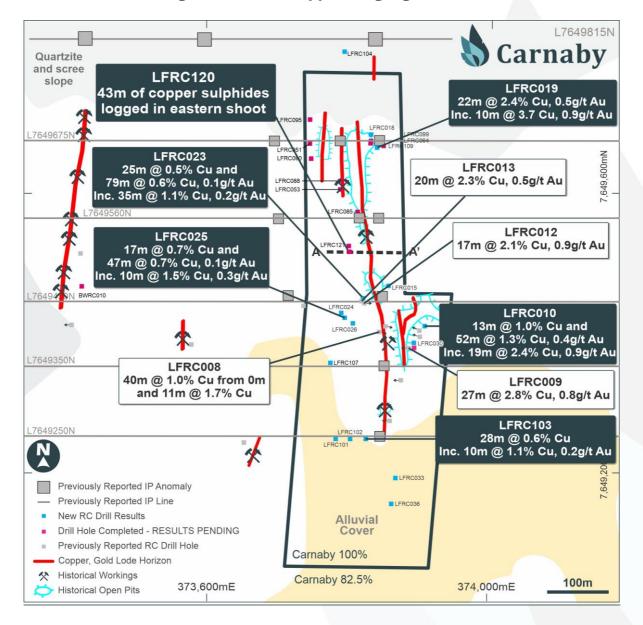
Exceptional drill results and visual intersections, with results pending, continue to be received from RC drilling at the Lady Fanny discovery. Broad zones of copper gold mineralisation in multiple mineralisation horizons have been intersected over a greater than 500m strike and remain open. The Lady Fanny discovery is rapidly emerging as a very large discovery which continues to grow with ongoing drilling, where the mineralisation clearly demonstrates open pitable widths and grades at very shallow depths.

LFRC120

RC drilling has just commenced in the central section of the Lady Fanny prospect where access tracks and drill pads have had to be developed with some difficulty around significant but shallow historical workings and high topographic relief.

One of the first holes drilled from a new central drill pad where RC holes are being fanned out, was LFRC120. This hole has intersected **43m of strong copper sulphide mineralisation from 63m to 106m downhole (RESULTS PENDING)** in what appears to the northern continuation of the eastern lode (Figure 4). Additional drilling around this intercept is being planned.




Figure 4. Lady Fanny RC Drill Section Showing Drill Hole LFRC120.

LFRC019

Exceptional results have been received for LFRC019, drilled in the northern most section of historical workings and adjacent to a strong IP chargeability anomaly. Additional drilling has been undertaken along strike to the north and south with all holes intersecting broad zones of variable amounts of copper sulphide mineralisation with results pending.

LFRC019 intersected;

Including 10m @ 3.7% copper, 0.9g/t gold from 48m

22m @ 2.4% copper, 0.5 g/t gold from 44m

Figure 5. Lady Fanny Plan Showing Location of New RC Drill Results.

LFRC010

Exceptional results have been received for LFRC010, drilled to test the northern extension of the splay lode under the shallow historical open pit. The results in this hole have demonstrated the excellent continuity of the broad high-grade copper gold mineralisation.

LFRC010 intersected;

13m @ 1.0% copper, 0.03 g/t gold from 17m And 51m @ 1.3% copper, 0.4 g/t gold from 77m Including 19m @ 2.4% copper, 0.9 g/t gold from 77m

LFRC023-26

RC drill holes LFRC023-26 were targeted below previously announced shallow broad highgrade drill results (Figure 5). These RC holes all generally encountered very broad zones of moderate grade copper gold mineralisation, indicating a very large mineralised system. All holes intersected two broad zones of copper gold mineralisation that appear to form continuous zones of mineralisation hosted in steeply dipping shears. Diamond drilling and detailed structural mapping is planned to further advance the geological understanding of the controls and potential plunge of the copper gold mineralisation.

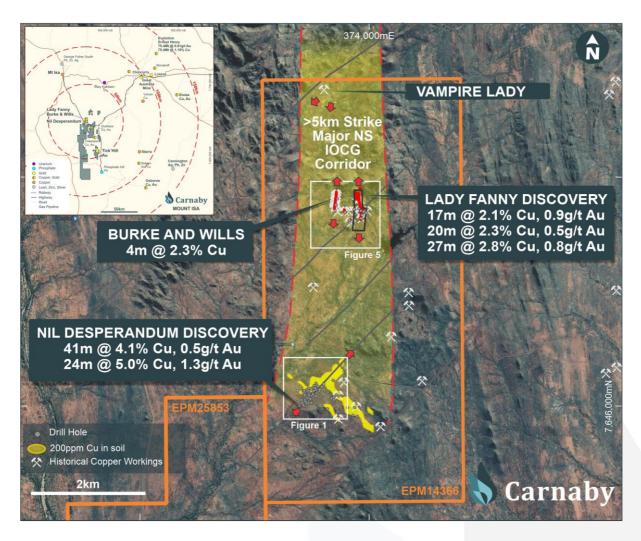
Results from RC holes LFRC023-026 are;

LFRC023	25m @ 0.5% copper, 0.1 g/t gold from 8m
	And 79m @ 0.6% copper , 0.1 g/t gold from 78m
	Including 35m @ 1.1% copper , 0.2 g/t gold from 80m
	Including 3m @ 5.9% copper , 0.7 g/t gold from 96m
LFRC024	24m @ 0.5% copper, 0.1 g/t gold from 66m
	And 15m @ 0.5% copper, 0.1 g/t gold from 101m
	And 45m @ 0.6% copper , 0.1 g/t gold from 126m
	Including 19m @ 0.9% copper , 0.2 g/t gold from 126m
LFRC025	17m @ 0.7% copper, 0.1 g/t gold from 37m
	And 47m @ 0.7% copper , 0.1 g/t gold from 111m

Including 10m @ 1.5% copper, 0.3 g/t gold from 123m

LFRC026 **24m @ 0.7% copper**, 0.1 g/t gold from 25m Including **4m @ 2.0% copper**, 0.2 g/t gold from 32m And **66m @ 0.6% copper**, 0.1 g/t gold from 80m

LFRC101-103, 33, 36


RC drilling stepping out to test the southern extension of the Lady Fanny corridor has generally intersected lower tenor copper sulphide mineralisation, which remains completely open and untested to the south of LFRC036. A traverse of three RC holes was drilled to test the L7649250N IP chargeability anomaly (Figure 5). Copper sulphide mineralisation up to 10m @ 1.1% copper was intersected at the top of the modelled IP chargeability anomaly. The main Lady Fanny high-grade shoots located 100-200m to the north are interpreted to have a shallow southerly plunge. It remains highly possible that the source of the L7649250N IP chargeability anomaly remains untested below the current level of drilling. Further drilling is being planned.

LFRC103	28m @ 0.6% copper, 0.1 g/t gold from 25m						
	Including 10m @ 1.1% copper , 0.2 g/t gold from 42m						
LFRC102	6m @ 0.6% copper, 0.1 g/t gold from 34m						
LFRC036	12m @ 0.4% copper, 0.1 g/t gold from 29m						

LFRC104

A single RC drill hole LFRC104 was drilled to test the very large and strong L7649815N IP chargeability anomaly (Figure 5) (See ASX release 25 February 2022). The anomaly is directly along strike to the north from the main Lady Fanny mineralised corridor. High topographic relief and difficult access has caused a delay to adequately test this anomaly. Drill hole LFRC104 did not intersect any significant copper gold mineralisation or any other geology that could explain the IP anomaly and it is highly likely that the source of the strong IP response is yet to be revealed. Additional earthworks are in progress to install suitable drill pad locations to fully evaluate the likely copper sulphide source of the IP anomaly.

Figure 6. Location Plan of Lady Fanny and Nil Desperandum Discoveries.

Further information regarding the Company can be found on the Company's website <u>www.carnabyresources.com.au</u>

For further information please contact: Robert Watkins, Managing Director +61 8 9320 2320

Competent Person Statement

The information in this document that relates to exploration results is based upon information compiled by Mr Robert Watkins. Mr Watkins is a Director of the Company and a Member of the AUSIMM. Mr Watkins consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears. Mr Watkins has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is undertaken to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code).

Disclaimer

References may have been made in this announcement to certain ASX announcements, including references regarding exploration results, mineral resources and ore reserves. For full details, refer to said announcement on said date. The Company is not aware of any new information or data that materially affects this information. Other than as specified in this announcement and the mentioned announcements, the Company confirms that it is not aware of any new information or data that materially affects the

information included in the original market announcements and, in the case of estimates of Mineral Resources, Exploration Target(s) or Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Recently released ASX Material References that relate to this announcement include:

Step Out Drilling Hits Southwest Extension of Nil Desperandum, 8 March 2022 Lady Fanny Shines and Expands On New IP Surveys and Drilling, 25 February 2022 Lady Fanny IP Survey lights Up Strong Chargeability Targets, 17 February 2022 Nil Desperandum Continues To Grow, 11 February 2022 Major Discovery Confirmed at Nil Desperandum, 4 February 2022 Lady Fanny Prospect – LFRC008 40m @ 1.0%Cu And 11m @ 1.7%Cu, 17 January 2022 Stunning First Drill Results Lady Fanny – 27m @ 2.8% Copper, 13 January 2022 Strong Drill Results at Nil Desperandum – 60m @ 0.9% Copper, 10 January 2022 Major Copper Gold Discovery 41m @ 4.1% Cu Inc 9m @ 10.3% Cu, 29 December 2021 CNB: Re-release of ASX Announcement dated 17 December, 21 December 2021 Exploration Update – 10,000m of Drilling Underway, 25 November 2021 Greater Duchess Copper Gold Project Grows, 25 October 2021

APPENDIX ONE

Details regarding the specific information for the drilling discussed in this news release are included below in Table 1 and Table 2.

Table 1. Drill Hole Details

NIL DESPERANDUM PROSPECT (CNB 82.5%, DCX 17.5%)

Hole ID	Easting	Northing	RL	Dip	Azimuth	Total Depth	Depth From	Interval	Cu %	Au (g/t)
							42	16	0.4	0.1
NLRC056	372902	7646229	395	-55	286	137	Incl 56	2	1.3	0.2
							And 69	2	1.4	0.2
							210	4	5.8	0.6
NLRC069	372822	7646014	400	-90	0	300	And 243	21	0.5	0.1
							Incl 246	5	1.4	0.2
							151	2	0.5	0.2
NLRC070	372910	7646069	400	-89.7	288	300	And 201	12	0.8	0.1
NLKC070	572910	7040009	400	-09.7	200	300	Incl 201	2	3.0	0.3
							And 228	16	0.5	0.1
							313.2	30.9	3.9	1.0
NLDD084	372783	7645969	405	-89	164.9	372.9	Incl 313.2	23.9	5.0	1.3
							Incl 322	12.3	8.1	2.2
NLDD072	372821	7645972	406	-89	179.86	442	ASSA	(RESULTS P	ENDING	
NLDD074	372755	7645881	401	-90	0	538.1	ASSA	/ RESULTS P	ending	
NLDD078	372565	7645893	389	-89.7	213.93	524.2	ASSAY RESULTS PENDING			
NLDD083	372835	7645990	409	-89	133.84	390.8	ASSAY RESULTS PENDING			
NLDD085	372760	7645987	401	-89	72.41	387.9	ASSAY RESULTS PENDING			

LADY FANNY PROSPECT (CNB 100%)

Hole ID	Easting	Northing	RL	Dip	Azimuth	Total Depth	Depth From	Interval	Cu %	Au (g/t)
LFRC101	373785	7649248	411	-56	86.58	150		NSI		
	272000	7640240	410	E A	04.04	120	34	6	0.6	0.1
LFRC102	373806	7649248	412	-54	84.94	120	And 82	11	0.2	0.03
LFRC103	373828	7649248	412	-56	88.88	83	25	28	0.6	0.1
LFRC 105	5/5020	7049240	412	-50	00.00	05	Incl 42	10	1.1	0.2
LFRC104	373798	7649803	466	-73	106.1	270		NSI		
LFRC107	373777	7649357	414	-63	92	220	172	3	0.9	0.1
							17	13	1.0	0.03
LFRC010	373912	7649410	419	-55	283.5	146	And 69	52	1.3	0.43
							Incl 77	19	2.4	0.9
							39	19	0.9	0.1
LFRC015	373861	7649466	427	-56	295.5	88	Incl 39	7	1.6	0.3
LINCOID	575001	7049400	721	50	255.5	00	66	8	0.9	0.3
							Incl 66	5	1.3	0.5
LFRC018	373836	7649684	443	-56	271.55	145	Surface	26	0.6	0.1
LINCOID	575050	7045004	443	50	271.55	145	And 92	2	4.6	0.04
							44	22	2.4	0.5
LFRC019	373844	7649666	441	-56	217.23	285	Incl 48	10	3.7	0.9
							Incl 52	5	5.3	0.5
							8	25	0.5	0.1
							And 40	3	0.9	0.1
LFRC023	373824	7649450	424	-67	26.16	173	And 78	79	0.6	0.1
							Incl 80	35	1.1	0.2
							Incl 96	3	5.9	0.7
							66	24	0.5	0.1
							Incl 75	12	0.8	0.1
LFRC024	373793	7649429	419	-61	56.25	256	And 101	15	0.5	0.1
							Incl 110	3	1.8	0.3
							And 126	45	0.6	0.1
							Incl 126	19	0.9	0.2
							37	17	0.7	0.1
LFRC025	373798	7649422	419	-56	61.33	250	Incl 43	5	1.6	0.2
							And 111	47	0.7	0.1
							Incl 123	10	1.5	0.3
							25	24	0.7	0.1
	272000	7640412	410	C A	60	200	Incl 32	4	2.0	0.2
LFRC026	373809	7649413	419	-64	60	290	And 80	66 15	0.6	0.1
							Incl 94 And incl 118	15 18	0.8 0.9	0.2 0.2
								2		
LFRC030	373897	7649386	418	-56	271.2	80	Surface And 46	32	0.6 0.5	0.4 0.1
LINCUSU	515021	1043300	+10	-50	LI 1.L	00	Incl 46	52	0.5 1.1	0.1
<u> </u>							33	2	0.4	0.2
LFRC033	373870	7649192	412	-56	287.42	80	And 39	6	0.4	0.1
							29	12	0.4	0.1
LFRC036	373864	7649155	411	-56	284.65	80	And 51	6	0.4	0.1
							Surface	3	0.6	0.1
LFRC099	373836	7649675	442	-69	91.15	150	And 24	3	1.2	0.4
LFRC051	373748	7649671	455	-55	75	138				
LINCUST	515140	1043011	-1JJ	-55	15	100	ASSA	I NESULIS P		

Hole ID	Easting	Northing	RL	Dip	Azimuth	Total Depth	Depth From	Interval	Cu %	Au (g/t)
LFRC053	373792	7649606	458	-70	93.81	200	ASSA	Y RESULTS P	ending	
LFRC064	373835	7649672	442	-60	260.87	150	ASSA	Y RESULTS P	ending	
LFRC085	373816	7649574	457	-55	99	190	ASSA	Y RESULTS P	ending	
LFRC088	373792	7649618	458	-55	90.29	130	ASSA	Y RESULTS P	ending	
LFRC090	373750	7649650	454	-68	90	124	ASSA	Y RESULTS P	ending	
LFRC095	373748	7649706	460	-55	89	126	ASSA	Y RESULTS P	ending	
LFRC109	373853	7649668	441	-72	283.13	160	ASSA	Y RESULTS P	ending	
LFRC120	373807	7649517	439	-56	98.29	188	ASSA	Y RESULTS P	ending	
LFRC121	373805	7649516	439	-67	127	156	ASSA	Y RESULTS P	ending	
BWRC010	373422	7649467	410	-54	285	80	ASSA	Y RESULTS P	ending	

Table 2. Visual Estimates and Description of Sulphide Mineralisation.

In relation to the disclosure of visual mineralisation, the Company cautions that estimates of sulphide mineral abundance from preliminary geological logging should not be considered a proxy for quantitative analysis of a laboratory assay result. Assay results are required to determine the actual widths and grade of the visible mineralisation.

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
NLDD072	288	289	1	Chalcopyrite	1	Disseminated			
NLDD072	301.8	302.2	0.4	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD072	315.8	316.4	0.6	Chalcopyrite	1	Stringer			
NLDD072	316.95	317.2	0.25	Chalcopyrite	65	Massive	Pyrite	5	Massive
NLDD072	317.2	317.3	0.1	Chalcopyrite	5	Matrix			
NLDD072	317.3	317.55	0.25	Chalcopyrite	2	Matrix	Pyrite	15	Matrix
NLDD072	317.85	319.15	1.3	Chalcopyrite	1	Matrix	Pyrite	15	Matrix
NLDD072	320.15	320.5	0.35	Chalcopyrite	1	Matrix	Pyrite	35	Breccia Filled
NLDD072	320.55	321.15	0.6	Chalcopyrite	3	Massive	Pyrite	3	Matrix
NLDD072	321.15	321.2	0.05	Chalcopyrite	2	Matrix			
NLDD072	321.2	322.05	0.85	Chalcopyrite	2	Matrix			
NLDD072	322.05	322.2	0.15	Chalcopyrite	35	Matrix	Pyrite	4	Matrix
NLDD072	322.9	323	0.1	Chalcopyrite	2	Matrix			
NLDD072	323.1	323.7	0.6	Chalcopyrite	15	Breccia Filled	Pyrite	4	Breccia Filled
NLDD072	326.6	326.8	0.2	Chalcopyrite	2	Matrix	Pyrite	2	Matrix
NLDD072	329.1	332.3	3.2	Chalcopyrite	2	Matrix	Pyrite	1	Matrix
NLDD072	333.15	333.7	0.55	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD072	333.7	336.4	2.7	Chalcopyrite	2	Matrix	Pyrite	1	Matrix
NLDD072	336.4	336.55	0.15	Chalcopyrite	3	Massive			
NLDD072	336.9	337.25	0.35	Chalcopyrite	1	Disseminated			
NLDD072	338.6	341.35	2.75	Chalcopyrite	1	Matrix			
NLDD072	342.75	343.75	1	Chalcopyrite	1	Matrix	Pyrite	1	Matrix
NLDD072	344.6	347.55	2.95	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated

NIL DESPERANDUM PROSPECT (CNB 82.5%, DCX 17.5%)

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
NLDD072	347.55	347.6	0.05	Chalcopyrite	3	Disseminated	Pyrite	15	Matrix
NLDD072	348.65	349.4	0.75	Chalcopyrite	1	Matrix	Pyrite	5	Matrix
NLDD072	349.4	351.2	1.8	Chalcopyrite	1	Blebby	Pyrite	2	Blebby
NLDD072	351.2	352.75	1.55	Chalcopyrite	2	Matrix	Pyrite	3	Matrix
NLDD072	352.75	353.6	0.85	Chalcopyrite	1	Matrix	Pyrite	2	Matrix
NLDD072	365.6	365.7	0.1	Chalcopyrite	5	Patchy			
NLDD072	368.9	370.5	1.6	Chalcopyrite	3	Disseminated	Pyrite	2	Disseminated
NLDD072	370.5	373.1	2.6	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD072	373.1	375.1	2	Chalcopyrite	5	Massive	Pyrite	1	Disseminated
NLDD072	375.1	378.4	3.3	Chalcopyrite	1	Matrix	Pyrite	1	Matrix
NLDD072	378.4	381.9	3.5	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
NLDD072	381.9	385	3.1	Chalcopyrite	1	Disseminated			
NLDD072	388.45	389.1	0.65	Chalcopyrite	2	Veined			
NLDD074	290.3	307	16.7	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	412.7	413	0.3	Chalcopyrite	20	Massive	Pyrite	2	Disseminated
NLDD074	413	413.3	0.3	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	413.3	413.4	0.1	Chalcopyrite	10	Patchy	Pyrite	3	Disseminated
NLDD074	413.4	413.7	0.3	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	413.7	413.98	0.28	Chalcopyrite	10	Disseminated	Pyrite	10	Disseminated
NLDD074	430.6	431.85	1.25	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	431.85	436.8	4.95	Chalcopyrite	3	Disseminated	Pyrite	1.5	Disseminated
NLDD074	438.2	447.1	8.9	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	447.1	447.3	0.2	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	467.4	468.2	0.8	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
NLDD074	470.5	470.9	0.4	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	470.9	476.15	5.25	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	478.6	483.45	4.85	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	483.45	483.75	0.3	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	502	502.15	0.15	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD074	514.45	514.75	0.3	Chalcopyrite	15	Massive	Pyrite	5	Massive
NLDD074	521.4	525.4	4	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD078	17	18	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
NLDD078	18	19	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
NLDD078	75	76	1	Chalcopyrite	1	Disseminated			
NLDD078	344.4	355	10.6	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD078	407.25	408.55	1.3	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
NLDD078	408.55	408.9	0.35	Chalcopyrite	15	Disseminated	Pyrite	10	Massive
NLDD078	408.9	410.1	1.2	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated
NLDD078	435.95	437.5	1.55	Chalcopyrite	1	Disseminated	Pyrite	5	Disseminated
NLDD078	468.9	469.3	0.4	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD078	481.5	482.4	0.9	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD078	482.4	484	1.6	Chalcopyrite	1	Selvage	Pyrite	1	Disseminated
NLDD078	484	498.3	14.3	Chalcopyrite	1	Disseminated	Pyrite	1	
NLDD078	498.3	498.4	0.1	Chalcopyrite	30	Massive	Pyrite	2	Disseminated
NLDD078	498.4	506.1	7.7	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
NLDD083	202.8	203.2	0.4	Chalcopyrite	3	Massive	Pyrite	1	Massive
NLDD083	241.2	243.5	2.3	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	243.5	252.3	8.8	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	252.3	254.4	2.1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	254.4	259.6	5.2	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	273.4	274.5	1.1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	274.5	277	2.5	Chalcopyrite	3	Massive	Pyrite	3	Massive
NLDD083	277	294.15	17.15	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	294.15	295.2	1.05	Chalcopyrite	1	Massive	Pyrite	1	
NLDD083	299.7	300.7	1	Chalcopyrite	1	Disseminated	Pyrite	3	Disseminated
NLDD083	300.7	303.5	2.8	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	303.5	306.8	3.3	Chalcopyrite	6	Massive	Pyrite	1	Disseminated
NLDD083	306.8	310.9	4.1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	310.9	314.9	4	Chalcopyrite	8	Disseminated	Pyrite	5	
NLDD083	314.9	319.2	4.3	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	319.2	324.3	5.1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD083	324.3	327	2.7	Chalcopyrite	10	Massive	Pyrite	3	Disseminated
NLDD083	327	328	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD085	248	249	1	Chalcopyrite	1	Disseminated			
NLDD085	249	250	1	Chalcopyrite	3	Disseminated			
NLDD085	259	260	1	Chalcopyrite	10	Matrix	Pyrite	5	Matrix
NLDD085	260	261	1	Chalcopyrite	4	Disseminated	Pyrite	2	Disseminated
NLDD085	268	270	2	Chalcopyrite	2	Disseminated			
NLDD085	270	271	1	Chalcopyrite	3	Disseminated	Pyrite	2	Disseminated
NLDD085	271	272	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated

LADY FANNY PROSPECT (CNB 100%)

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC051	26	29	3	Chalcopyrite	1	Disseminated			
LFRC051	29	30	1	Chalcopyrite	2	Disseminated			
LFRC051	45	46	1	Chalcopyrite	2	Disseminated			
LFRC051	46	47	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC051	67	68	1	Chalcopyrite	2	Stringer			
LFRC051	68	69	1	Chalcopyrite	1	Disseminated			
LFRC051	69	70	1	Chalcopyrite	2	Disseminated			
LFRC051	70	71	1	Chalcopyrite	3	Stringer			
LFRC051	74	75	1	Chalcopyrite	1	Stringer	Pyrite	2	Stringer
LFRC051	89	90	1	Chalcopyrite	2	Matrix	Pyrite	1	Matrix
LFRC051	99	100	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC051	100	101	1	Chalcopyrite	1	Disseminated	Pyrite	3	Disseminated
LFRC051	114	115	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC051	115	116	1	Chalcopyrite	2	Stringer	Pyrite	1	Disseminated
LFRC051	117	118	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC051	118	119	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC051	119	120	1	Chalcopyrite	2	Disseminated	Pyrite	5	Disseminated
LFRC051	120	121	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC051	121	122	1	Chalcopyrite	4	Disseminated	Pyrite	1	Disseminated
LFRC051	122	123	1	Chalcopyrite	2	Disseminated			
LFRC051	123	124	1	Chalcopyrite	1	Disseminated			
LFRC051	127	128	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC051	128	129	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC053	20	22	2	Chalcopyrite	1	Disseminated			
LFRC053	46	47	1	Chalcopyrite	15	Massive			
LFRC053	49	50	1	Chalcopyrite	1	Stringer			
LFRC053	55	56	1	Chalcopyrite	2	Stringer		<u>x</u> .	
LFRC053	58	60	2	Chalcopyrite	1	Disseminated			
LFRC053	60	61	1	Chalcopyrite	2	Disseminated	Pyrite	1	Stringer
LFRC053	61	62	1	Chalcopyrite	1	Disseminated	Pyrite	3	Disseminated
LFRC053	62	63	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC053	66	67	1	Chalcopyrite	2	Disseminated	Pyrite	4	Disseminated
LFRC053	67	68	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC053	68	69	1	Chalcopyrite	3	Stringer	Pyrite	1	Disseminated
LFRC053	72	73	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC053	75	76	1	Chalcopyrite	1	Disseminated	Pyrite	3	Disseminated
LFRC053	93	94	1	Chalcopyrite	4	Matrix	Pyrite	5	Disseminated
LFRC053	94	95	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC053	95	96	1	Chalcopyrite	3	Disseminated	Pyrite	2	Disseminated
LFRC053	96	97	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC053	97	98	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC053	98	99	1	Chalcopyrite	2	Disseminated	Pyrite	5	Disseminated
LFRC053	99	100	1	Chalcopyrite	1	Disseminated	Pyrite	3	Disseminated
LFRC053	100	101	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC053	101	102	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC053	102	103	1	Chalcopyrite	5	Matrix	Pyrite	10	Matrix
LFRC053	103	104	1	Chalcopyrite	4	Massive	Pyrite	1	Disseminated
LFRC053	105	106	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC053	121	122	1	Chalcopyrite	2	Matrix			
LFRC053	122	123	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC053	123	124	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC053	124	125	1	Chalcopyrite	2	Stringer	Pyrite	2	Disseminated
LFRC053	127	128	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC053	128	129	1	Chalcopyrite	1	Disseminated			
LFRC053	135	137	2	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC053	138	139	1	Chalcopyrite	2	Disseminated			
LFRC053	139	140	1	Chalcopyrite	1	Disseminated	Pyrite	4	Matrix
LFRC053	141	142	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC053	142	143	1	Chalcopyrite	2	Disseminated			
LFRC053	143	144	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC053	144	145	1	Chalcopyrite	1	Disseminated			

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC053	145	146	1	Chalcopyrite	2	Massive	Pyrite	1	Disseminated
LFRC053	146	147	1	Chalcopyrite	7	Massive	Pyrite	2	Disseminated
LFRC053	147	148	1	Chalcopyrite	5	Massive	Pyrite	1	Disseminated
LFRC053	149	150	1	Chalcopyrite	1	Stringer			
LFRC053	151	152	1	Chalcopyrite	1	Disseminated			
LFRC053	153	154	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC053	154	155	1	Chalcopyrite	2	Stringer	Pyrite	1	Disseminated
LFRC053	156	157	1	Chalcopyrite	1	Stringer	Pyrite	1	Disseminated
LFRC053	157	158	1	Chalcopyrite	2	Stringer	Pyrite	1	Disseminated
LFRC053	158	160	2	Chalcopyrite	1	Stringer	Pyrite	1	Stringer
LFRC053	160	161	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC053	161	162	1	Chalcopyrite	1	Disseminated			
LFRC053	162	163	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC053	163	166	3	Chalcopyrite	1	Disseminated			
LFRC053	170	171	1	Chalcopyrite	1	Stringer	Pyrite	2	Stringer
LFRC064	17	18	1	Chalcopyrite	1	Disseminated			
LFRC064	18	19	1	Chalcopyrite	4	Stringer			
LFRC064	22	23	1	Chalcopyrite	1	Disseminated			
LFRC064	23	25	2	Chalcopyrite	2	Disseminated			
LFRC064	25	26	1	Chalcopyrite	1	Disseminated			
LFRC064	26	27	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC064	27	28	1	Chalcopyrite	2	Disseminated			
LFRC064	28	29	1	Chalcopyrite	1	Disseminated			
LFRC064	38	39	1	Chalcopyrite	3	Stringer			
LFRC064	39	40	1	Chalcopyrite	3	Disseminated			
LFRC064	40	42	2	Chalcopyrite	1	Disseminated			
LFRC064	42	43	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC064	43	45	2	Chalcopyrite	1	Disseminated			
LFRC064	45	47	2	Chalcopyrite	2	Disseminated			
LFRC064	49	50	1	Chalcopyrite	3	Matrix	Pyrite	1	Disseminated
LFRC064	50	51	1	Chalcopyrite	4	Matrix	Pyrite	1	Disseminated
LFRC064	51	58	7	Chalcopyrite	1	Disseminated			
LFRC064	58	60	2	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC064	62	63	1	Chalcopyrite	1	Disseminated	Pyrite	2	Matrix
LFRC064	68	70	2	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC064	105	106	1	Chalcopyrite	1	Stringer	Pyrite	1	Disseminated
LFRC064	108	109	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC064	112	114	2	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC064	118	120	2	Chalcopyrite	1	Disseminated			
LFRC064	135	136	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC064	138	140	2	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC064	140	141	1	Chalcopyrite	2	Massive			
LFRC085	16	17	1	Chalcopyrite	1	Disseminated	Pyrite	5	Massive
LFRC085	17	18	1	Chalcopyrite	3	Massive	Pyrite	1	Disseminated
LFRC085	18	19	1	Chalcopyrite	1	Disseminated			

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC085	52	53	1	Chalcopyrite	1	Disseminated			
LFRC085	92	93	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC085	93	95	2	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC085	95	96	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC085	96	97	1	Chalcopyrite	1	Disseminated			
LFRC085	97	98	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC085	104	105	1	Chalcopyrite	2	Stringer	Pyrite	1	Stringer
LFRC085	105	106	1	Chalcopyrite	1	Disseminated			
LFRC085	106	107	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC085	107	108	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC088	43	46	3	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC088	46	47	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC088	47	48	1	Chalcopyrite	5	Massive	Pyrite	1	Disseminated
LFRC088	48	49	1	Chalcopyrite	10	Massive	Pyrite	3	Massive
LFRC088	49	50	1	Chalcopyrite	4	Disseminated	Pyrite	1	Disseminated
LFRC088	50	51	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC088	51	52	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC088	52	53	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC088	53	54	1	Chalcopyrite	1	Disseminated			
LFRC088	54	55	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC088	55	56	1	Chalcopyrite	3	Massive	Pyrite	1	Disseminated
LFRC088	57	58	1	Chalcopyrite	2	Disseminated			
LFRC088	60	62	2	Chalcopyrite	1	Disseminated			
LFRC088	64	65	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC088	65	66	1	Chalcopyrite	1	Disseminated			
LFRC088	68	69	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC088	72	73	1	Chalcopyrite	1	Disseminated			
LFRC088	73	74	1	Chalcopyrite	3	Stringer	Pyrite	1	Disseminated
LFRC088	74	75	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC088	75	76	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC088	81	82	1	Chalcopyrite	1	Disseminated			
LFRC088	82	83	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC088	84	85	1	Chalcopyrite	1	Disseminated			
LFRC088	85	87	2	Chalcopyrite	2	Disseminated			
LFRC088	87	88	1	Chalcopyrite	1	Disseminated			
LFRC088	91	92	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC088	92	93	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC088	109	110	1	Chalcopyrite	1	Disseminated	Pyrite	1	Stringer
LFRC090	38	39	1	Chalcopyrite	1	Disseminated			
LFRC090	44	45	1	Chalcopyrite	1	Disseminated			
LFRC090	46	47	1	Chalcopyrite	1	Disseminated			
LFRC090	70	71	1	Chalcopyrite	1	Disseminated	Pyrite	3	Stringer
LFRC090	76	77	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC090	77	78	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC090	106	107	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC090	110	111	1	Chalcopyrite	1	Disseminated			
LFRC090	111	112	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC090	112	113	1	Chalcopyrite	1	Matrix	Pyrite	2	Matrix
LFRC095	43	44	1	Chalcopyrite	1	Disseminated			
LFRC095	44	45	1	Chalcopyrite	3	Stringer	Pyrite	1	Disseminated
LFRC095	46	47	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC095	47	48	1	Chalcopyrite	1	Disseminated			
LFRC095	48	49	1	Chalcopyrite	1	Disseminated			
LFRC095	49	50	1	Chalcopyrite	3	Disseminated	Pyrite	2	Disseminated
LFRC095	51	52	1	Chalcopyrite	2	Matrix	Pyrite	1	Disseminated
LFRC095	52	53	1	Chalcopyrite	1	Disseminated		4	
LFRC095	57	58	1	Chalcopyrite	4	Disseminated	Pyrite	1	Disseminated
LFRC095	58	59	1	Chalcopyrite	5	Matrix	Pyrite	1	Disseminated
LFRC095	59	60	1	Chalcopyrite	2	Disseminated			
LFRC095	61	62	1	Chalcopyrite	1	Disseminated			
LFRC095	63	64	1	Chalcopyrite	3	Matrix			
LFRC095	64	65	1	Chalcopyrite	1	Disseminated			
LFRC095	65	67	2	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC095	67	68	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC095	68	70	2	Chalcopyrite	1	Disseminated			
LFRC095	70	71	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC095	71	72	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC095	78	79	1	Chalcopyrite	5	Matrix	Pyrite	5	Matrix
LFRC095	79	80	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC095	86	89	3	Chalcopyrite	1	Disseminated			
LFRC095	89	90	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC095	92	93	1	Chalcopyrite	1	Disseminated			
LFRC095	93	94	1	Chalcopyrite	3	Matrix	Pyrite	1	Disseminated
LFRC095	94	95	1	Chalcopyrite	15	Matrix	Pyrite	3	Matrix
LFRC095	95	96	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC095	96	97	1	Chalcopyrite	10	Matrix	Pyrite	2	Matrix
LFRC095	97	98	1	Chalcopyrite	12	Matrix	Pyrite	2	Matrix
LFRC095	98	99	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC095	99	100	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC095	102	103	1	Chalcopyrite	2	Massive	Pyrite	1	Disseminated
LFRC095	104	105	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC095	105	106	1	Chalcopyrite	1	Disseminated	Pyrite	4	Disseminated
LFRC095	109	110	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC095	111	112	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC095	112	113	1	Chalcopyrite	10	Matrix	Pyrite	2	Matrix
LFRC095	113	114	1	Chalcopyrite	5	Matrix	Pyrite	1	Matrix
LFRC095	114	115	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC095	115	116	1	Chalcopyrite	1	Disseminated			
LFRC099	6	7	1	Chalcopyrite	2	Disseminated			
LFRC099	7	8	1	Chalcopyrite	1	Disseminated			

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC099	24	25	1	Chalcopyrite	3	Breccia Filled	Pyrite	8	Massive
LFRC099	25	26	1	Chalcopyrite	3	Breccia Filled	Pyrite	2	Breccia Filled
LFRC099	26	27	1	Chalcopyrite	2	Breccia Filled	Pyrite	1	Breccia Filled
LFRC099	27	28	1	Chalcopyrite	1	Breccia Filled	Pyrite	1	Breccia Filled
LFRC099	28	29	1	Chalcopyrite	1	Breccia Filled	Pyrite	1	Breccia Filled
LFRC099	29	30	1	Chalcopyrite	1	Patchy			
LFRC099	30	31	1	Chalcopyrite	1	Disseminated			
LFRC099	36	37	1	Chalcopyrite	1	Breccia Filled	Pyrite	1	Disseminated
LFRC099	55	56	1	Chalcopyrite	1	Patchy	Pyrite	1	Disseminated
LFRC099	56	57	1	Chalcopyrite	1	Patchy			
LFRC099	57	58	1	Chalcopyrite	1	Patchy		4	
LFRC109	22	23	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC109	23	26	3	Chalcopyrite	1	Disseminated			
LFRC109	26	27	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC109	27	28	1	Chalcopyrite	2	Stringer	Pyrite	2	Stringer
LFRC109	36	39	3	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC109	41	42	1	Chalcopyrite	1	Stringer	Pyrite	1	Disseminated
LFRC109	44	45	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC109	50	51	1	Chalcopyrite	1	Matrix	Pyrite	1	Disseminated
LFRC109	63	64	1	Chalcopyrite	1	Stringer	Pyrite	1	Disseminated
LFRC109	67	68	1	Chalcopyrite	2	Stringer	Pyrite	1	Disseminated
LFRC109	68	69	1	Chalcopyrite	2	Stringer	Pyrite	2	Disseminated
LFRC109	72	73	1	Chalcopyrite	1	Disseminated			
LFRC109	77	78	1	Chalcopyrite	2	Matrix			
LFRC109	80	83	3	Chalcopyrite	1	Disseminated			
LFRC109	83	84	1	Chalcopyrite	2	Massive			
LFRC109	85	86	1	Chalcopyrite	1	Massive			
LFRC109	86	89	3	Chalcopyrite	1	Disseminated			
LFRC109	89	90	1	Chalcopyrite	2	Stringer			
LFRC109	90	91	1	Chalcopyrite	1	Disseminated			
LFRC109	91	92	1	Chalcopyrite	5	Matrix		1	
LFRC109	92	93	1	Chalcopyrite	4	Matrix	Pyrite	1	Disseminated
LFRC109	93	94	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC109	94	95	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC109	95	96	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC109	97	98	1	Chalcopyrite	2	Stringer	Pyrite	1	Disseminated
LFRC109	98	99	1	Chalcopyrite	1	Disseminated			
LFRC109	99	102	3	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC109	103	104	1	Chalcopyrite	1	Disseminated			
LFRC109	104	105	1	Chalcopyrite	2	Stringer	Pyrite	1	Disseminated
LFRC109	109	110	1	Chalcopyrite	1	Stringer	Pyrite	1	Stringer
LFRC109	111	112	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC109	112	113	1	Chalcopyrite	4	Massive	Pyrite	1	Disseminated
LFRC109	115	116	1	Chalcopyrite	2	Disseminated			
LFRC109	116	117	1	Chalcopyrite	1	Disseminated			

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC109	148	150	2	Chalcopyrite	1	Disseminated			
LFRC109	150	151	1	Chalcopyrite	2	Massive			
LFRC120	26	27	1	Chalcopyrite	1	Disseminated			
LFRC120	27	28	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC120	28	29	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC120	29	30	1	Chalcopyrite	1	Disseminated			
LFRC120	31	33	2	Chalcopyrite	1	Disseminated			
LFRC120	36	37	1	Chalcopyrite	1	Disseminated			
LFRC120	43	44	1	Chalcopyrite	2	Disseminated	Pyrite	5	Disseminated
LFRC120	44	45	1	Chalcopyrite	2	Disseminated	Pyrite	3	Disseminated
LFRC120	49	50	1	Chalcopyrite	2	Disseminated		<u>.</u>	
LFRC120	50	51	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC120	51	52	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC120	53	54	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC120	54	55	1	Chalcopyrite	2	Stringer			
LFRC120	55	57	2	Chalcopyrite	1	Disseminated			
LFRC120	61	63	2	Chalcopyrite	1	Disseminated			
LFRC120	63	64	1	Chalcopyrite	5	Disseminated			
LFRC120	65	66	1	Chalcopyrite	15	Massive			
LFRC120	66	67	1	Chalcopyrite	20	Massive			
LFRC120	67	68	1	Chalcopyrite	5	Massive			
LFRC120	68	70	2	Chalcopyrite	7	Massive			
LFRC120	71	72	1	Chalcopyrite	5	Disseminated			
LFRC120	72	73	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC120	73	74	1	Chalcopyrite	1	Massive			
LFRC120	74	75	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC120	75	76	1	Chalcopyrite	2	Disseminated			
LFRC120	76	77	1	Chalcopyrite	4	Disseminated	Pyrite	1	Disseminated
LFRC120	77	78	1	Chalcopyrite	5	Massive			
LFRC120	80	82	2	Chalcopyrite	10	Massive	Pyrite	5	Massive
LFRC120	82	83	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC120	83	84	1	Chalcopyrite	3	Massive	Pyrite	1	Stringer
LFRC120	84	85	1	Chalcopyrite	6	Disseminated	Pyrite	2	Disseminated
LFRC120	85	86	1	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated
LFRC120	86	87	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC120	87	88	1	Chalcopyrite	3	Disseminated	Pyrite	10	Massive
LFRC120	88	89	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC120	89	90	1	Chalcopyrite	4	Matrix	Pyrite	2	Disseminated
LFRC120	90	91	1	Chalcopyrite	1	Disseminated			
LFRC120	92	93	1	Chalcopyrite	1	Disseminated	Pyrite	3	Disseminated
LFRC120	93	94	1	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated
LFRC120	94	95	1	Chalcopyrite	5	Disseminated	Pyrite	2	Disseminated
LFRC120	95	97	2	Chalcopyrite	3	Disseminated			
LFRC120	97	98	1	Chalcopyrite	4	Disseminated	Pyrite	2	Disseminated
LFRC120	98	99	1	Chalcopyrite	5	Matrix	Pyrite	5	Massive

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC120	99	100	1	Chalcopyrite	5	Matrix	Pyrite	3	Disseminated
LFRC120	100	101	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC120	101	102	1	Chalcopyrite	3	Disseminated	Pyrite	2	Disseminated
LFRC120	102	103	1	Chalcopyrite	3	Disseminated			
LFRC120	103	104	1	Chalcopyrite	2	Disseminated			
LFRC120	104	105	1	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated
LFRC120	105	106	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
LFRC120	106	107	1	Chalcopyrite	1	Disseminated			
LFRC120	107	108	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC120	116	117	1	Chalcopyrite	1	Disseminated			
LFRC120	119	120	1	Chalcopyrite	1	Disseminated		4	
LFRC120	127	128	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC120	169	170	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC121	29	30	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC121	33	34	1	Chalcopyrite	1	Disseminated			
LFRC121	35	36	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC121	36	37	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC121	37	38	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC121	40	41	1	Chalcopyrite	2	Disseminated	Pyrite	5	Disseminated
LFRC121	41	42	1	Chalcopyrite	2	Disseminated	Pyrite	1	Stringer
LFRC121	42	43	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC121	43	44	1	Chalcopyrite	1	Disseminated			
LFRC121	44	45	1	Chalcopyrite	1	Stringer	Pyrite	2	Stringer
LFRC121	52	55	3	Chalcopyrite	1	Disseminated			
LFRC121	56	57	1	Chalcopyrite	2	Disseminated			
LFRC121	59	60	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC121	60	61	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC121	61	62	1	Chalcopyrite	1	Disseminated			
LFRC121	63	64	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC121	64	65	1	Chalcopyrite	2	Matrix			
LFRC121	68	69	1	Chalcopyrite	1	Disseminated	Pyrite	3	Matrix
LFRC121	69	70	1	Chalcopyrite	4	Massive	Pyrite	1	Disseminated
LFRC121	70	71	1	Chalcopyrite	1	Disseminated			
LFRC121	71	72	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC121	72	73	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC121	87	88	1	Chalcopyrite	2	Matrix			
LFRC121	88	90	2	Chalcopyrite	1	Disseminated	Pyrite	3	Disseminated
LFRC121	90	91	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC121	96	97	1	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated
LFRC121	97	98	1	Chalcopyrite	4	Matrix	Pyrite	1	Disseminated
LFRC121	99	100	1	Chalcopyrite	1	Disseminated			
LFRC121	122	123	1	Chalcopyrite	1.5	Disseminated			
LFRC121	123	124	1	Chalcopyrite	2	Disseminated			
LFRC121	124	127	3	Chalcopyrite	1	Disseminated			
LFRC121	127	130	3	Chalcopyrite	1	Disseminated			

Hole ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC121	130	131	1	Chalcopyrite	1	Disseminated			
LFRC121	131	132	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC121	135	136	1	Chalcopyrite	1	Disseminated			
LFRC121	136	137	1	Chalcopyrite	2	Matrix	Pyrite	1	Matrix
LFRC121	137	138	1	Chalcopyrite	2	Matrix	Pyrite	3	Matrix
LFRC121	138	139	1	Chalcopyrite	5	Disseminated	Pyrite	1	Disseminated
LFRC121	140	141	1	Chalcopyrite	1	Disseminated			
LFRC121	142	143	1	Chalcopyrite	1	Stringer			
LFRC121	143	144	1	Chalcopyrite	5	Matrix	Pyrite	1	Disseminated
LFRC121	144	145	1	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated
LFRC121	145	146	1	Chalcopyrite	1	Disseminated	Pyrite	1	Massive
LFRC121	146	147	1	Chalcopyrite	3	Disseminated	Pyrite	2	Disseminated
LFRC121	147	148	1	Chalcopyrite	3	Disseminated	Pyrite	3	Matrix
LFRC121	148	149	1	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
LFRC121	150	151	1	Chalcopyrite	4	Disseminated	Pyrite	2	Disseminated
BWRC010	46	47	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
BWRC010	47	48	1	Chalcopyrite	5	Disseminated	Pyrite	2	Disseminated
BWRC010	48	49	1	Chalcopyrite	10	Matrix	Pyrite	2	Disseminated
BWRC010	49	50	1	Chalcopyrite	15	Matrix	Pyrite	3	Matrix
BWRC010	50	51	1	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
BWRC010	51	52	1	Chalcopyrite	4	Disseminated			
BWRC010	52	53	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
BWRC010	56	57	1	Chalcopyrite	1	Disseminated			

APPENDIX TWO

JORC Code, 2012 Edition | 'Table 1' Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 Visually estimated sulphide abundance are presented in Appendix 1. The RC drill chips were logged and visual abundances estimated by suitably qualified and experienced geologist. Some check portable XRF readings have been taken from selected drill samples. Sampling from diamond core was from selected geological intervals of varying length, mostly 1m within the mineralisation. Core was half core sampled within the mineralised zones and quarter core sampled over 2m intervals in the non-mineralised intervals. Recent RC samples were collected via a cone splitter mounted below the cyclone. A 2-3kg sample was collected from each 1m interval.

Criteria	JORC Code explanation	Commentary
	 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All recent RC holes were completed using a 5.5" face sampling bit. Diamond drilling was completed using NQ sized core after reentering a 300m deep RC pre-collar.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For recent RC drilling, no significant recovery issues for samples were observed. Drill chips collected in chip trays are considered a reasonable visual representation of the entire sample interval. No significant core loss was observed from the recent diamond holes.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC holes have been logged for lithology, weathering, mineralisation, veining, structure and alteration. Diamond core holes logged for lithology, weathering, mineralisation, veining, structure, alteration and RQD. Holes less than 85 degrees dip were orientated and measurements of the structures and mineralisation taken. All chips have been stored in chip trays on 1m intervals and logged in the field.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All RC samples are cone split at the cyclone to create a 1m sample of 2-3kg. The remaining sample is retained in a plastic bag at the drill site. For mineralised zones, the 1m cone split sample is taken for analysis. For non-mineralised zones a 5m composite spear sample is collected and the individual 1m cone split samples over the same interval retained for later analysis if positive results are returned. Core samples are half sawn on one side of the orientation line and core consistently samples on one side. Mineralised core is generally sampled on 1m or less intervals. Where sampled, non-mineralised core is quarter cut and sampled on 2m intervals.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis 	 Company inserted blanks are inserted as the first sample for every hole. A company inserted gold standard and a copper standard are inserted every 50th sample. No standard identification numbers are provided to the lab. Standards are checked against expected values to ensure they are within tolerance. No issues have been identified.

Criteria	JORC Code explanation	Commentary
	 including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historic production data has been collated from government open file reports. A Maxgeo SQL database is currently used in house for all historic and new records. Recent results have been reported directly from lab reports and sample sheets collated in excel. Results reported below the detection limit have been stored in the database at half the detection limit – eg <0.001ppm stored as 0.0005ppm
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All hole locations were obtained using a Trimble SP60 GPS in UTM MGA94. Current RC and diamond holes were downhole surveyed by Reflex True North seeking gyro. IP locations were obtained using a Garmin GPS in UTM MGA94 mode
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Further extensional and infill drilling is required to confirm the orientation and true width of the copper mineralisation intersected. Most IP lines are at right-angles to the main mineralisation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Most IP lines and drilling are at right-angles to the main mineralisation. All holes were considered to intersect the mineralisation at a reasonable angle.
Sample security	The measures taken to ensure sample security.	 Recent RC drilling has had all samples immediately taken following drilling and submitted for assay by supervising Carnaby geology personnel.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	Not conducted

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section).

Criteria	Explanation	Commentary
Mineral tenement and	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, 	 The Lady Fanny Prospect area encompassed by historical expired mining leases have been amalgamated into EPM14366 and is 100% owned by Carnaby.

Criteria	Explanation	Commentary
land tenure status	 partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration 	 The Nil Desperandum Prospect is located on EPM14366 (82.5% interest acquired from Discovex). Discovex retain a 17.5% free carried interest in the project through to a Decision To Mine. At a Decision to Mine, Carnaby has the first right of refusal to acquire the remaining interest for fair market value. There has been exploration work conducted over the
Acknowledgment and appraisal of exploration by other parties.	by other parties.	Queensland project regions for over a century by previous explorers. The project comes with significant geoscientific information which covers the tenements and general region, including: a compiled database of 6658 drill hole (exploration and near-mine), 60,300 drilling assays and over 50,000 soils and stream sediment geochemistry results. This previous exploration work is understood to have been undertaken to an industry accepted standard and will be assessed in further detail as the projects are developed.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Nil Desperandum and Lady Fanny prospects are located in the Mary Kathleen domain of the eastern Fold Belt, Mount Isa Inlier. The Eastern Fold Belt is well known for copper, gold and copper-gold deposits; generally considered variants of IOCG deposits. The region hosts several long-lived mines and numerous historical workings. Deposits are structurally controlled, forming proximal to district-scale structures which are observable in mapped geology and geophysical images. Local controls on the distribution of mineralisation at the prospect scale can be more variable and is understood to be dependent on lithological domains present at the local-scale, and orientation with respect to structures and the stress-field during D3/D4 deformation, associated with mineralisation. Consolidation of the ground position around the mining centres of Tick Hill and Duchess and planned structural geology analysis enables Carnaby to effectively explore the area for gold and copper-gold deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	• Included in report Refer to Appendix 1, Table 1.
	 o dip and azimuth of the hole o down hole length and interception 	
	depth	
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	 Visual estimates given in Appendix 1, Table 2 represent the intervals as sampled and to be assayed.

Criteria	Explanation	Commentary
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All intervals are reported are downhole widths as true widths. At Nil Desperandum the intersection angle of the vertical drilling to the breccia shoot results in true widths being approximately 70% of the downhole width of intercepts reported. This is consistent with the geological interpretation and has been observed in multiple diamond core holes through the mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• See the body of the announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Visual estimates of copper sulphides by individual meters are presented in Appendix 1, Table 2
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	As discussed in the announcement
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Planned exploration works are detailed in the announcement.