

# CAE Provides additional information on the massive Copper Hit from Hole 9

Cannindah Resources Limited ("Cannindah", "CAE") is pleased to provide the following additional information in relation to its ASX announcement of 4 April 2022 on the assay results for CAE hole # 9.

#### Increase to mineralised zone from 160m

A further review of the data from the report issued on 4 April 2022 identified one change to the table 1 results which increase the copper intercept from 160m reported as being 102m to 107m from 160m @ 1.23%Cu, 0.28g/t Au, 22.0g/t Ag.

#### **Copper Equivalent (CuEq) Calculation**

CAE advises that the CuEq measures used in the report were calculated using the following formula:

CuEq% = ((Cu(%) \* Cu price per 1% per tonne \* Cu Recovery) + (Au(g/t) \* Au price per ppm Au \* Au Recovery) + (Ag(g/t) \* Ag price ppm Ag\* Ag Recovery)) / (Cu price per 1% per tonne \* Cu Recovery).

Grades for Cu, Au and AG used in each CuEq calculation in the report and the resultant CuEq measure are set out in "Table 1. Assay Highlights Drillhole 22CAEDD009" in the report. Metal prices were calculated using 30day average prices in USD for Q4,2021, i.e. copper -USD\$9,250/tonne, gold - USD\$1,750/oz and silver -USD\$23/oz. Average Metallurgical Recoveries were determined using previous preliminary metallurgical test work, geological observations and geochemical work analysed and interpreted by geologists Terra Search. This work established a high correlation between Cu, Au and Ag recovery rates resulting in a conservative recovery rate of 80% being applied for each of Cu, Au and Ag. In the Company's opinion all elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

A copy of the amended report including the above information is attached.

For further information, please contact:

Tom Pickett Executive Chairman Ph: 61 7 5557 8791



Update 5 April, 2022 ASX Code: CAE

# Mt Cannindah delivers another massive copper hit from surface with hole 9 providing 400m @ 0.91% Cu Eq along with a significant gold zone of 14m @ 1.65g/tAu from 287m

# HIGHLIGHTS

- Hole 9 set out to extend the mineralisation at Mt Cannindah to the north and at depth, drilling for blind, copper bearing breccia. It has done exactly that, as well as outline many other positive outcomes geologically for the Mt Cannindah project.
- The high grade copper zones in hole 9 are skirting the northern boundary of the previously interpreted mineralised envelope and as such largely haven't been included in the ore blocks used in any resource calculation to date. The zones project down plunge in a direction well outside this envelope.
- From 58m there is **341m of 1.03%CuEq<sup>1</sup>** (0.75% Cu, 0.26g/t Au, 14.6g/t Ag).
- Long intervals of spectacular infill breccia, containing high grade copper are present down to a depth of 400m.
- Copper with associated gold and silver mineralisation is intermittently developed in the rest of the hole from 400m to 877.6m. As a guage to the extent of mineralisation present, the entire hole would aggregate to 877.6m at 0.48%CuEq.
- Previous interpretations have suggested that brecciation of the diorite was not conducive to high grade mineralisation compared to the splintery, flinty attributes of the hornfels. Hole 9 shows abundant evidence that diorite breccia can indeed contain high grade copper at Mt Cannindah (see photos below for examples).
- Hole 9 is the longest hole ever drilled at the Mt Cannindah project

Executive Chairman Tom Pickett commented "To once again have a massive copper hit from near surface at Mt Cannindah is a testament to the hard work our team has put into the planning of this drilling program. Hole 9 extends mineralisation to the north and shows that there is far more copper than previously recognised in the system. Having more good hits outside the previous resource block model calculation is exactly what we were after. We look forward to exploration heading south and to the east after more investigation in this northern zone has been concluded."

<sup>&</sup>lt;sup>1</sup> The Copper Equivalent (CuEq) measures used in this report were calculated using the following formula:

CuEq% = ((Cu(%) \* Cu price per 1% per tonne \* Cu Recovery) + (Au(g/t) \* Au price per ppm Au \* Au Recovery) + (Ag(g/t) \* Ag price ppm Ag\* Ag Recovery)) / (Cu price per 1% per tonne \* Cu Recovery)

Grades for Cu, Au and AG used in each CuEQ calculation in the report and the resultant CuEq measure are set out in "Table 1. Assay Highlights Drillhole 22CAEDD009" in the report. Metal prices were calculated using 30 day average prices in USD for Q4,2021, i.e. copper -USD\$9,250/tonne, gold - USD\$1,750/oz and silver - USD\$23/oz. Average Metallurgical Recoveries were determined using previous preliminary metallurgical test work, geological observations and geochemical work analysed and interpreted by geologists Terra Search. This work established a high correlation between Cu, Au and Ag recovery rates resulting in a conservative recovery rate of 80% being applied for each of Cu, Au and Ag. In the Company's opinion all elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.





ASX Code: CAE

# TECHNICAL DETAILS & RESULTS OF CAE HOLE 9 AT MT CANNINDAH

Cannindah Resources Limited ("Cannindah", "CAE") is pleased to announce the next set of completed assay results from the drilling program currently underway at the Mt Cannindah copper gold silver project south of Gladstone near Monto in central Queensland (Figs 1 to 2) pertaining to full results for holes 22CAEDD009 ("CAE hole 9", "CAE # 9").

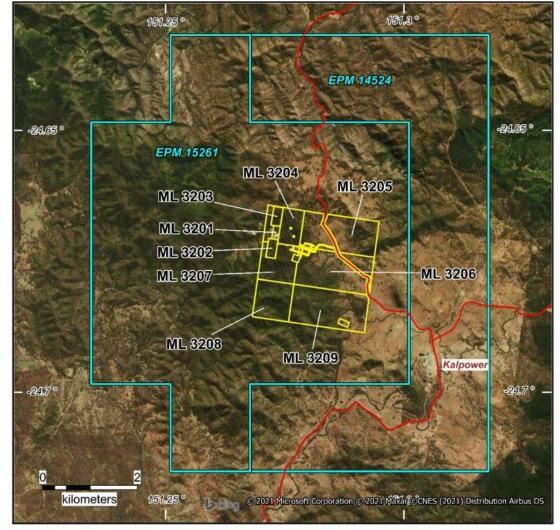
**CAE hole #9** was designed to explore the northern end of the Mt Cannindah deposit for high grade copper bearing breccia, where previous interpretations suggested it terminated by disappearing under weakly mineralised diorite. The high grade target is essentially blind in this area with interesting but scattered and discontinuous copper intercepts present in previous drilling. In contrast to historic drilling in this section of the deposit, CAE #9 was drilled from east to west. The plan was to replicate the exploration success of CAE holes # 2, 3, 7 and 8 which were drilled in a similar contrary fashion, all encountering long intercepts of high grade copper, gold, silver mineralisation. These holes drill down the long axis, but demonstrably across the layering of the breccia body (refer CAE ASX Announcements 19<sup>th</sup> October 2021, 9<sup>th</sup> November 2021, 25<sup>th</sup> January 2022 and 22<sup>nd</sup> February 2022. )

**CAE hole # 9**, was collared in gossanous veined diorite which contains variable but low grade gold and silver mineralisation in oxidised sections (to 14m). Low grade copper mineralisation occurs in sulphide veined, chloritic diorite until 61m. At this point, there is is a sharp contact with strongly sericitic and argillic altered, bleached, diorite dominated breccia, containing abundant pyrite and chalcopyrite. Long intervals of spectacular infill breccia, containing high grade copper are present down to 399m. Significant Copper Zones within the hydrothermal infill breccia include

- **39m @ 1.48% CuEq** from 61m (1.08% Cu, 0.32 g/t Au, 25.6 g/t Ag)
- **107m @ 1.58% CuEq** from 160m (1.23% Cu, 0.28 g/t Au, 22.0g/t Ag)
- 64m @ 1.02% CuEq from 335m (0.81% Cu, 0.21 g/t Au, 11.0g/t Ag).
- A significant gold zone occurs below the high grade copper :
- 14m @ 1.65 g/t Au from 287m (0.32% Cu, 22.0g/t Ag, 1.5% CuEq)

Assay intervals are summarised in Table 1.

The major rock type below 400m is clast supported breccia. This breccia is polymict in nature, with dominant clasts of hornfels, altered porphyry and diorite. Intervals containing abundant pyrite infill between the clasts are common throughout the lower part of hole # 9. The clast supported breccia is cut by highly argillic and sericitic altered diorite porphyry dykes and fragmental intrusive breccias referred to as "tuffisite" presenting as cross-cutting dykes and possible layer conformable sills. Some thin post-mineral andesite dykes cut the breccia.


Copper mineralisation with associated gold and silver, is intermittently developed in hydrothermal infill breccia, all the way down from 400m to the end of hole # 9 at 877.6m. Although mostly of moderate tenor, an indication of the extent of mineralisation can be gauged by aggregating all the mineralistion over the length of hole 9 which returns **877.6m at 0.48% CuEq**. The mineralised sulphidic nature of this hole is evident from base of oxidation (14m) to



Update 5 April, 2022

ASX Code: CAE

the end of hole which returns **860m @ 2.8% sulphur**, which manifests throughout most of the length of the hole as 2% to 10% pyrite and in the copper rich sections 1% to 5% chalcopyrite.



Tenure

EPM 14524 • 9 sub-blocks • ~ 28 sq km EPM 15261 • 14 sub-blocks • ~ 43.5 sq km

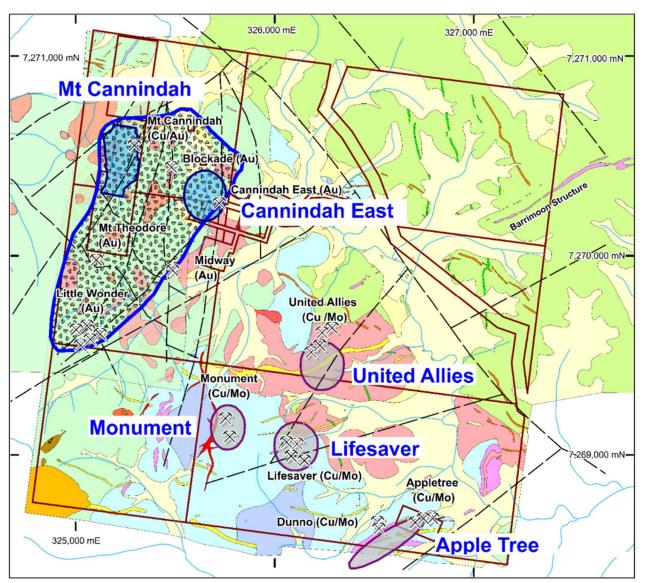
MLs 3201-3209 (contiguous) • ~ 5.7 sq km

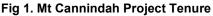

Total of 71.5 sq km of Exploration Permits & 5.7 sq km of Mining Leases

OWNERSHIP The Mt Cannindah Project is 100% owned by Cannindah Resources Limited

## Mt Cannindah Projects

Mt Cannindah Mining Pty Ltd wholly owned subsidiary of






Update 5 April, 2022

ASX Code: CAE





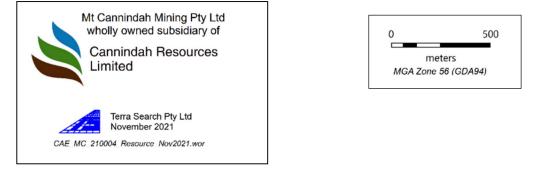



Fig 2. Mt Cannindah project Location of identified resources , known targets .



Update 5 April, 2022

ASX Code: CAE

# Table 1. Assay Highlights Drillhole 22CAEDD009

| Down Hole Mineralized Zones Hole                                               |      | T   |       | CuEq | Cu   | Au                | Ag    | <b>C 0</b> / |
|--------------------------------------------------------------------------------|------|-----|-------|------|------|-------------------|-------|--------------|
| 22CAEDD009                                                                     | From | То  | m     | %    | %    | g/t               | g/t   | S %          |
| Aggregate Interval from Surface                                                | 0    | 399 | 399   | 0.91 | 0.65 | 0.24              | 12.8  | 3.47         |
| Top of Hole Oxidised and Transition                                            |      |     |       |      |      |                   |       |              |
| Zone                                                                           |      |     |       |      |      |                   |       |              |
| Oxidised Gossanous Veined Diorite                                              | 0    | 13  | 13    | 0.14 | 0.11 | 0.04              | 0.9   | 0.15         |
| Supergene and Transition Copper                                                | 13   | 25  | 17    | 0.00 | 0.25 | 0.57              |       | 1.70         |
| zone within Diorite                                                            | 13   | 25  | 12    | 0.66 | 0.25 | 0.57              | 8.0   | 1.76         |
| Includes Au-Ag Zone                                                            | 15   | 21  | 6     | 1.08 | 0.36 | 1.00              | 14.1  | 2.34         |
| Primary Zone Chalcopyrite-pyrite                                               |      |     |       |      |      |                   |       |              |
| Aggregate interval:Primary High<br>Grade sulphidic                             | 58   | 399 | 341   | 1.03 | 0.75 | 0.26              | 14.6  | 3.85         |
| Primary Hydrothermal Infill Breccia                                            |      |     | • • • |      |      | 0.20              | 2.110 | 0.00         |
| (high Cu,Ag) Zone 1: diorite                                                   |      |     |       |      |      |                   |       |              |
| dominant, strong sulphide                                                      | 61   | 100 | 39    | 1.48 | 1.08 | 0.32              | 25.6  | 5.91         |
| Primary Hydrothermal Infill Breccia                                            | l    |     |       |      |      |                   |       |              |
| (mod Cu, mod pyrite) Zone 2 :                                                  | 112  | 144 | 32    | 0.66 | 0.49 | 0.14              | 9.7   | 2.88         |
| Primary Hydrothermal Infill Breccia<br>(high Cu,Ag) Zone 3 : diorite           |      |     |       |      |      |                   |       |              |
| dominant, strong sulphide                                                      | 160  | 267 | 107   | 1.58 | 1.23 | 0.28              | 22.0  | 4.37         |
| Primary Hydrothermal Infill Breccia                                            | 100  | 207 | 107   | 1.50 | 1.25 | 0.20              | 22.0  | 4.57         |
| (good Au) Zone 4 : diorite dominant,                                           |      |     |       |      |      |                   |       |              |
| strong sulphide                                                                | 287  | 301 | 14    | 1.5  | 0.32 | 1.65              | 22.0  | 4.64         |
| Primary Hydrothermal Infill Breccia                                            |      |     |       |      |      |                   |       |              |
| (good Cu, mod Au,Ag) Zone 5 :                                                  |      |     | ~ ~   |      | 0.04 |                   |       |              |
| diorite dominant, good sulphide                                                | 335  | 399 | 64    | 1.02 | 0.81 | 0.21              | 11.0  | 3.74         |
| Lower Clast supported, chlorite infill<br>Breccia (low Cu), hornfels dominant, |      |     |       |      |      |                   |       |              |
| low sulphide                                                                   | 461  | 539 | 78    |      | 0.12 |                   |       | 1.00         |
| includes                                                                       | 470  | 476 | 6     |      | 0.24 |                   |       | 1.75         |
| includes                                                                       | 488  | 500 | 12    |      | 0.20 |                   |       | 1.08         |
| Lower Hydrothermal pyritic breccia                                             |      |     |       |      |      |                   |       |              |
| (mod Cu), polymict clasts, altered                                             |      |     |       |      |      |                   |       |              |
| diorite porphyry & tuffisite dykes,                                            | 628  | 692 | 64    | 0.3  | 0.20 | 0.1               | 4.8   | 4.36         |
| includes                                                                       | 629  | 630 | 1     | 1.96 | 1.60 | 0.29              | 23.1  | 7.97         |
| includes                                                                       | 628  | 652 | 24    | 0.48 | 0.37 | <mark>0.08</mark> | 7.08  | 4.20         |
| includes                                                                       | 667  | 679 | 12    | 0.29 | 0.16 | 0.14              | 5.7   | 3.88         |
| includes                                                                       | 688  | 689 | 1     | 1.46 | 0.30 | 2.3               | 3.6   | 7.93         |
| Clast supported pyritic breccia (low                                           |      |     |       |      |      |                   |       |              |
| Cu), polymict clasts, hornfels with                                            |      |     |       |      |      |                   |       |              |
| common tuffisite dykes,                                                        | 715  | 781 | 66    |      | 0.11 |                   |       | 3.55         |
| includes                                                                       | 759  | 776 | 17    |      | 0.22 |                   |       | 5.22         |
| Hydrothermal breccia (good Cu),                                                |      |     |       |      |      |                   |       |              |
| phornfels dominant, strongy pyritic.                                           | 815  | 817 | 2     | 0.62 | 0.48 | 0.12              | 8.5   | 3.5          |
| includes                                                                       | 815  | 816 | 1     | 1.04 | 0.82 | 0.19              | 14    | 4.7          |
| Fault Crush Zone                                                               | 829  | 830 | 1     |      | 0.22 |                   |       | 1.24         |



Update 5 April, 2022

ASX Code: CAE

Significant intersections below 400m occur at

- 461m to 539m: 78m @ 0.15% CuEq (0.12 Cu%) which includes 470m to 476m : 6m @ 0.29% CuEq (0.24 Cu%)
- 628m to 652m: 24m @ 0.48% CuEq (0.37 Cu%)
- 667m to 679m: 12m @ 0.29% CuEq (0.16 Cu%)
- 688m to 689m: 1m @ 2.3 g/t Au
- 715m to 781m: 66m @ 0.16% CuEq (0.11 Cu%) which includes 719m to 721m: 2m @ 0.34% CuEq (0.26 Cu%) and also includes 759m to 776m: 17m @ 0.30% CuEq (0.27 Cu%)
- 815m to 817m: 2m @ 0.62% CuEq (0.48 Cu%)
- 829m to 830m: 1m @ 0.26% CuEq (0.22Cu%)

CAE hole # 9 ended at 877.6m in pyritic altered diorite which assays 0.14 g/t Au .

Fig 3 is a plan view showing CAE hole # 9 in relation to the 2021 and 2022 CAE holes in the Mt Cannindah breccia area, plotted with Cu assays. The location of CAE holes in plan & section view in relation to historic holes is presented in Appendix 2. Fig 4 is a plot of down hole Cu assays for the entitre hole. Au, Ag plots are presented in Appendix 2. Plots of the top 500m of hole # 9 are presented in Fig 5 as histograms of Cu alongside visual estimates of chalcopyrite content and in Fig 6 as Au against Ag. Histogram plots of the entire hole are presented in Appendix 2, respectively as Cu and chalcopyrite, and Au and pyrite.

Drilling of oriented diamond core from CAE hole #9 has allowed for the development of new preliminary geological interpretations of the northern section of the Mt Cannindah breccia deposit. These interpretations complement those presented for the central area of the Mt Canindah breccia in the ASX announcement 22<sup>nd</sup> February 2022. In the southern part of the deposit we have a steeply west plunging, roughly north south oriented, tabular body of breccia, bounded on the east by hornfels and on the west by diorite and wedges of hornfels. Fig 7 is a simplified, preliminary interpretive cross section through hole # 9. On this section, a familiar mineralised breccia geometry is developed with a steep westerly plunge, wedged at the top of the breccia between hornfels to the east and diorite to the west.

Differences are evident at the northern section, the breccia here does not outcrop and is effectively blind, obscured from the surface to 60m by a thick section of weakly mineralised diorite. The hydrothermal infill breccia itself is dominated by clasts of diorite. Both observations highlight the great exploration success of CAE hole # 9 and the potential for mineralised breccia to be present below mapped diorite.

CAE have discovered blind high grade copper mineralisation, hosted in diorite breccia, which is contrary to previous interpretations ,which have argued that the Mt Cannindah breccia mineralisation terminated against the northern diorite body , and that brecciation of the diorite was not conducive to high grade mineralisation, compared to the splintery , flinty attributes of the hornfels. The copper intersections reported in CAE hole 9 in diorite-dominated hydrothermal



breccia eg. 39m @ 1.48% CuEq from 61m ; 102m @ 1.58% CuEq from 160m provide abundant evidence that the Diorite Breccia can indeed contain high grade copper.

The overall geometry of the breccia body and the associated intrusive dykes and tuffisite are still unclear as the steep westerly plunge is apparently inconsistent with the numerous structural measurements of lithological contacts, compositional bands, and veins which mostly indicate a relatively shallow to moderate dip to the east. Very few of CAE's hundreds of structural measurements to date have returned a westerly dip. The structural grain of the breccia body often runs at a high angle to the core axis of CAE # 9. This observation suggests that the western contact of the breccia may be more of a bounding structure and not be the controlling trend of copper grades at Mt Cannindah as was utilised in previous resource estimations .

At approximately 396m below the surface, in CAE hole # 9, there is an apparent transition from chalcopyrite rich hydrothermal infill breccia to a strongly altered diorite porphyry and pyritic clast supported breccia with variable but often lower amounts of chalcopyrite. This is a similar pattern to the interpretation of the geological cross section containing CAE holes 7 & 8 at the southern end (refer CAE ASX Announcement: 22<sup>nd</sup> February 2022). However, the contact between the hydrothermal infill breccia and the clast supported breccia appears deeper in the northern section of the breccia deposit suggesting a northerly plunge for this mineralisation boundary. Bleached, altered, diorite porphyries, fragmental intrusive breccias referred to as "tuffisite" and post mineral andesite dykes cut the clast supported breccia, all indicating that the mineral system is open at depth and has considerable potential to host more intrusive related copper and precious metal mineralisation. Layers of hydrothermal infill breccia where chalcopyrite is more common, occur throughout the lower section of CAE hole # 9 down to below 800m. The simplified geological relationships as interpreted from the recent drilling of CAE holes are presented in cross section for CAE hole # 9 in Fig 7. Overlay plots of Cu and S respectively are plotted over the geological interpretation in Appendix 2. The high grade copper zones skirt the boundary of the historical mineralised envelope at Mt Cannindah and have largely not been included in the ore-blocks used for previous resource calculation as they project further to the north and also in a down plunge direction well outside this envelope.

Appendix 1 presents tables listing the complete Cu, Au, Ag and S assays and pyrite, chalcopyrite visual estimates for the individual metres and suumarised sections of CAE hole 9. Selected photo examples of the mineralisation are presented in Figs 8 to 20.



Update 5 April, 2022

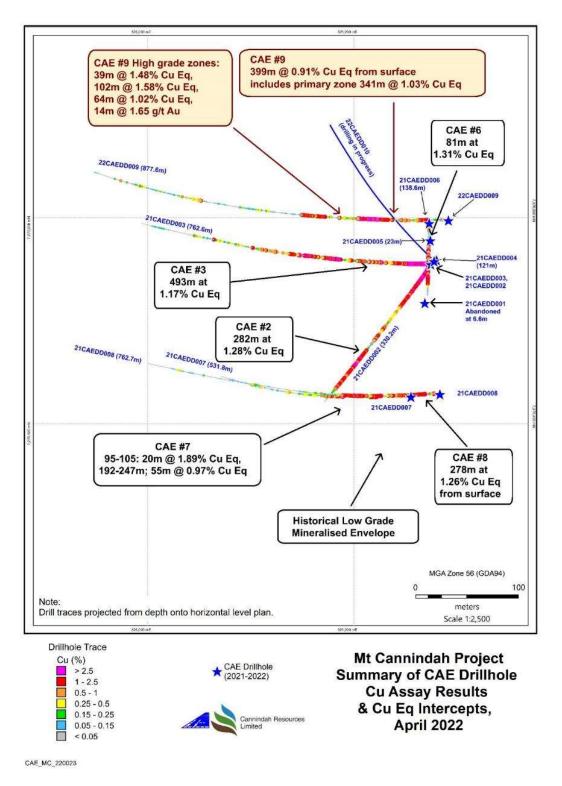



Fig 3. CAE Hole # 9 in relation to 2021-2022 CAE Drillholes at Mt Cannindah. Downhole Cu plotted, CuEq intercepts plotted.



Update 5 April, 2022

ASX Code: CAE

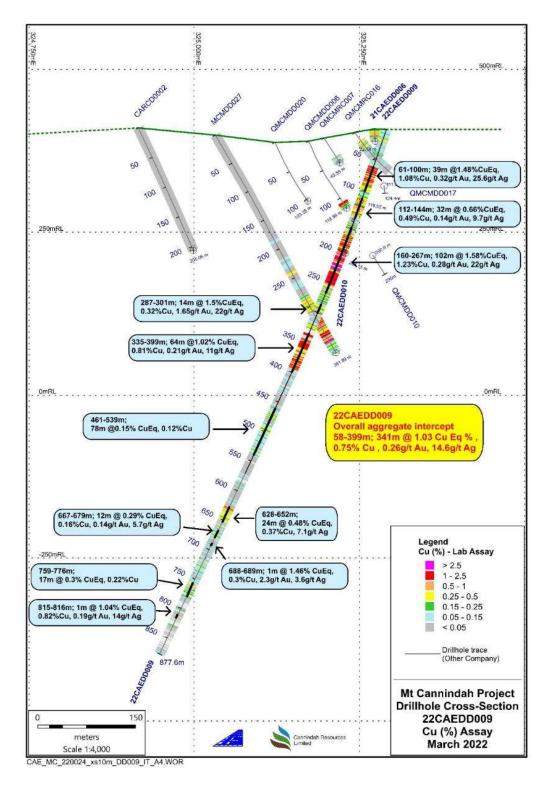



Fig 4. Mt Cannindah mine area east west cross section CAE hole 9 looking north, with Cu lab assay results plotted down hole, significant intersections annotated. See Appendix 2 for Au & Ag sectional plots.



#### Update 5 April, 2022

ASX Code: CAE

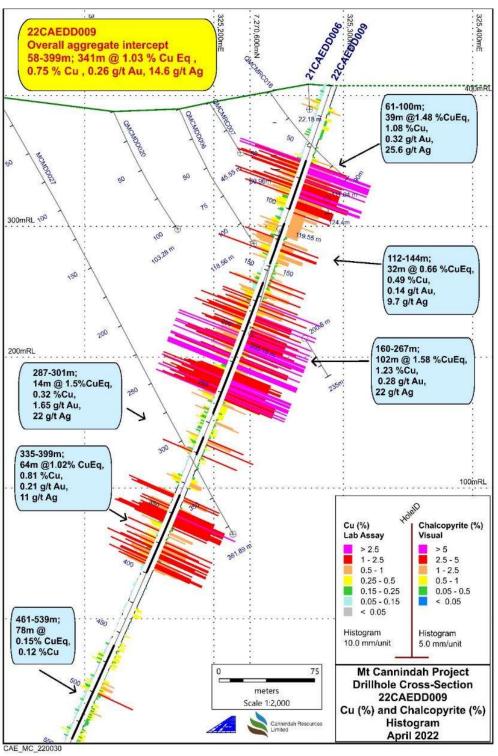



Fig 5. Mt Cannindah mine area east west cross section CAE hole 9, looking north, with Cu lab assay results plotted as histograms alongside visual estimates of chalcopyrite down hole, Top 500m of hole plotted.See Appendix 2 for plot of full 877.6m hole.



#### Update 5 April, 2022

ASX Code: CAE

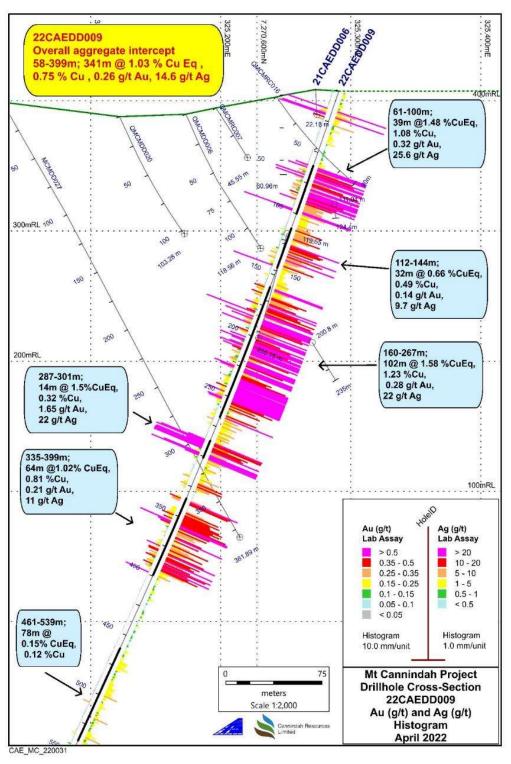



Fig 6. Mt Cannindah mine area east west cross section CAE hole 9, with Au (LHS) Ag (RHS) lab assay results plotted as histograms. Top 500m of hole plotted. See Appendix 2 for plot full 877.6m hole histogrms Au/pyrite.





ASX Code: CAE

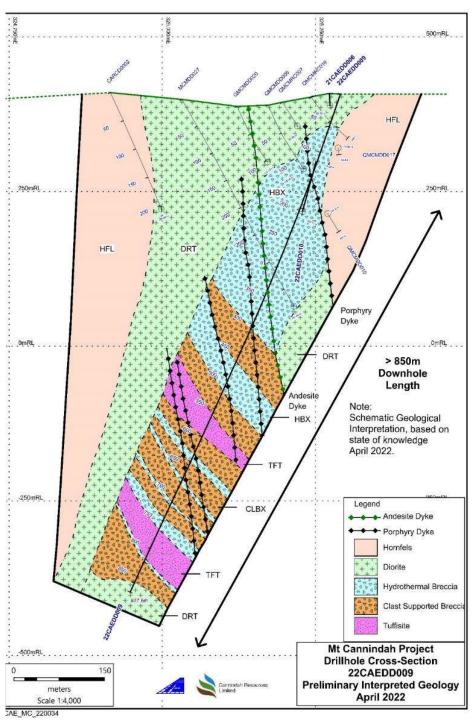



Fig 7. Preliminary schematic geological interpretation east west cross section CAE hole 9, looking north, based on state of knowledge April,2022. Note scale of overall breccia and intrusive bodies occurring over 850m downhole. Alignment of breccia layers deduced from structural measurements and oriented core observations. See Appendix 2 for plots with copper and sulphur overlay.



Update 5 April, 2022

ASX Code: CAE



Fig 8 HQ Core photo hole 21CAEDD009, 62.3m to 64m. Chalcopyrite rich infill in hydrothermal diorite dominated breccia. Primary zone 62m-64m assays **2m @ 2.88% Cu,0.53 g/t Au, 41 g/t Ag, 8.91 % S.** 



Fig 9 HQ Core photo hole 21CAEDD009, 63.2m Chalcopyrite -pyrite infill in hydrothermal diorite dominated breccia. Primary zone 63m-64m assays **1m @ 3.89% Cu,0.78 g/t Au, 58.8 g/t Ag, 11.83 % S.** 



Fig 10 HQ Core photo hole 21CAEDD009, 65.8m to 69.3 Chalcopyrite -pyrite infill in hydrothermal diorite dominated breccia. Primary zone 65m-70m assays 5m @ 1.70% Cu,0.42 g/t Au, 30.3 g/t Ag, 9.48 % S.



Update 5 April, 2022

ASX Code: CAE



Fig 11 HQ Core photo hole 21CAEDD009, Two sections 182m (lower split), 185.5m (upper split), Chalcopyrite - pyrite sphalerite (black) infill in hydrothermal diorite dominated breccia. Primary zone 182m to 183m 1m @ 2.00% Cu,2.04 g/t Au, 45.9 g/t Ag, 7.95 % S, 0.74% Zn. 185m to 186m 1m @ 1.32% Cu, 1.17 g/t Au, 32.8 g/t Ag, 5.49 % S.



Fig 12 HQ Core photo hole 21CAEDD009, 190.0m Chalcopyrite -pyrite infill in hydrothermal diorite dominated breccia. Primary zone 189m-190m assays **1m @ 2.09% Cu,0.20 g/t Au, 31.5 g/t Ag, 7.25 % S.** 



Update 5 April, 2022

ASX Code: CAE



Fig 13 HQ Core photo hole 21CAEDD009, 202m-205m Chalcopyrite -pyrite infill in hydrothermal diorite dominated breccia. Primary zone 202m-205m assays **3m @ 2.53% Cu,0.58 g/t Au, 48.7 g/t Ag, 5.27 % S.** 

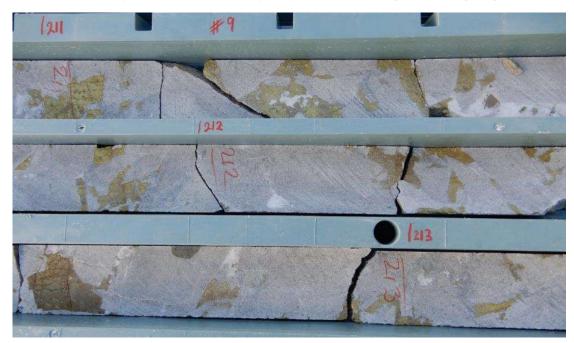



Fig 14 HQ Core photo hole 21CAEDD009, 211m-214m Chalcopyrite -pyrite infill in hydrothermal diorite dominated breccia. Primary zone 211m-214m assays **3m @ 2.78% Cu,0.43 g/t Au, 41.8 g/t Ag, 6.24 % S** 



Update 5 April, 2022

ASX Code: CAE



Fig 15 HQ Core photo hole 21CAEDD009, 211.1m Chalcopyrite pyrite calcite quartz infill in hydrothermal diorite dominated breccia. Primary zone 211m-212m assays **1m @ 4.69% Cu,0.78 g/t Au, 58.5 g/t Ag, 7.90 % S.** 

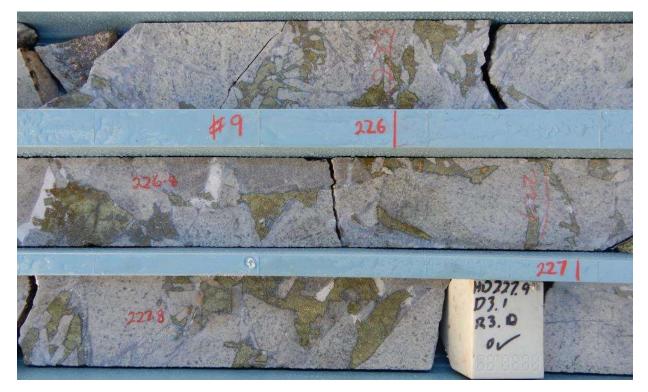



Fig 16 HQ Core photo hole 21CAEDD009, 225.7m-227.9m Chalcopyrite -pyrite calcite quartz infill in hydrothermal diorite dominated breccia. Primary zone 225m-228m assays **3m @ 3.84% Cu,0.56 g/t Au, 43.5 g/t Ag, 6.46 % S** 



Update 5 April, 2022

ASX Code: CAE



Fig 17 HQ Core Photo in core frame oriented relative to actual drillhole surveyed position, CAE hole # 9, 335.6m ,view looking north east, hole drilling 70 degrees to west. Post mineral andesite dyke at top of core in contact with hydrothermal breccia dominated by hornfels clasts. East north east striking andesite dyke dips 45 degrees to south east. Hole # 9 drilling down the long axis of the breccia body.with drillhole cutting hornfels clasts at high angle. Prominent chalcopyrite as infill between clasts. Primary zone 335m-336m assays **1m @ 0.68% Cu,0.19 g/t Au, 8.4 g/t Ag, 1.76 % S** 



Update 5 April, 2022

ASX Code: CAE



Fig 18 HQ Core photo hole 21CAEDD009, 629.65m HQ Core Photo in core frame oriented relative to actual drillhole surveyed position, CAE hole # 9, 629.6m, view looking south, hole drilling 70 degrees to west. Large slug of chalcopyrite and pyrite and quartz within intensely sericite altered and quartz pyrite veined, bleached diorite porphyry. 629m-630m assays **1m @ 1.60% Cu,0.29 g/t Au, 23.1 g/t Ag, 7.97 % S** 



Update 5 April, 2022

ASX Code: CAE



Fig 19 HQ Core photo hole 21CAEDD009, 729.4m Highly sulphidic clast supported breccia. Polymict clasts dominated by hornfels. Abundant pyrite , moderate chalcopyrite infill. 729-730m assays **1m @ 0.27% Cu,0.30** g/t Au, 8.4 g/t Ag, 8.5 % S.



Fig 20 HQ Core photo hole 21CAEDD009, 816m Chalcopyrite pyrite calcite quartz infill in hydrothermal sericite altered hornfels dominated breccia. Primary zone 815m-816m assays **1m @ 0.82% Cu,0.19 g/t Au, 14 g/t Ag, 4.70 % S.** 

In summary almost the whole drilled section of hole 22CAEDD009 is mineralised with the implication that the Mt Cannindah mineral system, which includes the copper bearing breccia and associated mineralised intrusive bodies, is still open to the north and open down the long axis of the breccia to the west.

Further exploration drilling is required to establish the full extent of:

- the northern zone of high grade copper-with significant gold and silver credits intersected in hole # 9
- the western high grade gold zone intersected in holes CAE # 7, and 3.
- the relationship to the high grade gold zones encountered by previous explorers at Cannindah East
- major copper mineralisation intersected in CAE holes 7 & 8 at the southern end of the drill indicated system.

The first phase of the follow up exploration is currently underway with the drilling of CAE hole # 10 which is targeting the high grade copper breccia intersected in CAE # 9 and drills out to the north -west to establish whether the system develops in that direction.



Update 5 April, 2022

ASX Code: CAE

#### COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on information compiled by Dr. Simon D. Beams, a full-time employee of Terra Search Pty Ltd, geological consultants employed by Cannindah Resources Limited to carry out geological evaluation of the mineralisation potential of their Mt Cannindah Project, Queensland, Australia. Dr Beams is also a non-Executive Director of Cannindah Resources Limited.

Dr. Beams has BSc Honours and PhD degrees in geology; he is a Member of the Australasian Institute of Mining and Metallurgy (Member #107121) and a Member of the Australian Institute of Geoscientists (Member # 2689). Dr. Beams has sufficient relevant experience in respect to the style of mineralization, the type of deposit under consideration and the activity being undertaken to qualify as a Competent Person within the definition of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code).

*Dr.* Beams consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Disclosure:

Dr Beams and his employer Terra Search Pty Ltd hold ordinary shares in Cannindah Resources Limited.

For further information, please contact:

Tom Pickett Executive Chairman Ph: 61 7 55578791

Appendix 1: Table 1 Cu,Au,Ag,S assays , chalcopyrite, pyrite visual estimates, CAE hole 9-

Appendix 2: Plan & section views of recent drill results , Mt Cannindah

Appendix 3: JORC Table 1



Update 5 April, 2022

ASX Code: CAE

|                 | From                 | То             | Lab       | Lab                | Lab               | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % |                               |
|-----------------|----------------------|----------------|-----------|--------------------|-------------------|--------------|-----------------|--------------------------|-------------------------------|
| 22045#          | Depth                | Depth          | Cu<br>∞∕  | Au<br>a/t          | Ag                | Lab          | yrit            | Cha <                    | Lithology                     |
| 22CAE#<br>DD009 | 0<br>0               | <u>m</u><br>14 | %<br>0.12 | <b>g/t</b><br>0.04 | <b>g/t</b><br>0.9 | 0.16         | <b>A</b>        |                          | Lithology<br>Oxidised Diorite |
| DD009           | <mark>0</mark><br>14 | 15             | 0.12      | 0.04               | 1.7               | 1.26         | 3               |                          | Fractured Diorite             |
| DD009           | 15                   | 16             | 0.23      | 1.68               | 39.3              | 1.20         | 3               |                          | Fractured Diorite             |
| DD009           | 16                   | 17             | 0.31      | 0.15               | 7.7               | 2.22         | 5               | 0.2                      | Fractured Diorite             |
| DD009           | 17                   | 18             | 0.12      | 0.15               | 2.2               | 2.22         | 10              | 0.5                      | Fractured Diorite             |
| DD009           | 18                   | 19             | 0.12      | 0.21               | 4.3               | 2.20         | 7               | 0.5                      | Fractured Diorite             |
| DD009           | 19                   | 20             | 0.32      | 1.78               | 6.7               | 2.84         | 10              | 1                        | Fractured Diorite             |
| DD009           | 20                   | 21             | 0.67      | 1.89               | 24.5              | 2.44         | 5               | 0.2                      | Fractured Diorite             |
| DD009           | 21                   | 22             | 0.13      | 0.05               | 2.7               | 1.32         | 3               | 0.2                      | Fractured Diorite             |
| DD009           | 22                   | 23             | 0.06      | 0.47               | 2.5               | 1.19         | 5               |                          | Diorite Breccia               |
| DD009           | 23                   | 24             | 0.05      | 0.04               | 1.7               | 1.61         | 3               |                          | Diorite Breccia               |
| DD009           | 24                   | 25             | 0.12      | 0.26               | 2.0               | 0.97         | 2               |                          | Diorite Breccia               |
| DD009           | 25                   | 26             | 0.04      | 0.05               | 1.5               | 3.04         | 5               | 0.5                      | Fractured Diorite             |
| DD009           | 26                   | 27             | 0.07      | 0.05               | 8.7               | 4.70         | 10              | 0.5                      | Fractured Diorite             |
| DD009           | 27                   | 28             | 0.03      | 0.02               | 0.8               | 2.45         | 10              | 0.2                      | Fractured Diorite             |
| DD009           | 28                   | 56             | 0.06      | 0.03               | 1.0               | 1.32         | 3               | 0.2                      | Fractured Diorite             |
| DD009           | 56                   | 57             | 0.11      | 0.04               | 1.3               | 1.71         | 3               | 0.2                      | Fractured Diorite             |
| DD009           | 57                   | 58             | 0.05      | 0.02               | 0.7               | 1.11         | 2               | 0.5                      | Fractured Diorite             |
| DD009           | 58                   | 59             | 0.32      | 0.05               | 2.5               | 5.34         | 5               | 2                        | Fractured Diorite             |
| DD009           | 59                   | 60             | 0.07      | 0.02               | 1.0               | 1.24         | 3               | 0.5                      | Fractured Diorite             |
| DD009           | 60                   | 61             | 0.18      | 0.04               | 2.8               | 1.26         | 3               | 0.2                      | Fractured Diorite             |
| DD009           | 61                   | 62             | 2.72      | 0.51               | 34.6              | 9.55         | 5               | 3                        | Hydrothermal Infill Breccia   |
| DD009           | 62                   | 63             | 1.88      | 0.27               | 23.2              | 6.00         | 5               | 5                        | Hydrothermal Infill Breccia   |
| DD009           | 63                   | 64             | 3.89      | 0.78               | 58.8              | 11.83        | 7               | 10                       | Hydrothermal Infill Breccia   |
| DD009           | 64                   | 65             | 0.41      | 0.06               | 8.8               | 3.04         | 3               | 2                        | Hydrothermal Infill Breccia   |
| DD009           | 65                   | 66             | 1.66      | 0.17               | 14.7              | 5.25         | 5               | 10                       | Hydrothermal Infill Breccia   |
| DD009           | 66                   | 67             | 1.17      | 0.29               | 35.3              | 4.79         | 3               | 5                        | Hydrothermal Infill Breccia   |
| DD009           | 67                   | 68             | 0.83      | 0.14               | 15.7              | 8.60         | 7               | 5                        | Hydrothermal Infill Breccia   |
| DD009           | 68                   | 69             | 2.34      | 0.33               | 33.2              | 12.86        | 15              | 5                        | Hydrothermal Infill Breccia   |
| DD009           | 69                   | 70             | 2.49      | 1.19               | 52.8              | 15.91        | 5               | 5                        | Hydrothermal Infill Breccia   |
| DD009           | 70                   | 71             | 0.29      | 0.09               | 9.5               | 5.21         | 5               | 2                        | Hydrothermal Infill Breccia   |
| DD009           | 71                   | 72             | 2.17      | 1.15               | 54.2              | 12.23        | 7               | 5                        | Hydrothermal Infill Breccia   |
| DD009           | 72                   | 73             | 1.85      | 0.33               | 47.1              | 11.73        | 5               | 3                        | Hydrothermal Infill Breccia   |
| DD009           | 73                   | 74             | 0.38      | 0.08               | 7.0               | 5.93         | 5               | 2                        | Hydrothermal Infill Breccia   |
| DD009           | 74                   | 75             | 0.66      | 0.10               | 12.6              | 3.34         | 5               | 3                        | Hydrothermal Infill Breccia   |
| DD009           | 75                   | 76             | 1.01      | 0.25               | 19.0              | 9.44         | 15              | 5                        | Hydrothermal Infill Breccia   |
| DD009           | 76                   | 77             | 0.50      | 0.17               | 24.8              | 9.02         | 5               | 3                        | Hydrothermal Infill Breccia   |
| DD009           | 77                   | 78             | 0.08      | 0.03               | 2.8               | 2.16         | 3               | 2                        | Hydrothermal Infill Breccia   |

# Appendix 1 Table 1 Cu,Au,Ag,S assays chalcopyrite, pyrite visual estimates, hole 21CAEDD009 0m to 887.6m.



| 22CAE# | From<br>Depth  | To<br>Depth    | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                        |
|--------|----------------|----------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|----------------------------------|
| DD009  | <b>m</b><br>78 | <b>m</b><br>79 | 0.67           | 0.33             | 39.4             | 4.88         | 3               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 70             | 80             | 1.22           | 0.30             | 20.0             | 3.44         | 3               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 80             | 81             | 0.28           | 0.10             | 9.3              | 5.26         | 5               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 81             | 82             | 1.63           | 0.33             | 49.3             | 10.32        | 5               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 82             | 83             | 2.34           | 0.13             | 35.9             | 3.33         | 5               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 83             | 84             | 0.93           | 0.06             | 22.6             | 2.32         | 3               | 5                        | Hydrothermal Infill Breccia      |
| DD009  | 84             | 85             | 2.12           | 0.35             | 92.9             | 4.34         | 3               | 5                        | Hydrothermal Infill Breccia      |
| DD009  | 85             | 86             | 0.47           | 0.08             | 14.7             | 2.03         | 3               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 86             | 87             | 0.73           | 0.28             | 25.6             | 4.94         | 5               | 4                        | Hydrothermal Infill Breccia      |
| DD009  | 87             | 88             | 0.92           | 0.18             | 26.5             | 4.17         | 3               | 5                        | Hydrothermal Infill Breccia      |
| DD009  | 88             | 89             | 0.43           | 0.08             | 12.4             | 7.40         | 5               | 5                        | Hydrothermal Infill Breccia      |
| DD009  | 89             | 90             | 1.81           | 0.68             | 34.0             | 5.53         | 3               | 4                        | Hydrothermal Infill Breccia      |
| DD009  | 90             | 91             | 0.54           | 0.21             | 10.9             | 2.07         | 3               | 2                        | Hydrothermal Infill Breccia      |
| DD009  | 91             | 92             | 0.23           | 0.06             | 5.4              | 1.28         | 3               | 2                        | Hydrothermal Infill Breccia      |
| DD009  | 92             | 93             | 0.23           | 0.03             | 7.9              | 1.95         | 3               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 93             | 94             | 0.36           | 0.04             | 7.6              | 1.84         | 3               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 94             | 95             | 0.32           | 0.04             | 5.1              | 1.68         | 5               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 95             | 96             | 0.46           | 0.02             | 7.6              | 3.74         | 5               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 96             | 97             | 0.42           | 0.08             | 7.8              | 6.55         | 7               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 97             | 98             | 0.72           | 2.62             | 79.8             | 5.56         | 5               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 98             | 99             | 0.34           | 0.66             | 20.1             | 8.01         | 3               | 2                        | Hydrothermal Infill Breccia      |
| DD009  | 99             | 100            | 0.48           | 0.04             | 9.7              | 2.89         | 3               | 2                        | Hydrothermal Infill Breccia      |
| DD009  | 100            | 101            | 0.12           | 0.04             | 3.3              | 0.83         | 2               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 101            | 102            | 0.17           | 0.02             | 3.0              | 0.80         | 5               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 102            | 103            | 0.23           | 0.03             | 7.7              | 2.34         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 103            | 104            | 0.10           | 0.02             | 3.8              | 3.04         | 5               | 2                        | Hydrothermal Infill Breccia      |
| DD009  | 104            | 105            | 0.09           | 0.05             | 3.0              | 4.52         | 5               | 2                        | Hydrothermal Infill Breccia      |
| DD009  | 105            | 106            | 0.10           | 0.02             | 3.4              | 1.74         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 106            | 107            | 0.09           | 0.02             | 3.1              | 3.54         | 3               | 1                        | ydrothermal Infill Breccia       |
| DD009  | 107            | 108            | 0.08           | 0.03             | 3.4              | 4.91         | 3               | 1                        | y<br>Hydrothermal Infill Breccia |
| DD009  | 108            | 109            | 0.23           | 0.03             | 5.6              | 4.72         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 109            | 110            | 0.15           | 0.03             | 2.9              | 2.79         | 5               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 110            | 111            | 0.36           | 0.05             | 5.5              | 1.45         | 4               | 2                        | Hydrothermal Infill Breccia      |
| DD009  | 111            | 112            | 0.34           | 0.04             | 5.7              | 1.52         | 4               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 112            | 113            | 0.79           | 0.09             | 10.7             | 3.21         | 5               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 113            | 114            | 0.28           | 0.04             | 4.2              | 5.23         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 114            | 115            | 0.50           | 0.19             | 8.1              | 2.83         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 115            | 116            | 0.55           | 0.05             | 8.5              | 2.18         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 116            | 117            | 0.38           | 0.09             | 5.8              | 2.42         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 117            | 118            | 0.57           | 0.07             | 8.1              | 1.40         | 3               | 1                        | Hydrothermal Infill Breccia      |



| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                        |
|--------|--------------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|----------------------------------|
| DD009  | 118                | 119              | 0.39           | 0.10             | 6.1              | 1.47         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 119                | 120              | 0.77           | 0.07             | 11.0             | 1.47         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 120                | 121              | 0.45           | 0.05             | 6.8              | 1.49         | 2               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 121                | 122              | 0.08           | 0.03             | 1.2              | 0.97         | 2               | 0.2                      | ydrothermal Infill Breccia       |
| DD009  | 122                | 123              | 0.15           | 0.04             | 1.9              | 0.71         | 2               | 0.2                      | Hydrothermal Infill Breccia      |
| DD009  | 123                | 124              | 0.18           | 0.04             | 3.3              | 1.64         | 4               | 0                        | ydrothermal Infill Breccia       |
| DD009  | 124                | 125              | 1.20           | 0.09             | 27.5             | 3.89         | 3               | 2                        | Hydrothermal Infill Breccia      |
| DD009  | 125                | 126              | 0.67           | 0.05             | 11.6             | 1.47         | 2               | 2                        | y<br>Hydrothermal Infill Breccia |
| DD009  | 126                | 127              | 0.68           | 0.04             | 13.6             | 1.35         | 1               | 0.2                      | ydrothermal Infill Breccia       |
| DD009  | 127                | 128              | 0.85           | 0.04             | 12.7             | 1.28         | 1               | 3                        | Hydrothermal Infill Breccia      |
| DD009  | 128                | 129              | 0.67           | 0.05             | 9.9              | 1.31         | 3               | 1                        | ydrothermal Infill Breccia       |
| DD009  | 129                | 130              | 0.51           | 0.12             | 10.0             | 2.16         | 2               | 1                        | ydrothermal Infill Breccia       |
| DD009  | 130                | 131              | 0.12           | 0.02             | 4.4              | 0.71         | 3               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 131                | 132              | 0.73           | 0.24             | 20.8             | 4.78         | 5               | 3                        | Fault Zone                       |
| DD009  | 132                | 133              | 0.37           | 0.07             | 9.1              | 5.36         | 8               | 3                        | Diorite Breccia                  |
| DD009  | 133                | 134              | 0.41           | 0.27             | 14.6             | 3.98         | 3               | 0.5                      | Altered Diorite Porphyry         |
| DD009  | 134                | 135              | 0.36           | 0.05             | 6.5              | 2.95         | 3               | 0.5                      | Altered Diorite Porphyry         |
| DD009  | 135                | 136              | 0.52           | 0.07             | 8.5              | 3.09         | 2               | 2                        | Altered Diorite Porphyry         |
| DD009  | 136                | 137              | 2.07           | 0.22             | 42.1             | 6.85         | 2               | 2                        | Altered Diorite Porphyry         |
| DD009  | 137                | 138              | 0.28           | 0.30             | 6.5              | 3.48         | 3               | 2                        | Altered Diorite Porphyry         |
| DD009  | 138                | 139              | 0.21           | 0.08             | 5.4              | 5.17         | 2               | 0.5                      | Altered Diorite Porphyry         |
| DD009  | 139                | 140              | 0.09           | 0.02             | 2.4              | 2.85         | 2               | 1                        | Altered Diorite Porphyry         |
| DD009  | 140                | 141              | 0.30           | 0.15             | 8.6              | 5.60         | 5               | 1                        | Altered Diorite Porphyry         |
| DD009  | 141                | 142              | 0.58           | 0.15             | 12.5             | 3.56         | 2               | 1                        | Altered Diorite Porphyry         |
| DD009  | 142                | 143              | 0.05           | 0.11             | 2.1              | 2.67         | 3               | 0.2                      | Altered Diorite Porphyry         |
| DD009  | 143                | 144              | 0.06           | 1.61             | 6.2              | 4.70         | 4               | 0.5                      | Altered Diorite Porphyry         |
| DD009  | 144                | 145              | 0.11           | 0.03             | 3.9              | 1.74         | 2               | 0.2                      | Altered Diorite Porphyry         |
| DD009  | 145                | 146              | 0.03           | 0.04             | 1.9              | 3.02         | 2               | 0.1                      | Altered Diorite Porphyry         |
| DD009  | 146                | 147              | 0.03           | 0.07             | 1.9              | 4.76         | 4               | 0.1                      | Altered Diorite Porphyry         |
| DD009  | 147                | 148              | 0.03           | 0.03             | 1.4              | 3.52         | 3               | 0.1                      | Altered Diorite Porphyry         |
| DD009  | 148                | 149              | 0.01           | 0.02             | 1.2              | 3.05         | 2               | 0.2                      | Altered Diorite Porphyry         |
| DD009  | 149                | 150              | 0.08           | 0.06             | 2.3              | 2.97         | 1               | 1                        | Altered Diorite Porphyry         |
| DD009  | 150                | 151              | 0.07           | 0.02             | 1.7              | 2.66         | 8               | 0.3                      | Altered Diorite Porphyry         |
| DD009  | 151                | 152              | 0.03           | 0.20             | 1.6              | 7.79         | 5               | 0.1                      | Altered Diorite Porphyry         |
| DD009  | 152                | 153              | 0.02           | 0.03             | 1.4              | 4.05         | 3               | 0.1                      | Altered Diorite Porphyry         |
| DD009  | 153                | 154              | 0.12           | 0.03             | 3.8              | 4.01         | 2               | 0.3                      | Altered Diorite Porphyry         |
| DD009  | 154                | 155              | 0.15           | 0.04             | 3.8              | 7.53         | 5               | 1                        | Hydrothermal Infill Breccia      |
| DD009  | 155                | 156              | 0.02           | 0.08             | 2.9              | 9.80         | 5               | 0.2                      | Hydrothermal Infill Breccia      |
| DD009  | 156                | 157              | 0.29           | 0.04             | 5.0              | 3.83         | 2               | 3                        | Altered Diorite Porphyry         |
| DD009  | 157                | 158              | 0.15           | 0.04             | 4.8              | 6.19         | 5               | 2                        | Altered Diorite Porphyry         |



| 22CAE# | From<br>Depth   | To<br>Depth     | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                   |
|--------|-----------------|-----------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|-----------------------------|
| DD009  | <b>m</b><br>158 | <b>m</b><br>159 | 0.18           | 0.07             | 4.6              | 5.27         | 5               | 0.2                      | Altered Diorite Porphyry    |
| DD009  | 159             | 160             | 0.18           | 0.04             | 2.0              | 2.65         | 2               | 0.2                      | Altered Diorite Porphyry    |
| DD009  | 160             | 160             | 0.97           | 0.30             | 22.1             | 5.28         | 5               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 161             | 162             | 1.18           | 0.42             | 21.4             | 6.72         | 3               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 162             | 163             | 0.19           | 0.24             | 6.4              | 4.01         | 4               | 0.2                      | Hydrothermal Infill Breccia |
| DD009  | 163             | 164             | 0.12           | 0.29             | 3.7              | 6.75         | 4               | 0.3                      | Hydrothermal Infill Breccia |
| DD009  | 164             | 165             | 0.13           | 0.19             | 4.8              | 5.73         | 5               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 165             | 166             | 0.14           | 0.08             | 3.6              | 3.69         | 4               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 166             | 167             | 0.14           | 0.44             | 8.4              | 9.31         | 8               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 167             | 168             | 0.67           | 0.24             | 14.5             | 7.49         | 8               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 168             | 169             | 0.56           | 0.29             | 11.3             | 8.17         | 5               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 169             | 170             | 0.49           | 0.07             | 7.8              | 3.36         | 2               | 1                        | Diorite                     |
| DD009  | 170             | 171             | 0.54           | 0.01             | 9.1              | 0.92         | 2               | 0.3                      | Diorite                     |
| DD009  | 171             | 172             | 0.36           | 0.02             | 6.5              | 1.00         | 1               | 0.1                      | Fault Zone                  |
| DD009  | 172             | 173             | 0.29           | 0.18             | 11.0             | 6.70         | 3               | 1                        | Diorite                     |
| DD009  | 173             | 174             | 1.22           | 0.24             | 22.1             | 6.16         | 5               | 3                        | Diorite                     |
| DD009  | 174             | 175             | 0.33           | 0.21             | 7.6              | 7.55         | 2               | 0.5                      | Diorite                     |
| DD009  | 175             | 176             | 1.19           | 0.53             | 22.6             | 10.71        | 8               | 5                        | Hydrothermal Infill Breccia |
| DD009  | 176             | 177             | 0.18           | 0.23             | 12.5             | 7.17         | 5               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 177             | 178             | 0.87           | 0.19             | 13.9             | 5.88         | 5               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 178             | 179             | 1.01           | 0.24             | 19.9             | 8.08         | 4               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 179             | 180             | 0.42           | 0.11             | 7.7              | 2.18         | 5               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 180             | 181             | 0.89           | 0.26             | 18.7             | 5.26         | 5               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 181             | 182             | 1.30           | 0.36             | 27.1             | 5.49         | 6               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 182             | 183             | 1.96           | 2.04             | 45.9             | 7.95         | 4               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 183             | 184             | 0.44           | 0.20             | 8.1              | 4.41         | 2               | 0.5                      | Altered Diorite Porphyry    |
| DD009  | 184             | 185             | 0.03           | 0.01             | 0.6              | 1.66         | 2               | 0.5                      | Altered Diorite Porphyry    |
| DD009  | 185             | 186             | 1.32           | 1.17             | 32.8             | 5.48         | 8               | 6                        | Altered Diorite Porphyry    |
| DD009  | 186             | 187             | 0.92           | 0.28             | 21.1             | 3.54         | 2               | 3                        | Altered Diorite Porphyry    |
| DD009  | 187             | 188             | 1.62           | 0.87             | 29.3             | 7.42         | 3               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 188             | 189             | 1.52           | 0.32             | 24.4             | 5.03         | 5               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 189             | 190             | 2.09           | 0.20             | 31.5             | 7.25         | 2               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 190             | 191             | 0.91           | 0.33             | 16.9             | 5.95         | 5               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 191             | 192             | 1.74           | 1.20             | 26.2             | 6.80         | 5               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 192             | 193             | 0.89           | 0.22             | 17.6             | 6.13         | 5               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 193             | 194             | 0.35           | 0.07             | 8.7              | 3.39         | 1               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 194             | 195             | 0.37           | 0.09             | 6.5              | 2.86         | 2               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 195             | 196             | 1.16           | 0.14             | 21.6             | 5.11         | 4               | 5                        | Hydrothermal Infill Breccia |
| DD009  | 196             | 197             | 0.21           | 0.09             | 6.7              | 4.87         | 2               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 197             | 198             | 1.15           | 0.49             | 24.7             | 7.59         | 3               | 3                        | Hydrothermal Infill Breccia |



| 22CAE# | From<br>Depth   | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                   |
|--------|-----------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|-----------------------------|
| DD009  | <b>m</b><br>198 | <b>m</b><br>199  | 1.63           | 0.32             | 23.8             | 5.71         | 5               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 199             | 200              | 1.47           | 0.24             | 24.6             | 6.12         | 8               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 200             | 201              | 0.31           | 0.07             | 7.6              | 3.08         | 5               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 201             | 202              | 0.72           | 0.05             | 10.0             | 1.96         | 5               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 202             | 203              | 4.10           | 0.65             | 59.0             | 7.24         | 5               | 10                       | Hydrothermal Infill Breccia |
| DD009  | 203             | 204              | 0.81           | 0.06             | 14.6             | 1.91         | 5               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 204             | 205              | 2.68           | 1.03             | 72.5             | 6.66         | 4               | 8                        | Hydrothermal Infill Breccia |
| DD009  | 205             | 206              | 0.91           | 0.53             | 20.0             | 3.10         | 3               | 3                        | Altered Diorite Porphyry    |
| DD009  | 206             | 207              | 0.56           | 0.11             | 23.1             | 3.64         | 5               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 207             | 208              | 0.86           | 0.16             | 14.5             | 5.25         | 6               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 208             | 209              | 1.29           | 0.56             | 29.3             | 3.50         | 6               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 209             | 210              | 3.46           | 0.94             | 59.1             | 10.88        | 8               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 210             | 211              | 1.99           | 0.31             | 31.1             | 5.32         | 5               | 8                        | Hydrothermal Infill Breccia |
| DD009  | 211             | 212              | 4.69           | 0.78             | 58.5             | 7.90         | 4               | 12                       | Hydrothermal Infill Breccia |
| DD009  | 212             | 213              | 2.07           | 0.38             | 38.4             | 7.45         | 5               | 8                        | Hydrothermal Infill Breccia |
| DD009  | 213             | 214              | 1.58           | 0.14             | 28.4             | 3.38         | 4               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 214             | 215              | 0.46           | 0.03             | 8.7              | 1.77         | 2               | 0.5                      | Altered Diorite Porphyry    |
| DD009  | 215             | 216              | 2.71           | 0.33             | 43.2             | 4.90         | 6               | 5                        | Hydrothermal Infill Breccia |
| DD009  | 216             | 217              | 0.89           | 0.21             | 16.5             | 4.27         | 10              | 3                        | Hydrothermal Infill Breccia |
| DD009  | 217             | 218              | 0.28           | 0.03             | 5.8              | 1.17         | 2               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 218             | 219              | 0.14           | 0.11             | 3.0              | 3.33         | 3               | 0.2                      | Hydrothermal Infill Breccia |
| DD009  | 219             | 220              | 1.27           | 0.14             | 20.0             | 4.39         | 3               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 220             | 221              | 2.86           | 0.25             | 47.1             | 5.90         | 3               | 5                        | Hydrothermal Infill Breccia |
| DD009  | 221             | 222              | 2.87           | 0.33             | 46.2             | 5.25         | 3               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 222             | 223              | 2.29           | 0.21             | 44.5             | 4.23         | 3               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 223             | 224              | 0.58           | 0.11             | 15.5             | 1.71         | 2               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 224             | 225              | 0.08           | 0.03             | 1.4              | 1.63         | 2               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 225             | 226              | 2.59           | 0.26             | 32.0             | 4.63         | 5               | 8                        | Hydrothermal Infill Breccia |
| DD009  | 226             | 227              | 4.17           | 0.84             | 47.2             | 7.40         | 5               | 10                       | Hydrothermal Infill Breccia |
| DD009  | 227             | 228              | 4.75           | 0.58             | 51.3             | 7.35         | 5               | 10                       | Hydrothermal Infill Breccia |
| DD009  | 228             | 229              | 3.04           | 0.26             | 33.0             | 4.40         | 5               | 12                       | Hydrothermal Infill Breccia |
| DD009  | 229             | 230              | 0.18           | 0.02             | 3.8              | 0.74         | 2               | 1                        | Hydrothermal Infill Breccia |
| DD009  | 230             | 231              | 0.21           | 0.03             | 7.1              | 1.12         | 3               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 231             | 232              | 0.48           | 0.10             | 12.4             | 2.06         | 2               | 3                        | Fault Zone                  |
| DD009  | 232             | 233              | 0.41           | 0.05             | 10.3             | 1.86         | 2               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 233             | 234              | 1.00           | 0.10             | 18.6             | 3.13         | 2               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 234             | 235              | 1.10           | 0.12             | 23.7             | 2.35         | 3               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 235             | 236              | 1.48           | 0.30             | 35.4             | 2.28         | 3               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 236             | 237              | 1.63           | 0.17             | 33.3             | 3.27         | 2               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 237             | 238              | 2.48           | 0.16             | 36.9             | 2.93         | 2               | 3                        | Hydrothermal Infill Breccia |



| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                   |
|--------|--------------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|-----------------------------|
| DD009  | 238                | 239              | 1.34           | 0.15             | 23.9             | 3.46         | 4               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 239                | 240              | 2.61           | 0.20             | 41.3             | 4.81         | 4               | 5                        | Hydrothermal Infill Breccia |
| DD009  | 240                | 241              | 2.41           | 0.22             | 32.9             | 4.31         | 3               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 241                | 242              | 1.66           | 0.13             | 22.3             | 2.52         | 3               | 6                        | ydrothermal Infill Breccia  |
| DD009  | 242                | 243              | 1.12           | 0.07             | 29.0             | 2.24         | 3               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 243                | 244              | 2.07           | 0.43             | 32.0             | 5.89         | 3               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 244                | 245              | 1.79           | 0.23             | 25.1             | 4.05         | 3               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 245                | 246              | 2.36           | 0.19             | 36.2             | 3.74         | 3               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 246                | 247              | 1.67           | 0.18             | 30.6             | 3.47         | 2               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 247                | 248              | 2.93           | 0.67             | 44.3             | 4.77         | 2               | 5                        | Hydrothermal Infill Breccia |
| DD009  | 248                | 249              | 1.99           | 0.17             | 31.2             | 3.57         | 2               | 4                        | ydrothermal Infill Breccia  |
| DD009  | 249                | 250              | 1.36           | 0.22             | 28.6             | 3.52         | 3               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 250                | 251              | 1.77           | 0.25             | 23.5             | 3.80         | 3               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 251                | 252              | 2.25           | 0.30             | 31.7             | 6.64         | 3               | 4                        | ydrothermal Infill Breccia  |
| DD009  | 252                | 253              | 3.34           | 0.61             | 78.2             | 5.70         | 4               | 6                        | Hydrothermal Infill Breccia |
| DD009  | 253                | 254              | 0.50           | 0.54             | 13.6             | 2.56         | 5               | 4                        | ydrothermal Infill Breccia  |
| DD009  | 254                | 255              | 0.70           | 0.24             | 17.4             | 1.89         | 3               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 255                | 256              | 0.49           | 0.16             | 9.2              | 5.48         | 5               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 256                | 257              | 0.47           | 0.16             | 10.6             | 1.81         | 0.5             | 0.2                      | Hydrothermal Infill Breccia |
| DD009  | 257                | 258              | 0.09           | 0.05             | 2.2              | 1.09         | 1               | 1                        | Hydrothermal Infill Breccia |
| DD009  | 258                | 259              | 0.88           | 0.10             | 12.9             | 1.79         | 1               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 259                | 260              | 0.18           | 0.06             | 5.6              | 1.11         | 2               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 260                | 261              | 0.05           | 0.01             | 1.5              | 0.85         | 2               | 0.5                      | Clast supported Breccia     |
| DD009  | 261                | 262              | 0.02           | 0.05             | 0.7              | 1.22         | 2               | 0.5                      | Clast supported Breccia     |
| DD009  | 262                | 263              | 0.01           | 0.09             | 0.7              | 2.09         | 2               | 0.5                      | Clast supported Breccia     |
| DD009  | 263                | 264              | 0.03           | 0.16             | 2.5              | 0.71         | 3               | 0.5                      | Clast supported Breccia     |
| DD009  | 264                | 265              | 0.28           | 0.07             | 12.7             | 2.27         | 2               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 265                | 266              | 0.23           | 0.06             | 9.5              | 1.38         | 2               | 0.3                      | Hydrothermal Infill Breccia |
| DD009  | 266                | 267              | 0.57           | 0.17             | 25.3             | 2.91         | 2               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 267                | 268              | 0.04           | 0.18             | 3.4              | 1.82         | 2               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 268                | 269              | 0.16           | 0.04             | 5.9              | 1.23         | 2               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 269                | 270              | 0.09           | 0.04             | 3.1              | 1.52         | 2               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 270                | 271              | 0.26           | 0.27             | 8.1              | 9.50         | 5               | 0.2                      | Hydrothermal Infill Breccia |
| DD009  | 271                | 272              | 0.17           | 0.04             | 3.2              | 2.64         | 2               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 272                | 273              | 0.22           | 0.06             | 3.2              | 2.03         | 2               | 1.5                      | Hydrothermal Infill Breccia |
| DD009  | 273                | 274              | 0.39           | 0.04             | 6.1              | 1.98         | 2               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 274                | 275              | 0.11           | 0.17             | 2.9              | 1.48         | 3               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 275                | 276              | 0.15           | 0.04             | 4.8              | 3.37         | 2               | 0.2                      | Hydrothermal Infill Breccia |
| DD009  | 276                | 277              | 0.04           | 0.02             | 1.8              | 1.79         | 2               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 277                | 278              | 0.15           | 0.02             | 4.8              | 2.34         | 1               | 0.1                      | Hydrothermal Infill Breccia |



| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                   |
|--------|--------------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|-----------------------------|
| DD009  | 278                | 279              | 0.25           | 0.06             | 6.3              | 2.17         | 1               | 0.5                      | Clast supported Breccia     |
| DD009  | 279                | 280              | 0.04           | 0.01             | 1.4              | 1.92         | 2               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 280                | 281              | 0.15           | 0.05             | 4.3              | 1.45         | 2               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 281                | 282              | 0.17           | 0.03             | 5.0              | 0.89         | 0.5             | 0.2                      | Hydrothermal Infill Breccia |
| DD009  | 282                | 283              | 0.10           | 0.02             | 3.3              | 1.54         | 1               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 283                | 284              | 0.19           | 0.03             | 5.1              | 2.00         | 1               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 284                | 285              | 0.04           | 0.03             | 1.4              | 1.90         | 1               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 285                | 286              | 0.06           | 0.08             | 3.6              | 1.63         | 1               | 0.2                      | Clast supported Breccia     |
| DD009  | 286                | 287              | 0.06           | 0.03             | 3.0              | 1.49         | 2               | 0.1                      | Fault Zone                  |
| DD009  | 287                | 288              | 0.51           | 0.70             | 21.8             | 4.82         | 2               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 288                | 289              | 0.36           | 1.82             | 19.8             | 4.99         | 3               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 289                | 290              | 0.26           | 3.85             | 19.7             | 7.97         | 5               | 2                        | Hydrothermal Infill Breccia |
| DD009  | 290                | 291              | 0.10           | 0.73             | 6.4              | 3.19         | 2               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 291                | 292              | 0.36           | 1.96             | 14.7             | 7.01         | 5               | 4                        | Hydrothermal Infill Breccia |
| DD009  | 292                | 293              | 0.24           | 3.22             | 12.1             | 6.71         | 3               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 293                | 294              | 0.16           | 3.22             | 13.0             | 7.11         | 4               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 294                | 295              | 0.29           | 3.13             | 21.9             | 6.30         | 4               | 0.5                      | Hydrothermal Infill Breccia |
| DD009  | 295                | 296              | 0.04           | 0.11             | 4.6              | 2.48         | 3               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 296                | 297              | 0.05           | 0.04             | 7.0              | 0.95         | 1               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 297                | 298              | 0.11           | 0.24             | 27.7             | 1.55         | 1               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 298                | 299              | 0.24           | 1.49             | 42.4             | 3.71         | 2               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 299                | 300              | 0.54           | 2.04             | 68.9             | 2.95         | 3               | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 300                | 301              | 1.24           | 0.58             | 28.6             | 5.21         | 2               | 3                        | Hydrothermal Infill Breccia |
| DD009  | 301                | 302              | 0.32           | 0.08             | 7.3              | 1.09         | 0.2             | 0.1                      | Hydrothermal Infill Breccia |
| DD009  | 302                | 303              | 0.07           | 0.10             | 4.4              | 1.30         | 1.5             | 0.3                      | Hydrothermal Infill Breccia |
| DD009  | 303                | 304              | 0.09           | 0.17             | 5.7              | 3.34         | 3               | 0.5                      | Hornfels                    |
| DD009  | 304                | 305              | 0.04           | 0.02             | 1.0              | 1.44         | 3               |                          | Hornfels                    |
| DD009  | 305                | 306              | 0.12           | 0.02             | 2.1              | 1.21         | 0.5             | 0.5                      | Clast supported Breccia     |
| DD009  | 306                | 307              | 0.03           | 0.01             | 1.8              | 1.64         | 1               | 0.1                      | Clast supported Breccia     |
| DD009  | 307                | 308              | 0.03           | 0.01             | 0.9              | 0.47         | 0.5             | 0.1                      | Hornfels                    |
| DD009  | 308                | 309              | 0.08           | 0.08             | 5.0              | 1.83         | 2               | 0.1                      | Clast supported Breccia     |
| DD009  | 309                | 310              | 0.05           | 0.05             | 4.4              | 1.03         | 2               | 0.1                      | Clast supported Breccia     |
| DD009  | 310                | 311              | 0.04           | 0.03             | 2.9              | 1.51         | 3               | 0.2                      | Clast supported Breccia     |
| DD009  | 311                | 312              | 0.03           | 0.03             | 1.6              | 1.02         | 1               | 0.1                      | Clast supported Breccia     |
| DD009  | 312                | 313              | 0.01           | 0.05             | 0.7              | 3.05         | 3               | 0.1                      | Clast supported Breccia     |
| DD009  | 313                | 314              | 0.03           | 0.02             | 1.6              | 1.92         | 2               |                          | Clast supported Breccia     |
| DD009  | 314                | 315              | 0.02           | 0.06             | 2.2              | 1.76         | 2               |                          | Clast supported Breccia     |
| DD009  | 315                | 316              | 0.03           | 0.01             | 1.2              | 1.54         | 0.5             |                          | Hornfels                    |
| DD009  | 316                | 317              | 0.05           | 0.02             | 4.7              | 1.13         | 0.5             |                          | Altered Diorite Porphyry    |
| DD009  | 317                | 318              | 0.08           | 0.20             | 8.0              | 1.74         | 1.5             |                          | Altered Diorite Porphyry    |



## Update 5 April, 2022

| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                                              |
|--------|--------------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|--------------------------------------------------------|
| DD009  | 318                | 319              | 0.05           | 0.29             | 2.0              | 1.44         | 0.5             | 0.2                      | Altered Diorite Porphyry                               |
| DD009  | 319                | 320              | 0.05           | 0.01             | 1.9              | 0.52         | 1.5             | 0.2                      | Altered Diorite Porphyry                               |
| DD009  | 320                | 321              | 0.18           | 0.01             | 6.1              | 0.69         | 1.5             | 0.5                      | Altered Diorite Porphyry                               |
| DD009  | 321                | 322              | 0.40           | 0.05             | 10.2             | 1.03         | 1.5             | 0.5                      | Altered Diorite Porphyry                               |
| DD009  | 322                | 323              | 0.35           | 0.15             | 8.1              | 1.48         | 1.5             | 0.5                      | Altered Diorite Porphyry                               |
| DD009  | 323                | 324              | 0.59           | 0.15             | 10.5             | 5.93         | 3               | 1                        | Hydrothermal Infill Breccia                            |
| DD009  | 324                | 325              | 0.31           | 0.25             | 5.6              | 6.92         | 5               | 1                        | Hydrothermal Infill Breccia                            |
| DD009  | 325                | 326              | 0.33           | 0.08             | 5.5              | 6.78         | 6               | 1                        | Hydrothermal Infill Breccia                            |
| DD009  | 326                | 327              | 0.15           | 0.17             | 3.1              | 8.51         | 8               | 0.8                      | Hydrothermal Infill Breccia                            |
| DD009  | 327                | 328              | 0.02           | 0.08             | 0.7              | 0.83         | 1               | 0.2                      | Post Mineral Andesite<br>Dyke                          |
| DD009  | 328                | 329              | 0.00           | 0.00             | 0.3              | 0.15         |                 |                          | Post Mineral Andesite<br>Dyke                          |
| DD009  | 329                | 330              | 0.00           | 0.00             | 0.3              | 0.06         |                 |                          | Post Mineral Andesite<br>Dyke                          |
| DD009  | 330                | 331              | 0.00           | 0.00             | 0.3              | 0.03         |                 |                          | Post Mineral Andesite<br>Dyke                          |
| DD009  | 331                | 332              | 0.00           | 0.00             | 0.3              | 0.01         |                 |                          | Post Mineral Andesite<br>Dyke                          |
| DD009  | 332                | 333              | 0.00           | 0.00             | 0.3              | 0.01         |                 |                          | Post Mineral Andesite<br>Dyke<br>Post Mineral Andesite |
| DD009  | 333                | 334              | 0.00           | 0.00             | 0.3              | 0.01         |                 |                          | Dyke<br>Post Mineral Andesite                          |
| DD009  | 334                | 335              | 0.00           | 0.00             | 0.3              | 0.01         |                 |                          | Dyke<br>Post Mineral Andesite                          |
| DD009  | 335                | 336              | 0.68           | 0.19             | 8.4              | 1.76         | 2               | 3                        | Dyke                                                   |
| DD009  | 336                | 337              | 1.92           | 0.46             | 25.9             | 5.06         | 3               | 2                        | Hydrothermal Infill Breccia                            |
| DD009  | 337                | 338              | 1.55           | 0.34             | 17.1             | 4.75         | 4               | 3                        | Hydrothermal Infill Breccia                            |
| DD009  | 338<br>339         | 339<br>340       | 1.77           | 0.32             | 16.2             | 3.38         | 2               | 2                        | Hydrothermal Infill Breccia<br>Post Mineral Andesite   |
| DD009  | 340                | 341              | 0.01           | 0.01             | 0.3              | 0.01         |                 |                          | Dyke<br>Post Mineral Andesite                          |
| DD009  | 341                | 342              | 0.00           | 0.00             | 0.3              | 0.01         |                 |                          | Dyke<br>Post Mineral Andesite                          |
| DD009  | 342                | 343              | 0.01           | 0.00             | 0.3              | 0.01         |                 |                          | Dyke<br>Post Mineral Andesite<br>Dyke                  |
| DD009  | 343                | 344              | 0.05           | 0.00             | 0.3              | 0.44         | 0.5             | 0.2                      | Post Mineral Andesite<br>Dyke                          |
| DD009  | 344                | 345              | 0.79           | 0.15             | 7.4              | 7.19         | 0.2             | 1                        | Hydrothermal Infill Breccia                            |
| DD009  | 345                | 346              | 1.17           | 0.22             | 13.8             | 9.39         | 5               | 3                        | Hydrothermal Infill Breccia                            |
| DD009  | 346                | 347              | 0.88           | 0.16             | 9.9              | 11.46        | 5               | 3                        | Hydrothermal Infill Breccia                            |
| DD009  | 347                | 348              | 1.21           | 0.22             | 14.6             | 14.47        | 8               | 3                        | Hydrothermal Infill Breccia                            |
| DD009  | 348                | 349              | 0.80           | 0.22             | 10.8             | 8.34         | 5               | 4                        | Hydrothermal Infill Breccia                            |
| DD009  | 349                | 350              | 0.81           | 0.31             | 11.1             | 7.16         | 5               | 4                        | Hydrothermal Infill Breccia                            |



| 20045"         | From<br>Depth   | To<br>Depth     | Lab<br>Cu    | Lab<br>Au | Lab<br>Ag    | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % |                                                            |
|----------------|-----------------|-----------------|--------------|-----------|--------------|--------------|-----------------|--------------------------|------------------------------------------------------------|
| 22CAE#         | <b>m</b><br>350 | <b>m</b><br>351 | <b>%</b>     | g/t       | g/t          |              | 6               | E                        | Lithology                                                  |
| DD009          | 350             | 351             | 1.13         | 0.49      | 15.2         | 9.81         | 3               | 5<br>4                   | Hydrothermal Infill Breccia                                |
| DD009          | 352             | 352             | 1.02         | 0.23      | 16.7         | 8.10         | 3               | 4                        | Hydrothermal Infill Breccia<br>Hydrothermal Infill Breccia |
| DD009          | 353             | 353             | 1.15         | 0.18      | 13.0         | 4.79         | 3               | 3                        | -                                                          |
| DD009          | 353             | 354             | 1.44         | 0.36      | 15.9         | 5.49         | 5               | 4                        | Hydrothermal Infill Breccia<br>Hydrothermal Infill Breccia |
| DD009<br>DD009 | 355             | 356             | 1.10<br>1.92 | 0.17      | 12.1<br>19.0 | 3.50<br>5.02 | 5               | 4                        | Hydrothermal Infill Breccia                                |
|                | 356             | 350             |              | 1.30      |              |              | 5               | 4                        | Hydrothermal Infill Breccia                                |
| DD009          | 357             | 358             | 1.97         | 0.53      | 21.1         | 5.03         | 3               | 4                        | Hydrothermal Infill Breccia                                |
| DD009          | 358             | 358             | 2.07         | 0.40      | 40.6         | 5.12         | 2               | 3                        | •                                                          |
| DD009          | 358             | 360             | 1.21         | 0.18      | 12.8         | 2.80         | 2               | 0.2                      | Hydrothermal Infill Breccia<br>Clast supported Breccia     |
| DD009          |                 |                 | 0.16         | 0.04      | 2.5          | 2.23         |                 |                          |                                                            |
| DD009          | 360             | 361             | 0.88         | 0.11      | 12.0         | 2.84         | 2               | 3                        | Hydrothermal Infill Breccia                                |
| DD009          | 361             | 362             | 0.47         | 0.05      | 9.4          | 1.15         | 1               | 0.2                      | Hydrothermal Infill Breccia                                |
| DD009          | 362             | 363             | 0.41         | 0.06      | 6.8          | 0.01         | 0.5             | 0.2                      | Clast supported Breccia                                    |
| DD009          | 363             | 364             | 0.37         | 0.01      | 7.9          | 0.66         | 0.5             | 0                        | Clast supported Breccia                                    |
| DD009          | 364             | 365             | 0.02         | 0.09      | 1.3          | 1.28         | 1               | 2                        | Clast supported Breccia                                    |
| DD009          | 365             | 366             | 0.59         | 0.19      | 11.1         | 3.14         | 1               | 2                        | Hydrothermal Infill Breccia                                |
| DD009          | 366             | 367             | 1.32         | 0.01      | 23.6         | 4.91         |                 | 4.5                      | Clast supported Breccia                                    |
| DD009          | 367             | 368             | 0.03         | 0.04      | 1.6          | 0.69         | 1               | 1.5                      | Clast supported Breccia                                    |
| DD009          | 368             | 369             | 0.44         | 0.02      | 10.4         | 1.23         | 0.5             | 0.1                      | Fault Zone                                                 |
| DD009          | 369             | 370             | 0.08         | 0.01      | 3.0          | 1.92         | 1               | 0.1                      | Clast supported Breccia                                    |
| DD009          | 370             | 371             | 0.00         | 0.01      | 0.3          | 1.97         | 4               | _                        | Clast supported Breccia                                    |
| DD009          | 371             | 372             | 0.47         | 0.08      | 7.4          | 2.52         | 2               | 2                        | Hydrothermal Infill Breccia                                |
| DD009          | 372             | 373             | 1.32         | 0.18      | 15.4         | 2.70         | 3               | 4                        | Hydrothermal Infill Breccia                                |
| DD009          | 373             | 374             | 0.28         | 0.08      | 4.4          | 2.94         | 1               | 0.2                      | Altered Diorite Porphyry                                   |
| DD009          | 374             | 375             | 0.59         | 0.22      | 7.7          | 4.65         | 2               | 2                        | Altered Diorite Porphyry                                   |
| DD009          | 375             | 376             | 0.84         | 0.16      | 9.9          | 2.81         | 2               | 3                        | Altered Diorite Porphyry                                   |
| DD009          | 376             | 377             | 1.15         | 0.57      | 13.8         | 3.43         | 3               | 4                        | Hydrothermal Infill Breccia                                |
| DD009          | 377             | 378             | 0.56         | 0.18      | 6.8          | 1.97         | 2               | 2                        | Hydrothermal Infill Breccia                                |
| DD009          | 378             | 379             | 0.37         | 0.09      | 4.6          | 4.84         | 6               | 2                        | Hydrothermal Infill Breccia                                |
| DD009          | 379             | 380             | 1.35         | 0.43      | 15.1         | 3.20         | 5               | 4                        | Hydrothermal Infill Breccia                                |
| DD009          | 380             | 381             | 1.88         | 0.41      | 24.0         | 3.44         | 5               | 4                        | Hydrothermal Infill Breccia                                |
| DD009          | 381             | 382             | 0.20         | 0.05      | 2.4          | 2.63         | 5               | 0.5                      | Hydrothermal Infill Breccia                                |
| DD009          | 382             | 383             | 1.08         | 0.32      | 13.9         | 2.97         | 5               | 4                        | Hydrothermal Infill Breccia                                |
| DD009          | 383             | 384             | 0.81         | 0.16      | 10.2         | 2.77         | 5               | 3                        | Hydrothermal Infill Breccia                                |
| DD009          | 384             | 385             | 0.79         | 0.29      | 12.0         | 7.89         | 8               | 4                        | Hydrothermal Infill Breccia                                |
| DD009          | 385             | 386             | 1.63         | 0.42      | 22.8         | 4.04         | 5               | 4                        | Hydrothermal Infill Breccia                                |
| DD009          | 386             | 387             | 0.65         | 0.13      | 8.0          | 2.39         | 5               | 1                        | Hydrothermal Infill Breccia                                |
| DD009          | 387             | 388             | 0.34         | 0.07      | 11.0         | 3.25         | 5               | 0.3                      | Fault Zone                                                 |
| DD009          | 388             | 389             | 1.14         | 0.24      | 21.3         | 3.16         | 3               | 3                        | Fault Zone                                                 |
| DD009          | 389             | 390             | 1.16         | 0.28      | 17.9         | 3.55         | 3               | 2                        | Hydrothermal Infill Breccia                                |



| 22CAE# | From<br>Depth    | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                          |
|--------|------------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|------------------------------------|
| DD009  | <b>m</b><br>390  | 391              | 0.78           | 0.19             | 10.7             | 2.42         | 3               | 3                        | Hydrothermal Infill Breccia        |
| DD009  | 391              | 392              | 1.57           | 0.39             | 21.9             | 4.58         | 5               | 4                        | Hydrothermal Infill Breccia        |
| DD009  | 392              | 393              | 0.96           | 0.10             | 11.5             | 1.51         | 3               | 4                        | Hydrothermal Infill Breccia        |
| DD009  | 393              | 394              | 1.13           | 0.26             | 15.5             | 4.03         | 5               | 3                        | Hydrothermal Infill Breccia        |
| DD009  | 394              | 395              | 0.72           | 0.18             | 9.9              | 1.46         | 1               | 2                        | Altered Diorite Porphyry           |
| DD009  | 395              | 396              | 0.12           | 0.03             | 3.6              | 2.76         | 2               | 1                        | Altered Diorite Porphyry           |
| DD009  | 396              | 397              | 0.07           | 0.02             | 1.7              | 2.31         | 2               |                          | Altered Diorite Porphyry           |
| DD009  | 397              | 398              | 0.12           | 0.02             | 3.4              | 2.15         | 2               |                          | Altered Diorite Porphyry           |
| DD009  | 398              | 399              | 0.07           | 0.98             | 5.1              | 3.81         | 3               |                          | Altered Diorite Porphyry           |
| DD009  | 399              | 400              | 0.05           | 0.02             | 1.0              | 3.07         | 3               |                          | Altered Diorite Porphyry           |
| DD009  | 400              | 401              | 0.01           | 0.01             | 0.6              | 2.75         | 3               |                          | Altered Diorite Porphyry           |
| DD009  | 401              | 402              | 0.02           | 0.01             | 1.5              | 3.12         | 3               |                          | Altered Diorite Porphyry           |
| DD009  | 402              | 403              | 0.00           | 0.01             | 0.3              | 2.37         | 3               |                          | Altered Diorite Porphyry           |
| DD009  | 403              | 404              | 0.01           | 0.01             | 0.3              | 2.90         | 3               |                          | Altered Diorite Porphyry           |
| DD009  | 404              | 405              | 0.01           | 0.02             | 1.1              | 2.25         | 3               |                          | Altered Diorite Porphyry           |
| DD009  | 405              | 406              | 0.01           | 0.01             | 0.3              | 2.04         | 3               |                          | Fault Zone                         |
| DD009  | <mark>406</mark> | <mark>450</mark> | 0.04           | 0.01             | 0.6              | 2.46         | 2               | 0.1                      | Clast supported Breccia            |
| DD009  | <mark>450</mark> | <mark>455</mark> | 0.02           | 0.01             | 0.4              | 0.24         | 0.5             | 0.1                      | Altered Diorite Porphyry           |
| DD009  | <mark>455</mark> | <mark>461</mark> | 0.03           | 0.01             | 0.4              | 0.73         | 2               | 0.2                      | Clast supported Breccia            |
| DD009  | <mark>461</mark> | 465              | 0.15           | 0.03             | 1.6              | 1.84         | 2               | 0.3                      | Hydrothermal Infill Breccia        |
| DD009  | <mark>465</mark> | <mark>470</mark> | 0.07           | 0.02             | 0.9              | 0.96         | 2               | 0.34                     | Clast supported Breccia            |
| DD009  | <mark>470</mark> | <mark>480</mark> | 0.17           | 0.03             | 2.2              | 1.45         | 2               | 0.3                      | Hydrothermal Infill Breccia        |
| DD009  | <mark>480</mark> | <mark>488</mark> | 0.04           | 0.01             | 1.0              | 0.39         | 1               | 0.05                     | Altered Diorite Porphyry           |
| DD009  | 488              | 489              | 0.17           | 0.02             | 1.8              | 0.82         | 1               | 0.5                      | Clast supported Breccia            |
| DD009  | 489              | 490              | 0.14           | 0.03             | 1.6              | 0.52         | 1               | 0.5                      | Clast supported Breccia            |
| DD009  | 490              | 491              | 0.12           | 0.02             | 1.5              | 0.72         | 2               | 1                        | Clast supported Breccia            |
| DD009  | 491              | 492              | 0.11           | 0.04             | 1.5              | 0.76         | 3               | 0.1                      | Clast supported Breccia            |
| DD009  | 492              | 493              | 0.26           | 0.05             | 3.2              | 1.26         | 3               | 0.5                      | Clast supported Breccia            |
| DD009  | 493              | 494              | 0.14           | 0.03             | 2.3              | 0.67         | 1.5             | 1                        | Clast supported Breccia            |
| DD009  | 494              | 495              | 0.27           | 0.07             | 2.9              | 1.18         | 2               | 1                        | Clast supported Breccia            |
| DD009  | 495              | 496              | 0.10           | 0.02             | 1.2              | 0.59         | 2               | 0.5                      | Clast supported Breccia            |
| DD009  | 496              | 497              | 0.22           | 0.05             | 2.6              | 1.21         | 3               | 0.3                      | Clast supported Breccia            |
| DD009  | 497              | 498              | 0.17           | 0.03             | 2.5              | 1.87         | 2               | 0.5                      | Clast supported Breccia            |
| DD009  | 498              | 499              | 0.26           | 0.04             | 3.1              | 1.11         | 2               | 1                        | Clast supported Breccia            |
| DD009  | 499              | 500              | 0.38           | 0.09             | 5.4              | 2.24         | 3               | 3                        | Clast supported Breccia            |
| DD009  | <mark>500</mark> | <mark>508</mark> | 0.08           | 0.03             | 1.0              | 0.86         | 0.5             | 0.1                      | Clast supported Breccia            |
| DD009  | 508              | 509              | 0.16           | 0.28             | 2.6              | 1.18         | 2               | 0.5                      | Clast supported Breccia            |
| DD009  | <mark>509</mark> | <mark>514</mark> | 0.07           | 0.11             | 1.0              | 1.09         | 2               | 0.2                      | Clast supported Breccia            |
| DD009  | 514              | 515              | 0.12           | 0.06             | 1.9              | 1.81         | 2               | 1                        | Clast supported pyritic<br>Breccia |



## Update 5 April, 2022

| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                            |
|--------|--------------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|--------------------------------------|
| DD009  | 515                | 516              | 0.08           | 0.03             | 0.8              | 0.56         | 2               | 0.5                      | Clast supported pyritic<br>Breccia   |
| DD009  | 516                | 517              | 0.12           | 0.04             | 1.3              | 1.04         | 2               | 0.3                      | Clast supported pyritic<br>Breccia   |
| DD009  | 517                | 518              | 0.17           | 0.06             | 1.9              | 1.46         | 2               | 0.5                      | Clast supported pyritic<br>Breccia   |
| DD009  | 518                | 519              | 0.14           | 0.03             | 5.8              | 0.67         | 2               | 0.3                      | Clast supported pyritic<br>Breccia   |
| DD009  | 519                | 520              | 0.06           | 0.02             | 0.8              | 0.78         | 2               | 0.5                      | Clast supported pyritic<br>Breccia   |
| DD009  | 520                | 521              | 0.14           | 0.05             | 2.3              | 1.82         | 2               | 0.3                      | Clast supported pyritic<br>Breccia   |
| DD009  | <mark>521</mark>   | <mark>530</mark> | 0.06           | 0.02             | 0.9              | 1.04         | 2               | 0.2                      | Clast supported Breccia              |
| DD009  | 530                | 531              | 0.13           | 0.03             | 1.7              | 0.78         | 1               | 0.5                      | Hydrothermal Infill Breccia          |
| DD009  | 531                | 532              | 0.13           | 0.06             | 2.2              | 0.95         | 0.8             | 0.2                      | Hydrothermal Infill Breccia          |
| DD009  | 532                | 533              | 0.18           | 0.06             | 4.2              | 1.19         | 2               | 0.1                      | Hydrothermal Infill Breccia          |
| DD009  | 533                | 534              | 0.14           | 0.02             | 1.6              | 0.43         | 2               | 0.5                      | Hydrothermal Infill Breccia          |
| DD009  | 534                | 535              | 0.37           | 0.15             | 6.3              | 0.97         | 3               | 0.5                      | Hydrothermal Infill Breccia          |
| DD009  | 535                | 536              | 0.13           | 0.04             | 1.6              | 0.99         | 1               | 0.3                      | Hydrothermal Infill Breccia          |
| DD009  | 536                | 537              | 0.08           | 0.01             | 0.9              | 0.31         | 2               | 0.5                      | Hydrothermal Infill Breccia          |
| DD009  | 537                | 538              | 0.06           | 0.05             | 0.9              | 0.59         | 1               | 0.5                      | ydrothermal Infill Breccia           |
| DD009  | 538                | 539              | 0.15           | 0.03             | 2.0              | 0.78         | 3               | 0.3                      | Hydrothermal Infill Breccia          |
| DD009  | 539                | 540              | 0.07           | 0.02             | 1.2              | 0.79         | 2               | 0.1                      | Hydrothermal Infill Breccia          |
| DD009  | 540                | 541              | 0.08           | 0.02             | 1.3              | 0.74         | 2               | 0.5                      | Hydrothermal Infill Breccia          |
| DD009  | 541                | 542              | 0.04           | 0.01             | 0.6              | 0.95         | 0.5             | 0.1                      | Altered Diorite Porphyry             |
| DD009  | 542                | 543              | 0.02           | 0.01             | 0.3              | 0.45         | 1               | 0.3                      | Hydrothermal Infill Breccia          |
| DD009  | 543                | 544              | 0.02           | 0.12             | 0.3              | 0.22         | 1               |                          | Clast supported Breccia              |
| DD009  | 544                | 545              | 0.01           | 0.06             | 0.3              | 0.23         | 0.5             |                          | Clast supported Breccia              |
| DD009  | <mark>545</mark>   | <mark>551</mark> | 0.03           | 0.02             | 0.6              | 0.76         | 2               | 0.05                     | Clast supported Breccia              |
| DD009  | 551                | 552              | 0.00           | 0.00             | 0.3              | 0.02         |                 |                          | Post Mineral Andesite<br>Dyke        |
| DD009  | 552                | 553              | 0.02           | 0.01             | 0.6              | 0.40         | 1               |                          | Post Mineral Andesite<br>Dyke        |
| DD009  | 553                | 554              | 0.02           | 0.02             | 0.5              | 0.31         | 2               |                          | Fault Zone                           |
| DD009  | 554                | 555              | 0.03           | 0.01             | 0.6              | 0.46         | 1               |                          | Fault Zone                           |
| DD009  | <mark>555</mark>   | <mark>589</mark> | 0.03           | 0.01             | 0.6              | 1.13         | 1.5             | 0.1                      | Tuffisite                            |
| DD009  | 589                | 590              | 0.19           | 0.06             | 2.5              | 0.89         | 3               | 0.5                      | Tuffisite                            |
| DD009  | <mark>590</mark>   | <mark>615</mark> | 0.03           | 0.01             | 0.6              | 1.05         | 1               | 0.1                      | Clast supported<br>Breccia/Tuffisite |
| DD009  | 615                | 616              | 0.08           | 0.44             | 4.6              | 4.05         | 5               | 0.5                      | Clast supported<br>Breccia/Tuffisite |
| DD009  | <mark>616</mark>   | <mark>628</mark> | 0.03           | 0.01             | 0.5              | 0.96         | 2               | 0.05                     | Clast supported<br>Breccia/Tuffisite |



| DD009         628         629         0.27         0.08         5.8         6.57         5         1         Altered Diorite Porphyry           DD009         629         630         1.60         0.29         23.1         7.97         10         10         Altered Diorite Porphyry           DD009         631         632         0.18         0.04         4.1         3.40         5         2         Altered Diorite Porphyry           DD009         633         634         0.27         0.07         5.0         3.32         5         3         Altered Diorite Porphyry           DD009         633         636         0.28         0.04         4.5         4.22         5         2         Altered Diorite Porphyry           DD009         636         637         0.71         0.19         11.4         5.07         5         Hydrothermal Infill Breccia           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         643         644         0.47         0.44         3.13         10         3         Hydrothermal Infill Breccia           DD009         644         <                                                                                                                                                                    |        | From<br>Depth | To<br>Depth | Lab<br>Cu | Lab<br>Au | Lab<br>Ag | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|-------------|-----------|-----------|-----------|--------------|-----------------|--------------------------|-----------------------------|
| DD009         629         630         1.60         0.29         23.1         7.97         10         10         Altered Diorite Porphyry           DD009         630         631         0.59         0.14         9.7         5.39         5         1         Altered Diorite Porphyry           DD009         632         633         0.67         0.02         16.7         5.87         5         3         Altered Diorite Porphyry           DD009         633         634         0.27         0.07         5.0         3.32         5         3         Altered Diorite Porphyry           DD009         636         636         0.28         0.04         4.5         4.22         5         2         Altered Diorite Porphyry           DD009         636         637         0.71         0.19         11.4         5.07         5         Hydrothermal Infill Breccia           DD009         638         639         0.38         0.89         7.271         5         2         Hydrothermal Infill Breccia           DD009         640         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD009         644                                                                                                                                                                           | 22CAE# |               | -           | %         | g/t       | -         | La           | Pyi             | σ                        | Lithology                   |
| DD009         630         631         0.59         0.14         9.7         5.39         5         1         Altered Diorite Porphyry           DD009         631         632         0.08         0.04         4.1         3.40         5         2         Altered Diorite Porphyry           DD009         633         634         0.27         0.07         5.0         3.32         5         3         Altered Diorite Porphyry           DD009         633         634         0.27         0.07         5.0         3.32         5         3         Altered Diorite Porphyry           DD009         636         637         0.71         0.19         11.4         5.07         5         5         Hydrothermal Infill Breccia           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         640         641         0.30         0.07         4.5         3.64         8         5         1         Hydrothermal Infill Breccia                                                                                                                                                                           | DD009  | 628           | 629         | 0.27      | 0.08      | 5.8       | 6.57         | 5               | 1                        | Altered Diorite Porphyry    |
| DD009         631         632         0.18         0.04         4.1         3.40         5         2         Altered Diorite Porphyry           DD009         632         633         0.67         0.20         16.7         5.87         5         3         Altered Diorite Porphyry           DD009         633         634         0.27         0.07         5.0         3.32         5         3         Altered Diorite Porphyry           DD009         635         636         0.28         0.04         4.5         4.22         5         2         Altered Diorite Porphyry           DD009         636         637         0.71         0.19         1.1         4.10         7.0         4         0.5         Altered Diorite Porphyry           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         640         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.9         8.3         3.10         3         1         Hydrothermal Infill Breccia                                                                                                                                                                         | DD009  | 629           | 630         | 1.60      | 0.29      | 23.1      | 7.97         | 10              | 10                       | Altered Diorite Porphyry    |
| DD009         632         633         0.67         0.20         16.7         5.87         5         3         Altered Diorite Porphyry           DD009         633         634         0.27         0.07         5.0         3.32         5         3         Altered Diorite Porphyry           DD009         636         636         0.28         0.04         4.5         4.22         5         2         Altered Diorite Porphyry           DD009         636         637         0.71         0.19         11.4         5.07         5         5         Hydrothermal Infill Breccia           DD009         638         638         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         640         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.9         8.4         3.13         10         3         Hydrothermal Infill Breccia                                                                                                                                                                               | DD009  | 630           | 631         | 0.59      | 0.14      | 9.7       | 5.39         | 5               | 1                        | Altered Diorite Porphyry    |
| DD009         633         634         0.27         0.07         5.0         3.32         5         3         Altered Diorite Porphyry           DD009         635         636         0.28         0.04         4.5         4.22         5         2         Altered Diorite Porphyry           DD009         636         637         0.71         0.19         11.4         4.07         5         5         Hydrothermal Infill Breccia           DD009         636         637         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         640         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         641         642         0.28         0.02         3.9         0.99         3         2         Hydrothermal Infill Breccia                                                                                                                                                                            | DD009  | 631           | 632         | 0.18      | 0.04      | 4.1       | 3.40         | 5               | 2                        | Altered Diorite Porphyry    |
| DD009         634         635         0.04         0.01         1.1         4.13         8         0.5         Altered Diorite Porphyry           DD009         635         636         0.28         0.04         4.5         4.22         5         2         Altered Diorite Porphyry           DD009         636         637         0.71         0.19         11.4         5.07         5         5         Hydrothermal Infill Breccia           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         639         640         0.47         0.04         7.1         2.29         4         0.5         Hydrothermal Infill Breccia           DD009         640         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         642         643         0.02         1.8         3.72         5         1         Hydrothermal Infill Breccia           DD009                                                                                                                                                                     | DD009  | 632           | 633         | 0.67      | 0.20      | 16.7      | 5.87         | 5               | 3                        | Altered Diorite Porphyry    |
| DD009         635         636         0.28         0.04         4.5         4.22         5         2         Altered Diorite Porphyry           DD009         636         637         0.71         0.19         11.4         5.07         5         Hydrothermal Infill Breccia           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         638         639         0.47         0.04         7.1         2.29         4         0.5         Hydrothermal Infill Breccia           DD009         640         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         3.2         1         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         5.3         1.23         1         Hydrothermal Infill Breccia           DD009         646         647         0.                                                                                                                                                               | DD009  | 633           | 634         | 0.27      | 0.07      | 5.0       | 3.32         | 5               | 3                        | Altered Diorite Porphyry    |
| DD009         636         637         0.71         0.19         11.4         5.07         5         5         Hydrothermal Infill Breccia           DD009         637         638         0.10         0.02         1.5         4.70         4         0.5         Altered Diorite Porphyry           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         640         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.02         1.8         3.72         5         1         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         3.9         0.99         3         2         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         3.9         7.51         5         3         Hydrothermal Infill Breccia                                                                                                                                                                       | DD009  | 634           | 635         | 0.04      | 0.01      | 1.1       | 4.13         | 8               | 0.5                      | Altered Diorite Porphyry    |
| DD009         637         638         0.10         0.02         1.5         4.70         4         0.5         Altered Diorite Porphyry           DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         630         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         642         643         0.10         0.04         2.0         2.25         8         1         Hydrothermal Infill Breccia           DD009         643         644         0.09         0.02         1.8         3.72         5         1         Hydrothermal Infill Breccia           DD009         645         646         0.28         0.02         5.3         1.23         3         1         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia                                                                                                                                                                        | DD009  | 635           | 636         | 0.28      | 0.04      | 4.5       | 4.22         | 5               | 2                        | Altered Diorite Porphyry    |
| DD009         638         639         0.38         0.08         5.7         2.71         5         2         Hydrothermal Infill Breccia           DD009         639         640         0.47         0.04         7.1         2.29         4         0.5         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         643         644         0.09         0.02         1.8         3.72         5         1         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         5.3         1.23         3         1         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia <tr< td=""><td>DD009</td><td>636</td><td>637</td><td>0.71</td><td>0.19</td><td>11.4</td><td>5.07</td><td>5</td><td>5</td><td>Hydrothermal Infill Breccia</td></tr<> | DD009  | 636           | 637         | 0.71      | 0.19      | 11.4      | 5.07         | 5               | 5                        | Hydrothermal Infill Breccia |
| DD09         639         640         0.47         0.04         7.1         2.29         4         0.5         Hydrothermal Infill Breccia           DD09         640         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD09         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         642         643         0.10         0.04         2.0         2.25         8         1         Hydrothermal Infill Breccia           DD009         643         644         0.09         0.02         1.8         3.72         5         1         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         5.3         1.23         3         1         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia                                                                                                                                                                       | DD009  | 637           | 638         | 0.10      | 0.02      | 1.5       | 4.70         | 4               | 0.5                      | Altered Diorite Porphyry    |
| DD009         640         641         0.30         0.07         4.5         3.64         8         0.5         Hydrothermal Infill Breccia           DD009         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         642         643         0.10         0.04         2.0         2.25         8         1         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         3.9         0.99         3         2         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         5.3         1.23         1         Hydrothermal Infill Breccia           DD009         645         646         0.23         0.02         5.3         1.23         1         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         9.6         5.99         8         0.5         Hydrothermal Infill Breccia           DD009                                                                                                                                                                        | DD009  | 638           | 639         | 0.38      | 0.08      | 5.7       | 2.71         | 5               | 2                        | Hydrothermal Infill Breccia |
| DD009         641         642         0.40         0.09         8.4         3.13         10         3         Hydrothermal Infill Breccia           DD009         642         643         0.10         0.04         2.0         2.25         8         1         Hydrothermal Infill Breccia           DD009         643         644         0.09         0.02         1.8         3.72         5         1         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         3.9         0.99         3         2         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.02         5.3         1.23         3         1         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         1.17         5.16         5         3         Hydrothermal Infill Breccia           DD009         650         651         0.06         0.03         2.4         4.91         3         0.1         Altered Diorite Porphyry                                                                                                                                                                         | DD009  | 639           | 640         | 0.47      | 0.04      | 7.1       | 2.29         | 4               | 0.5                      | Hydrothermal Infill Breccia |
| DD009         642         643         0.10         0.04         2.0         2.25         8         1         Hydrothermal Infill Breccia           DD009         643         644         0.09         0.02         1.8         3.72         5         1         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         3.9         0.99         3         2         Hydrothermal Infill Breccia           DD009         645         646         0.23         0.02         5.3         1.23         3         1         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia           DD009         649         650         0.12         0.05         3.9         7.55         8         1         Hydrothermal Infill Breccia           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia                                                                                                                                                                        | DD009  | 640           | 641         | 0.30      | 0.07      | 4.5       | 3.64         | 8               | 0.5                      | Hydrothermal Infill Breccia |
| DD009         643         644         0.09         0.02         1.8         3.72         5         1         Hydrothermal Infill Breccia           DD009         644         645         0.28         0.02         3.9         0.99         3         2         Hydrothermal Infill Breccia           DD009         645         646         0.23         0.02         5.3         1.23         3         1         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         1.7         5.16         5         3         Hydrothermal Infill Breccia           DD009         649         650         0.12         0.05         3.9         7.55         8         1         Hydrothermal Infill Breccia           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia                                                                                                                                                                        | DD009  | 641           | 642         | 0.40      | 0.09      | 8.4       | 3.13         | 10              | 3                        | Hydrothermal Infill Breccia |
| DD009         644         645         0.28         0.02         3.9         0.99         3         2         Hydrothermal Infill Breccia           DD009         645         646         0.23         0.02         5.3         1.23         3         1         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia           DD009         648         649         0.42         0.14         9.6         5.99         8         0.5         Hydrothermal Infill Breccia           DD009         649         650         0.12         0.05         3.9         7.55         8         1         Hydrothermal Infill Breccia           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia           DD009         651         652         0.41         0.08         1.9         3.64         4         2         Hydrothermal Infill Breccia                                                                                                                                                                      | DD009  | 642           | 643         | 0.10      | 0.04      |           |              | 8               | 1                        | Hydrothermal Infill Breccia |
| DD009         644         645         0.28         0.02         3.9         0.99         3         2         Hydrothermal Infill Breccia           DD009         645         646         0.23         0.02         5.3         1.23         3         1         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia           DD009         648         649         0.42         0.14         9.6         5.99         8         0.5         Hydrothermal Infill Breccia           DD009         649         650         0.12         0.05         3.9         7.55         8         1         Hydrothermal Infill Breccia           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia           DD009         651         652         0.41         0.02         3.0         5.38         5         0.1         Altered Diorite Porphyry                                                                                                                                                                       |        | 643           | 644         | 0.09      |           |           |              | 5               | 1                        | Hydrothermal Infill Breccia |
| DD009         645         646         0.23         0.02         5.3         1.23         3         1         Hydrothermal Infill Breccia           DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia           DD009         648         649         0.42         0.14         9.6         5.99         8         0.5         Hydrothermal Infill Breccia           DD009         649         650         0.12         0.05         3.9         7.55         8         1         Hydrothermal Infill Breccia           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia           DD009         651         652         0.41         0.02         3.0         5.38         5         0.1         Altered Diorite Porphyry           DD009         652         653         0.04         0.02         3.0         5.38         5         0.1         Altered Diorite Porphyry                                                                                                                                                                        |        | 644           | 645         |           |           |           |              | 3               | 2                        | -                           |
| DD009         646         647         0.28         0.05         8.9         3.00         5         2         Hydrothermal Infill Breccia           DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia           DD009         648         649         0.42         0.14         9.6         5.99         8         0.5         Hydrothermal Infill Breccia           DD009         649         650         0.12         0.05         3.9         7.55         8         1         Hydrothermal Infill Breccia           DD009         650         651         0.06         0.03         2.4         4.91         3         0.1         Altered Diorite Porphyry           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia           DD009         653         654         0.02         0.02         1.3         6.46         8         0.1         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         2.3         5.91         4         0.1         Altered Diorite Porphyry                                                                                                                                                                         |        | 645           | 646         |           |           |           |              |                 |                          | ·                           |
| DD009         647         648         0.65         0.14         11.7         5.16         5         3         Hydrothermal Infill Breccia           DD009         648         649         0.42         0.14         9.6         5.99         8         0.5         Hydrothermal Infill Breccia           DD009         649         650         0.12         0.05         3.9         7.55         8         1         Hydrothermal Infill Breccia           DD009         650         651         0.06         0.03         2.4         4.91         3         0.1         Altered Diorite Porphyry           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia           DD009         652         653         0.04         0.02         3.0         5.38         5         0.1         Altered Diorite Porphyry           DD009         653         654         0.02         0.02         1.3         6.46         8         0.1         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         2.3         5.91         4         0.1         Altered Diorite Porphyry                                                                                                                                                                          |        | 646           | 647         |           |           |           |              | 5               | 2                        | •                           |
| DD009         648         649         0.42         0.14         9.6         5.99         8         0.5         Hydrothermal Infill Breccia           DD009         649         650         0.12         0.05         3.9         7.55         8         1         Hydrothermal Infill Breccia           DD009         650         651         0.06         0.03         2.4         4.91         3         0.1         Altered Diorite Porphyry           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia           DD009         652         653         0.04         0.02         3.0         5.38         5         0.1         Altered Diorite Porphyry           DD009         653         654         0.02         0.02         1.3         6.46         8         0.1         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         2.3         5.91         4         0.1         Altered Diorite Porphyry           DD009         656         657         0.04         0.03         1.9         4.12         8         0.1         Altered Diorite Porphyry                                                                                                                                                                            |        | 647           | 648         |           |           |           |              | 5               |                          |                             |
| DD009         649         650         0.12         0.05         3.9         7.55         8         1         Hydrothermal Infill Breccia           DD009         650         651         0.06         0.03         2.4         4.91         3         0.1         Altered Diorite Porphyry           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia           DD009         652         653         0.04         0.02         3.0         5.38         5         0.1         Altered Diorite Porphyry           DD009         653         654         0.02         0.02         1.3         6.46         8         0.1         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         2.3         5.91         4         0.1         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         2.3         5.91         4         0.1         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         5.4         5.68         5         0.2         Hydrothermal Infill Breccia                                                                                                                                                                            |        | 648           | 649         |           |           |           |              | 8               | 0.5                      | •                           |
| DD009         650         651         0.06         0.03         2.4         4.91         3         0.1         Altered Diorite Porphyry           DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia           DD009         652         653         0.04         0.02         3.0         5.38         5         0.1         Altered Diorite Porphyry           DD009         653         654         0.02         0.02         1.3         6.46         8         0.1         Altered Diorite Porphyry           DD009         654         655         0.08         0.03         3.4         5.43         5         0.2         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         2.3         5.91         4         0.1         Altered Diorite Porphyry           DD009         656         657         0.04         0.03         1.9         4.12         8         0.1         Altered Diorite Porphyry           DD009         657         658         0.10         0.02         5.4         5.68         5         0.2         Hydrothermal Infill Breccia                                                                                                                                                                             |        | 649           | 650         |           |           |           |              | 8               | 1                        | -                           |
| DD009         651         652         0.41         0.08         11.9         3.64         4         2         Hydrothermal Infill Breccia           DD009         652         653         0.04         0.02         3.0         5.38         5         0.1         Altered Diorite Porphyry           DD009         653         654         0.02         0.02         1.3         6.46         8         0.1         Altered Diorite Porphyry           DD009         654         655         0.08         0.03         3.4         5.43         5         0.2         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         2.3         5.91         4         0.1         Altered Diorite Porphyry           DD009         656         657         0.04         0.03         1.9         4.12         8         0.1         Altered Diorite Porphyry           DD009         656         657         0.04         0.03         1.9         4.12         8         0.1         Altered Diorite Porphyry           DD009         657         658         0.10         0.02         5.4         5.68         5         0.2         Hydrothermal Infill Breccia                                                                                                                                                                             | DD009  | 650           | 651         | 0.06      |           |           |              | 3               | 0.1                      | -                           |
| DD0096526530.040.023.05.3850.1Altered Diorite PorphyryDD0096536540.020.021.36.4680.1Altered Diorite PorphyryDD0096546550.080.033.45.4350.2Altered Diorite PorphyryDD0096556560.020.022.35.9140.1Altered Diorite PorphyryDD0096566570.040.031.94.1280.1Altered Diorite PorphyryDD0096566570.040.031.94.1280.1Altered Diorite PorphyryDD0096566570.040.031.94.1280.1Altered Diorite PorphyryDD0096566570.040.025.45.6850.2Hydrothermal Infill BrecciaDD0096586590.100.064.95.9250.3Hydrothermal Infill BrecciaDD0096596600.250.054.96.6951Hydrothermal Infill BrecciaDD0096616620.030.021.35.095Clast supported BrecciaDD0096616620.030.021.35.095Clast supported BrecciaDD0096636640.110.023.32.283Clast supported BrecciaDD0096656660.030.011.5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 651           | 652         |           |           |           |              | 4               | 2                        |                             |
| DD009         653         654         0.02         0.02         1.3         6.46         8         0.1         Altered Diorite Porphyry           DD009         654         655         0.08         0.03         3.4         5.43         5         0.2         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         2.3         5.91         4         0.1         Altered Diorite Porphyry           DD009         656         657         0.04         0.03         1.9         4.12         8         0.1         Altered Diorite Porphyry           DD009         657         658         0.10         0.02         5.4         5.68         5         0.2         Hydrothermal Infill Breccia           DD009         657         658         0.10         0.02         5.4         5.68         5         0.2         Hydrothermal Infill Breccia           DD009         659         660         0.25         0.05         4.9         6.69         5         1         Hydrothermal Infill Breccia           DD009         661         662         0.03         0.02         0.9         3.88         5         Clast supported Breccia           DD009                                                                                                                                                                        |        | 652           | 653         |           |           |           |              | 5               | 0.1                      | -                           |
| DD009         654         655         0.08         0.03         3.4         5.43         5         0.2         Altered Diorite Porphyry           DD009         655         656         0.02         0.02         2.3         5.91         4         0.1         Altered Diorite Porphyry           DD009         656         657         0.04         0.03         1.9         4.12         8         0.1         Altered Diorite Porphyry           DD009         656         657         0.04         0.03         1.9         4.12         8         0.1         Altered Diorite Porphyry           DD009         657         658         0.10         0.02         5.4         5.68         5         0.2         Hydrothermal Infill Breccia           DD009         658         659         0.10         0.06         4.9         5.92         5         0.3         Hydrothermal Infill Breccia           DD009         660         661         0.03         0.02         1.5         5.38         5         Clast supported Breccia           DD009         661         662         0.03         0.02         1.3         5.09         5         Clast supported Breccia           DD009         662                                                                                                                                                                          |        | 653           | 654         |           |           |           |              | 8               | 0.1                      | Altered Diorite Porphyry    |
| DD0096556560.020.022.35.9140.1Altered Diorite PorphyryDD0096566570.040.031.94.1280.1Altered Diorite PorphyryDD0096576580.100.025.45.6850.2Hydrothermal Infill BrecciaDD0096586590.100.064.95.9250.3Hydrothermal Infill BrecciaDD0096596600.250.054.96.6951Hydrothermal Infill BrecciaDD0096606610.030.021.55.385Clast supported BrecciaDD0096616620.030.020.93.885Clast supported BrecciaDD0096626630.040.021.35.095Clast supported BrecciaDD0096646650.030.011.54.453Altered Diorite PorphyryDD0096666670.010.020.84.303Altered Diorite Porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 654           |             |           |           |           |              |                 |                          |                             |
| DD0096566570.040.031.94.1280.1Altered Diorite PorphyryDD0096576580.100.025.45.6850.2Hydrothermal Infill BrecciaDD0096586590.100.064.95.9250.3Hydrothermal Infill BrecciaDD0096596600.250.054.96.6951Hydrothermal Infill BrecciaDD0096606610.030.021.55.385Clast supported BrecciaDD0096616620.030.020.93.885Clast supported BrecciaDD0096626630.040.021.35.095Clast supported BrecciaDD0096636640.110.023.32.283Clast supported BrecciaDD0096656660.010.010.34.013Altered Diorite PorphyryDD0096666670.010.020.84.303Altered Diorite Porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DD009  | 655           |             |           |           |           |              | 4               | 0.1                      | Altered Diorite Porphyry    |
| DD009         657         658         0.10         0.02         5.4         5.68         5         0.2         Hydrothermal Infill Breccia           DD009         658         659         0.10         0.06         4.9         5.92         5         0.3         Hydrothermal Infill Breccia           DD009         659         660         0.25         0.05         4.9         6.69         5         1         Hydrothermal Infill Breccia           DD009         660         661         0.03         0.02         1.5         5.38         5         Clast supported Breccia           DD009         661         662         0.03         0.02         1.3         5.09         5         Clast supported Breccia           DD009         662         663         0.04         0.02         1.3         5.09         5         Clast supported Breccia           DD009         663         664         0.11         0.02         3.3         2.28         3         Clast supported Breccia           DD009         664         665         0.03         0.01         1.5         4.45         3         Altered Diorite Porphyry           DD009         666         667         0.01         0.02                                                                                                                                                                         |        | 656           | 657         |           |           |           |              | 8               | 0.1                      | Altered Diorite Porphyry    |
| DD009         658         659         0.10         0.06         4.9         5.92         5         0.3         Hydrothermal Infill Breccia           DD009         659         660         0.25         0.05         4.9         6.69         5         1         Hydrothermal Infill Breccia           DD009         660         661         0.03         0.02         1.5         5.38         5         Clast supported Breccia           DD009         661         662         0.03         0.02         0.9         3.88         5         Clast supported Breccia           DD009         662         663         0.04         0.02         1.3         5.09         5         Clast supported Breccia           DD009         663         664         0.11         0.02         3.3         2.28         3         Clast supported Breccia           DD009         664         665         0.03         0.01         1.5         4.45         3         Altered Diorite Porphyry           DD009         666         667         0.01         0.02         0.8         4.30         3         Altered Diorite Porphyry                                                                                                                                                                                                                                                          |        |               |             |           |           |           |              |                 |                          | Hydrothermal Infill Breccia |
| DD009         659         660         0.25         0.05         4.9         6.69         5         1         Hydrothermal Infill Breccia           DD009         660         661         0.03         0.02         1.5         5.38         5         Clast supported Breccia           DD009         661         662         0.03         0.02         0.9         3.88         5         Clast supported Breccia           DD009         662         663         0.04         0.02         1.3         5.09         5         Clast supported Breccia           DD009         663         664         0.11         0.02         3.3         2.28         3         Clast supported Breccia           DD009         664         665         0.03         0.01         1.5         4.45         3         Altered Diorite Porphyry           DD009         665         666         0.01         0.01         0.3         4.01         3         Altered Diorite Porphyry           DD009         666         667         0.01         0.02         0.8         4.30         3         Altered Diorite Porphyry                                                                                                                                                                                                                                                                         |        |               |             |           |           |           |              |                 |                          | •                           |
| DD009         660         661         0.03         0.02         1.5         5.38         5         Clast supported Breccia           DD009         661         662         0.03         0.02         0.9         3.88         5         Clast supported Breccia           DD009         662         663         0.04         0.02         1.3         5.09         5         Clast supported Breccia           DD009         663         664         0.11         0.02         3.3         2.28         3         Clast supported Breccia           DD009         664         665         0.03         0.01         1.5         4.45         3         Altered Diorite Porphyry           DD009         665         666         0.01         0.03         4.01         3         Altered Diorite Porphyry           DD009         666         667         0.01         0.02         0.8         4.30         3         Altered Diorite Porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |               | -           |           |           |           |              |                 |                          | •                           |
| DD009         661         662         0.03         0.02         0.9         3.88         5         Clast supported Breccia           DD009         662         663         0.04         0.02         1.3         5.09         5         Clast supported Breccia           DD009         663         664         0.11         0.02         3.3         2.28         3         Clast supported Breccia           DD009         664         665         0.03         0.01         1.5         4.45         3         Altered Diorite Porphyry           DD009         665         666         0.01         0.01         0.3         4.01         3         Altered Diorite Porphyry           DD009         666         667         0.01         0.02         0.8         4.30         3         Altered Diorite Porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |               |             |           |           |           |              |                 |                          | •                           |
| DD009         662         663         0.04         0.02         1.3         5.09         5         Clast supported Breccia           DD009         663         664         0.11         0.02         3.3         2.28         3         Clast supported Breccia           DD009         664         665         0.03         0.01         1.5         4.45         3         Altered Diorite Porphyry           DD009         665         666         0.01         0.01         0.3         4.01         3         Altered Diorite Porphyry           DD009         666         667         0.01         0.02         0.8         4.30         3         Altered Diorite Porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |               | -           |           |           |           |              |                 |                          |                             |
| DD009         663         664         0.11         0.02         3.3         2.28         3         Clast supported Breccia           DD009         664         665         0.03         0.01         1.5         4.45         3         Altered Diorite Porphyry           DD009         665         666         0.01         0.01         0.3         4.01         3         Altered Diorite Porphyry           DD009         666         667         0.01         0.02         0.8         4.30         3         Altered Diorite Porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |               |             |           |           |           |              |                 |                          |                             |
| DD009         664         665         0.03         0.01         1.5         4.45         3         Altered Diorite Porphyry           DD009         665         666         0.01         0.01         0.3         4.01         3         Altered Diorite Porphyry           DD009         666         667         0.01         0.02         0.8         4.30         3         Altered Diorite Porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               | -           |           |           |           |              |                 |                          |                             |
| DD009         665         666         0.01         0.01         0.3         4.01         3         Altered Diorite Porphyry           DD009         666         667         0.01         0.02         0.8         4.30         3         Altered Diorite Porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |               |             |           |           |           |              |                 |                          | •••                         |
| DD009         666         667         0.01         0.02         0.8         4.30         3         Altered Diorite Porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |               |             |           |           |           |              |                 |                          |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |               |             |           |           |           |              |                 |                          |                             |
| LUDUM LUU LUU LUU LUU LUU LUU LUU LUU LUU L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DD009  | 667           | 668         | 0.01      | 0.30      | 3.6       | 7.04         | 10              |                          | Clast supported Breccia     |



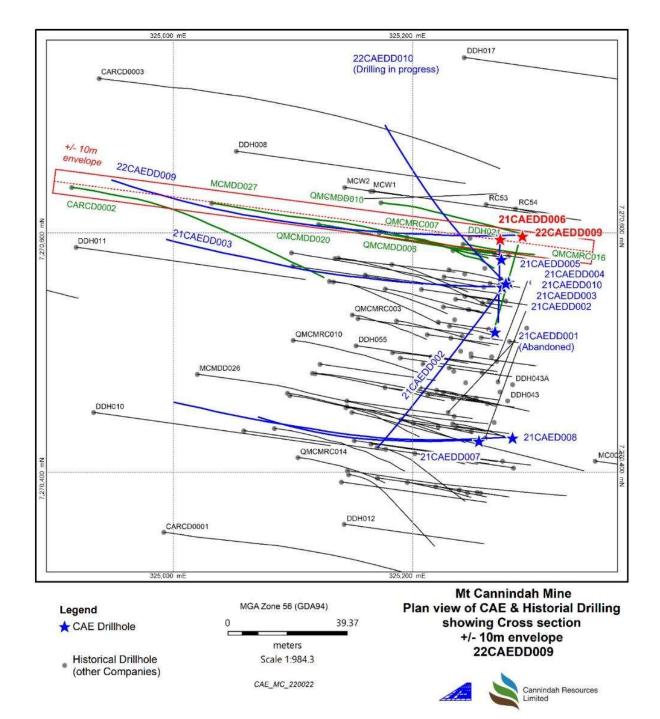
| 22CAE# | From<br>Depth    | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                          |
|--------|------------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|------------------------------------|
| DD009  | <b>m</b><br>668  | 669              | 0.04           | 0.02             | 2.0              | 8.05         | 10              |                          | Clast supported Breccia            |
| DD009  | 669              | 670              | 0.14           | 0.27             | 4.4              | 5.42         | 8               |                          | Hydrothermal Infill Breccia        |
| DD009  | 670              | 671              | 0.15           | 0.02             | 3.4              | 3.16         | 2               |                          | Fault Zone                         |
| DD009  | 671              | 672              | 0.10           | 0.06             | 2.7              | 2.23         | 2               | 0.5                      | Hydrothermal Infill Breccia        |
| DD009  | 672              | 673              | 0.52           | 0.63             | 24.3             | 4.90         | 5               | 0.5                      | Hydrothermal Infill Breccia        |
| DD009  | 673              | 674              | 0.09           | 0.03             | 2.8              | 3.17         | 3               | 1                        | y<br>Hydrothermal Infill Breccia   |
| DD009  | 674              | 675              | 0.09           | 0.03             | 3.8              | 3.71         | 2               | 0.2                      | Hydrothermal Infill Breccia        |
| DD009  | 675              | 676              | 0.02           | 0.01             | 0.8              | 1.47         | 3               | 0.1                      | y<br>Hydrothermal Infill Breccia   |
| DD009  | 676              | 677              | 0.23           | 0.05             | 6.7              | 2.40         | 3               | 0.2                      | Hydrothermal Infill Breccia        |
| DD009  | 677              | 678              | 0.13           | 0.24             | 4.4              | 2.49         | 5               | 0.1                      | Hydrothermal Infill Breccia        |
| DD009  | 678              | 679              | 0.34           | 0.04             | 8.9              | 2.49         | 5               | 0.5                      | Altered Diorite Porphyry           |
| DD009  | 679              | 680              | 0.10           | 0.03             | 3.3              | 4.86         | 5               | 0.5                      | Altered Diorite Porphyry           |
| DD009  | 680              | 681              | 0.02           | 0.01             | 0.6              | 2.89         | 3               |                          | Clast supported Breccia            |
| DD009  | 681              | 682              | 0.09           | 0.02             | 4.4              | 4.49         | 8               | 0.2                      | Clast supported Breccia            |
| DD009  | 682              | 683              | 0.10           | 0.02             | 3.5              | 4.60         | 8               | 0.2                      | Clast supported Breccia            |
| DD009  | 683              | 684              | 0.13           | 0.02             | 4.9              | 4.39         | 8               | 0.2                      | Clast supported Breccia            |
| DD009  | 684              | 685              | 0.02           | 0.01             | 0.9              | 3.71         | 2               | 0.1                      | Clast supported Breccia            |
| DD009  | 685              | 686              | 0.04           | 0.01             | 2.1              | 4.50         | 12              | 0.1                      | Clast supported Breccia            |
| DD009  | 686              | 687              | 0.04           | 0.01             | 1.3              | 3.78         | 10              | 0.1                      | Clast supported Breccia            |
| DD009  | 687              | 688              | 0.02           | 0.04             | 0.9              | 4.07         | 10              | 0.1                      | Clast supported Breccia            |
| DD009  | 688              | 689              | 0.03           | 2.30             | 3.6              | 7.93         | 10              | 0.1                      | Clast supported Breccia            |
| DD009  | 689              | 690              | 0.04           | 0.04             | 2.3              | 4.92         | 10              | 0.1                      | Clast supported Breccia            |
| DD009  | 690              | 691              | 0.08           | 0.02             | 2.8              | 3.96         | 5               | 0.1                      | Clast supported Breccia            |
| DD009  | 691              | 692              | 0.16           | 0.02             | 4.3              | 2.39         | 1               | 0.1                      | Altered Diorite Porphyry           |
| DD009  | 692              | 693              | 0.10           | 0.01             | 3.3              | 1.34         | 2               | 0.1                      | Altered Diorite Porphyry           |
| DD009  | <mark>693</mark> | <mark>715</mark> | 0.05           | 0.02             | 1.6              | 1.90         | 3               | 0.2                      | Clast supported Breccia            |
| DD009  | 715              | 716              | 0.12           | 0.27             | 3.3              | 2.47         | 3               | 0.5                      | Clast supported Breccia            |
| DD009  | 716              | 717              | 0.03           | 0.04             | 1.0              | 3.32         | 3               | 0.5                      | Clast supported Breccia            |
| DD009  | 717              | 718              | 0.03           | 0.01             | 0.9              | 0.79         | 0.5             | 0.2                      | Clast supported Breccia            |
| DD009  | 718              | 719              | 0.08           | 0.01             | 2.5              | 1.38         | 5               | 1                        | Hydrothermal Infill Breccia        |
| DD009  | 719              | 720              | 0.13           | 0.01             | 4.0              | 0.74         | 8               | 1                        | Hydrothermal Infill Breccia        |
| DD009  | 720              | 721              | 0.40           | 0.03             | 12.5             | 1.98         | 3               | 3                        | Hydrothermal Infill Breccia        |
| DD009  | <mark>721</mark> | <mark>728</mark> | 0.05           | 0.03             | 1.8              | 3.62         | 5               | 0.3                      | Clast supported Breccia            |
| DD009  | 728              | 729              | 0.17           | 0.08             | 5.1              | 7.10         | 10              | 0.2                      | Tuffisite                          |
| DD009  | 729              | 730              | 0.27           | 0.30             | 8.4              | 8.50         | 10              | 2                        | Clast supported Breccia            |
| DD009  | <mark>730</mark> | <mark>751</mark> | 0.07           | 0.02             | 1.8              | 2.68         | 4               | 0.2                      | Pyritic Clast supported<br>Breccia |
| DD009  | <mark>751</mark> | <mark>759</mark> | 0.06           | 0.02             | 1.9              | 3.07         | 4               | 1                        | Hydrothermal Infill Breccia        |
| DD009  | 759              | 760              | 0.34           | 0.11             | 10.2             | 9.61         | 10              | 3                        | Hydrothermal Infill Breccia        |
| DD009  | 760              | 761              | 0.27           | 0.22             | 6.1              | 5.79         | 5               | 2                        | Hydrothermal Infill Breccia        |



| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                          |
|--------|--------------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|------------------------------------|
| DD009  | 761                | 762              | 0.02           | 0.02             | 1.1              | 4.67         | 5               | 0.2                      | Hydrothermal Infill Breccia        |
| DD009  | 762                | 763              | 0.33           | 0.08             | 5.6              | 8.90         | 15              | 1                        | Hydrothermal Infill Breccia        |
| DD009  | 763                | 764              | 0.01           | 0.01             | 0.3              | 2.68         | 5               | 0.1                      | Hydrothermal Infill Breccia        |
| DD009  | 764                | 765              | 0.02           | 0.01             | 0.7              | 5.29         | 8               | 0.1                      | Hydrothermal Infill Breccia        |
| DD009  | 765                | 766              | 0.10           | 0.04             | 3.7              | 4.33         | 5               | 0.5                      | Hydrothermal Infill Breccia        |
| DD009  | 766                | 767              | 0.13           | 0.06             | 4.9              | 6.76         | 10              | 0.5                      | Hydrothermal Infill Breccia        |
| DD009  | 767                | 768              | 0.18           | 0.08             | 5.1              | 7.51         | 10              | 2                        | Hydrothermal Infill Breccia        |
| DD009  | 768                | 769              | 0.12           | 0.05             | 4.9              | 5.26         | 10              | 1                        | Hydrothermal Infill Breccia        |
| DD009  | 769                | 770              | 0.08           | 0.02             | 2.0              | 1.60         | 5               | 2                        | Hydrothermal Infill Breccia        |
| DD009  | 770                | 771              | 0.96           | 0.16             | 21.7             | 4.13         | 5               | 4                        | Tuffisite                          |
| DD009  | 771                | 772              | 0.23           | 0.04             | 3.6              | 1.96         | 5               | 2                        | Hydrothermal Infill Breccia        |
| DD009  | 772                | 773              | 0.12           | 0.02             | 2.4              | 2.61         | 5               | 0.3                      | Tuffisite                          |
| DD009  | 773                | 774              | 0.21           | 0.04             | 5.0              | 7.59         | 12              | 4                        | Tuffisite                          |
| DD009  | 774                | 775              | 0.21           | 0.05             | 5.1              | 7.33         | 10              | 3                        | Tuffisite                          |
| DD009  | 775                | 776              | 0.42           | 0.03             | 7.8              | 3.64         | 10              | 4                        | Tuffisite                          |
| DD009  | 776                | 777              | 0.09           | 0.01             | 2.4              | 1.98         | 10              | 0.5                      | Tuffisite                          |
| DD009  | 777                | 778              | 0.00           | 0.00             | 0.3              | 0.13         |                 |                          | Post Mineral Andesite<br>Dyke      |
| DD009  | 778                | 779              | 0.02           | 0.02             | 0.3              | 1.33         | 0.2             | 0.2                      | Post Mineral Andesite<br>Dyke      |
| DD009  | 779                | 780              | 0.04           | 0.02             | 0.9              | 3.28         | 3               | 0.1                      | Tuffisite                          |
| DD009  | 780                | 781              | 0.21           | 0.06             | 4.6              | 5.41         | 10              | 0.1                      | Hydrothermal Infill Breccia        |
| DD009  | <mark>781</mark>   | <mark>785</mark> | 0.03           | 0.01             | 0.8              | 3.27         | 5.5             | 0.1                      | Clast supported pyritic<br>Breccia |
| DD009  | <mark>785</mark>   | <mark>790</mark> | 0.06           | 0.01             | 1.2              | 3.04         | 4               | 0.2                      | Tuffisite                          |
| DD009  | <mark>790</mark>   | <mark>799</mark> | 0.00           | 0.00             | 0.3              | 0.10         |                 |                          | Post Mineral Andesite<br>Dyke      |
| DD009  | 799                | 800              | 0.01           | 0.01             | 0.3              | 3.52         | 7               |                          | Tuffisite                          |
| DD009  | 800                | 801              | 0.01           | 0.01             | 0.3              | 6.43         | 15              |                          | Tuffisite                          |
| DD009  | 801                | 802              | 0.16           | 0.03             | 2.8              | 6.28         | 15              | 2                        | Fault zone                         |
| DD009  | <mark>802</mark>   | <mark>815</mark> | 0.01           | 0.01             | 0.3              | 1.76         | 3               |                          | Tuffisite                          |
| DD009  | 815                | 816              | 0.82           | 0.19             | 14.0             | 4.70         | 5               | 4                        | Hydrothermal Infill Breccia        |
| DD009  | 816                | 817              | 0.14           | 0.06             | 2.9              | 2.30         | 3               | 1.5                      | Hydrothermal Infill Breccia        |
| DD009  | 817                | 818              | 0.01           | 0.00             | 0.3              | 0.94         | 1               |                          | Clast supported pyritic<br>Breccia |
| DD009  | <mark>818</mark>   | <mark>822</mark> | 0.01           | 0.01             | 0.3              | 1.36         | 2               |                          | Tuffisite                          |
| DD009  | <mark>822</mark>   | <mark>829</mark> | 0.00           | 0.00             | 0.3              | 0.39         |                 |                          | Post Mineral Andesite<br>Dyke      |
| DD009  | 829                | 830              | 0.22           | 0.03             | 2.1              | 1.24         | 1               | 2                        | Clast supported pyritic<br>Breccia |
| DD009  | <mark>830</mark>   | <mark>851</mark> | 0.01           | 0.01             | 0.4              | 4.25         | 6               |                          | Clast supported pyritic<br>Breccia |



## Update 5 April, 2022


| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab<br>Au<br>g/t | Lab<br>Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite<br>Visual % | Lithology                          |
|--------|--------------------|------------------|----------------|------------------|------------------|--------------|-----------------|--------------------------|------------------------------------|
| DD009  | <mark>851</mark>   | <mark>864</mark> | 0.01           | 0.00             | 0.3              | 0.44         | 1               | 0.05                     | Clast supported pyritic<br>Breccia |
| DD009  | <mark>864</mark>   | <mark>869</mark> | 0.01           | 0.01             | 0.3              | 0.24         | 0.2             |                          | Post Mineral Andesite<br>Dyke      |
| DD009  | <mark>869</mark>   | <mark>877</mark> | 0.04           | 0.02             | 0.5              | 0.64         | 1               |                          | Diorite                            |
| DD009  | 877                | 877.6            | 0.06           | 0.15             | 1.2              | 2.29         | 2               | 0.1                      | Diorite                            |

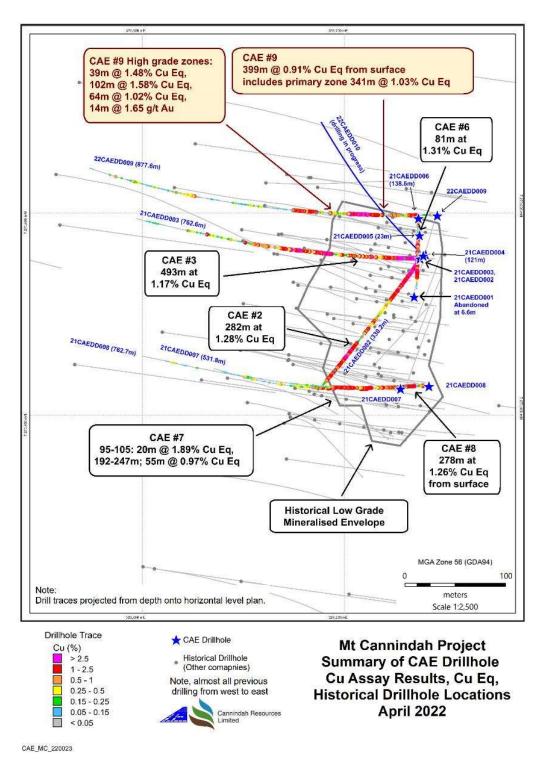
Cannindah Resources Limited

### **ASX RELEASE**

Update 5 April, 2022

ASX Code: CAE



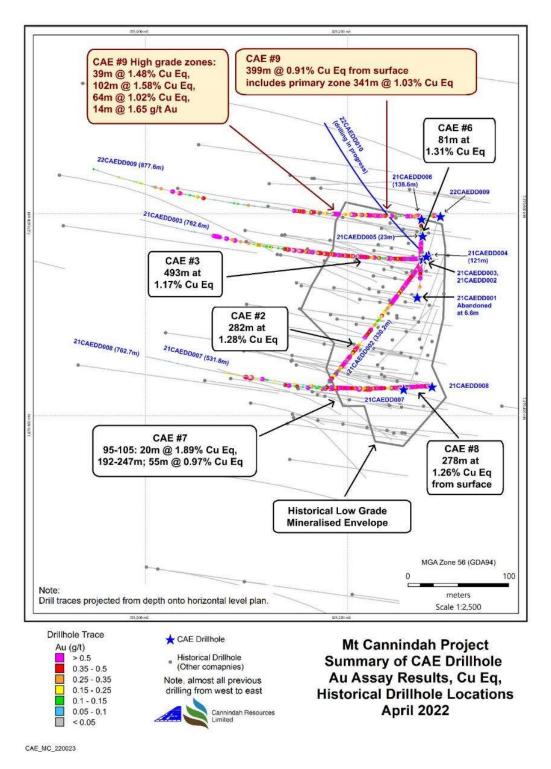

#### Appendix 2 Plans & Sections of CAE and Historical Drilling Mt Cannindah

App2,Fig1 . Plan View of Mt Cannidah showing CAE hole traces (blue) in relation to historical holes . Cross Section line incorporates CAE hole 9. Note hole #10 still drilling early April,2022, drill trace drawn to 550m.

**ASX RELEASE** 



ASX Code: CAE

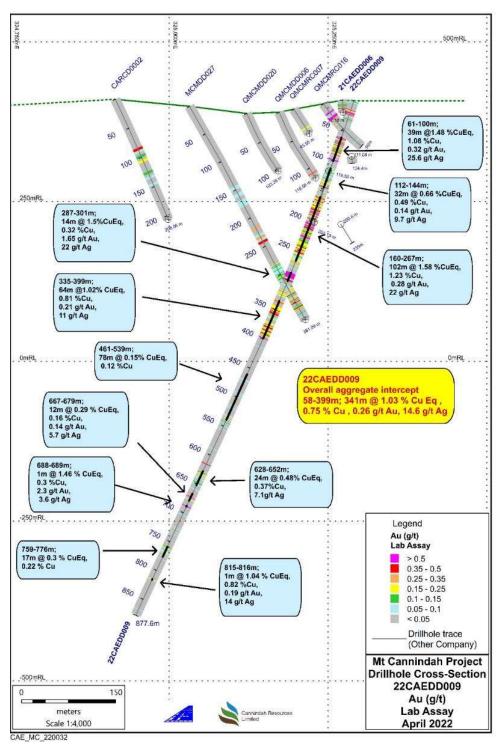



App2,Fig2 . Plan View of Mt Cannidah showing CAE hole traces with down hole Cu assays in relation to historical holes . Note hole #10 still drilling early April,2022, drill trace drawn to 550m



Update 5 April, 2022

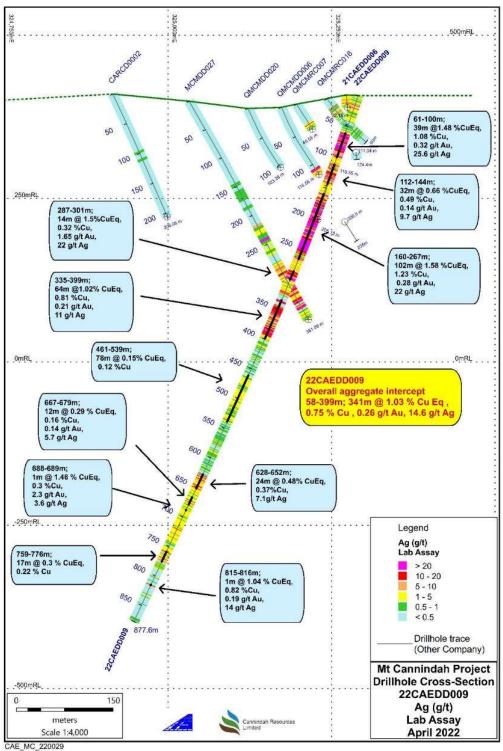
ASX Code: CAE




App2,Fig3 . Plan View of Mt Cannidah showing CAE hole traces with down hole Au assays in relation to historical holes . Note hole #10 still drilling early April,2022, drill trace drawn to 550m



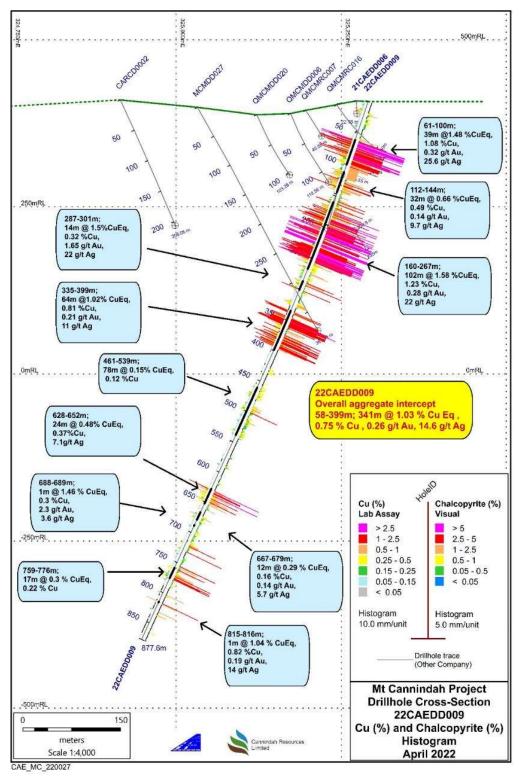



ASX Code: CAE



App 2, Fig 4. Mt Cannindah mine area east west cross section CAE hole 9, Au lab assay results plotted down hole, annotated significant intersections. CAE holes and holes used in previous resource estimation only plotted,

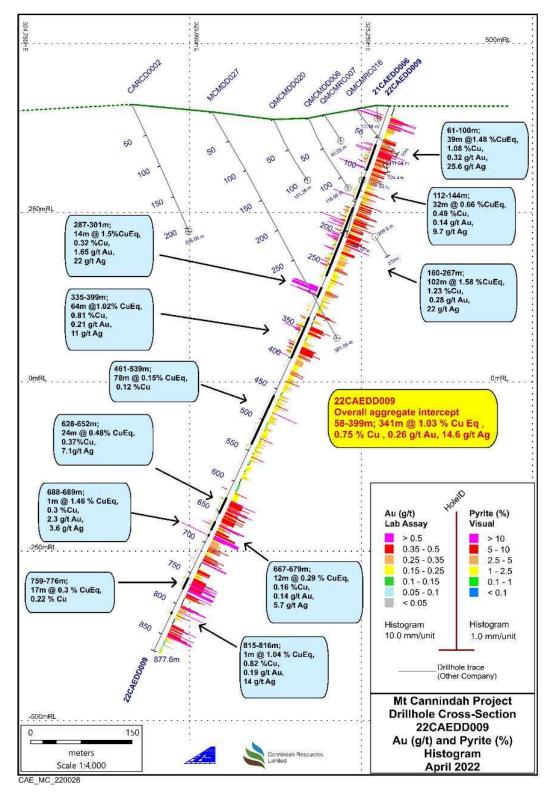







App 2, Fig 5. Mt Cannindah mine area east west cross section CAE hole 9, Ag lab assay results plotted down hole, annotated significant intersections. CAE holes and holes used in previous resource estimation only plotted,

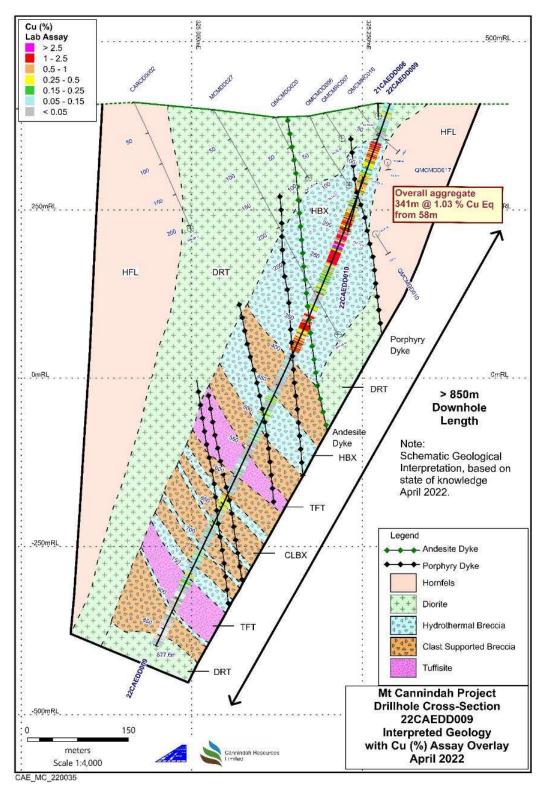







App 2, Fig 6. Mt Cannindah mine area east west cross section CAE hole 9,looking north, Cu lab assay results plotted against visual estimates chalcopyrite content.



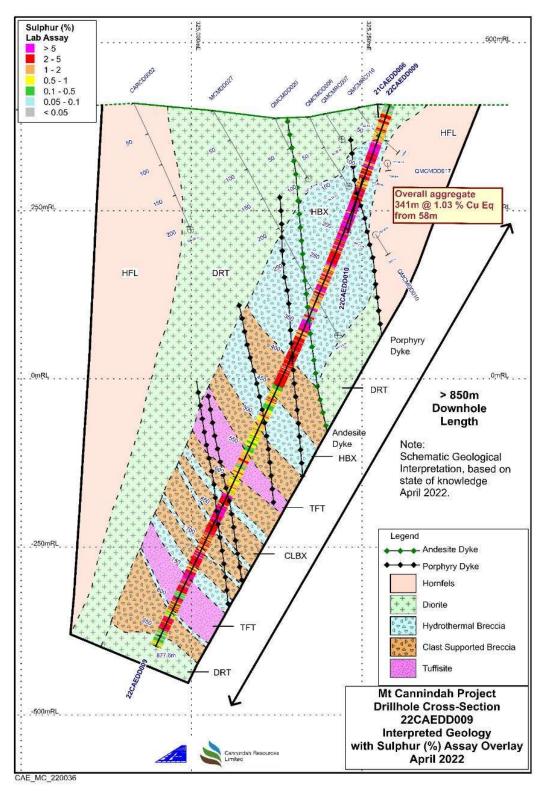





App 2, Fig 7. Mt Cannindah mine area east west cross section CAE hole 9, Au lab assay results plotted against visual estimates pyrite content.



Update 5 April, 2022




App 2, Fig 8. Preliminary schematic geological interpretation east west cross section CAE hole 9,looking north , with overlay of downhole copper lab assays.



Update 5 April, 2022

ASX Code: CAE



App 2, Fig 9. Preliminary schematic geological interpretation east west cross section CAE hole 9,looking north, with overlay of downhole sulphur lab assays.

JORC Code Table 1 Cannindah Resources Limited announcement 4th April, 2022.



Update 5 April, 2022

ASX Code: CAE

# Section 1: Sampling Techniques and Data

| Criteria              | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques   | Nature and quality of sampling (e.g. cut<br>channels, random chips, or specific<br>specialised industry standard<br>measurement tools appropriate to the<br>minerals under investigation, such as<br>down hole gamma sondes, or handheld<br>XRF instruments, etc.) These examples<br>should not be taken as limiting the broad<br>meaning of sampling.Include reference to measures taken to<br>ensure sampling representivity and the                                                                                                                                                                                                                                              | . Sampling results are based on sawn half<br>core samples of both PQ ,HQ and NQ<br>diameter diamond drill core. An orientation<br>line was marked along all core sections.<br>One side of the core was consistently sent<br>for analysis and the other side was<br>consistently retained for archive purposes.<br>The orientation line was consistently<br>preserved.                                                                                                                |
|                       | appropriate calibration of any<br>measurement tools or systems used.<br>Aspects of the determination of<br>mineralisation that are Material to the<br>Public Report. In cases where 'industry<br>standard' work has been done this would<br>be relatively simple (e.g. 'reverse<br>circulation drilling was used to obtain 1m<br>samples from which 3kg was pulverised to<br>produce a 30g charge for fire assay'). In<br>other cases more explanation may be<br>required, such as where there is coarse<br>gold that has inherent sampling problems.<br>Unusual commodities or mineralisation<br>types (e.g. submarine nodules) may<br>warrant disclosure of detailed information. | Half core samples were sawn up on a<br>diamond saw on a metre basis for HQ,NQ<br>diameter core and a 0.5m basis for PQ<br>diameter core. Samples were forwarded<br>to commercial NATA standard<br>laboratories for crushing, splitting and<br>grinding ,Laboratory used in this instance<br>is Intertek Genalysis , Townsville.<br>Analytical sample size was in the order of<br>2.5kg to 3kg.                                                                                       |
| Drilling techniques   | Drill type (e.g. core, reverse circulation,<br>open-hole hammer, rotary air blast, auger,<br>Bangka, sonic, etc.) and details (e.g. core<br>diameter, triple or standard tube, depth of<br>diamond tails, face-sampling bit or other<br>type, whether core is oriented and if so, by<br>what method, etc.)                                                                                                                                                                                                                                                                                                                                                                          | Drill type is diamond core. Core diameter<br>at top of hole is PQ, below 30m core<br>diameter is HQ and NQ.Triple tube<br>methodology was deployed for PQ & HQ,<br>which resulted in excellent core recovery<br>throughout the hole.Core was oriented ,<br>utilizing an Ace Orientaion equipment and<br>rigorously supervised by on-site geologist.                                                                                                                                  |
| Drill sample recovery | Method of recording and assessing core<br>and chip sample recoveries and results<br>assessed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Core recovery was recorded for all drill<br>runs and documented in a Geotechnical<br>log. The Triple Tube technology and<br>procedure ensured core recoveries were<br>excellent throughout the hole.                                                                                                                                                                                                                                                                                 |
|                       | Measures taken to maximise sample<br>recovery and ensure representative nature<br>of the samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Triple tube methodology ensure excellent<br>core recoveries. Core was marked up in<br>metre lengths and reconciled with drillers<br>core blocks. An orientation line was drawn<br>on the core . Core sampling was<br>undertaken by an experienced operator<br>who ensured that half core was sawn up<br>with one side consistently sent for analysis<br>and the other side was consistently<br>retained for archive purposes. The<br>orientation line was consistently<br>preserved. |
|                       | Whether a relationship exists between sample recovery and grade and whether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Core recoveries were good. An unbiased , consistent half core section was submitted                                                                                                                                                                                                                                                                                                                                                                                                  |



Update 5 April, 2022

| Criteria                                             | Explanation                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | sample bias may have occurred due to<br>preferential loss/gain of fine/coarse<br>material.                                                                                                                                | for the entire hole, on the basis of<br>continuous 1m sampling. 0.5m in the case<br>of PQ.The entire half core section was<br>crushed at the lab and then split, The<br>representative subsample was then fine<br>ground and a representative unbiased<br>sample was extracted for further analysis.                                                                                                                                                                                                                                                                                     |
| Logging                                              | Whether core and chip samples have been<br>geologically and geotechnically logged to<br>a level of detail to support appropriate<br>Mineral Resource estimation, mining<br>studies and metallurgical studies              | Geological logging was carried out by well-<br>trained/experienced geologist and data<br>entered via a well-developed logging<br>system designed to capture descriptive<br>geology, coded geology and quantifiable<br>geology. All logs were checked for<br>consistency by the Principal Geologist.<br>Data captured through Excel spread<br>sheets and Explorer 3 Relational Data<br>Base Management System. A<br>geotechnical log was prepared.                                                                                                                                        |
|                                                      | Whether logging is qualitative or<br>quantitative in nature. Core (or costean,<br>channel etc.) photography.                                                                                                              | Logging was qualitative in nature. A detailed log was described on the basis of visual observations. A comprehensive Core photograph catalogue was completed with full core dry, full core wet and half core wet photos taken of all core.                                                                                                                                                                                                                                                                                                                                               |
|                                                      | The total length and percentage of the relevant intersections logged.                                                                                                                                                     | The entire length of all drill holes has been geologically logged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sub-sampling<br>techniques and<br>sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                                                 | Half core samples were sawn up on a diamond saw on a metre basis for HQ, NQ diameter core and a 0.5m basis for PQ diameter core                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                      | If non-core, whether riffled, tube sampled,<br>rotary split, etc. and whether sampled wet<br>or dry.                                                                                                                      | All sampling was of diamond core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                      | For all sample types, the nature, quality<br>and appropriateness of the sample<br>preparation technique.<br>Quality control procedures adopted for all<br>sub-sampling stages to maximise<br>representativity of samples. | The above techniques are considered to<br>be of a high quality, and appropriate for the<br>nature of mineralisation anticipated.<br>QA/QC protocols were instigated such<br>that they conform to mineral industry<br>standards and are compliant with the<br>JORC code.                                                                                                                                                                                                                                                                                                                  |
|                                                      | Maggurga tokan to angura that the                                                                                                                                                                                         | Terra Search's input into the Quality<br>Assurance (QA) process with respect to<br>chemical analysis of mineral exploration<br>diamond core samples includes the<br>addition of blanks, standards to each batch<br>so that checks can be done after they are<br>analysed. As part of the Quality Control<br>(QC) process, Terra Search checks the<br>resultant assay data against known or<br>previously determined assays to<br>determine the quality of the analysed batch<br>of samples. An assessment is made on<br>the data and a report on the quality of the<br>data is compiled. |
|                                                      | Measures taken to ensure that the<br>sampling is representative of the in situ<br>material collected, including for instance<br>results for field duplicate/second-half<br>sampling.                                      | The lab results are checked against visual estimations and PXRF sampling of sludge and coarse crush material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      | Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                                                                                     | The standard 2kg -5kg sample is more<br>than appropriate for the grainsize of the<br>rock-types and sulphide grainsize. The                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



Update 5 April, 2022

| Criteria                                      | Explanation                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                                                                                                                                                                                                                                | sample sizes are considered to be<br>appropriate to represent the style of the<br>mineralisation, the thickness and<br>consistency of the intersections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Quality of assay data<br>and laboratory tests | The nature, quality and appropriateness of<br>the assaying and laboratory procedures<br>used and whether the technique is<br>considered partial or total.                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                               |                                                                                                                                                                                                                                                | The total amount of economic metals tied<br>up in sulphides and oxides such as Cu, Pb,<br>Zn, Ag, As, Mo, Bi,S is captured by the 4<br>acid digest method ICP finish. This is<br>regarded as a total digest method and is<br>checked against QA-QC procedures which<br>also emploty these total techniques.<br>Major elements which are present in<br>silicates, such as K, Ca, Fe, Ti, Al, Mg are<br>also digested by the 4 acid digest Total<br>method.<br>The techniques are considered to be<br>entirely appropriate for the porphyry, skarn<br>and vein style deposits in the area.<br>The economically important elements in<br>these deposits are contained in sulphides<br>which is liberated by 4 acid digest, all gold<br>is determined with a classic fire assay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                               | For geophysical tools, spectrometers,<br>handheld XRF instruments, etc. the<br>parameters used in determining the<br>analysis including instrument make and<br>model, reading times, calibration factors<br>applied and their derivation, etc. | Magnetic susceptibility measurements<br>utilizing Exploranium KT10 instrument,<br>zeroed between each measurement.<br>No PXRF results are reported here.<br>although PXRF analysis has been utilized<br>to provide multi-element data for the<br>prospect and will be reported separately.<br>The lab pulps are considered more than<br>appropriate samples for this purpose.<br>PXRF Analysis is carried out in an air-<br>conditioned controlled environment in<br>Terra Search offices in Townsville. The<br>instrument used was Terra Search's<br>portable Niton XRF analyser (Niton<br>'trugeo' analytical mode) analysing for a<br>suite of 40 major and minor elements. in.<br>The PXRF equipment is set up on a bench<br>and the sub-sample (loose powder in a thin<br>clear plastic freezer bag) is placed in a<br>lead-lined stand. An internal detector<br>autocalibrates the portable machine, and<br>Terra Search standard practice is to<br>instigate recalibration of the equipment<br>every 2 to 3 hours.<br>Readings are undertaken for 60 seconds<br>on a circular area of approximately 1cm<br>diameter. A higher number of<br>measurements are taken from the centre<br>of the circle and decreasing outwards.<br>PXRF measures total concentration of<br>particular elements in the sample. Reading |



### Update 5 April, 2022

| Criteria                                    | Explanation                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                                                                                                                                 | of the X-Ray spectra is effected by<br>interferences between different elements.<br>The matrix of the sample eg iron content<br>has to be taken into account when<br>interpreting the spectra.<br>The reliability and accuracy of the PXRF<br>results are checked regularly by reference<br>to known standards. There are some<br>known interferences relevant to particular<br>elements eg W & Au; Th & Bi, Fe & Co.<br>Awareness of these interferences is taken<br>into account when assessing the results. |
|                                             | Nature of quality control procedures<br>adopted (e.g. standards, blanks,<br>duplicates, external laboratory checks)<br>and whether acceptable levels of accuracy<br>(i.e. lack of bias) and precision have been<br>established. | by-batch basis, Terra Search has well<br>established sampling protocols including<br>blanks, certified reference material, and in-                                                                                                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                                                                 | Terra Search quality control included<br>determinations on certified OREAS<br>samples and analyses on duplicate<br>samples interspersed at regular intervals<br>through the sample suite of both the<br>commercial laboratory batchStandards<br>were checked and found to be within<br>acceptable tolerances. Laboratory assay<br>results for these quality control samples<br>are within 5% of accepted values.                                                                                               |
| Verification of<br>sampling and<br>assaying | The verification of significant intersections<br>by either independent or alternative<br>company personnel.                                                                                                                     | Significant intersections were verified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             | The use of twinned holes.                                                                                                                                                                                                       | There has been little direct twinning of<br>holes, the hole reported here pass close to<br>earlier drill holes , assay results and<br>geology are entirely consisted with<br>previous results.                                                                                                                                                                                                                                                                                                                 |
|                                             | Documentation of primary data, data entry<br>procedures, data verifications, data<br>storage (physical and electronic)<br>protocols.                                                                                            | Data is collected by qualified geologists and experienced field assistants and                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             |                                                                                                                                                                                                                                 | Data is imported into database tables from<br>the Excel spreadsheets with validation<br>checks set on different fields. Data is then<br>checked thoroughly by the Operations<br>Geologist for errors. Accuracy of drilling<br>data is then validated when imported into<br>MapInfo.                                                                                                                                                                                                                            |
|                                             |                                                                                                                                                                                                                                 | Location and analysis data are then<br>collated into a single Excel spreadsheet.<br>Data is stored on servers in the<br>Consultants office and also with CAE.<br>There have been regular backups and                                                                                                                                                                                                                                                                                                           |



### Update 5 April, 2022

| Criteria                                                      | Explanation                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               |                                                                                                                                                                                                                                             | archival copies of the database made.<br>Data is also stored at Terra Search's<br>Townsville Office. Data is validated by<br>long-standing procedures within Excel<br>Spreadsheets and Explorer 3 data base<br>and spatially validated within MapInfo GIS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                               | Discuss any adjustment to assay data.                                                                                                                                                                                                       | No adjustments are made to the<br>Commercial lab assay data. Data is<br>imported into the database in its original<br>raw format.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Location of data<br>points                                    | Accuracy and quality of surveys used to<br>locate drill holes (collar and down-hole<br>surveys), trenches, mine workings and<br>other locations used in Mineral Resource<br>estimation.                                                     | Collar location information was originally<br>collected with a Garmin 76 hand held GPS.<br>X-Y accuracy is estimated at 3-5m,<br>whereas height is +/- 10m.Coorinates will<br>be reassessed with DGPS survey.<br>Down hole surveys were conducted on all<br>holes using a Reflex downhole digital<br>camera . Surveys were generally taken<br>every 30m downhole , dip, magnetic<br>azimuth and magnetic field were recorded.                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                               | Specification of the grid system used.                                                                                                                                                                                                      | Coordinate system is UTM Zone 55 (MGA)<br>and datum is GDA94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Quality and adequacy of topographic control.                                                                                                                                                                                                | Pre-existing DTM is high quality and available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data spacing and<br>distribution                              | Data spacing for reporting of Exploration<br>Results.                                                                                                                                                                                       | At the Mt Cannindah mine area previous<br>drilling program total over 100 deep<br>diamond and Reverse Circulation<br>percussion holes Almost all have been<br>drilled in 25m to 50m spaced fences , from<br>west to east, variously positioned over a<br>strike length of 350m and a cross strike<br>width of at least 500m Down hole sample<br>spacing is in the order of 1m to 2m which<br>is entirely appropriate for the style of the<br>deposit and sampling procedures.                                                                                                                                                                                                                                                                                                                                      |
|                                                               | Whether the data spacing and distribution<br>is sufficient to establish the degree of<br>geological and grade continuity<br>appropriate for the Mineral Resource and<br>Ore Reserve estimation procedure(s) and<br>classifications applied. | Previous resource estimates on Mt<br>Cannindah include Golders 2008 for<br>Queensland Ores and Helman & Schofield<br>2o12 for Drummond Gold. Both these<br>estimates utilised 25m to 50m fences of<br>west to east drillholes, but expressed<br>concerns regarding confidence in assay<br>continuity both between 50m sections and<br>between holes within the plane of the cross<br>sections. The hole reported here<br>addresses some of the concerns about<br>grade continuity, by linking mineralisation<br>from section to section and also in the<br>plane of the cross sections. Further drilling<br>is necessary to enhance and fine tune the<br>previous Mineral Resource. estimates at<br>Mt Cannindah and lift the category from<br>Inferred to Indicated and Measured and<br>compliant with JORC 2012. |
|                                                               | Whether sample compositing has been applied.                                                                                                                                                                                                | No sample compositing has been applied,<br>Most are 0.5m to 1m downhole samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Orientation of data in<br>relation to geological<br>structure | Whether the orientation of sampling<br>achieves unbiased sampling of possible<br>structures and the extent to which this is<br>known, considering the deposit type.                                                                         | The main objective of hole 22CAEDD009,<br>reported here is to explore the northern<br>end of the Mt Cannindah Deposit for high<br>grade copper bearing breccia, where<br>previous interpretations suggested it<br>terminated by disappearing under weakly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



Update 5 April, 2022

| Criteria          | Explanation                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                                                                                                                                                                       | mineralised diorite. The high grade target<br>is essentially blind in this area , with<br>interesting ,but scattered and<br>discontinuous , copper intercepts present<br>in previous drilling. In contrast to historic<br>drilling in this section of the deposit, CAE<br># 9 was drilled from east to west, down<br>the plunge of the breccia body. The Infill<br>breccia is massive textured , recent<br>interpretation suggests the clasts may<br>have an imbrication or preferred<br>orientation, that is gently to moderately<br>dipping to te east. The holes drilled from<br>east to west may actually be drilling<br>orthogonal to the layering in the breccia,<br>as was observed during drilling Pre and<br>post mineral dykes cut the drill hole ,<br>generally in two orientations , east west,<br>and north south ,                                                                                                                                                                               |
|                   | If the relationship between drilling<br>orientation and the orientation of key<br>mineralised structures is considered to<br>have introduced a sampling bias, this<br>should be assessed and reported if<br>material. | The Infill breccia is massive textured ,<br>recent interpretation suggests the clasts<br>may have an imbrication or preferred<br>orientation, that is gently to moderately<br>dipping to te east. The holes drilled from<br>east to west may actually be drilling<br>orthogonal to the layering in the breccia, as<br>was observed during drilling. No sampling<br>bias is evident in the logging, or the<br>presentation of results or drill cross and<br>long sections.Steep structures are evident<br>and with steep holes these are cut at<br>oblique anges. The breccia zone at Mt<br>Cannindah is of sufficient width and depth<br>that drillhole 21CAEDD009 provides<br>valuable unbiased information concerning<br>grade continuity of the breccia body. The<br>complete geometry of the breccia body is<br>unknown at this stage. Similarly, vein<br>structures have several orienations and<br>only in certain instances is it evident that<br>vein orientations have introduced a<br>sampling bias. |
| Sample security   | The measures taken to ensure sample security.                                                                                                                                                                         | Chain of custody was managed by Terra<br>Search Pty Ltd. Core trays were freighted<br>in sealed pallets from Monto were they<br>were dispatched by Terra Search . The<br>core was processed and sawn in Terra<br>Search's Townsville facilities and half core<br>samples were delivered by Terra Search to<br>Intertek/Genalysis laboratory Townsville<br>lab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Audits or reviews | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                 | There have been numerous independent<br>reviews carried out on the Mt Cannindah<br>project reviewing sampling, data sets,<br>geological controls, the most notable ones<br>are Newcrest circa 1996; Coolgardie<br>Gold1999; Queensland Ores<br>2008;Metallica ,2008; Drummond Gold,<br>2011; CAE 2014.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



### Update 5 April, 2022

ASX Code: CAE

# Section 2: Reporting of Exploration Results

| Mineral tenement and<br>land tenure status | Type, reference name/number, location<br>and ownership including agreements or<br>material issues with third parties such as<br>joint ventures, partnerships, overriding<br>royalties, native title interests, historical<br>sites, wilderness or national and<br>environmental settings.                                                                                                                                                                                                                                                                                                                 | Exploration conducted on MLs 2301,<br>2302, 2303, 2304, 2307, 2308, 2309, EPM<br>14524, and EPM 15261. 100% owned by<br>Cannindah Resources Pty Ltd.<br>The MLs were acquired in 2002 by<br>Queensland Ores Limited (QOL), a<br>precursor company to Cannindah<br>Resources Limited. QOL acquired the<br>Cannindah Mining Leases from the<br>previous owners, Newcrest and MIM, As<br>part of the purchase arrangement a 1.5%<br>net smelter return (NSR) royalty on any<br>production is payable to MIM/Newcrest<br>and will be shared 40% by MIM and 60%<br>by Newcrest.<br>An access agreement with the current<br>landholders in in place. |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | The security of the tenure held at the time<br>of reporting along with any known<br>impediments to obtaining a license to<br>operate in the area.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No impediments to operate are known.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Exploration done by other parties          | Acknowledgement and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Previous exploration has been conducted<br>by multiple companies. Data used for<br>evaluating the Mt Cannindah project<br>include : Drilling & geology, surface<br>sampling by MIM (1970 onwards ) drilling<br>data Astrik (1987), Drill,Soil, IP & ground<br>magnetics and geology data collected by<br>Newcrest (1994-1996), rock chips<br>collected by Dominion (1992),. Drilling<br>data collected by Coolgardie Gold (1999),<br>Queensland Ores (2008-2011), Planet<br>Metals-Drummond Gold (2011-2013).<br>Since 2014 Terra Search Pty Ltd,<br>Townsville QLD has provided geological<br>consultant support to Cannindah<br>Resources.   |
| Geology                                    | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Breccia and porphyry intrusive related Cu-<br>Au-Ag-Mo , base metal skarns and shear<br>hosted Au bearing quartz veins occur<br>adjacent to a Cu-Mo porphyry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Drill hole information                     | <ul> <li>A summary of all information material to<br/>the understanding of the exploration<br/>results including a tabulation of the<br/>following information for all Material drill<br/>holes:</li> <li>Easting and northing of the drill hole<br/>collar</li> <li>Elevation or RL (Reduced Level –<br/>elevation above sea level in metres)<br/>of the drill hole collar</li> <li>Dip and azimuth of the hole</li> <li>Down hole length and interception<br/>depth</li> <li>Hole length</li> <li>If the exclusion of this information is<br/>justified on the basis that the information is</li> </ul> | A major drill data base exists for the Mt<br>Cannindah district amounting to over 400<br>holes. Selected Cu and Au down hole<br>intervals of interest have been listed in<br>CAE's ASX announcement, March,2021.                                                                                                                                                                                                                                                                                                                                                                                                                               |



Update 5 April, 2022

|                                                                        | not Material and this exclusion does not<br>detract from the understanding of the<br>report, the Competent Person should<br>clearly explain why this is the case.                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data aggregation<br>methods                                            | In reporting Exploration Results, weighting<br>averaging techniques, maximum and/or<br>minimum grade truncations (e.g. cutting of<br>high grades) and cut-off grades are usually<br>Material and should be stated.                                                                                                                                                                               | No cut-offs have been routinely applied in reporting of the historical drill results or the drillhole 21CAEDD002 reported here.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                        | Where aggregate intercepts incorporate<br>short lengths of high grade results and<br>longer lengths of low grade results, the<br>procedure used for such aggregation<br>should be stated and some typical<br>examples of such aggregations be shown<br>in detail                                                                                                                                 | The Cu-Au-Ag breccia style mineralisation<br>at Mt Cannindah is developed over<br>considerable downhole lengths. The<br>breccia is generally mineralised, although<br>copper grade and sulphide content is<br>variable. In addition pre and post mineral<br>dykes and intrusive bodies can mask the<br>mineralisation .Down hole Cu-Au-Ag<br>intercepts have been quoted both as a<br>semi-continuous, aggregated down hole<br>interval and also as tighter higher grade<br>Cu-Au-Ag sections. In addition, historical<br>results have been reported in the<br>aggregated form displayed in the ASX<br>Announcement for CAE , March,2021,<br>many times previously. There are some<br>zones of high grade which can influence<br>the longer intercepts, however the<br>variance in copper and gold grade within<br>the breccia is generally of a low order                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                        | The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                                      | A copper equivalent has been used to<br>report the wider copper bearing intercepts<br>that carriy Au and Ag credits with copper<br>being dominant. refer footnote 1 for further<br>details and assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Relationship between<br>mineralisation widths<br>and intercept lengths | The relationships are particularly important<br>in the reporting of Exploration Results.<br>If the geometry of the mineralisation with<br>respect to the drill hole angle is known, its<br>nature should be reported<br>If it is not known and only the down hole<br>lengths are reported, there should be a<br>clear statement to this effect (e.g. down<br>hole length, true width not known). | 22CAEDD009 reported here is an angled<br>hole, inclined 70 degrees to the west. The<br>hole is collared on diorite and drills into a<br>breccia body which is blind to this surface<br>position.<br>. The Mt Cannindah Infill breccia is<br>massive textured , recent interpretation<br>suggests the clasts may have an<br>imbrication or preferred orientation, that is<br>relatively flat dipping to the east. If this is<br>the case, the holes drilled vertically or from<br>east to west may be actually be drilling<br>orthogonal to the layering in the breccia<br>Pre and post mineral dykes cut the drill<br>hole , generally in two orientations , east<br>west, and north south ,<br>Previous resource estimations at Mt<br>Cannindah model the breccia body as<br>elongated NNE-SSW and at least 100m<br>plus thick in an east west direction.<br>Previous estimations indicate a potentially<br>depth extension to 350m plus The<br>breccia body geometry, as modelled at<br>surface has the long axis oriented NNE-<br>SSW. In this context hole 22CAEDD009<br>is drilled down the long axis of the breccia<br>body. The potential true width of the body<br>is oriented at an oblique ange to inclined<br>hole 22CAEDD009. However, geological |



### Update 5 April, 2022

| Diagrams                              | Appropriate maps and sections (with<br>scale) and tabulations of intercepts should<br>be included for any significant discovery<br>being reported. These should include, but<br>not be limited to a plan view of drill hole<br>collar locations and appropriate sectional<br>views.                                                                                                                              | consultants, Terra Search argue that the<br>dimensions of the mineralised body are<br>uncertain , the longest axis could well be<br>plunging to greater depths, and the upper<br>and lower contacts , effectively the<br>hanging and footwall contacts are still to be<br>firmly established. ,<br>Sections and plans of the drillhole<br>22CAEDD009 reported here, are included<br>in this report.Geological data is still being<br>assembled at the time of this report.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced reporting                    | Where comprehensive reporting of all<br>Exploration Results is not practicable,<br>representative reporting of both low and<br>high grades and/or widths should be<br>practised to avoid misleading reporting of<br>Exploration Results.                                                                                                                                                                         | The majority of Cu,Au,Ag assays from the<br>Om to 877.6m section of hole<br>22CAEDD009 are listed with this report. In<br>some instances , these have been<br>reported as lithological and geochemical<br>groups or sub-sets. Significant intercepts<br>of Cu,Au,Ag are tabulated. All holes were<br>sampled over their entire length,Reported<br>intercepts have been aggregated where<br>mineralization extends over significant<br>down hole widths. This aggregation has<br>allowed for the order of 10m non<br>mineralized late dykes or lower grade<br>breccia sections.to be incorporated within<br>the reported intersections. In general, a<br>lower value of 0.15% CuEq has been<br>utilized for the aggregated results. Wider<br>aggregations have been reported for<br>comparative purposes, in respect of<br>reporting assaying of the mineralized<br>sections which extend over the entire hole<br>length |
| Other substantive<br>exploration data | Other exploration data, if meaningful and<br>material, should be reported including (but<br>not limited to): geological observations;<br>geophysical survey results; geochemical<br>survey results; bulk samples – size and<br>method of treatment; metallurgical test<br>results; bulk density, groundwater,<br>geotechnical and rock characteristics;<br>potential deleterious or contaminating<br>substances. | The latest drill results from the Mt<br>Cannindah project are reported here. The<br>report concentrates on the Cu,Au, Ag<br>results. Other data, although not material<br>to this update will be collected and<br>reported in due course.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Further work                          | The nature and scale of planned further<br>work (e.g. test for lateral extensions or<br>depth extensions or large-scale step-out<br>drilling).                                                                                                                                                                                                                                                                   | Drill targets are identified and further<br>drilling is required. Drilling has continued<br>after the completion of hole<br>22CAEDD009. Hole 2CAEDD010 is being<br>drilled at the time of reporting. Other<br>drilling is planned at Mt Cannindah<br>Breccia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | Diagrams clearly highlighting the areas of<br>possible extensions, including the main<br>geological interpretations and future<br>drilling areas, provided this information is<br>not commercially sensitive.                                                                                                                                                                                                    | Not yet determined, further work is being conducted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |