

MEGADO SECURES TRANSFORMATIONAL ACQUISITION OF HIGH-GRADE RARE EARTH ELEMENT PROJECT IN IDAHO, USA

Megado Gold Limited (ASX: MEG) (the **'Company'** or '**Megado**') is pleased to announce it has entered into a definitive agreement with Felix Strategic Minerals Pty Ltd ('**FSM'**) to acquire 100% of the issued share capital in FSM. FSM, through its wholly owned subsidiary, Felix Strategic Minerals LLC, holds the contractual rights to acquire 100% of the rights, title and interest in the North Fork Rare Earth Project ('**North Fork'**), located in the mining-friendly Idaho Cobalt Belt region of Idaho, USA.

HIGHLIGHTS

- * North Fork consists of up to 499 claims (granted and in application), covering approximately **10,309** acres (42km²) with outcropping, high-grade, rare earth element (REE) mineralised rock.
- * North Fork contains **multiple carbonatite-hosted**, **high-grade**, **REE mineralised veins** that have been observed at surface across numerous prospects over 10km along strike.
- * Previous exploration has returned exceptional grades in channel samples:
 - Silver King Prospect: **2m @ 10.3%** Total Rare Earth Oxides **(TREO)** incl. **1.2%** Critical Rare Earth Oxides **(CREO)**; and **2m @ 5.8% TREO**; and **1.52m @ 17.7% TREO**
 - Jackpot Prospect: **0.76m @ 21.5% TREO**; and **0.76m @ 14.5% TREO**
 - Monazite Queen Prospect: 0.91m @ 21% TREO; and 3m @ 2.16% TREO
- * REE mineralisation displayed at North Fork is high-grade and enriched in critical rare earths (CREE), (typically: Nd, Pr, Dy, Tb, Y).
- * Operational team in USA is headed by **Greg Schifrin, former President of US Rare Earths and Colorado Rare Earth Minerals**. It is proposed that Mr Schifrin will join Megado's Board upon acquisition completion. Marta Ortiz will step down from the Board.
- * Walk-up drill targets have been delineated by historic exploration activities that included geological mapping, channel sampling, and geophysical surveys.
- * Located in Idaho, USA: ranked best mining policy jurisdiction in the world in 2020 by Fraser Institute.
- * Company to complete a placement **to raise \$2.4 million to fund initial exploration program** at North Fork expected to commence at completion of the acquisition.

Megado Gold CEO and Managing Director, Michael Gumbley, commented

"The North Fork Rare Earth project is a tremendous opportunity for Megado. The incorporation of a high-grade rare earth element project in an extremely receptive mining jurisdiction is an incredible addition to the Company's portfolio. Importantly, historical exploration, sampling mineralised outcropping veins, indicated extremely high-grade total rare earth oxides in excess of 20%, including significant returns of "critical rare earths".

Megado Gold Ltd ACN 635 895 082 ASX: MEG

Issued Capital 71.5m Shares 16.3m Options Australian Registered Address 12/197 St Georges Terrace PERTH WA 6000 Australia

T +61 8 6141 3260 E info@megadogold.com W www.megadogold.com

Director

Brad Drabsch (Non-Exec. Chair) Michael Gumbley (MD and CEO) Chris Bowden (Exec. Tech. Director) Marta Ortiz (Non-Exec. Director) Aaron Bertolatti (Finance Director)

The US government has designated rare earth elements as strategically critical and thus made domestic production integral to its clean energy transition and national security.

We are excited that Megado will benefit from the accommodating political climate, the welcoming Idaho jurisdiction, an existing strong US investor base, and obvious drill-ready targets to commence exploration upon finalisation of the North Fork acquisition.

In addition, Megado remains committed to its Ethiopian portfolio. The company is actively investigating REE potential in Ethiopia as it progresses its gold exploration."

RARE EARTH ELEMENTS (REE)

REE's are fundamental facets of the modern economy. While the elements themselves are not technically rare, ore bodies containing sufficient concentrations to make processing economically viable are exceedingly rare, thus making the North Fork opportunity particularly appealing. The elements' unique magnetic and electrochemical properties have led to a proliferation of applications. REE's have thus become critical components of clean energy, information technology, communication systems, electric vehicles, as well as many other defence and industrial applications. As such, applications continue to expand, REE's will undoubtedly see an increased role intrinsic to advanced economies worldwide.

Figure 1: Silver King vein sample showing carbonatite (grey) with rare earth mineralisation (orange-brown)

Indeed, it is the critical nature of the rare earth element suite which has triggered action in the United States and beyond. In response to Executive Order (EO) 14017 "America's Supply Chains", the current Administration has invoked the Defence Production Act and ordered Federal Government agencies to secure reliable and sustainable supplies of critical minerals and materials. The White House foresees demand for critical minerals increasing by some 400-600 percent and, in view of its reliance on REE's from foreign sources, it has deemed expanding domestic mining, production, processing, and recycling of critical minerals and material a matter of economic and national security.

LOCATION, INFRASTRUCTURE AND TENURE

The North Fork claims are located approximately 40 km (25 miles) northwest of Salmon, Idaho and consist of up to 499 unpatented/patented BLM mining lode claims (listed in Appendix A and illustrated in Figures 4 and 5). The North Fork Project has seven (7) historical prospect areas warranting further exploration in the intial exploration phase. These are Silver King, Cardinal, Jackpot, Radiant, Monazite Queen, and Upper & Lower Lee Buck.

Access to North Fork from major cities is by highway, driving from Idaho Falls or Missoula, both of which have commercial airports and are approximately 2.5 hours drive from Salmon. The state capital, Boise, is 5 hours drive from the project. The principal prospect areas at North Fork are served by existing roads previously used for logging operations. This infrastructure will allow the exploration team immediate access to the targets and assist to expedite the drilling permit process.

Figure 2: Access road direct to the Silver King Prospect

The North Fork Project is located at an elevation of about 1,000 – 2,100 meters. This area of Idaho can receive snowfall starting in late October lasting through the end of May. The project area is situated in the Salmon River Mountain range as part of the Rocky Mountain Cordillera and has a semi-arid climate with average annual low and high temperatures between -1°C and 15°C. Vegetation at the project consists of low growing shrubbery, various grasses, and pine forests.

REGIONAL SCALE

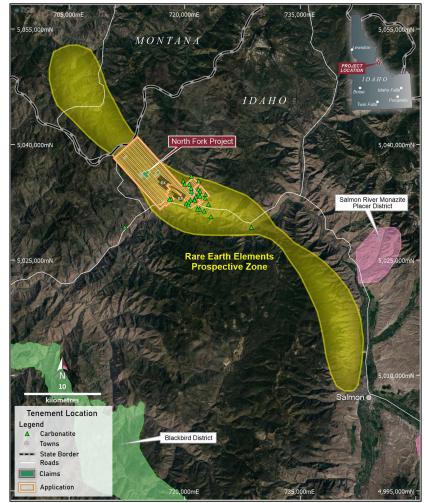
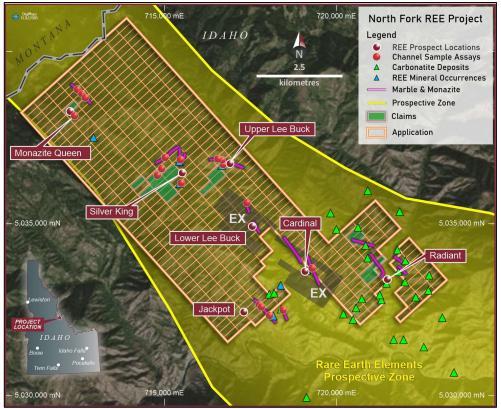



Figure 3: The North Fork Project area within Idaho, USA.

The North Fork Project forms part of the Rocky Mountain cordillera in Idaho, near the Montana border in north-western USA. The cordillera, which runs from Mexico, through Idaho, and into Canada, is well known to be mineralised along its length, typically associated with intrusives. The North Fork Project (Figure 3) is situated within the Sheep Creek-Spring Creek southeast-northwest belt. This zone is approximately 6km wide and 30km long, extending from the Salmon township northwest into Montana. Historical and active mining areas in the region include the Blackbird Mining District (approximately 30km to the south) home to Jervois Global's (ASX:JRV) highly significant cobalt deposit, and Lemhi Pass (approximately 80km to the southeast). Lemhi Pass is recognised as having some of the highest grades of REE mineralisation in the USA. Other active miners in the vicinity include Perpetua Resources (NASDAQ:PPTA), Freeman Gold Corp (TSXV:FMAN), and Revival Gold (TSXV:RVG).

Geologically, the area consists predominantly of Proterozoic metamorphosed amphibolite and augen gneiss, with younger Palaeozoic igneous carbonatite intrusions, and minor felsic dykes. Thrust and block faulting is common within the property and surrounds. Thrust faulting is interpreted to be associated with continental compressional stresses induced by the Farallon plate subduction. Block faulting is interpreted to be associated with ancient rifting and regional stresses coeval with thrusting. Rocks of the area commonly show folding and faulting offset.

Figure 4: The North Fork Project: 499 claims granted and in application. Seven (7) Prospects in the area cover ca. 10km strike length and 4km width.

MINERALISATION

The North Fork Project REE mineralisation is carbonatite-hosted. Rare earth element mineralisation is primarily associated with the igneous carbonatite intrusions as dykes and sills, with additional mineralisation noted within pegmatites, and disseminated within the host rock gneiss and schistose amphibolite rocks.

The carbonatite dykes/veins appear to be emplaced along faults, fractures, and foliation, and at lithological contacts. Detailed structural controls to mineralisation are not yet fully understood, and present an opportunity to better comprehend the extents, offsets, and locations of the carbonatite veins and the full potential for rare earth element mineralisation.

Monazite, allanite and niobium bearing rutile were identifed by previous workers as the most significant minerals hosting rare earth elements at North Fork. Carbonatites are known to be significant sources of rare earth mineralisation, with Lynas Rare Earths' (ASX:LYC) Mt Weld deposit in Western Australia a globally significant carbonatite-hosted rare earth deposit. Notably, the sole operating United States' REE mine, MP Materials' (NYSE:MP) Mountain Pass deposit, is also a carbonatite-hosted deposit, delivering 15% of global rare earths consumed annually.

Based on historical records and exploration efforts, the North Fork rare earth mineralisation is known to have low levels of associated thorium in concentrations less than an average of 165 ppm. At this level the thorium is not anticipated to significantly impair or add cost to any future project development.

HISTORICAL EXPLORATION ACTIVITIES

Historically, limited exploration has been done in the area. During the 1950's, the US Geological Survey (USGS), Idaho Bureau of Mines and Geology (IBMG), and the Atomic Energy Commission (AEC) investigated the occurrence of thorium, associated rare earths elements and niobium within the North Fork area. These early investigations lead to the property being staked in the early 2000's by previous workers.

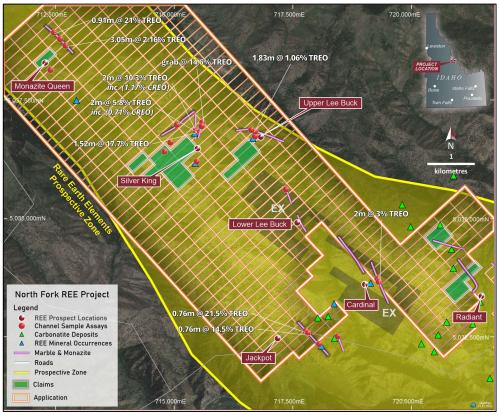


Figure 5: Significant historical trench intercepts within the North Fork Project area.

Exploration in the 2000's at Silver King, Cardinal, and Jackpot Prospects yielded indications of highly significant mineralisation warranting further work (Appendix B). One Cardinal Prospect "SB" vein has been traced for **1,317m (4,323ft) along strike** with trench samples returning moderate to high total rare earth oxide mineralisation grades up to 30,165g/t (**3% TREO**) with an along strike approximate estimated weighted average of 12,800 g/t (1.2% TREO).

A Jackpot Prospect vein has been traced along the surface for **400m** (**1,300ft**), with historical trench results of **0.76m @ 21.5% TREO**, and **0.76m @ 14.5% TREO**. The Silver King Prospect contains two known veins of approximately 210 and 170 meters long exposed at surface and costean sampled. The Silver King vein samples had high concentrations of total rare earth oxides with the North Vein and South Vein returning grades of 103,100 g/t (**10.3% TREO**) and 58,000 g/t (**5.8% TREO**) respectively. These Silver King North and South Veins also showed significant critical rare earth (Y, Nd, Tb, Dy, Er) content with total critical rare earth (CREO) sample grades of 11,700 g/t (**1.17% CREO**) and 7,000 g/t (**0.7% CREO**) respectively. Additional historical trench results at Silver King returned **1.52m @ 17.7% TREO**.

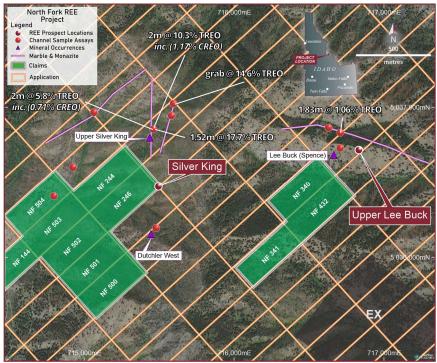


Figure 6: The Silver King Prospect will be the focus of early exploration activities.

TRANSACTION SUMMARY

Megado has entered into a definitive agreement to acquire 100% of the issued share capital in FSM, which holds the contractual rights to acquire 100% of the rights, title and interest in North Fork. The key acquisition terms are as follows:

- 1. 32,000,000 fully paid ordinary shares in Megado ("**Consideration Shares**") and 5,000,000 options with an exercise price of \$0.15 and expiring on 31 December 2024.
- 2. Reimbursement of expenses incurred up to A\$700,000 cash.
- 3. ASX has confirmed to the Company that Chapter 11 approvals are not required
- 4. The transaction is conditional upon receipt by MEG of all necessary shareholder and regulatory consents or approvals. It is expected that the necessary approvals will be obtained by the end of May 2022.

CAPITAL RAISING

The Company intends, subject to shareholder approval, to conduct a capital raising through a placement to professional and sophisticated investors of 30,000,000 shares at an issue price of \$0.08 per share to raise \$2.4m (before costs) (**Placement**). The Directors of the Company intend to invest in the Placement. The Directors participation in the Placement will be subject to, inter alia, shareholder approval under ASX Listing Rule 10.11. The shares issued under the Placement will rank equally with the Company's existing fully paid ordinary shares.

CPS Securities Limited (**CPS**) will act as Lead Manager to the Placement. The Company will pay CPS a capital raising fee of 6% of the gross proceeds raised under the Placement. In addition, the Company has agreed to issue CPS 500,000 options with an exercise price of \$0.15 and expiring on 31 December 2024 (**CPS Options**). In consideration for the provision of corporate advisory services associated with facilitating the acquisition, Megado has entered into a mandate with Corporate Advisory Pty Ltd, a non-related party of the Company, pursuant to which the Company will issue 4,000,000 fully paid ordinary shares in the Company and 5,000,000 options with an exercise price of \$0.15 and expiring on 31 December 2024 (**"Corporate Advisory Securities**").

The Company will seek shareholder approval for the Placement and the issue of Consideration Shares, Corporate Advisory Securities and CPS Options at an upcoming general meeting, with the Company expected to release a Notice of Meeting for the requisite approvals within the coming weeks.

The Company's pro forma capital structure based on the effect of the acquisition and the Placement is as follows:

	Ordinary Shares	Options
Existing on Issue	71,500,003	16,250,000
Acquisition	32,000,000	5,000,000
Corporate Advisory	4,000,000	5,000,000
Capital Raising	30,000,000	-
CPS Mandate	-	500,000
TOTAL	137,500,003	26,250,000

- ENDS -

Authorised for release by: Michael Gumbley, MD and CEO.

For further information on the Company and our projects, please visit:

www.megadogold.com

Contact: Michael Gumbley **Managing Director and CEO** +61 8 6141 3260 mgumbley@megadogold.com Mark Flynn Investor Relations and Media +61 416 068 733 mflynn@megadogold.com

Forward Looking Statements

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

Competent Person Statement

Information in this 'ASX Announcement' relating to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves has been compiled by Dr Chris Bowden who is a Fellow and Chartered Professional of the Australian Institute of Mining and Metallurgy and is an Executive Director of Megado Gold Ltd. He has sufficient experience that is relevant to the types of deposits being explored for and qualifies as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code 2012 Edition). Dr Bowden has consented to the release of the announcement.

Appendix A – List of Claims (Granted and Pending)

Granted Claims

Claim Name	Serial Number	Lead Serial Number
NF 109	IMC222958	IMC222955
NF 340	IMC222960	IMC222955
NF 341	IMC222961	IMC222955
NF 342	IMC222962	IMC222955
NF 436	IMC222969	IMC222955
NF 438	IMC222970	IMC222955
NF 457	IMC222972	IMC222955
NF 459	IMC222973	IMC222955
NF 467	IMC222977	IMC222955
NF 140	IMC222979	IMC222955
NF 144	IMC222981	IMC222955
NF 244	IMC222992	IMC222955
NF 246	IMC222993	IMC222955
NF 500	IMC222997	IMC222955
NF 501	IMC222998	IMC222955
NF 502	IMC222999	IMC222955
NF 503	IMC223000	IMC222955
NF 504	IMC223001	IMC222955

Claim Name	Serial Number	Claim Name	Serial Number	Claim Name	Serial Number
NF 1	327955	NF 42	327996	NF 83	328039
NF 2	327956	NF 43	327997	NF 84	328040
NF 3	327957	NF 44	327998	NF 85	328041
NF 4	327958	NF 45	327999	NF 86	328042
NF 5	327959	NF 46	328000	NF 87	328024, 328043
NF 6	327960	NF 47	328001	NF 88	328044
NF 7	327961	NF 48	328002	NF 89	328045
NF 8	327962	NF 49	328003	NF 90	328046
NF 9	327963	NF 50	328004	NF 91	328047
NF 10	327964	NF 51	328005	NF 92	328048
NF 11	327965	NF 52	328006	NF 93	328049
NF 12	327966	NF 53	328007	NF 94	328050
NF 13	327967	NF 54	328008	NF 95	328051
NF 14	327968	NF 55	328009	NF 96	328052
NF 15	327969	NF 56	328010	NF 97	328053
NF 16	327970	NF 57	328011	NF 98	328054
NF 17	327971	NF 58	328012	NF 99	328055
NF 18	327972	NF 59	328013	NF 100	328056
NF 19	327973	NF 60	328014	NF 101	328057
NF 20	327974	NF 61	328015	NF 102	328058
NF 21	327975	NF 62	328016	NF 103	328059
NF 22	327976	NF 63	328017	NF 104	328060
NF 23	327977	NF 64	328018	NF 105	328061
NF 24	327978	NF 65	328019	NF 106	328062
NF 25	327979	NF 66	328020	NF 107	328063
NF 26	327980	NF 67	328021	NF 108	328064
NF 27	327981	NF 68	328022	NF 109	328067
NF 28	327982	NF 69	328023	NF 110	328068
NF 29	327983	NF 70	328026, 328025	NF 111	328069
NF 30	327984	NF 71	328027	NF 112	328070
NF 31	327985	NF 72	328028	NF 113	328071
NF 32	327986	NF 73	328029	NF 114	328072
NF 33	327987	NF 74	328030	NF 115	328073
NF 34	327988	NF 75	328031	NF 116	328074
NF 35	327989	NF 76	328032	NF 117	328075
NF 36	327990	NF 77	328033	NF 118	328076
NF 37	327991	NF 78	328034	NF 119	328077

Pending (Note: Some excisions may be required due to existing claims)

NF 38	327992	NF 79	328035	NF 120	328078
NF 39	327993	NF 80	328036	NF 121	328079
NF 40	327994	NF 81	328037	NF 122	328080
NF 41	327995	NF 82	328038	NF 123	328081
NF 124	328082	NF 166	328125	NF 207	328167
NF 125	328083	NF 167	328126	NF 208	328168
NF 126	328084	NF 168	328127	NF 209	328169
NF 127	328085	NF 169	328128	NF 210	328170
NF 128	328086	NF 170	328129	NF 211	328171
NF 129	328087	NF 171	328130	NF 212	328172
NF 130	328088	NF 172	328131	NF 213	328173
NF 131	328089	NF 173	328132	NF 214	328174
NF 132	328090	NF 174	328133	NF 215	328175
NF 133	328091	NF 175	328134	NF 216	328176
NF 134	328092	NF 176	328135	NF 217	328177
NF 135	328093	NF 177	328136	NF 218	328178
NF 136	328094	NF 178	328137	NF 219	328180
NF 137	328095	NF 179	328139	NF 220	328181
NF 138	328096	NF 180	328140	NF 221	328182
NF 139	328097	NF 181	328141	NF 222	328183
NF 140	328098	NF 182	328142	NF 223	328184
NF 141	328099	NF 183	328143	NF 224	328185
NF 142	328100	NF 184	328144	NF 225	328186
NF 143	328101	NF 185	328145	NF 226	328187
NF 144	328102	NF 186	328146	NF 227	328188
NF 145	328103	NF 187	328147	NF 228	328189
NF 146	328104	NF 188	328148	NF 229	328190
NF 147	328105	NF 189	328149	NF 230	328191
NF 148	328106	NF 190	328150	NF 231	328192
NF 149	328107	NF 191	328151	NF 232	328193
NF 150	328108	NF 192	328152	NF 233	328194
NF 151	328109	NF 193	328153	NF 234	328195
NF 152	328110	NF 194	328154	NF 235	328196
NF 153	328111	NF 195	328155	NF 236	328197
NF 154	328112	NF 196	328156	NF 237	328198
NF 155	328113	NF 197	328157	NF 238	328199
NF 156	328114	NF 198	328158	NF 239	328200
NF 157	328115	NF 199	328159	NF 240	328201
NF 158	328116	NF 200	328160	NF 241	328202

NF 159	328118	NF 201	328161	NF 242	328203
NF 160	328119	NF 202	328162	NF 243	328204
NF 161	328120	NF 203	328163	NF 244	328205
NF 162	328121	NF 204	328164	NF 245	328206
NF 163	328122	NF 205	328165	NF 246	328207
NF 164	328123	NF 206	328166	NF 247	328208
NF 165	328124	NF 207	328167	NF 248	328209
NF 249	328212	NF 291	328254	NF 333	328301
NF 250	328213	NF 292	328255	NF 334	328302
NF 251	328214	NF 293	328256	NF 335	328303
NF 252	328215	NF 294	328257	NF 336	328304
NF 253	328216	NF 295	328258	NF 337	328305
NF 254	328217	NF 296	328259	NF 338	328306
NF 255	328218	NF 297	328260	NF 339	328307
NF 256	328219	NF 298	328261	NF 340	328308
NF 257	328220	NF 299	328262	NF 341	328309
NF 258	328221	NF 300	328263	NF 342	328310
NF 259	328222	NF 301	328264	NF 343	328311
NF 260	328223	NF 302	328265	NF 344	328312
NF 261	328224	NF 303	328266	NF 345	328313
NF 262	328225	NF 304	328267	NF 346	328314
NF 263	328226	NF 305	328268	NF 347	328315
NF 264	328227	NF 306	328269	NF 348	328316
NF 265	328228	NF 307	328270	NF 349	328317
NF 266	328229	NF 308	328271	NF 350	328318
NF 267	328230	NF 309	328277	NF 351	328319
NF 268	328231	NF 310	328278	NF 352	328320
NF 269	328232	NF 311	328279	NF 353	328321
NF 270	328233	NF 312	328280	NF 354	328322
NF 271	328234	NF 313	328281	NF 355	328323
NF 272	328235	NF 314	328282	NF 356	328324
NF 273	328236	NF 315	328283	NF 357	328325
NF 274	328237	NF 316	328284	NF 358	328326
NF 275	328238	NF 317	328285	NF 359	328327
NF 276	328239	NF 318	328286	NF 360	328328
NF 277	328240	NF 319	328287	NF 361	328329
NF 278	328241	NF 320	328288	NF 362	328330
NF 279	328242	NF 321	328289	NF 363	328331
NF 280	328243	NF 322	328290	NF 364	328332

NF 281 328244 NF 323 328291 NF 365 328333 NF 282 328245 NF 324 328292 NF 366 328344 NF 283 328246 NF 325 328293 NF 367 328335 NF 284 328247 NF 326 328294 NF 369 328337 NF 285 328249 NF 327 328295 NF 369 328338 NF 287 328250 NF 328 328296 NF 371 328339 NF 288 328251 NF 330 328298 NF 372 328340 NF 289 328252 NF 331 328300 NF 374 328441 NF 290 328233 NF 417 328385 NF 459 328436 NF 375 328345 NF 418 328386 NF 450 328436 NF 377 328346 NF 421 328387 NF 463 328436 NF 378 328347 NF 421 328390 NF 463 328438 NF 379 328347 NF 422						
NF 283 328246 NF 325 328293 NF 367 328335 NF 284 328247 NF 326 328294 NF 368 328336 NF 285 328248 NF 327 328295 NF 369 328337 NF 286 328249 NF 329 328295 NF 370 328339 NF 287 328250 NF 329 328297 NF 371 328339 NF 288 328251 NF 330 328298 NF 372 328341 NF 289 328252 NF 331 328299 NF 373 32841 NF 289 328253 NF 331 328299 NF 459 328434 NF 375 328343 NF 417 328385 NF 459 328432 NF 375 328345 NF 419 328387 NF 460 328433 NF 379 328347 NF 420 328389 NF 462 328439 NF 381 328349 NF 422 328391 NF 463 328449 NF 383 328351 NF 423	NF 281	328244	NF 323	328291	NF 365	328333
NF 284 328247 NF 326 328294 NF 368 328336 NF 285 328248 NF 327 328295 NF 369 328337 NF 286 328249 NF 328 328296 NF 370 328338 NF 287 328250 NF 329 328297 NF 371 328339 NF 288 328251 NF 330 328298 NF 372 328341 NF 289 328252 NF 331 328299 NF 373 328341 NF 290 328253 NF 332 328300 NF 374 328342 NF 375 328343 NF 417 328385 NF 460 328432 NF 376 328344 NF 418 328386 NF 461 328436 NF 377 328347 NF 422 328390 NF 461 328437 NF 379 328347 NF 421 328390 NF 462 328439 NF 380 328348 NF 422 328391 NF 466 328441 NF 382 328351 NF 425	NF 282	328245	NF 324	328292	NF 366	328334
NF 285 328248 NF 327 328295 NF 369 328337 NF 286 328249 NF 328 328296 NF 370 328338 NF 287 328250 NF 329 328297 NF 371 328339 NF 288 328251 NF 329 328298 NF 372 328340 NF 289 328252 NF 331 328298 NF 373 328341 NF 290 328253 NF 332 328300 NF 374 328342 NF 375 328344 NF 417 328386 NF 460 328434 NF 376 328344 NF 418 328386 NF 460 328435 NF 377 328345 NF 419 328387 NF 461 328436 NF 378 328346 NF 420 328388 NF 462 328439 NF 380 328348 NF 421 328391 NF 463 328439 NF 381 328349 NF 423 328391 NF 465 328440 NF 382 328350 NF 425	NF 283	328246	NF 325	328293	NF 367	328335
NF 286328249NF 328328296NF 370328338NF 287328250NF 329328297NF 371328339NF 288328251NF 330328298NF 372328340NF 289328252NF 331328299NF 373328341NF 289328253NF 332328300NF 374328342NF 375328343NF 417328385NF 459328434NF 376328344NF 418328386NF 460328435NF 377328345NF 419328387NF 461328436NF 378328346NF 420328388NF 462328437NF 379328347NF 421328389NF 463328438NF 380328348NF 422328390NF 464328439NF 38132839NF 424328391NF 465328440NF 382328351NF 425328393NF 465328442NF 384328352NF 426328395NF 468328443NF 385328353NF 427328395NF 468328447NF 386328354NF 428328395NF 470328447NF 388328356NF 430328405NF 471328447NF 388328351NF 431328406NF 473328447NF 389328351NF 433328406NF 474328451NF 393328361NF 435328410NF 475328451NF 393328361NF 435328410	NF 284	328247	NF 326	328294	NF 368	328336
NF 287328250NF 329328297NF 371328339NF 288328251NF 330328298NF 372328340NF 289328252NF 331328299NF 373328341NF 290328253NF 332328300NF 374328342NF 375328343NF 417328385NF 459328434NF 376328343NF 417328385NF 450328435NF 377328345NF 419328387NF 461328436NF 378328346NF 420328388NF 462328437NF 379328347NF 421328390NF 463328438NF 380328348NF 422328390NF 463328439NF 381328349NF 424328392NF 466328441NF 382328351NF 425328393NF 466328442NF 384328352NF 426328393NF 467328442NF 385328353NF 427328395NF 468328443NF 385328353NF 429328405NF 470328445NF 386328354NF 428328405NF 473328445NF 387328355NF 429328406NF 473328445NF 388328356NF 433328405NF 473328445NF 389328357NF 435328405NF 475328451NF 393328361NF 435328405NF 476328452NF 395328363NF 43532841	NF 285	328248	NF 327	328295	NF 369	328337
NF 288328251NF 330328298NF 372328340NF 289328252NF 331328299NF 373328341NF 290328253NF 332328300NF 374328342NF 375328343NF 417328385NF 459328434NF 376328344NF 418328386NF 459328435NF 376328345NF 419328387NF 460328435NF 377328345NF 419328387NF 461328436NF 378328348NF 420328388NF 462328439NF 379328347NF 421328390NF 463328439NF 380328348NF 422328390NF 464328439NF 381328351NF 425328392NF 466328440NF 383328351NF 425328393NF 467328442NF 384328352NF 426328394NF 468328443NF 385328353NF 427328395NF 469328445NF 386328354NF 428328306NF 471328447NF 387328355NF 429328405NF 472328445NF 388328356NF 430328405NF 474328450NF 389328357NF 431328406NF 473328445NF 389328357NF 433328408NF 474328451NF 393328361NF 435328410NF 474328451NF 395328363NF 43532841	NF 286	328249	NF 328	328296	NF 370	328338
NF 289328252NF 331328299NF 373328341NF 290328253NF 332328300NF 374328342NF 375328343NF 417328355NF 459328434NF 376328344NF 418328386NF 460328435NF 377328345NF 419328386NF 461328436NF 378328345NF 419328387NF 461328436NF 379328347NF 421328389NF 463328438NF 380328348NF 422328390NF 463328439NF 381328349NF 423328391NF 465328440NF 382328350NF 424328392NF 466328441NF 383328351NF 425328394NF 466328443NF 384328352NF 426328394NF 467328445NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328405NF 472328445NF 388328356NF 430328405NF 472328445NF 390328357NF 433328406NF 473328451NF 391328359NF 433328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 476328452NF 394328365NF 43532841	NF 287	328250	NF 329	328297	NF 371	328339
NF 290328253NF 332328300NF 374328342NF 375328343NF 417328385NF 459328434NF 376328343NF 418328366NF 460328435NF 377328345NF 419328387NF 461328436NF 378328346NF 420328387NF 462328437NF 379328347NF 421328389NF 463328439NF 380328348NF 422328390NF 463328439NF 381328350NF 423328391NF 465328440NF 383328351NF 425328392NF 466328442NF 384328352NF 425328393NF 466328442NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328405NF 471328447NF 388328356NF 430328405NF 472328447NF 388328357NF 431328406NF 472328443NF 390328357NF 431328407NF 473328451NF 391328360NF 432328409NF 476328452NF 393328361NF 436328413NF 488328452NF 393328361NF 436328413NF 488328452NF 394328362NF 436328414NF 478328455NF 395328364NF 43832841	NF 288	328251	NF 330	328298	NF 372	328340
NF 375328343NF 417328385NF 459328434NF 376328344NF 418328386NF 460328435NF 377328345NF 419328387NF 461328436NF 378328346NF 420328388NF 462328437NF 379328347NF 421328389NF 463328438NF 380328348NF 422328390NF 463328439NF 381328349NF 423328391NF 465328440NF 382328351NF 423328391NF 465328442NF 383328351NF 426328393NF 466328443NF 384328352NF 426328394NF 468328443NF 385328353NF 427328395NF 469328445NF 386328354NF 429328404NF 471328447NF 386328355NF 430328405NF 471328447NF 387328355NF 430328405NF 472328449NF 389328357NF 431328406NF 473328449NF 389328350NF 432328407NF 474328450NF 391328359NF 433328409NF 475328449NF 393328360NF 435328410NF 477328453NF 394328361NF 435328410NF 477328453NF 395328364NF 438328413NF 480328457NF 395328366NF 43732841	NF 289	328252	NF 331	328299	NF 373	328341
NF 376328344NF 418328386NF 460328435NF 377328345NF 419328387NF 461328436NF 378328346NF 420328388NF 462328437NF 379328347NF 421328389NF 463328438NF 380328348NF 422328390NF 463328439NF 381328349NF 423328391NF 465328440NF 381328350NF 424328392NF 465328441NF 382328350NF 425328393NF 466328442NF 384328352NF 426328394NF 468328443NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328404NF 471328447NF 388328356NF 430328405NF 472328448NF 389328357NF 431328407NF 473328449NF 390328358NF 432328407NF 474328450NF 391328360NF 433328409NF 475328451NF 393328361NF 436328411NF 476328451NF 394328362NF 436328411NF 478328451NF 395328363NF 437328412NF 481328457NF 396328364NF 438328413NF 482328459NF 396328366NF 43932841	NF 290	328253	NF 332	328300	NF 374	328342
NF 377328345NF 419328387NF 461328436NF 378328346NF 420328388NF 462328437NF 379328347NF 421328389NF 463328438NF 380328348NF 422328390NF 464328439NF 381328349NF 423328391NF 465328440NF 382328350NF 424328392NF 466328441NF 383328351NF 426328394NF 466328442NF 384328352NF 426328394NF 468328443NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328404NF 471328447NF 388328356NF 430328405NF 472328448NF 389328357NF 431328406NF 473328445NF 390328358NF 432328407NF 476328450NF 391328361NF 433328408NF 475328451NF 393328361NF 434328409NF 476328452NF 394328362NF 436328411NF 478328453NF 395328363NF 437328413NF 480328455NF 395328366NF 438328413NF 480328455NF 395328366NF 438328413NF 481328459NF 396328366NF 43332841	NF 375	328343	NF 417	328385	NF 459	328434
NF 378328346NF 420328388NF 462328437NF 379328347NF 421328389NF 463328438NF 380328348NF 422328390NF 464328439NF 381328349NF 423328391NF 465328440NF 382328350NF 424328392NF 466328441NF 383328351NF 425328393NF 467328442NF 384328352NF 426328394NF 468328443NF 385328353NF 427328396NF 470328446NF 386328354NF 428328396NF 470328446NF 387328355NF 429328405NF 472328447NF 386328356NF 430328405NF 472328449NF 389328357NF 431328406NF 473328449NF 390328358NF 432328407NF 474328450NF 391328360NF 433328408NF 475328451NF 392328361NF 435328410NF 476328452NF 393328361NF 436328413NF 480328456NF 395328364NF 436328413NF 480328456NF 395328365NF 436328413NF 481328457NF 396328365NF 437328413NF 481328457NF 396328365NF 436328415NF 481328459NF 396328366NF 43032841	NF 376	328344	NF 418	328386	NF 460	328435
NF 379328347NF 421328389NF 463328438NF 380328348NF 422328390NF 464328439NF 381328349NF 423328391NF 465328440NF 382328350NF 424328392NF 466328441NF 383328351NF 425328393NF 467328442NF 384328352NF 426328393NF 467328443NF 385328353NF 426328394NF 468328443NF 386328354NF 428328396NF 470328446NF 386328355NF 429328404NF 471328447NF 388328356NF 429328405NF 471328449NF 389328357NF 431328406NF 473328449NF 390328358NF 432328407NF 474328450NF 391328360NF 432328409NF 475328451NF 392328361NF 435328410NF 477328453NF 393328361NF 435328410NF 477328453NF 395328363NF 437328411NF 478328451NF 395328365NF 439328413NF 480328453NF 396328366NF 439328414NF 481328457NF 395328365NF 439328414NF 481328459NF 395328365NF 442328416NF 483328459NF 395328365NF 44332841	NF 377	328345	NF 419	328387	NF 461	328436
NF 380328348NF 422328390NF 464328439NF 381328349NF 423328391NF 465328440NF 382328350NF 424328392NF 466328441NF 383328351NF 425328393NF 467328442NF 384328352NF 426328394NF 468328443NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328405NF 471328447NF 388328357NF 431328406NF 473328449NF 390328358NF 432328407NF 474328450NF 391328350NF 433328408NF 475328451NF 392328361NF 436328410NF 476328453NF 393328363NF 437328410NF 476328453NF 395328363NF 437328413NF 480328454NF 395328363NF 437328413NF 480328456NF 395328363NF 437328413NF 480328453NF 395328364NF 438328413NF 481328457NF 395328365NF 439328414NF 481328457NF 396328366NF 440328415NF 483328453NF 397328366NF 443328416NF 483328459NF 398328366NF 44332841	NF 378	328346	NF 420	328388	NF 462	328437
NF 381328349NF 423328391NF 465328440NF 382328350NF 424328392NF 466328441NF 383328351NF 425328393NF 467328442NF 384328352NF 426328394NF 468328443NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328405NF 471328447NF 388328357NF 430328405NF 472328449NF 389328357NF 431328406NF 473328450NF 391328359NF 432328407NF 474328450NF 392328360NF 434328409NF 476328451NF 393328361NF 435328410NF 477328453NF 39432862NF 436328411NF 478328454NF 395328363NF 437328413NF 480328456NF 395328364NF 438328413NF 480328456NF 395328365NF 439328414NF 481328457NF 398328366NF 440328415NF 483328459NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328369NF 444328419NF 485328461	NF 379	328347	NF 421	328389	NF 463	328438
NF 382328350NF 424328392NF 466328441NF 383328351NF 425328393NF 467328442NF 384328352NF 426328394NF 468328443NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328404NF 471328447NF 388328356NF 430328405NF 472328448NF 389328357NF 431328406NF 473328450NF 391328359NF 432328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328411NF 478328453NF 394328362NF 436328413NF 480328456NF 395328364NF 438328413NF 480328457NF 396328366NF 440328413NF 481328457NF 398328366NF 440328416NF 483328459NF 499328367NF 441328416NF 483328459NF 499328366NF 443328416NF 483328459NF 398328366NF 442328416NF 483328459NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 44432841	NF 380	328348	NF 422	328390	NF 464	328439
NF 383328351NF 425328393NF 467328442NF 384328352NF 426328394NF 468328443NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328404NF 471328447NF 388328356NF 430328405NF 472328448NF 389328357NF 431328406NF 473328450NF 390328358NF 432328407NF 474328450NF 391328359NF 433328408NF 475328451NF 392328361NF 435328410NF 476328452NF 393328361NF 436328411NF 478328454NF 394328362NF 437328412NF 479328455NF 395328363NF 438328413NF 480328456NF 396328366NF 440328415NF 481328459NF 398328367NF 441328416NF 483328459NF 399328367NF 442328417NF 484328460NF 400328369NF 443328418NF 485328461NF 401328369NF 444328419NF 485328461NF 402328370NF 444328419NF 485328462	NF 381	328349	NF 423	328391	NF 465	328440
NF 384328352NF 426328394NF 468328443NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328404NF 471328447NF 388328356NF 430328405NF 472328448NF 389328357NF 431328406NF 473328449NF 390328358NF 432328407NF 474328450NF 391328359NF 433328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 477328453NF 394328362NF 436328411NF 478328454NF 395328363NF 438328413NF 480328456NF 397328366NF 443328416NF 481328457NF 398328367NF 441328416NF 483328459NF 399328368NF 442328417NF 484328460NF 400328368NF 443328417NF 484328460NF 401328369NF 443328419NF 485328461NF 402328370NF 444328419NF 485328462	NF 382	328350	NF 424	328392	NF 466	328441
NF 385328353NF 427328395NF 469328445NF 386328354NF 428328396NF 470328446NF 387328355NF 429328404NF 471328447NF 388328356NF 430328405NF 472328448NF 389328357NF 431328406NF 473328449NF 390328358NF 432328407NF 474328450NF 391328359NF 433328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 477328453NF 394328362NF 436328412NF 479328455NF 395328363NF 437328413NF 480328456NF 396328364NF 439328413NF 481328457NF 398328366NF 440328415NF 483328459NF 400328368NF 442328417NF 483328459NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 383	328351	NF 425	328393	NF 467	328442
NF 386328354NF 428328396NF 470328446NF 387328355NF 429328404NF 471328447NF 388328356NF 430328405NF 472328448NF 389328357NF 431328406NF 473328449NF 390328358NF 432328407NF 474328450NF 391328359NF 433328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 477328453NF 394328362NF 436328412NF 479328455NF 395328363NF 438328413NF 480328456NF 397328365NF 439328413NF 480328459NF 398328367NF 440328416NF 483328459NF 399328368NF 442328417NF 484328460NF 400328369NF 443328419NF 485328461NF 401328369NF 444328419NF 486328461	NF 384	328352	NF 426	328394	NF 468	328443
NF 387328355NF 429328404NF 471328447NF 388328356NF 430328405NF 472328448NF 389328357NF 431328406NF 473328449NF 390328358NF 432328407NF 474328450NF 391328359NF 433328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 477328453NF 394328362NF 436328411NF 478328454NF 395328363NF 437328412NF 480328456NF 396328364NF 438328413NF 480328457NF 398328366NF 440328415NF 481328459NF 399328367NF 441328416NF 483328459NF 400328369NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 385	328353	NF 427	328395	NF 469	328445
NF 388328356NF 430328405NF 472328448NF 389328357NF 431328406NF 473328449NF 390328358NF 432328407NF 474328450NF 391328359NF 433328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 477328453NF 394328362NF 436328412NF 479328454NF 395328363NF 437328413NF 480328456NF 396328364NF 438328413NF 481328457NF 398328366NF 440328415NF 482328458NF 399328367NF 441328416NF 483328459NF 400328368NF 443328418NF 485328461NF 401328370NF 444328419NF 486328462	NF 386	328354	NF 428	328396	NF 470	328446
NF 389328357NF 431328406NF 473328449NF 390328358NF 432328407NF 474328450NF 391328359NF 433328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 477328453NF 394328362NF 436328411NF 478328454NF 395328363NF 437328412NF 479328455NF 396328364NF 438328413NF 480328456NF 397328365NF 439328414NF 481328457NF 398328366NF 440328415NF 482328458NF 399328367NF 441328416NF 483328460NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 387	328355	NF 429	328404	NF 471	328447
NF 390328358NF 432328407NF 474328450NF 391328359NF 433328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 477328453NF 394328362NF 436328411NF 478328454NF 395328363NF 437328412NF 479328455NF 396328364NF 438328413NF 480328456NF 397328365NF 439328415NF 481328457NF 398328366NF 440328415NF 482328458NF 399328367NF 441328416NF 483328459NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 388	328356	NF 430	328405	NF 472	328448
NF 391328359NF 433328408NF 475328451NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 477328453NF 394328362NF 436328411NF 478328454NF 395328363NF 437328412NF 479328455NF 396328364NF 438328413NF 480328456NF 397328365NF 439328414NF 481328457NF 398328366NF 440328415NF 482328458NF 399328367NF 441328416NF 483328459NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 389	328357	NF 431	328406	NF 473	328449
NF 392328360NF 434328409NF 476328452NF 393328361NF 435328410NF 477328453NF 394328362NF 436328411NF 478328454NF 395328363NF 437328412NF 479328455NF 396328364NF 438328413NF 480328456NF 397328365NF 439328414NF 481328457NF 398328366NF 440328415NF 482328458NF 399328367NF 441328416NF 483328459NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 390	328358	NF 432	328407	NF 474	328450
NF 393328361NF 435328410NF 477328453NF 394328362NF 436328411NF 478328454NF 395328363NF 437328412NF 479328455NF 396328364NF 438328413NF 480328456NF 397328365NF 439328414NF 481328457NF 398328366NF 440328415NF 482328458NF 399328367NF 441328416NF 483328459NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 391	328359	NF 433	328408	NF 475	328451
NF 394328362NF 436328411NF 478328454NF 395328363NF 437328412NF 479328455NF 396328364NF 438328413NF 480328456NF 397328365NF 439328414NF 481328457NF 398328366NF 440328415NF 482328458NF 399328367NF 441328416NF 483328459NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 392	328360	NF 434	328409	NF 476	328452
NF 395328363NF 437328412NF 479328455NF 396328364NF 438328413NF 480328456NF 397328365NF 439328414NF 481328457NF 398328366NF 440328415NF 482328458NF 399328367NF 441328416NF 483328459NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 393	328361	NF 435	328410	NF 477	328453
NF 396328364NF 438328413NF 480328456NF 397328365NF 439328414NF 481328457NF 398328366NF 440328415NF 482328458NF 399328367NF 441328416NF 483328459NF 400328368NF 442328417NF 484328460NF 401328369NF 443328418NF 485328461NF 402328370NF 444328419NF 486328462	NF 394	328362	NF 436	328411	NF 478	328454
NF 397 328365 NF 439 328414 NF 481 328457 NF 398 328366 NF 440 328415 NF 482 328458 NF 399 328367 NF 441 328416 NF 483 328459 NF 400 328368 NF 442 328417 NF 484 328460 NF 401 328369 NF 443 328418 NF 485 328461 NF 402 328370 NF 444 328419 NF 486 328462	NF 395	328363	NF 437	328412	NF 479	328455
NF 398 328366 NF 440 328415 NF 482 328458 NF 399 328367 NF 441 328416 NF 483 328459 NF 400 328368 NF 442 328417 NF 484 328460 NF 401 328369 NF 443 328418 NF 485 328461 NF 402 328370 NF 444 328419 NF 486 328462	NF 396	328364	NF 438	328413	NF 480	328456
NF 399 328367 NF 441 328416 NF 483 328459 NF 400 328368 NF 442 328417 NF 484 328460 NF 401 328369 NF 443 328418 NF 485 328461 NF 402 328370 NF 444 328419 NF 486 328462	NF 397	328365	NF 439	328414	NF 481	328457
NF 400 328368 NF 442 328417 NF 484 328460 NF 401 328369 NF 443 328418 NF 485 328461 NF 402 328370 NF 444 328419 NF 486 328462	NF 398	328366	NF 440	328415	NF 482	328458
NF 401 328369 NF 443 328418 NF 485 328461 NF 402 328370 NF 444 328419 NF 486 328462	NF 399	328367	NF 441	328416	NF 483	328459
NF 402 328370 NF 444 328419 NF 486 328462	NF 400	328368	NF 442	328417	NF 484	328460
	NF 401	328369	NF 443	328418	NF 485	328461
NF 403 328371 NF 445 328420 NF 487 328463	NF 402	328370	NF 444	328419	NF 486	328462
	NF 403	328371	NF 445	328420	NF 487	328463

NF 404	328372	NF 446	328421	NF 488	328464
NF 405	328373	NF 447	328422	NF 489	328465
NF 406	328374	NF 448	328423	NF 490	328466
NF 407	328375	NF 449	328424	NF 491	328467
NF 408	328376	NF 450	328425	NF 492	328468
NF 409	328377	NF 451	328426	NF 493	328469
NF 410	328378	NF 452	328427	NF 494	328470
NF 411	328379	NF 453	328428	NF 495	328471
NF 412	328380	NF 454	328429	NF 496	328472
NF 413	328381	NF 455	328430	NF 497	328473
NF 414	328382	NF 456	328431	NF 498	328474
NF 415	328383	NF 457	328432	NF 499	328475
NF 416	328384	NF 458	328433		

Prospect Area	Sample Type	From (m)	To (m)	Interval (m)	TREO (%)	CREO (%)
Cardinal	trench	0	3	3	1.30	0.23
Cardinal	trench	0	2	2	0.03	0.01
Cardinal	trench	0	2	2	3.02	0.48
Cardinal	trench	0	2	2	1.00	0.15
Cardinal	trench	0	3	3	0.15	0.04
Cardinal	trench	0	1.5	1.5	0.92	0.16
Radiant	trench	0	1	1	0.06	0.02
Silver King	trench	0.5	2.5	2	10.31	1.17
Silver King	trench	0.5	2.5	2	5.80	0.71
Monazite Queen	trench			0.91	21.00	
Monazite Queen	trench			1.07	1.50	
Monazite Queen	trench			3.05	2.16	
Silver King	grab			0.00	14.60	
Silver King	trench			1.52	17.70	
Silver King	trench			0.61	4.46	
Jackpot	trench			0.76	21.50	
Jackpot	trench			0.76	14.50	
Cardinal	trench			0.91	0.00	
Cardinal	trench			0.34	3.84	
Lower Lee Buck	trench			3.05	0.28	
Upper Lee Buck	trench			1.83	1.06	

Appendix B. Table of historical trench results

Note to table: Some historical results were reported in feet total (no from/to), and were converted to metres

Appendix C – JORC Table

Appendix 2: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	The nature of the samples in the body of this ASX Release relate to historical trench and rock grab samples from the North Fork Project, Idaho, USA, within tenements (granted and in application) that Felix Strategic Minerals Pty Ltd hold the contractual rights over those tenements. Samples are historical and conducted by previous workers, thus the precise nature and quality of sampling are undetermined. Historical reports show trench sampling was undertaken along excavated trenches dug perpendicular to the inferred strike of the structures and channel sampled using a rock saw to 0.5 to 1m lengths. Sample intervals and sites appear to have been chosen selectively to reflect geological features relevant to the target style of mineralisation.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are historical and conducted by previous workers, thus the precise measures taken to ensure sample representivity are undetermined. Historical reports appear to suggest measures taken include controls on sample quality and sample location, including trench sample location by GPS and detailed trench and surface mapping. Historical reports note coarse and pulp duplicate samples were taken, as well as blanks and internally prepared standard samples inserted into analysis batches, to test for accuracy and precision in sample representivity.
	Aspects of the determination of mineralisation that are Material to the Public Report.	Key aspects are discussed within the body of this release.
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	No historical drilling has been reported in the project area.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No historical drilling has been reported in the project area.
	Measures taken to maximise sample recovery and	No historical drilling has been reported in the project area.

Criteria	JORC Code explanation	Commentary
	ensure representative nature of the samples.	
	Whether a relationship exists between sample	No historical drilling has been reported in the project area.
	recovery and grade and whether sample bias may	
	have occurred due to preferential loss/gain of	
	fine/coarse material.	
Logging	Whether core and chip samples have been	Historical reports suggest trenches were logged geologically.
	geologically and geotechnically logged to a level of	
	detail to support appropriate Mineral Resource	No Mineral Resource estimation, mining studies or
	estimation, mining studies and metallurgical	metallurgical studies have been conducted at this stage.
	studies.	
	Whether logging is qualitative or quantitative in	Historical reports suggest geological logging was qualitative in
	nature. Core (or costean, channel, etc.)	nature.
	photography.	
	The total length and percentage of the relevant	Historical reports suggest all trenches have been logged,
	intersections logged.	representing the total length for 100%.
Sub-sampling	If core, whether cut or sawn and whether quarter,	No historical drilling has been reported in the project area.
techniques and	half or all core taken.	
sample	If non-core, whether riffled, tube sampled, rotary	Historical reports show trench samples were excavated by
preparation	split, etc. and whether sampled wet or dry.	hand with the aid of a rock saw. Both ends of the channel were
		marked with aluminum survey pins, 1-meter intervals were
		measured using a survey tape and marked using either
		aluminum pins or steel spikes; the channel beginning was
		recorded using a waypoint averaging handheld GPS. Channel
		samples were taken perpendicular to the vein strike at $0.5 - 1$
		meter intervals along the known length of the core. Channels
		samples were cut using a rock saw to approximate the volume
		HQ core, having a width of 0.1 m and broken out the channel
		to a depth of 0.1 m. The channels ranged in length from 1
		meter to 4 meters and were recovered incrementally by hand
		pick and chiseling of the cleaned cut area onto a canvas tarp,
		transferred into labeled sample bags.
	For all sample types, the nature, quality and	Trench samples were sent to Activation Laboratories Ltd,
	appropriateness of the sample preparation	Ancaster, Ontario, Canada. Activation Laboratories is
	technique.	accredited by the Standards Council of Canada (SCC), ActLab's
		quality system is accredited to international quality standards
		through the International Organization for
		Standardization/International Electro-technical commission
		(ISO/IEC) 17025 and includes ISO 9001 and ISO 9002
		specifications) with CAN-P1579 (Mineral Analysis).
	Quality control procedures adopted for all sub-	Samples were prepared for analysis under the laboratory code
	sampling stages to maximise representivity of	RX-2 and, as required, the whole sample is dried and crushed
	samples.	to at least 70% (-18 mesh) using the TM Crusher. The sample is
	,	then split mechanically using the Riffle Splitter until one
		fraction is able to adequately fill the pulverizer bowl. The
		Crusher and Splitter are vacuumed or cleaned with compressed
		air between samples. A 100-150 gram aliquot is pulverized in a
		mild steel ring mill to normally more than 95% passing a -150
		mesh screen; until there is no gritty feeling when the pulp is
		tested between the thumb and forefinger. A sand blank is run
		between each sample to avoid contamination. The only

Criteria	JORC Code explanation	Commentary
		on hardness (0.01 to 0.2% Fe added).
	Measures taken to ensure that the sampling is representative of the in-situ material collected,	Historical reports suggest that the measures taken are such that sampling is representative of the in-situ material collected
	including for instance results for field duplicate/second-half sampling.	and is considered appropriate for the target style of mineralisation, the requirements for laboratory sample preparation and analyses, and consideration reporting is for early-stage Exploration Results.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Historical reports suggest that the sample sizes are appropriate to the material being sampled, and is considered appropriate for the target style of mineralisation, the requirements for laboratory sample preparation and analyses, and consideration reporting is for early-stage Exploration Results.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Analysis for rare earth elements used Code8-REE, a lithium metaborate/tetraborate fusion with subsequent analysis, inclusive of rare earths elements and yttrium, by ICP and ICP/MS Laboratory preparation. Historical reports suggest that the assaying and laboratory procedures used are considered appropriate for the target style of mineralisation, the requirements for laboratory sample preparation and analyses, and consideration reporting is for early-stage Exploration Results.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable - no data from geophysical tools were used to determine analytical results in this ASX Release.
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Historical reports suggest that the QA/QC procedures used (blanks, duplicates and standards) are NI 43-101 compliant, and thus by correlation would be JORC Compliant.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Historical reports suggest that trench sampling was supervised and conducted by two NI 43-101 'Qualified Persons'.
assaying	The use of twinned holes.	No twinned holes have been completed as part of this ASX Release, as the program is at an early stage.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Historical reports do not specifically outline primary data entry procedures, other than to state procedures are NI 43-101 compliant.
	Discuss any adjustment to assay data.	Historical reports do not suggest adjustments were made to the assay data.
points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Historical reports suggest GPS accuracy was +/- 2.5m.
	Specification of the grid system used.	Historical reports appear to have used WGS 84 Universal Transverse Mercator, Zone 11 North <mark>ern He</mark> misphere.
	Quality and adequacy of topographic control.	Historical reports suggest GPS accuracy was +/- 2.5m.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is	Historical reports show trench spacing is variable. No Mineral Resource or Ore Reserve have been estimated in
	sufficient to establish the degree of geological and	this ASX Release.

Criteria	JORC Code explanation	Commentary
	grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	
	Whether sample compositing has been applied.	Historical reports do not suggest sample compositing has been applied.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Historical reports suggest trench sampling is perpendicular to the strike of mineralisation.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Not applicable.
Sample security	The measures taken to ensure sample security.	Historical reports suggest there was appropriate (NI 43-101 Compliant) Chain of Custody of samples from point of generation, to delivery to the lab, and data entry of assay results.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of sampling techniques and data have been undertaken at this time.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Information regarding tenure is included in the body of this release.
Exploration done	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. Acknowledgment and appraisal of exploration by	The Concessions are believed to be in good standing with the governing authority and there is no known impediment to operating in the area. Limited and historical exploration works have been done on
by other parties		the area, which include the reported historical trench results in this ASX Release.
Geology	Deposit type, geological setting and style of mineralisation.	Regional geology of the area consists predominantly of Proterozoic metamorphosed amphibolite and augen gneiss, with younger Palaeozoic igneous carbonatite intrusions, and minor felsic dykes. Rare earth mineralisation is primarily associated with the igneous carbonatite intrusions as dykes and sills, with additional rare earth mineralisation noted within pegmatites, and disseminated within the host rock gneiss and schistose amphibolite rocks.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 1. easting and northing of the drill hole collar 2. elevation or RL (Reduced Level – elevation	A summary of exploration results and associated grades is shown in Appendix B of this release.

Criteria	JORC Code explanation	Commentary
	above sea level in meters) of the drill hole collar	
	3. dip and azimuth of the hole	
	4. down hole length and interception depth	
	5. hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	This information has not been excluded from this release.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum	Historical reports do not state any data aggregation methods. It is assumed appropriate weighted average intercepts were calculated from the various trench sample lengths and reported grades, noting the historical report states results are NI 43-101 Compliant.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Historical reports do not state any internal dilution allowance.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been reported in this ASX Release.
Relationship between mineralisation widths and intercept lengths	reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known as the exact orientation and extend of the known mineralised are not yet determined.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Historical reports suggest trench sample intervals are reported as 'downhole' measurements. More trenching and drilling and analysis of structural data is required to more accurately determine true widths of mineralisation from downhole widths.
	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps, sections, and tables have been included in this ASX Release.
Balanced reporting	Where comprehensive reporting of all Exploration	Representative reporting of historical grades has been done, see Appendix B.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and	To the best of our knowledge, no meaningful and material exploration data have been omitted from this ASX Release.

Criteria	JORC Code explanation	Commentary
	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	Megado Gold is reviewing the data to determine the best way to advance the projects and will notify such plans once confirmed.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to figures in the main body of this ASX Release that shows where trenching (and other works) have been conducted, and highlight possible extensions and where future exploration campaigns may focus.

megadogold.com