

Black Cat Syndicate Limited ("Black Cat" or "the Company") is pleased to provide supporting information for the JORC 2012 Mineral Resources ("Resource" or "Resources" as applicable) and exploration results from the announced acquisition of the Coyote and Paulsens Gold Operations ("Coyote", "Paulsens" or together "the Operations") from Northern Star Resources Limited. ("Northern Star", ASX:NST). For details on the transaction, please refer to announcement ASX announcement 19 April 2022. "Funded Acquisition of Coyote & Paulsens Gold Operations". <u>The acquisitions are subject to the satisfaction of certain conditions ("Conditions Precedent") prior to completion of the transactions ("Completion").</u>

HIGHLIGHTS (on completion)

- Black Cat will own (100%) the Coyote Resource totalling 3.1Mt @ 5.0 g/t for 493koz, which includes the high grade **underground Resource of 0.8Mt @ 10.4g/t for 267koz**. All Resources at Coyote are considered open and have potential to grow substantially with drilling
- Drilling will commence at Coyote soon after completion and focus on **upgrading and extending potentially open** pit minable Resources along with the high grade Kavanagh underground Resource
- Black Cat will own (100%) the Paulsens Resource totalling 2.9Mt @ 2.5 g/t for 231koz which includes the high grade **underground Resource of 0.5Mt @ 5.8g/t for 89koz**. All Resources at Paulsens have strong potential for Resource growth with drilling
- Underground drilling is targeted to commence at Paulsens in the September 2022 quarter. Priority targets will include **exploration for potential repeats of the Paulsens mineralisation** along with definition of the high grade gabbro veins.
- Total group Resources increase to >2Moz with a target to increase Resources to 3Moz within 5 years
- Black Cat has a history of rapid Resource growth with 1.5oz discovered for every ounce acquired to date

		Meas	ured Reso	ource	India	cated Res	ource	Infe	rred Reso	urce	Total Resource		
Operati	on/ Project	Tonnes ('000s)	Grade (g/t Au)	Metal ('000oz)									
	Open Pit	82	3.0	8	741	3.4	81	1,064	3.5	120	1,887	3.4	209
Counto	Underground	-	-	-	243	10.1	79	553	10.6	189	797	10.4	267
Coyote	Stockpiles	375	1.4	17	-	-	-	-	-	-	375	1.4	17
	Sub total	457	1.7	25	984	5.1	160	1,617	5.9	309	3,059	5.0	493
	Open Pit	-	-	-	227	2.5	18	2,210	1.7	123	2,437	1.8	141
Paulsens	Underground	341	5.8	64	88	5.6	16	43	6.6	9	473	5.8	89
Paulsens	Stockpiles	11	1.6	1	-	-	-	-	-	-	11	1.6	1
	Sub total	352	5.7	65	315	3.4	34	2,253	1.8	132	2,921	2.5	231
	Open Pit	13	3.2	1	8,198	1.9	493	7,572	1.6	386	15,781	1.7	880
Kal East	Underground	-	-	-	1,408	4.5	204	1,647	4.0	211	3,055	4.2	414
	Sub total	13	3.2	1	9,605	2.3	696	9,219	2.0	597	18,836	2.1	1,294
Total Mine	ral Resources	822	3.4	91	10,904	2.5	890	13,089	2.5	1,038	24,816	2.5	2,018

Notes:

1. The preceding statements of Resources contain both JORC 2012 and JORC 2004 Resources. JORC 2004 Resources make up 337koz of the above Resources. For a breakdown of Resources by deposit and by JORC category within the projects please refer to the Resource table at the end of this announcement.

3. All tonnages reported are dry metric tonnes

4. Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding

Table 1: Black Cat Resources by operation and mining method

BLACK CAT SYNDICATE LIMITED (ASX:BC8)

Level 3, 52 Kings Park Road, West Perth WA 6005 PO Box 184, West Perth WA 6872 T: +61 458 007 713 | E: admin@bc8.com.au W: www.blackcatsyndicate.com.au ABN 63 620 896 282

DIRECTORS

Paul Chapman Gareth Solly Les Davis Philip Crutchfield Tony Polglase

Non-Executive Chairman Managing Director Non-Executive Director Non-Executive Director Non-Executive Director

CORPORATE STRUCTURE

Ordinary shares on issue: 141.1M Market capitalisation: A\$96M (Share price A\$0.68) Cash (31 Dec 2021): A\$5.7M

COYOTE RESOURCE - SUPPORTING INFORMATION

This Resource represents the conversion to JORC 2012 of the existing JORC 2004 Resource originally published by Tanami Gold NL¹ and subsequently by Northern Star². No new interpretations or estimations were completed in this process, with this announcement and the related Tables documenting the original estimation methodology. A review of the Resource was undertaken as part of the conversion processes and classification and depletion of the Resource were reviewed and changed to be in line with the Competent Person's assessment of Resource confidence within the various lodes. The Resource comprises 7 distinct zones that have been estimated at various times over the life of the mine. These were collated into a single Resource for reporting.

Geology and Geological Interpretation

Coyote is hosted within the Tanami Orogen which comprises a sequence of folded metasediments, mafic volcanics and intrusive rocks unconformably overlying Archaean basement. The known Archaean basement includes the informally named 'Billabong Complex' and the Browns Range Dome. The Tanami Orogen is a significant gold host with other major deposits located across the region including Callie 14Moz, The Granites 1.1Moz, and Groundrush 1.7Moz.

Lithology

The local geology of Coyote is situated within the Killi Killi formation. These are sand rich Proterozoic turbidites comprised of poorly sorted sandstones, siltstones and variable amounts of carbonaceous mudstones. The Killi Killi sequence extends well over 100m in thickness, however the individual beds range from 0.3m to 15m thick. Within the Coyote deposit, the 'Marker Siltstone' and 'Kavanagh Sandstone' are important marker units for mineralisation interpretation and boundaries.

The Coyote deposit is obscured by a widespread paleochannel and is deeply weathered. The oxide profile comprises weakly consolidated sand, sheetwash and alluvial lithologies and clay-dominated sequences. This is overlain by transported red aeolian sand. The deeply weathered profile sits directly over the top of the in-situ bedrock with limited saprock present. Oxidised saprolite is commonly present to depths of more than 100m.

Structure

The entire Killi Killi sequence has been tightly folded into an angular anticline. The Coyote deposit is located east-west on the Coyote Anticline, a small parasitic fold within the greater anticline and plunges shallowly west at approximately 15°. The anticline's limbs dip from 30-50° in the northern limb and 70-90° in the southern limb. The southern limb has a secondary fold axis known as the Buggsy anticline, a drag fold associated with the Coyote Fault that offsets the stratigraphy. These limbs contain smaller faults and parasitic fold controlling mineralisation at mine scale. The Marker Siltstone and Kavanagh Sandstone have been the primary units used to delineate the sequence and orientation of the bedding and fold structures.

Mineralisation

Mineralisation is hosted in narrow high grade quartz veins that are concentrated around the fold hinge areas. The mineralisation presents in the form of quartz veins parallel to bedding and are often concentrated in areas of local folding. In areas such as the high grade Kavanagh deposit, these veins can extend completely through the fold hinge zone and often host coarse, visible gold.

¹ See Tanami Gold NL ASX announcement 1 May 2014

² See Northern Star ASX announcement 3 May 2021

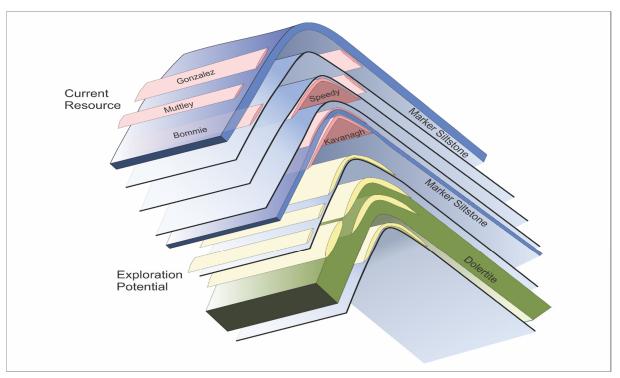


Figure 1: Stylised section looking northwest (oblique to down plunge) of the geology and mineralisation within the Coyote deposit.

Historic Workings

Tanami Gold NL commenced open pit mining at Coyote in 2006 and continued intermittently to 2008 when a portal was developed and underground mining commenced. Open pit mining briefly commenced again in 2009 before it was again halted. Underground production continued until June 2013 when the mine was placed on care and maintenance due to a significant fall in the gold price. Tanami Gold NL subsequently sold its combined Western Tanami Operation assets, which includes Coyote, to Northern Star in late 2017.

Drilling Techniques

Air core and RAB drilling were carried out by Acacia and subsequently AngloGold-Ashanti between 1992–2002. Extensive RC and diamond drilling was carried out by Tanami Gold NL following the acquisition of Coyote.

Sampling and Sub Sampling Techniques

Air core samples taken by Tanami Gold NL were sampled in 4m composite lengths by spear sampling. Extremely wet samples were grab sampled when necessary and the method of sampling was recorded by the geologists.

RC samples were collected from a rig mounted riffle splitter in 1m intervals. The intervals were split into approximately 3kg samples using a rig mounted 12.5% to 87.5% three tier riffle splitter, directly from the rig cyclone. These samples were collected directly into calico sample bags. The remaining 87.5% sample split was collected in plastic sample retention bags. The cyclone and splitter were cleaned at the end of every 3m rod using a compressed air gun. Shallow holes did not encounter wet sampling. Chips were logged for lithology, moisture content, recovery, mineralisation and weathering. Chip trays were photographed and archived.

Duplicate samples were selected by the rig geologists from the sample retention bags at a rate of 1:30 samples. These duplicates were re-split and prioritised potentially mineralised zones (eg. significant quartz veining). Blank and standard material was inserted at the start of hole and at a rate of 1:30. Blank material was inserted after standards to prevent high grade standards contaminating further samples.

Diamond core was drilled from both surface and underground platforms. HQ3 & NQ2 size core was drilled from surface and triple tubing was utilised where required to improve core recovery. Core recovery was poor in some highly weathered and faulted zones but good in most of the fresh rock areas. Underground core was all NQ2 sized. Most core was cut and ½ core sampled. A small number of holes were ¼ core sampled with the remaining half core used for metallurgical testing. Diamond core was logged for lithology, mineralisation and weathering. Core was orientated on the bottom of the hole and structural measurements recorded where possible.

Diamond core was initially sampled in 1m intervals, this was soon changed with irregular sampling sizing used to better target mineralisation and geological boundaries. Samples taken were a minimum of 0.2m and a maximum of 1.1m with individual veins targeted where possible. Commercially certified standards were inserted at a rate of 1:30, blanks were

inserted after standards. Two additional blanks were inserted after high-grade zones with visible gold to limit the effects of potential contamination.

Drill samples used in the Resource were prepared at a commercial laboratory. Samples were crushed and dried before being pulverised to >85% passing 75 microns. A 50g charge was fired and residue dissolved in aqua regia digest. The assays were finished via atomic absorption spectroscopy to a precision of 0.01 ppm.

From 2013, high grade samples identified via visible gold or returning a fire assay value of >5 g/t Au were sent for screen fire assay. This process involves screening a 1kg sample and firing the entire coarse fraction. Duplicate assays are carried out on the fine portion that has been passed through the 75 μ m screen. These duplicates are considered more homogenous and reproducible due to the smaller particle sizes. The total gold content is reported as a weighted average of the grades of the two screen fractions. The grades of both fractions are also reported separately so coarse gold content can be assessed.

Criteria Used for Resource Estimation

A review of the Resource was completed during the due diligence process to investigate the confidence in the reported Resource. No fatal flaws in the estimation of the Resources were identified. It was found that the currently reported Resource from Tanami Gold NL could not be replicated and the history of the reported Resource could not be confidently traced. Additionally, discrepancies with using the as-built pickup for depletion were identified, due to the narrow vein nature of the deposit. Lodes running along the wall or just outside of the as-built were classified as in-situ when in reality they were probably mined. To overcome this discrepancy and to err on the side of caution, the model was manually depleted with mineralised blocks on the edge of the as-built assessed individually and reclassified as mined.

A comparison of the claimed mined ounces (from quarterly reporting) for the underground was compared to the mined ounces from the Resource model. Tanami Gold NL claimed 144,169oz of gold mined between the September 2008 and June 2013 quarters, compared to an estimated 147,164 ounces within the Resource model. This equates to a variance of just 2% between the models over the life of mine providing confidence in the Resource on a global scale.

Classification of the Resource was updated for this review based off all available information. Indicated was assigned in areas where there was extensive development within the Gonzalez zone, where there was significant information from grade control drilling, face sampling, and production data to validate the Resource. A minimum drill spacing of 25m was also required. Other lodes were classified as Inferred up to a drill hole spacing of 50m with anything else reported as unclassified.

Estimation Methodology

Wireframes of mineralisation and weathering were constructed in multiple software packages (generally Micromine or Vulcan). Models of the various marker units within the package were used as guides for the mineralised vein interpretations. Kavanagh used both Ordinary Kriging and Inverse Distance Squared estimations methods, while the other zones were estimated using Inverse Distance Squared estimation methodologies.

Drill hole data was composited downhole to 1m for Kavanagh and Gonzales and 2m for Bommie and Southzone where diluted domain wireframes had been constructed. Both the 1m composite and the 2m dilution composite were treated as hard boundaries. Variable sample lengths were distributed evenly over the entire composite for the 1m samples. The 2m dilution composites were full length composites so there were no residual lengths.

Estimation domains with extreme outliers were investigated, with top cutting used to control their impact on the estimates. Most domains estimated at Coyote required top cutting, which is expected given the high-grades and amount of coarse gold present.

Variograms were modelled within major mineralisation areas to determine primary directions and distances of continuity. These variograms were then used to create search ellipsoids which were applied to the individual domains. Minor adjustments to the search ellipsoids and orientations to suit individual domains was undertaken. Variable Parent block sizes between 20–30m (X), 2.5–8m (Y), 20–30m (Z) were used for the different zones. Sub-celling was used to honour mineralisation volumes.

Bulk density values were applied according to regolith type and are based off density measurements of diamond core.

The Resource was validated through comparison of input assay data against the modelled grades. This was completed by checking the global averages of each domain, visually checking the spatial distributions of grade, assessing swath plots and, in the case of Kavanagh, comparing to a nearest neighbour check estimate.

Cut-Off Grades

All Resources have been reported at an underground cut-off grade of 2 g/t Au.

	Cut - Off	Cotogony	Tonnes	Grade	Contained Au
Coyote Deposit Resource	Cut - On	Category	'000 tonne	g/t	'000 ounces
Indeground	2.0 g/t	Indicated	243	10.0	79
Underground	2.0 g/t	Inferred	553	10.6	189
Total Resource			797	10.4	267

Table 2: Underground Resource for the Coyote deposit * #

* Small discrepancies may occur due to rounding. # For more detail please refer to the Resource table at the end of the announcement

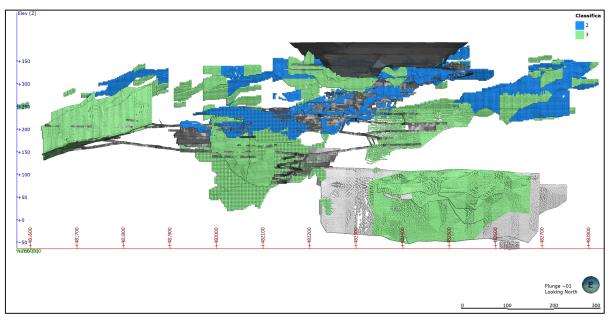


Figure 2: Long section looking north showing Resource classification (blue=Indicated, green=Inferred, grey=Unclassified) for Coyote.

Mining and Metallurgical Parameters

A minimum mining width of 2m was assumed for the Bommie and South zone mineralisation. This resulted in the composites, mineralised domains and blocks estimated being to a minimum downhole width of 2m. This was used as a solution for addressing the variability in mineralisation width to assign standard composite length. The dilution composites are not assumed to completely address all potential dilution issues when extracting the Resource. Minimum mining width and dilution factors are still expected to be applied during the Ore Reserve process.

No minimum width was applied to the other zones. Minimum widths are assessed and applied during the Ore Reserve process. Planned dilution is also factored in at the Ore Reserve stage.

No metallurgical factors were applied to the Resource, as this is also to be considered during Ore Reserve calculation.

PAULSENS UNDERGROUND RESOURCE - SUPPORTING INFORMATION

Geology and Geological Interpretation

Paulsens is positioned along the north-eastern inflection point of the Wyloo anticline. The geology is characterised by rocks comprising the Hardey Formation of the lower Fortescue group sequence. The Hardey Formation has been informally subdivided into five members termed the Horsewell Sandstones, Melrose Argillite, Madang Clastics, Tin Hut Basalt and the Beaghy Sandstones. The members are defined as a predominately sedimentary succession of siliclastics with minor mafic flows which have been intruded by doleritic to gabbroic dyke swarms and sills of varying ages.

The prominent structural grain is defined by the trend of the regional dome, where local stratigraphy plunges 30° towards the northwest. A penetrative south-dipping axial planar fabric is typically present and is locally overprinted by a steeper, sub-parallel fabric which develops discrete and narrow shear zones with undefinitive origins. Towards the east of the project area, a regional brittle fault termed the "Hardey Fault" offsets stratigraphy some 600m with apparent sinistral strike-slip kinematics.

Mineralisation

The Paulsens mineralised trend consists of gold mineralisation predominantly concentrated on, or close to, the margins of massive, predominantly strata-bound, quartz intrusive within a folded and later, normal fault offset plane.

The massive quartz intrusive dips variably towards the north and has been folded into a series of broad undulations by later regional N-S compression. Each undulation gradually overturns to the south down dip, eventually becoming separated from subsequent undulations by intense shear zones that strike east-west and dip south. Each segment typically has an upper and lower mineralized zone or lode (so named due to the flat nature of the early Paulsens ore body).

The N-S extent of the host quartz segments is largely constrained by a significant intrusive gabbro dyke found to the north, above and to the south, below the quartz host. The apparent gabbro position is attributed to offset along the Melrose Fault horizontally bisecting a large vertically oriented gabbro intrusive dyke, creating two apparently separate dyke bodies. It is postulated that the presence of these two gabbro dykes has been critical in creating favourable deformation conditions for the mineralisation at Paulsens.

The various ore lodes plunge from outcropping at surface towards grid WNW at around -30 degrees and are mostly constrained to the north and south by the offset gabbro dyke. There is one important exception being the Apollo deposit, found to the north of the north gabbro dyke along the Melrose stratigraphic position.

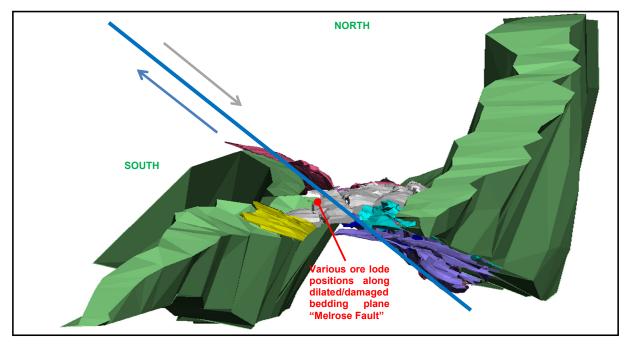


Figure 3: View looking down-plunge (west and down) from surface, along the "Gabbro Corridor", created by offset across the graphitic shale horizon

Historical Workings

The area was mined from 2005 to 2009 by Intrepid Mining and then by Northern Star Resources until 2017 when the operation was put on care and maintenance. A total of 4.2Mt @ 7.3 g/t Au for 907koz was produced during this time at an average of 75,000 oz pa.

Drilling Techniques

In the upper areas, both RC and diamond drilling from surface was completed by Taipan Resources. Underground diamond drilling and face sampling have been the dominant methods for the majority of the mine history and the basis for most of the Resource.

Sampling and Sub-Sampling Techniques

LTK 60 is generally whole core sampled, NQ2 core is generally half core sampled. If not whole core sampled, then core is half cut with an Almonté diamond core saw and half core sampled. The right half is sampled for intervals defined by the logging geologist along geological boundaries. The left half is archived.

All major mineralised zones are sampled, plus associated visibly barren material, >5m of the hangingwall and footwall.

Quartz veins >0.3m encountered outside the known ore zone and ±1m on either side are also sampled.

Ideally, sample intervals are 1m in length, though range from 0.3m to 1.2m in length. Total weight of each sample generally does not exceed 5kg.

All samples are oven-dried overnight, jaw crushed to <6mm, and split to <3kg in a static riffle splitter. The coarse reject is then discarded. The remainder is pulverised in an LM5 to >85% passing 75µm (Tyler 200 mesh) and bagged. The analytical sample is further reduced to a 30g charge weight using a spatula and the pulp packet is stored.

Post 2013, samples are crushed to 90% passing 3mm before a rotary split to 2.5kg, all of which is then pulverised to 90% passing 75 microns. For older core, pre-Northern Star, best practice is assumed.

The QAQC protocols used include the following for all drill samples:

- Site sourced coarse blanks are inserted at an incidence of 1 in 40 samples. From April 2013, commercial blanks are used.
- Commercially prepared certified reference materials are inserted at an incidence of 1 in 40 samples. The CRM used is not identifiable to the laboratory.
- Northern Star's blanks and standards data is assessed on import to the database and reported monthly, quarterly and yearly.
- The primary laboratory QAQC protocols used include the following for all drill samples:
 - Repeat of pulps at a rate of 5%.
 - Screen tests (percentage of pulverised sample passing a 75µm mesh) are undertaken on 1 in 100 samples.
 - The laboratory and geology department report QAQC data monthly.
 - Failed standards are followed up by re-assaying a second 30g pulp sample of the failed standard ±10 samples either side by the same method at the primary laboratory.
 - One standard is inserted with every face sampling submission to assess site lab performance.
 - Both the accuracy component (CRM's and umpire checks) and the precision component (duplicates and repeats) are deemed acceptable.
 - QAQC protocols for surface RC and diamond drilling by previous operators is unknown, assumed to be industry standard.

To date, an acceptable level of precision and accuracy has been observed.

Criteria Used for Resource Estimation

The Resource is currently classified as Measured, Indicated and Inferred. Significant drilling has occurred over the history of the mine.

Measured Resource classification is where the estimate is supported by data less than 5m apart and/or within 5-7m of development.

Indicated Resource classification is where the mineralisation has been sufficiently defined by a drill spacing of 12-15m x 12-15m or better and/or where development has occurred within 12-15m.

Inferred Resource is based in addition to the above to a maximum search distance of 50m from last sample point and high angle drill intercepts.

The area has also been externally estimated by Ordinary Kriging (Hellman and Schofield 2007-2010), Inverse Distance Squared (ResEval Pty Ltd) 2004-2006, Conditional Simulation and Ordinary Kriging (Golders) 2002.

Estimation Methodology

The interpretation of the deposit was carried out using a systematic approach to ensure continuity of the geology and the Resource. The confidence in the geological interpretation is high with all the information and >13 years of operation. All available geological data was used in the interpretation including mapping, drilling faces, photos and structures.

Most of the mineralisation is located within a large, variably folded and faulted quartz host, close to, or on, the contacts with the surrounding wall rock sediments between an offset gabbro intrusive. Drill core logging and face development is used to create 3D constrained wireframes.

Drill hole data has been composited downhole to 1m within respective mineralisation domains using hard boundaries

Estimation domains with high COV (>2) or extreme outliers were investigated with extreme grade limitation techniques to manage their impact on the Ordinary Kriging estimate. Top cuts were used during estimation to globally cap a grade at a certain value for the entire domain. Top cut values were determined via geostatistical analysis and only utilised where deemed necessary, ranging from 10 to 200 g/t Au.

The block model is constructed in Vulcan 11 with block sizes of $5m \times 4m \times 5m (x, y, z \text{ directions})$. Parent block size was based off drill hole spacing, with subblocks allowed down to $1m \times 0.25m \times 1m$ to honour domain volumes. Estimation of the mineralised domains is completed using Inverse Distance Squared into the parent blocks.

Bulk density values were assigned based off extensive measurements of diamond core.

Validation steps of the Resource included the comparison of input assay data against the modelled grades. This was completed by checking the global averages of each domain, visually checking the spatial distributions of grade and assessing swath plots.

Cut-Off Grades

Resource reporting is based on Mining Stope Optimiser ("**MSO**") using blocks 10m high by 10m wide (variable widths) at a cut-off grade of 3.1g/t Au based on a gold price of A\$2,250 and mine restart costs.

Individual MSO blocks are then visually assessed for "mineability". Remnant stope "skins", small remote blocks and inaccessible pillars are removed.

Deulaura Decemen	0.4.0%	0-1	Tonnes	Grade	Contained Au
Paulsens Resource	Cut - Off	Category	'000 tonne	g/t Au	'000 oz
		Measured	341	5.7	65
Underground	3.10g/t	Indicated	88	5.6	16
		Inferred	43	6.6	9
Total Resource	-	-	473	5.8	89

Table 3: Underground Resource for the Paulsens deposit within the greater Paulsens Mining Centre by potential mining method*#

* Small discrepancies may occur due to rounding. # For more detail please refer to the Resource table at the end of the announcement

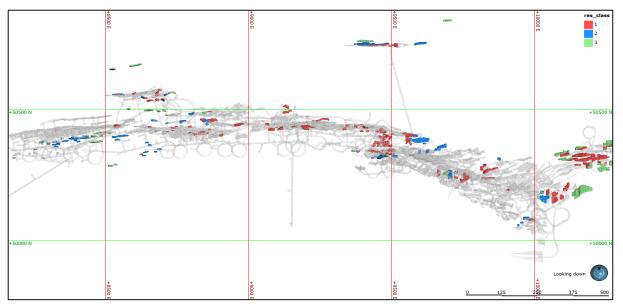


Figure 4: Plan image showing Resource classification (red=Measured, blue=Indicated, green=Inferred) for Paulsens underground.

Mining and Metallurgical Parameters

Standard sub-level retreat mining methods have been predominantly used. Historical mining and reconciliation data have been taken into consideration but without affecting wire frame interpretation. The total model has been coded to identify previously mined areas and only reports remnant mineralisation.

The MSO was run at 10m by 10m blocks to identify potentially economic material.

Historic production results from Paulsens (Life of Mine over 14 years for 91.5% recovery) show that the ore is free milling with an average hardness (BWI15-16) and with no significant refractory component. There are few deleterious elements and any impact of the footwall graphitic shales on recovery is managed by an appropriate blending strategy. Similarly, pyrrhotite and chalcopyrite can also affect recovery and have been managed by blending the ROM feed to the crusher prior to milling.

PAULSENS OPEN PIT RESOURCE (BELVEDERE) - SUPPORTING INFORMATION

Geology and Geological Interpretation

Belvedere is situated within a sequence of mafic volcanic and sedimentary rocks collectively known as the Mount Roe Basalts at the base of the Proterozoic Fortescue Group, these rocks are folded (shallow NW plunge) about a moderate to

steeply SW dipping axial plane that corresponds with the dominant foliation. Where strain is highest, the limbs of these folds are transposed by dominantly reverse-dextral shears. Immediately north of Belvedere a 5-10m wide shear zone (defined in this report as the Wyloo Shear) appears to represent a major boundary between different facies of the Mount Roe Basalt volcano-sedimentary basin.

Post-folding and shearing, the volcano-sedimentary rocks appear to have been dissected by a series of NE trending normal faults with NW side down displacement. One of these faults, the Belvedere Fault appears to localise mineralisation at the Belvedere and North Belvedere prospects.

The rocks are then intruded by a suite of steeply dipping, northerly striking (350°) dolerite dykes. At Belvedere a large dyke has exploited the weakness provided by the existing Belvedere Fault and turned into a plane for a distance of ~500m resulting in a distinctive "kink" in the dolerite.

Mineralisation

Gold mineralisation is hosted in and adjacent to laminated quartz veins containing Fe-carbonate and arsenopyrite (+/galena), formed within or at the margin of the re-oriented dolerite dyke. These veins appear to be associated with a set of steeply north dipping, roughly east west oriented faults (Mineralisation Faults) that probably comprise a damage zone formed contemporaneous with gold mineralisation. These faults have associated minor quartz veining and sericite (+/carbonate alteration) and locally deform the intrusive dolerite. Partitioning of strain between these faults probably controls the horizontal extent of the larger mineralised quartz veins.

The main mineralisation host at Belvedere is a quartz vein (defined by drilling) between 2 and 12m thick dipping from near surface at 52- >280° for 180m to a depth of around 100m RL. The geometry of this vein appears to be analogous to the historically mined vein on the hill above it, but it is most probably a SW en-echelon step across from this vein rather than a direct (co-planar) extension of it.

The stretching lineation measured in the mined quartz veins plunges moderately towards the SSW slightly pitched (toward the south) across the dip plane suggesting that veins formed under predominantly dip-slip movement with a lesser component of apparent strike slip. A shallow southerly plunging inflection in the mineralised quartz vein corresponds with a zone of thickening that defines the geometry of expected shallow plunging higher-grade ore shoots. The gross plunge of the mineralisation envelope is 50->250° and probably bound by sets of Mineralisation Faults.

The main mineralised quartz veins at Belvedere form westerly dipping en-echelon arrays of separate sub-parallel deposits (limited down-dip extent of veins) between bounding Mineralisation Faults. There is as yet no evidence for an east-dipping conjugate vein set but the possibility exists. An array of thin veins (+/- Au mineralisation) are directly associated with the north-dipping Mineralisation Faults but they appear to be thin and less attractive targets than westerly dipping veins.

Historical Workings

Historical mining of the upper 20m of the deposit has occurred. This has been depleted from the Resource.

Drilling Techniques

Both RC and diamond drilling has been completed at the deposit.

Sampling and Sub Sampling Techniques

Core sample intervals are generally to 0.3-1.2m in length, honouring lithological boundaries to intervals less than 1m as deemed appropriate.

NQ2 core is half core sampled cut with Almonté diamond core saw. The right half is sampled, to sample intervals defined by the logging geologist along geological boundaries. The left half of core is archived.

All samples are oven-dried overnight ($105^{\circ}C$), jaw crushed to <10mm. The total sample is pulverised in an LM5 to 90% passing 75µm and bagged. The analytical sample is further reduced to a 50g charge weight using a spatula, and the pulp packet is stored awaiting collection by Northern Star.

Northern Star RC initially sampled to 4m comps, any samples reporting > 0.1g/t Au were re-split and re-assayed as 1m composites. Rig mounted static cone splitter was used for dry samples to yield a primary sample of approximately 4kg. Off-split retained.

The field QAQC protocols include duplicate samples at a rate of 1 in 25, coarse blanks inserted at a rate of 3%, commercial standards submitted at a rate of 4%.

Industry standard QAQC procedures are assumed to have been employed by Taipan Resources. To date, an acceptable level of precision and accuracy has been observed.

Criteria Used for Resource Estimation

The Resource is currently classified as Indicated and Inferred.

Indicated Resource classification is where the mineralisation has been sufficiently defined by a drill spacing of 20m by 20m or better.

Inferred Resource, in addition to the above, is based on a maximum search distance of 50m from last sample point.

Estimation Methodology

The interpretation of the deposit was carried out using a systematic approach to ensure continuity of the geology by the supervising and logging geologists. Sectional interpretations were digitised in Vulcan software and triangulated to form three dimensional solids.

Weathering zones and bedrock sub-surfaces were also created.

All available valid data was used including drill data, mapping previous interpretations and existing 1930s mine development extents. Where pre Northern Star drill data was used, it is assumed to be correct.

Drill hole data has been composited downhole to 1m within respective mineralisation domains using hard boundaries.

Estimation domains with high COV (>2) or extreme outliers were investigated with extreme grade limitation techniques to manage their impact on the Ordinary Kriging estimate. Top cuts were used during estimation to globally cap a grade at a certain value for the entire domain. Top cut values were determined via geostatistical analysis and only utilised where deemed necessary, ranging from 5 to 20 g/t Au.

The block model is constructed in Vulcan 9.1 with block sizes of 2.5m x 2.5m x 2.5m (x, y, z directions). Parent block size was based off drill hole spacing, with subblocks allowed down to 1.25m x 1.25m x 1.25m to honour domain volumes. Estimation of the mineralised domains is completed using Inverse Distance Squared into the parent blocks.

Bulk density values were assigned based off extensive measurements of diamond core into the various geological units.

Validation steps of the Resource included the comparison of input assay data against the modelled grades. This was completed by checking the global averages of each domain, visually checking the spatial distributions of grade and assessing swath plots.

Cut-Off Grades

Resources are reported for open pit at a cut-off grade of 1 g/t Au. The reported Resource has acceptable reasonable prospects for economic extraction based off the high-grade shallow nature of the mineralisation and is supported by high level optimisation studies.

Belvedere Deposit	Cut - Off	Category	Tonnes	Grade	Contained Au
Resource	Cut-On	Galegory	'000 tonne	g/t	'000 ounces
Open Dit	1.00~/	Indicated	129	3.1	13
Open Pit	1.00g/t	Inferred	111	4.8	17
Total Resource			240	3.9	30

Table 4: Open Pit Resource for the Belvedere deposit within the greater Paulsens Mining Centre by potential mining method*#

* Small discrepancies may occur due to rounding.

For more detail please refer to the Resource table at the end of the announcement

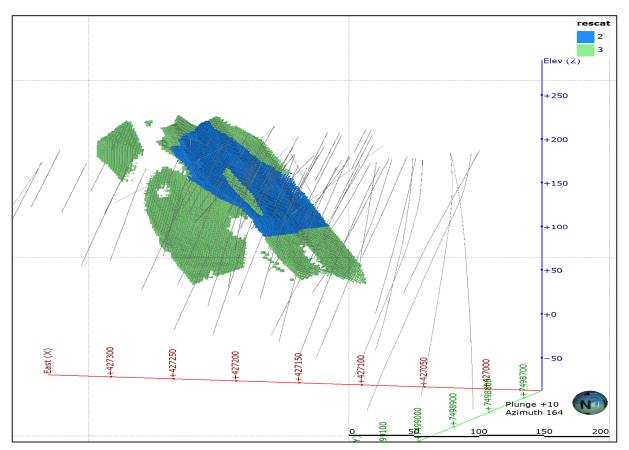


Figure 5: Oblique image looking SE showing Resource classification (blue=Indicated, green=Inferred) for Belvedere.

Mining and Metallurgical Parameters

It is assumed Belvedere will initially be mined by open cut mining methods, with scoping studies supporting this potential. Below the pit depth, grades are high enough to potentially be mined by underground methods.

Extensive metallurgical testing including comminution, leaching and adsorption, flocculation, rheology and geochemistry test work was completed by ALS metallurgy in early 2015. Belvedere will be amenable to processing in the Paulsens processing facility, though the thickener may need to be optimised for best recovery.

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to geology, exploration results, planning and Resources was compiled by Mr. Iain Levy, who is a Member of the AIG and an employee, shareholder and option holder of the Company. Mr. Levy has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Levy consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

Where the Company refers to Resources in this report (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Resource estimate with that announcement continue to apply and have not materially changed.

The information in this announcement that relates to exploration results and Resources, other than as quoted under the 2012 JORC Code, is considered to be an accurate representation of the available data and studies and was compiled by Mr. Iain Levy, who is a Member of the AIG and an employee, shareholder and option holder of the Company. Mr. Levy consents to the inclusion in this announcement of the information in the form and context in which it appears.

The information in this announcement regarding historical Exploration Results, Resources or Ore Reserves has been extracted from various Northern Star and Tanami Gold NL ASX announcements which are available on the ASX website.

CAUTIONARY STATEMENT IN RESPECT OF JORC 2004 RESOURCE ESTIMATES

The JORC 2004 Resource Estimates in the below table have not been reported in accordance with JORC Code 2012 and a Competent Person has not done sufficient work to classify them in accordance with the JORC Code 2012. It is possible that following further work that the prior reported Mineral Estimates may materially change when reported under the JORC Code 2012, however nothing has come to the attention of Black Cat that causes it to question the accuracy or reliability of Northern Star's Resources. Black Cat has not independently validated Northern Star's estimates and therefore is not to be regarded as reporting, adopting or endorsing those estimates.

In respect of the proposed acquisition of the JORC 2004 Resources, the Company provides the following information:

- The Resources at the Paulsens Gold Operation have been reported by Northern Star. Northern Star also adopted and reported on Resources originally reported on by Tanami Gold NL (Coyote Gold Operation) and Artemis Resources Limited (Mt Clement).
- The source and date of the reporting of the Resources have been included below in the notes to the Resources.
- The Resources have been reported under the JORC Code 2004 and may not conform to the requirements of the JORC Code 2012.
- The Company is not reporting on Ore Reserves in respect of the proposed acquisitions.
- Nothing has come to the attention of Black Cat that causes it to question the accuracy or reliability of Northern Star's Resources or the modifying factors, including the economic modifying factors, used by Northern Star. However, Black Cat has undertaken due diligence as part of the proposed acquisition.
- At this stage, Black Cat is not able to provide a summary of the work programs on which the Resources were based other than as included in this announcement.
- There are no more recent estimates or data relevant to the Resources available to Black cat. The Company will
 undertake sufficient exploration and evaluation work to report the Resources in accordance to JORC 2012
 following completion of the acquisitions. The required exploration and evaluation work will be funded from existing
 financial resources of the Company.

APPENDIX A - JORC 2012 RESOURCE TABLE - BLACK CAT (100% OWNED)

The current in-situ, drill-defined Resources for the Kal Fast Gold Project are listed below

	Measu	ired Reso	urce	Indic	ated Reso	ource	Infe	rred Reso	urce	Total Resource		
Mining Centre	Tonnes ('000s)	Grade (g/t Au)	Metal (000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz
Myhree Mining Centre												
Open Pit	-	-	-	964	2.7	83	863	1.8	50	1,827	2.3	132
Underground	-	-	-	230	4.6	34	823	3.5	93	1,053	3.8	127
Sub Total	-	-	-	1,194	3.0	117	1,686	2.6	143	2,880	2.8	259
Majestic Mining Centre												
Open Pit	-	-	-	2,405	1.6	121	4,088	1.4	182	6,493	1.4	302
Underground	-	-	-	998	4.5	143	399	4.8	61	1,397	4.5	204
Sub Total	-	-	-	3,935	2.3	290	4,487	1.7	239	8,413	2.0	528
Fingals Mining Centre	•	-		-	-		-	-		-		-
Open Pit	-	-	-	2,740	1.9	167	735	1.6	38	3,475	1.8	205
Underground	-	-	-	180	4.6	26	312	4.3	43	491	4.4	69
Sub Total	-	-	-	2,920	2.1	194	1,046	2.4	81	3,966	2.2	275
Frojan Mining Centre												
Open Pit	-	-	-	1,356	1.8	79	760	1.5	36	2,115	1.7	115
Sub Total	-	-	-	1,356	1.8	79	760	1.5	36	2,115	1.7	115
Other Resources												
Open Pit	13	3.2	1.0	200	2.6	17	1,134	2.3	85	1,347	2.4	103
Underground	-	-	-	0	0.0	0	114	3.8	14	114	3.8	14
Sub Total	13	3.2	1.0	200	2.6	17	1,248	2.5	99	1,461	2.5	117
TOTAL Resource	13	3.2	1.0	9,605	2.3	696	9,219	2.0	597	18,836	2.1	1,294

Notes on Resources:

2.

The preceding statements of Mineral Resources conforms to the 'Australasian Code for Reporting of Exploration Results Mineral Resources and Ore 1. Reserves (JORC Code) 2012 Edition'

All tonnages reported are dry metric tonnes 3.

Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding.

4. Resources have been reported as both open pit and underground with varying cut-offs based off several factors discussed in the corresponding Table 1 which can be found with the original ASX announcements for each Resource

The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Resources are: 1.

Myhree Mining Centre: 0

0

- Boundary Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Findals Fortune'
- Trump Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals Fortune'
- Myhree Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals 0 Fortune"

Strathfield - Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz".

- Majestic Mining Centre:
 - Majestic Black Cat ASX announcement on 25 January 2022 "Majestic Resource Growth and Works Approval Granted"; Sovereign Black Cat ASX announcement on 11 March 2021 "1 Million Oz in Resource & New Gold Targets"; 0
 - 0 Imperial – Black Cat ASX announcement on 11 March 2021 "1 Million Oz in Resource & New Gold Targets": 0
 - Jones Find Black Cat ASX announcement 4 March 2022 "Resource Growth Continues at Jones Find"
 - 0 Crown - Black Cat ASX announcement on 02 September 2021 "Maiden Resources Grow Kal East to 1.2Moz"
- 3. Fingals Mining Centre:
 - Fingals Fortune Black Cat ASX announcement on 23 November 2021 "Upgraded Resource Delivers More Gold at Fingals 0 Fortune'
 - Fingals East Black Cat ASX announcement on 31 May 2021 "Strong Resource Growth Continues at Fingals".
- Trojan Mining Centre: 4.
 - Trojan Black Cat ASX announcement on 7 October 2020 "Black Cat Acquisition adds 115,000oz to the Fingals Gold Project".
- Other Resources: 5.
 - Queen Margaret Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong". 0
 - Melbourne United Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong". 0 Anomaly 38 - Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz". 0
 - Wombola Dam Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with 0 Silver Lake'
 - Hammer and Tap Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources". 0 Rowe's Find – Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources" 0

APPENDIX B - JORC 2012 AND JORC 2004 RESOURCE TABLE - ACQUISITION

	Meas	ured Res	ource	Indic	ated Reso	ource	Infe	rred Reso	urce	Total Resource		
Deposit	Tonnes ('000s)	Grade (g/t Au)	Metal (000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)
Coyote Gold Operation												
Coyote UG	-	-	-	243	10.0	79	553	10.6	189	797	10.4	267
Sandpiper OP (JORC 2004)	27	3.3	3	455	4.1	59	635	4.4	90	1,117	4.2	152
Kookaburra OP (JORC 2004)	55	2.6	5	286	2.4	22	353	2.1	24,	694	2.3	51
Pebbles OP (JORC 2004)	-	-	-	-	-	-	76	2.5	6	76	2.5	6
Stockpiles SP (JORC 2004)	375	1.4	17	-	-	-	-	-	-	375	1.4	17
Sub Total	457	1.7	25	984	5.1	160	1,617	5.9	309	3,059	5.0	493
Paulsens Gold Operation												
Paulsens UG	341	5.8	64	88	5.6	16	43	6.6	9	473	5.8	89
Paulsens SP	11	1.6	1	-	-	-	-	-	-	11	2	10
Belvedere OP	-	-	-	129	3.1	13	111	4.8	17	240	3.9	30
Merlin OP (JORC 2004)	-	-	-	-	-	-	523	1.4	24	523	1.4	24
Mt Clement OP (JORC 2004)	-	-	-	-	-	-	1,132	1.8	65	1,132	1.8	65
Electric Dingo OP (JORC 2004)	-	-	-	98	1.6	5	444	1.2	17	542	1.3	22
Sub Total	352	5.7	65	315	3.4	34	2,253	1.8	132	2,921	2.5	231
TOTAL Resource	809	3.5	90	1,299	4.6	194	3,870	3.5	441	5,980	3.8	724

The current in-situ, drill-defined Resources for the Coyote and Paulsens Gold Operations, if acquired, are listed below.

Notes on Resources:

2.

1. The preceding statements of Mineral Resource are produced in accordance with the 2012 Edition of the Australian Code for Reporting of Mineral Resources and Ore Reserves (the "2012 JORC Code"): All of Kal East Gold Project Resources, Paulsens UG, Paulsens SP, Belvedere OP, Coyote UG.. The remaining Resource estimates were first prepared and disclosed under the 2004 edition of the JORC Code and have not been updated since to comply with the 2012 JORC Code on the basis that the information has not materially changed since it was last reported. JORC 2004 Resources are: Merlin OP, Mt Clement OP, Electric Dingo OP, Sandpiper OP, Kookaburra OP, Pebbles OP, and Coyote Stockpiles.

2. All tonnages reported are dry metric tonnes

3. Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding.

4. Resources have been reported as both open pit and underground with varying cut-offs based off several factors discussed in the corresponding Table 1 which can be found with the original ASX announcements for each Resource.

5. For JORC 2004 Resources, to the level that supplied announcements states, it is the view of Black Cat that the estimate is reliable, with acceptable drilling, sampling and estimation techniques described. It is expected that a thorough review of the input data, geological modelling, and estimation practices will be needed to convert the Mineral Resource to JORC 2012.

6. Black Cat will undertake work to convert the remaining 2004 JORC Resources to 2012 JORC Resources within the first 3 months of acquisition.

The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Resources are:

- 1. Coyote Gold Operation
 - Coyote UG Black Cat ASX announcement on 19th April 2022 Funded Acquisition of Coyote & Paulsens Gold Operations -Supporting Documents
 - Paulsens Gold Operation:
 - Paulsens UG Black Cat ASX announcement on 19th April 2022 Funded Acquisition of Coyote & Paulsens Gold Operations -Supporting Documents
 - Paulsens SP Black Cat ASX announcement on 19th April 2022 Funded Acquisition of Coyote & Paulsens Gold Operations -Supporting Documents
 - Belvedere OP Black Cat ASX announcement on 19th April 2022 Funded Acquisition of Coyote & Paulsens Gold Operations
 Supporting Documents

The announcements containing the Reporting Criteria relating for the 2004 JORC compliant Resources are:

1. Coyote Gold Operation

0

- Sandpiper OP Reported by Tanami Gold under the JORC 2004 reporting code, and subsequently by Northern Star Resources. Tanami Gold announcement on ASX 23 October 2012 "Tanami Gold NL Annual Report".
 Kookaburra OP – Reported by Tanami Gold under the JORC 2004 reporting code, and subsequently by Northern Star
- Kookaburra OP Reported by Tanami Gold under the JORC 2004 reporting code, and subsequently by Northern Star Resources. Tanami Gold announcement on ASX 23 October 2012 "Tanami Gold NL Annual Report".
- Pebbles OP Reported by Tanami Gold under the JORC 2004 reporting code, and subsequently by Northern Star Resources. Tanami Gold announcement on ASX 23 October 2012 "Tanami Gold NL Annual Report".
- Stockpiles SP (Coyote) Reported by Tanami Gold under the JORC 2004 reporting code, and subsequently by Northern Star Resources. Tanami Gold announcement on ASX 23 October 2012 "Tanami Gold NL Annual Report".
- 2. Paulsens Gold Operation:
 - Merlin OP Reported by Northern Star Resources under the JORC 2004 reporting code. Northern Star Resources announcement on ASX 21 February 2012 "Paulsens Project resource soars 41% to 318,000oz".
 - Mt Clement OP Reported Artemis Resources under the JORC 2004 reporting code, and subsequently by Northern Star Resources. Artemis Resources announcement on ASX 26 July 2011 "Substantial Resource increase at Mt Clement gold and silver project".
 - Electric Dingo OP Reported by Northern Star Resources under the JORC 2004 reporting code. Northern Star Resources announcement on ASX 02 April 2012 "NST unveils 1M oz resource at Ashburton Project".

APPENDIX C - COYOTE GOLD OPERATION REPRESENTATIVE SAMPLE OF HISTORICAL DRILLING

Coyole Un	derground Diam	ond – Historical I	orilling (ran	dom san	ipie)			Downh	
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From	To	Interval	Au Grade (g/t)
-	_	_				(m)	(m)	(m)	
						4.6	4.9	0.3	6.85
						12.1	12.4	0.3	2.98
						15.8	16.1	0.3	4.46
CYUG0011	482059.2	7799675.8	212.5	27	156	16.6	17.1	0.5	1.58
						19.4	21	1.6	9.75
						22.6	22.9	0.3	1.08
						42.8	43.3	0.5	3.55
						58.2	58.5	0.3	63.99
						5.6	5.9	0.3	2.9
						6	6.3	0.3	1.43
						15.9	16.6	0.7	168
						21.4	21.7	0.3	2.13
						28.5	29	0.5	3.91
						36.9	37.2	0.3	2.72
CYUG0014	482057.3	7799675.8	211.9	20	197	38	38.3	0.3	3.55
C10G0014	402057.5	1199015.0	211.9	20	197	39.2	39.8	0.6	13.22
						40.1	40.4	0.3	23.7
						40.6	41	0.4	4.59
						42.74	43.2	0.46	2.31
						46	47	1	2.93
						76	76.9	0.9	35.52
						79.4	79.8	0.4	27.96
						17.5	21	3.5	47.58
						23	24	1	42.48
CYUG0016	482137.8	7799667.5	219.6	-49	358	56	57	1	1.82
						95.7	97	1.3	44.16
						122	123	1	42.38
					-	0.9	3.7	2.8	88.9
						19.9	20.7	0.8	1.92
CYUG0036	482140.8	7799648.8	219.9	-66	320	30.2	31	0.8	4.84
0100000	102110.0	1100010.0	210.0	00	020	131.7	132.1	0.4	2.24
						188.9	192.3	3.4	58.37
						11.6	12	0.4	37.54
						23.4	23.7	0.4	7.31
CYUG0040	482056.6	7799605.4	207.7	-65	341	25.1	26.1	1	2
						33.1	34.1	1	5.27
CYUG0074	482023.5	7799620.4	196	7	165	19.6	19.9	0.3	1.42
01/11/00/004	101005.0	7700000	000	4	455	26.8	27.1	0.3	92.8
CYUG0081	481965.6	7799628	209	1	155	0.5	7.0		No Significant Intercep
01/100110	400055	7700075 7	011.0	4.0	004	6.5	7.6	1.1	1.53
CYUG0118	482055	7799675.7	211.6	4.9	204	9.55	9.85	0.3	1.87
						22.9	23.2	0.3	3.79
						22.1	23	0.9	48.6
0.4.10.6.1.1	1000	77000777			000	28.8	29.1	0.3	1.61
CYUG0119	482054.7	7799677.4	211.6	3.9	220	38.3	39.36	1.06	18.19
						46	47	1	218.4
						61.1	62.13	1.03	7.18
CYUG0140	481884.1	7799572	207.3	32	166				No Significant Interce
CYUG0149	481827	7799570.8	202.8	-81	180	27.7	28	0.3	5.21
CYUG0163	482004.3	7799587.2	198.1	-57	324	80.7	82.45	1.75	14.7
						12	12.3	0.3	2.11
CYUG0172	482004	7799586.9	198.1	-33	284	89	90.6	1.6	3.03
						96.2	97	0.8	8.79
CYUG0180	481959.1	7799627.1	211.7	52	156	7.8	8.1	0.3	7.52
CYUG0194	482092.7	7799662.5	207.7	0	165				No Significant Interce
CYUG0197	482126.7	7799680.5	208.2	0	345	1.45	2.85	1.4	1.06

Coyote UG diamond drilling (13% of 451 holes):

0.4100.45	100.05			-		6.6	6.9	0.3	1.22
CYUG0198	482127.8	7799675.8	208.1	0	165	13.3	14.3	1	2.69
CYUG0207DH	481723.9	7799565	203.8	-40.5	68	24.5	25	0.5	584.42
CYUG0219	482263.7	7799732.7	151.4	-33	32				No Significant Intercept
						0.25	1	0.75	4.27
CYUG0221	482064.5	7799653	164.8	-20	28	2.6	2.9	0.3	7.79
0.000221	10200110		101.0	20	20	32.1	32.4	0.3	6.12
						57.8	58.1	0.3	5.91
						9	10	1	1.1
CYUG0225	482053.1	7799652.7	164.3	-33	352	18.2	18.5	0.3	2.97
01000225	402033.1	1199032.1	104.5	-00	552	27.4	27.7	0.3	1.21
						62	62.3	0.3	1.62
01/100000	404740.0	7700500 5	000.0	45	004	24.5	24.8	0.3	19.4
CYUG0232	481719.9	7799586.5	208.6	45	201	31.12	31.42	0.3	18.1
						45.3	45.9	0.6	215.27
CYUG0243	481715	7799558.7	204.2	-54.5	196	47.7	48	0.3	1.88
CYUG0247	481770.5	7799561.3	204.6	-26	161				No Significant Intercept
CYUG0255	482267.7	7799705.1	278.1	-23.9	166				No Significant Intercept
CYUG0256	482266.7	7799705.1	278.1	-21.4	192	10.8	11.7	0.9	14.86
						11.5	11.9	0.4	8.14
CYUG0261	482028.5	7799651.3	222.7	-10	238	20	20.5	0.5	1.82
						20	20.5	0.5	1.75
CYUG0279	482065.1	7799656	225.1	65	170	23	25.5	0.5	1.16
						32	33	1	41.2
CYUG0285	481997.7	7799683.4	155.2	-33.5	145	35.5	35.8	0.3	3.13
						45.3	45.6	0.3	8.83
						80.15	80.7	0.55	9.6
CYUG0300	482141.3	7799673	102	-51	309	76	76.3	0.3	1.09
CYUG0318	482060.6	7799660.8	136.8	-43	150				No Significant Intercept
CYUG0335	482124.7	7799723.5	100	0	334				No Significant Intercept
CYUG0346	482174.1	7799713.1	100.3	1	110	19.6	19.9	0.3	6.14
CYUG0355	482128.1	7799758.3	99.3	-30.5	345	38.6	39	0.4	4.54
0.00000			00.0	00.0	0.0	149.7	150.3	0.6	15.58
						85	85.7	0.7	1.02
						191	192	1	1.44
						204.6	205	0.4	7.54
CYUG0359	482367	7799751.1	163.8	-21.6	47	217.6	218.6	1	33.19
						243	243.3	0.3	5.93
						249.3	254.6	5.3	4.67
						277.5	278.3	0.8	154.89
						164.5	166	1.5	1.58
						179	180	1	2.19
						185	186	1	1.5
						189	190	1	1.07
CYUG0360	482364.1	7799750.6	164	-38.2	0	194.7	195.2	0.5	58.9
						203	204	1	1.12
						226.1	227	0.9	1.01
						228	229.6	1.6	1.4
						233	234	1:0	8.95
						25	25.3	0.3	1.1
CYUG0366	482353.5	7799742.1	164.8	12.5	115	51.65	55.3	3.65	7.91
0.00000	702000.0	1133142.1	104.0	12.0	115				7.89
	100005 0	7700754	160 7	20.0	26	58.9	59.25	0.35	
CYUG0375	482365.9	7799751	163.7	-38.8	26	173	173.5	0.5	1.54
CYUG0503	482063.4	7799647.9	165.8	12	118	9.2	9.5	0.3	2.17
						36.15	37.2	1.05	5.23
CYUG0509C	482037.3	7799637	164.7	1.6	205	37.3	37.6	0.3	45.6
						54	54.5	0.5	4.64
CYUG0514A	482138	7799727.3	116.3	2	338	10.92	11.22	0.3	6.65
CYUG0524	482175.1	7799739.3	116.7	2	338	12.4	12.7	0.3	9.67
2.220027				-	500	94.9	95.2	0.3	1.98
						0	0.85	0.85	1.36
		7700500.0	205 7	-10	307	57.75	58.7	0.95	1.59
CYUG0578	481696.6	7799563.3	205.7	-10	007	01.10	00.1	0.00	1.00
CYUG0578	481696.6	7799563.3	205.7	-10	001	114.6	115.5	0.9	1.01

						7.6	7.9	0.3	4.22
						12.5	12.8	0.3	3.28
CYUG0594	481652.4	7799524	152	0	172				No Significant Intercept
CYUG0614	481875.3	7799587.9	158.7	-29	125				No Significant Intercept
CYUG0617	481874.8	7799587.5	159.5	-50	188				No Significant Intercept
CYUG0625A	482145.9	7799747.7	115	-53	5	2.9	3.2	0.3	39.92
0.000020.0	10211010				Ũ	24	25	1	3.47
						7	7.3	0.3	1.46
						185.9	186.2	0.3	1.65
CYUG0629	482148	7799746.9	115.7	-21	43	197	198	1	1.47
						203	204	1	1.82
						215.3	216.2	0.9	1.75
		-				228.3	228.7	0.35	1.13
						185	187	2	3.22
						190	191	1	1.83
						196.6	197.6	1	4.26
						214.7	215	0.3	1.32
CYUG0644	482492.6	7799742.6	211.9	-34.5	28	218.7	219	0.3	64.36
						227.1	227.4	0.3	2.64
						230.4	231.4	1	75.82
						246.65	247.2	0.55	116.49
						248.9	249.9	1	3.35
						129	130	1	4.81
						152	153	1	1.07
						207.5	207.8	0.3	2.63
CYUG0645	482492.6	7799742.6	211.9	-40	26	233.3	233.6	0.3	151.48
						236	238	2	3.75
						244	246.5	2.5	45.45
						247.6	248.2	0.55	1.41
CYUG1003	481630.7	7799566.1	147.8	-55	189				No Significant Intercept
CYUG1011	481633.5	7799576.1	149.3	-44	67	85	85.6	0.6	1.28
						185.8	187	1.25	1.58
01/10/040	400000 4	7700707 7	000.0		050	198	199	1	1.2
CYUG1019	482392.1	7799737.7	262.6	-55	358	209	210	1	1.36
						258.6	259.2	0.6	9.07
01/110 1007	100001.0	7700750.0	101		050	125.6	127.6	2	1.31
CYUG1027	482364.2	7799750.8	164	-62	353	283.7	284.1	0.4	2.5
						113.7	114.1	0.4	5.28
						174	174.3	0.3	1.13
						179.5	180.65	1.15	2.93
						182	182.3	0.3	1.46
				a –		183.9	184.95	1.05	11.21
CYUG1032	482422.2	7799717.8	166	-25	358	204.1	204.4	0.3	3.02
						206.6	208.6	2	35.98
						113.7	114.1	0.4	5.28
						174	174.3	0.3	1.13
						294.8	295.1	0.3	3.34
						167	167.5	0.49	1.8
						180.5	182	1.5	7.4
	482422.2	7799717.8	166	-32	11				
CYUG1047	102 122.2					200.5	201	0.47	22.35

Coyote RC and Surface diamond drilling (25% of 677 holes):

Coyote	RC and Diamon	d – Historical Dril	ling (Rando	om Samp	le)			Dow	nhole
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
CYDD0001	482507.3	7799858.6	393.2	-60	359				No Significant Intercept
CYDD0002	482376.7	7799829.6	392.7	-60	179	51	52	1	2.27

						72	73	1	2.68
						104	105	1	2.24
						121	122	1	1.7
						166	168	2	4.17
						207	208	1	1.19
CYDD0005	482384.6	7799809.6	392.6	-58.5	181	89	90	1	3.35
01220000	102001.0	1100000.0	002.0	00.0	101	141	142	1	14.5
CYDD0016	482688.6	7799981.5	394.2	-55	180	201	206	5	5.55
51550010	102000.0		001.2		100	239	240	1	1.39
CYDD0017	482179.1	7799805.3	392.1	-60	180	62	63	1	1.24
						147	149.5	2.5	3.78
CYDD0021	481732.8	7799693.7	391.6	-55	180	203	204	1	28.8
						219	220	1	95.3
CYDD0023	482283.1	7799859.8	392.5	-60	179	60	61	1	1.06
						51	52	1	1.34
						73	74	1	1.54
YDD0025	481833.7	7799660.2	391.7	-60	180	76	83	7	1.77
						180	181	1	9.64
						189	190	1	14.4
	100507 4	7700040.4	202.0	60	100	37	38	1	1.25
CYDD0030	482537.1	7799813.1	393.2	-60	180	71	72	1	1.39
YDD0032	482225.8	7800002.4	393.1	-60	180				No Significant Intercep
						70	71	1	1.58
YDD0038	481980	7799738.8	391.6	-60	180	162	163	1	1.46
						218	219	1	3.99
						102	104	2	56.52
						191	192	1	2.27
YDD0051	482472.1	7799965.3	393.6	-60	180	203	204	1	1.89
						267	268	1	1.46
						185.6	186.6	1	1.34
						288	289	1	24.6
CYDD0065	482082.1	7799818.1	391.9	-60	180	300	301	1	1.82
						353	354	1	26
						110	111	1	11.5
						119	120	1	. 8.53
						122	124	2	6.41
						131	141	10	6.51
CYDD0069	482030.5	7799914.2	392	-60	180	250	251	1	17.5
						261	262	1	1.27
						363	364	1	2.35
						369	370	1	25.1
CYDD0072	482379.2	7799579.3	392.2	-60	0				No Significant Intercer
CYDD0080	481531.9	7799714.6	391.5	-60	180		· · · · ·		No Significant Intercep
YDD0088	481319	7799602.6	390.7	-60	180	211	213	2	2.17
YDD0094	481331.5	7799513.2	390.8	-60	180	2	210	-	No Significant Intercep
YDD0100	482134	7799545.8	391.8	-60	180				No Significant Intercep
YDD0103	479538.3	7799387.4	411.8	-60	180				No Significant Intercer
	+13000.0	1199001.4	-111.0	-00	100	110	111	1	1.96
							118	1	1.90
CYDD0106	482431.2	7799726.7	392.6	-60	3	117 160	161	1	1.31
	100120 0	7700240.0	112.0	60	100	249	251	2	1.21
CYDD0112	480439.8	7799316.6	413.2	-60	180				No Significant Intercep
CYDD0113	480439.9	7799466.8	413.1	-60	180				No Significant Intercep
CYDD0116	482224.4	7800150.9	393.7	-60	180	04	00	4	No Significant Intercep
						. 81	82	1	2.28
	400000 7	7700007 4	000 0	<u> </u>	400	93	94	1	1.21
YDD0121	482230.7	7799807.1	392.3	-60	180	215	219	4	3.75
						223	226	3	5.23
						239	240	1	1.24
						109	111	2	3.97
						132	133	1	1.83
	482208.4	7799798.5	392.2	-60	180	157	158	1	1.55
CYDD0127									
YDD0127						210	211	1 5	6.38

CYDD0217	482602.4	7800180.8	413	-54.7	175	418	418.3	0.3	4.69
0.495.55				- ·		410	411	1	17.21
						532.4	533.4	0.99	21.73
						526.5	531	4.45	3.52
CYDD0216	482602.4	7800181.8	413	-66.5	173	512.8	513.1	0.36	3.35
						504	504.5	0.5	2.2
						478	478.9	0.95	2.3
						470.4 442	470.7 443	0.3	3.65
						466	467	1	2.89
CYDD0215	482482.6	7800179.5	411.7	-56.4	168	451.4	452.7	1.3	53.59
						443.2	444	0.8	1.53
CYDD0211E	482903.1	7800114.5	400.3	-66	180	266	267	1	1.6
						521.9	522.5	0.6	4.76
CYDD0208	482602.1	7799667.2	393.1	-58	0	517	519	2	81.66
						512.7	513.1	0.4	1
CYDD0186	481258.5	7799319.9	391.7	-70	356				No Significant Intercept
CYDD0184	481817.7	7799266.4	390.2	-63.2	355	680	681	1	33.51
CYDD0183	481702.8	7799128.8	392.9	-56	356				No Significant Intercept
CYDD0182	481699.1	7799224.4	392.3	-55	356	741	741.3	0.35	11
						267.6	268.3	0.63	8.65
						266	266.3	0.3	654
CYDD0173	481702.5	7799682.7	392	-59.1	180	228.2	228.7	0.44	2.98
						213.4	213.8	0.42	3.32
						176	177	1	1.3
						319.2	319.5	0.3	114.11
						282.7	283.3	0.6	132.16
						276 282.7	276.3 283.3	0.3	16.12 38.85
CYDD0171	482133.4	7799888.7	392.2	-59.5	180	229.2	229.5	0.3	2.52
						182.8	183.1	0.3	1.39
						178.4	179.1	0.7	6.47
						100	104	4	1.07
						281	281.4	0.4	10.8
						228.5	229	0.5	34.16
0100002	102 100.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	551.3	-01	100	221.2	223.6	2.45	11.37
CYDD0162	482133.1	7799780.4	391.9	-61	180	218	218.6	0.6	55.83
						205.2	207	1.78	79.15
						202.3	203.1	0.8	18.46
CYDD0161	482033.1	7799743.3	391.7	-60	180	184	184.6	0.6	2.45
CYDD0157	482433.3	7799600.9	392.2	-54	0				No Significant Intercept
CYDD0156	482458.2	7799609.7	392.3	-55	0	224.5	226.4	1.9	107.64
						229.4	229.6	0.25	3.02
						218.1	218.4	0.3	18.9
CYDD0145	481727.6	7799684.9	391.7	-58	180	213.7	214.4	0.68	45.13
						133	133.4	0.36	1.28
		-				131	131.5	0.48	1.58
						99.1	99.45	0.35	1.39
CYDD0143	481832.6	7799627.9	391.8	-58	180	94.7	96.35	1.65	1.51
						73	75	2	1.85
						176 65	182 66	6 1	5.78
CYDD0140	482008.6	7799689.8	391.8	-67	180	170	171	1	3.61
0.0554	100000 -					165	167	2	1.94
			50			144	145	1	2.45
CYDD0136	481933.7	7799704.8	391.7	-60	180	91	92	1	1.36
						183	185	2	1.68
CTDD0135	402157.0	7799599.4	392.1	-00	300	178	180	2	11.29
CYDD0135	482157.8	7799599.4	392.1	-60	360	145	146	1	1.4
						45	46	1	2.98
						189	190	1	31.2
		1199002	392.5	-60	180	147	110 150	1 3	29.44
CYDD0129	482333.2	7799802				109			1.8

						436	438	2	8.43
						445.4	446	0.6	1.08
						450	451	1	10.01
						453	454	1	1.66
						407.7	408	0.3	22.83
0.4550040	100000 1	7000404.0		50.0	470	421.8	422.4	0.6	11.49
CYDD0219	482602.4	7800181.8	413	-52.3	176	433.5	434	0.5	3.06
						437.4	438.1	0.7	37.9
CYDD0220	482783.2	7799712.6	392	-62.6	360	749.9	750.3	0.4	70.55
						49	50	1	1.52
						100	105	5	3.26
						117	118	1	1.21
CYGT0002	482268.9	7799593.5	391.8	-52.7	7	187	188	1	1.47
						202	203	1	3.2
						286	287	1	1.12
						92	93	1	1.12
									3.94
CYGT0005	482814.8	7799782.2	394	-55.7	325	153	154	1	
						177	178	1	2.14
						197	197.9	0.9	1.74
CYRC0018	482279.6	7799737.2	392.2	-60	179	36	37	1	2.1
						105	106	1	11.3
CYRC0019	482230.8	7799717	392.1	-60	179	107	108	1	1.13
CYRC0025	482337.9	7799822.9	392.5	-60	183	174	177	3	4.47
			502.0		100	183	187	4	119.31
						86	87	1	1.36
CYRC0042	482522.1	7799937.7	393.6	-60	179	160	161	1	8.1
011(00042	402322.1	1199901.1	333.0	-00	115	171	174	3	1.01
						181	182	1	3.49
CYRC0044	482632.7	7799678.8	393.1	-60	179				No Significant Intercept
						39	40	1	2.95
						57	60	3	2.3
CYRC0053	482279.5	7799702.3	392.4	-60	179	64	65	1	1.51
						68	72	4	4.33
						98	100	2	3
CYRC0057	482381	7799919.6	393	-60	179	54	55	1	1.33
						62	63	1	1.15
CYRC0058	482354.2	7799755.4	392.4	-60	179	68	69	1	1.05
011100000	10200 112		002.1			112	113	1	1.14
				·		46	47	1	1.79
CYRC0074	482256.7	7799733.4	392.2	-60	178	76	77	1	1.73
CTRC0074	402230.7	1199133.4	39Z.Z	-00	170	97	98	1	2.03
						78	80	2	1.35
CYRC0079	482353.1	7799783.4	392.6	-60	180	88	89	1	1.77
						96	99	3	2.71
						163	164	1	5.72
						94	95	1	1.3
CYRC0092	482685.8	7799897.2	394	-60	180	114	115	1	3.38
						155	160	5	4.99
CYRC0129	481436.2	7799539.8	390.8	-60	180	171	172	1	1.65
CYRC0143	482032.1	7799644.6	391.8	-60	180				No Significant Intercept
						32	33	1	3.72
						41	42	1	9.4
						46	47	1	1.19
	400000 0	7700700 4	000 5	00	400	49	54	5	1.13
CYRC0151	482380.3	7799732.4	392.5	-60	180	60	61	1	3.19
						67	68	1	3.51
						71	75	4	22.13
						78	79	1	4.1
						58	60	2	3.4
CYRC0155	481833.4	7799618.4	391.8	-60	180	64	65	1	1.41
	191622.9	7700619 9	201 5	60	190				
CVDC0470	481632.8	7799618.8	391.5	-60	180	117	119	2	3.61
	400470	7700000	202	00		400			
	482478	7799830	393	-60	180	182	184	2	75.41
CYRC0172 CYRC0174 CYRC0177	482478 482733.7	7799830 7799827.9	393 393.9	-60 -60	180 180	182 46 51	184 47 52	2 1 1	75.41 35 1.38

						48	49	1	1.12
						92	93	1	1.01
CYRC0181	482178.6	7799744.9	391.9	-60	180	109	110	1	1.96
						128	129	1	1.28
						64	67	3	24.34
						72	74	2	4.12
						88	89	1	4.77
CYRC0198	482734.8	7799885.8	394.1	-60	180	91	92	1	1.73
						98	99	1	7.81
						102	106	4	2.21
						125	127	2	2.11
CYRC0202	481318.4	7799551.7	390.7	-60	180	133	134	1	1.46
			391	-60	178	100	104	I	
CYRC0205	481323.1	7799208.4							No Significant Intercept
CYRC0214	482931	7799762.2	394.5	-60	182				No Significant Intercept
CYRC0218	482930.3	7800082.3	395.5	-60	179				No Significant Intercept
						78	80	2	6.43
						144	145	1	2.68
						148	149	1	4.14
CYRC0221	482532.2	7799918.4	393.5	-60	180	160	163	3	1.98
						181	183	2	1.3
						216	217	1	1.76
CYRC0224	482433.9	7799998.4	393.8	-60	180				No Significant Intercept
CYRC0232	482081.5	7799672.7	391.9	-65	180	112	113	1	2.02
CYRC0238	481982.6	7799898.6	391.9	-60	180	154	157	3	2.23
						135	137	2	1.26
CYRC0239	482031.9	7799933.7	392	-60	180	170	171	1	5.9
CYRC0261	482534.5	7799966.9	393.8	-60	180	110			No Significant Intercept
									,
CYRC0263	482277.9	7799892.7	392.7	-60	180				No Significant Intercept
						61	62	1	1.9
CVDC0072	400000	7799784.3	202 5	-60	180	66	67	1	1.25
CYRC0273	482308	1199184.3	392.5	-60	180	126	127	1	14.2
						129	131	2	10.08
CYRC0283	481039.5	7799298.4	390.5	-60	180	142	143	1	1.42
011100200	401000.0	1100200.4	000.0	-00	100		158	1	1.17
CYRC0305	481584.1	7799674.4	391.5	-60	180	157			·
						194	195	1	1.34
CYRC0307	481733.7	7799592.6	391.7	-60	182	78	81	3	3.39
011100001	101100.1	1100002.0	001.7	00	102	89	90	1	1.22
						49	50	1	1.4
						55	57	2	3.21
						61	62	1	1.94
						70	74	4	3.04
CYRC0311	482307.7	7799639	392.3	-60	0	-			
						76	77	1	6.16
						79	81	2	4.66
						90	91	1	4.64
						98	99	1	1.3
				· · · ·		. 34	42	8	2.77
						44	49	5	8.78
CYRC0321	482464.2	7799674.7	392.4	-60	0	53	54	1	2.03
	404000 5				^	. 59	60	1	2.55
CYRC0323	481932.8	7799483.4	391.9	-60	0				No Significant Intercept
CYRC0342	480846.8	7799147.5	390.3	-60	180				No Significant Intercept
CYRC0347	480842.6	7799341	390	-60	180				No Significant Intercept
CYRC0348	480842.1	7799376.8	390	-60	180				No Significant Intercept
CYRC0350	480841.5	7799450.3	390	-60	180				No Significant Intercept
CYRC0362	479342.6	7799577	411.8	-60	180				No Significant Intercept
									· · · ·
CYRC0366	479538.2	7799467	411.9	-60	179				No Significant Intercept
CYRC0367	479538.6	7799506.6	411.9	-60	180				No Significant Intercept
CYRC0370	479745.6	7799488	412.2	-60	180				No Significant Intercept
CYRC0380	482128.7	7799804.8	392	-60	180	111	113	2	2.15
CYRC0390	479628.7	7798846.3	412.1	-60	180				No Significant Intercept
CYRC0394	479632.4	7799087	412.1	-60	183				No Significant Intercept
	479633.3	7799205	412.1	-60	180				No Significant Intercept
CYRC0396 CYRC0400	482631.2	7800094.2	394.6	-60	180				No Significant Intercept

						60	62	2	3.45
CYRC0407	482081.9	7799711.3	391.7	-60	180	113	114	1	2.19
CYRC0413	482227.6	7799734	392.1	-60	180	54	55	1	1.3
CYRC0415	479143.4	7798883.3	411.4	-60	183		· · · ·		No Significant Intercept
CYRC0425	482733.9	7799468.2	393.2	-60	180				No Significant Intercept
CYRC0430	482380.7	7799423.4	392.3	-60	180				No Significant Intercept
CYRC0431	482381.1	7799462.9	392.3	-60	180				No Significant Intercept
CYRC0433	481232.3	7799053.6	391.1	-60	180				No Significant Intercept
						53	55	2	11.24
CYRC0446	482532.1	7799753.7	393.2	-60.3	181	61	62	1	1.7
						82	83	1	7.66
CYRC0447	482781.9	7799783.5	394.2	-61.2	182	19	20	1	1.73
CYRC0449	482781.6	7799848.6	394.4	-60.1	180	52	62	10	8.48
CYRC0450	482756.1	7799823.7	394.3	-60.7	183	î.			No Significant Intercept
						64	68	4	2.38
						71	73	2	7.34
						77	79	2	7.12
CYRC0453	482756.9	7799897.7	394.5	-60.7	181	88	89	1	4.34
						91	94	3	1.68
						96	103	7	1.48
						105	106	1	1.31
						60	61	1	1.06
0.000455	400704.0	7700050.0			100	65	66	1	1.39
CYRC0455	482731.8	7799856.3	394.2	-60.6	183	96	98	2	49.07
						108	109	1	1.62
						56	57	1	1.56
0.000.000	400407.0				100	59	60	1	1.46
CYRC0479	482407.6	7799813.6	392.9	-61.2	183	121	122	1	1.2
						182	189	7	13.96
01/00/100	4040074	7700005	004.0	00	10.1	60	61	1	1.62
CYRC0480	481907.1	7799635	391.8	-60	184	66	68	2	1.63
01/00/10/	404000 5	7700707 7	004.0	04.5	470	40	41	1	19.8
CYRC0491	481906.5	7799767.7	391.8	-61.5	176	-			

Bald Hi	II RC and Diamor	nd – Historical Dri	lling (rando	om sampl	e)			Dowr	nhole
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
ATRC0001	485290.2	7833380.6	370.5	-60	234	80	81	1	1.16
ATRC0007	485301.2	7833450.6	370.5	-60	234				No Significant Intercept
						318	319	1	1.03
BLRCD0001	486006.5	7834456.3	375.1	-60	180	366	387	21	3.69
						23	24	1	1.04
LGC0001	485970.9	7834257.8	374.7	-60	180	47	51	4	2
						58	59	1	3.23
						82	83	1	1.06
LGC0002	485946.5	7834283.5	374.9	-60.4	180	84	89	5	1.2
						29	30	1	4.15
LGC0009	485930.3	7834807.9	378.8	-60.1	3	33		1	4.48
LGC0022	485618.6	7834021.7	374.3	-60.5	233	91	92	1	1.47
LGC0022	485611.6	7833861.8	372.7	-60.3	235	31	52		No Significant Intercept
LGC0029	465011.0	7055001.0	512.1	-00.3	200	1	2	1	
1000000	495040 7	7024020 4	274.0	c0 0	100	1 5	2	1 2	1.11
LGC0030	485910.7	7834239.1	374.8	-60.3	180	-			1.57
						10	14	4	2.72
LGC0033	485996.6	7834303.9	374.6	-58	179	107	108	1	3.24
						128	129	1	1.02
LGC0035	485727.6	7833946.1	373.5	-54.9	236	78	82	4	2.61
						86	89	3	2.53
LGC0041	485266.8	7833331.9	370	-61	235	55	59	4	2.19
						8	12	4	3.18
LGC0062	485948.9	7834943.2	381.5	-60	234	22	23	1	1.2
2000002	+000+0.0	1004040.2	001.0	-00	204	29	32	3	1.42
						36	37	1	1.02
						34	35	1	1.03
LGC0066	484274	7833362.6	369.9	-60	270	59	61	2	3.02
						68	69	1	1.22
LGC0071	484334.2	7833312.8	369.5	-60	270				No Significant Intercept
						8	9	1	1.38
LGC0073	485970.9	7834239.5	374.5	-60	180	11	24	13	11.52
LGC0085	485695.8	7834244.4	375.2	-60	180				No Significant Intercept
LGC0089	485481.1	7834013.5	374	-60	234	6	7	1	1.85
						0	6	6	1.82
LGC0090	485501.2	7834028.6	375.9	-60	234	12	13	1	1.05
2000000	100001.2	1001020.0	010.0	00	201	22	24	2	1.7
						5	8	3	1.58
LGC0096	485502.7	7833906.8	372.7	-60	234	42	43	1	1.48
1000104	195607 4	7022011.0	372.2	60	234			3	
LGC0104	485627.4	7833811.8		-60		16	19		1.85
LGC0106	485696.1	7833861.5	372.5	-60	234	1	6	5	1.21
LGC0108	485538.4	7833994	374.2	-60	234	29	36	7	2.2
1000440	405707.0	7000004.4	074.0	<u></u>	00.1	53	56	3	1.43
LGC0113	485787.9	7833804.4	371.9	-60	234	16	17	1	2.68
LGC0130	485996.5	7834434.5	375.3	-60	180	69	70	1	2.34
LGC0156	485638.5	7834323.6	375.4	-60	180	30	32	2	2.95
LGC0158	485595.5	7834264.4	375.5	-60	180				No Significant Intercept
LGGT0005	485936.5	7834199.2	373.9	-53.2	320	24	25	1	2.45
						76	80	4	5.14
LGGT0007	485740.2	7834282.1	374.9	-49.5	159	91	92	1	2.87
						99	100	1	1.19
						10	11	1	6.24
						14.6	16.3	1.7	3.69
						43	45.3	2.3	1.59
						46.5	47.7	1.2	1.15
LKD0076	485587.1	7833997.1	373.8	-60	234	51	52.8	1.8	6.04
						61.3	62.8	1.5	1.76
						64	65	1	2.41
						67	72.15	5.15	2.79

Bald Hill RC and Surface diamond drilling (26% of 364 holes):

						76.9	77.7	0.8	1.6
						199	200	1	2.01
LKD0097	485816.4	7833950.4	373.4	-59.7	234	243	245	2	1.99
						247	248	1	1.27
	405540.4	7000000 5	070.0	00	004	35	36	1	3.61
LKR046	485518.4	7833980.5	373.9	-60	234	60	61	1	3.31
LKR052	485529.9	7833863.5	372.7	-59.7	234				No Significant Intercept
LKR065	485668.9	7833840	372.4	-60	234				No Significant Intercept
LKR073	485657.5	7833770.6	372	-58.4	233	35	36	1	4.99
LKR079	485744.8	7833894.7	373.2	-60	233	00			No Significant Intercept
	485709.1								
LKR095		7833743.9	371.6	-60	234	05	00	4	No Significant Intercept
LKR105	485557.1	7833949	373.5	-60	234	65	66	1	2.13
LKR109	485697.6	7833802.5	372	-60	234				No Significant Intercept
LKR111	485826.5	7833830.7	372.5	-60	234				No Significant Intercept
LR00448	484348.5	7833376.3	369.6	-60	233	75	76	1	4.72
						1	2	1	2.13
						5	6	1	1.95
						8	9	1	1.1
						19	20	1	5.18
						24	38	14	5.37
LSD0098	485867.7	7834257.3	374.9	-57.9	182	42	45	3	1.72
			0.1.0	00		52	55	3	1.5
						57	58	1	1.28
						61	62	1	1.02
						83	90	7	2.41
						93	96	3	2.29
LSR060	485767.4	7834287.5	375.5	-62.8	178	90	91	1	4.99
LSR083	485867.7	7834269	375	-60	181				No Significant Intercept
LSR085	485773.2	7834289.2	375.5	-61.3	231				No Significant Intercept
LSR152	485767.4	7834325.5	375.6	-60.4	178				No Significant Intercept
LSR155	485847.6	7834370.7	375.6	-60.2	178				No Significant Intercept
						20	21	1	2.53
LSR190	485917.9	7834252	374.7	-60	176	25	26	1	6.57
LSR201	485917.9	7834262.6	374.7	-59	88	20	20	•	No Significant Intercept
LSR204	486033.8	7834356.1	374.9	-59.9	233	· · · · ·	• • • •		No Significant Intercept
DSRC0002	484233.9	7833361.9	369.3	-90	4	0	1	1	1.41
J3RC0002	404233.9	7033301.9	309.3	-90	4			1	1.41
						19	20		
DSRC0020	484294	7833361.2	369.5	-60	270	36	45	9	2.01
						48	50	2	2.59
						55	59	4	15.85
DSRC0036	484267	7833354	370	-90	4				No Significant Intercept
DSRC0051	484226	7833364	370	-90	4				No Significant Intercept
						0	1	1	2.48
DSRC0060	484220	7833399	370	-90	4	12	13	1	3.42
						15	16	1	2.94
DSRC0061	484228	7833404	370	-90	4				No Significant Intercept
DSRC0062	484212	7833413	370	-90	4				No Significant Intercept
201100002	101212	1000410	010	00	т	2	3	1	1.16
OSRC0067	484182	7833406	370	-90	4	11	12	1	7.88
					4		. 12	- I	
OSRC0069	484206	7833418	370	-90	4		-		No Significant Intercept
DSRC0072	484168	7833407	370	-90	4	6	9	3	1
DSRC0073	484176	7833413	370	-90	4				No Significant Intercept
DSRC0083	484163	7833467	370	-90	4				No Significant Intercept
						202	203	1	1.94
	486008.1	7834320.9	374.4	-64	180	205	217.1	12.1	7.42
SPDD0002						220.9	222.7	1.8	2.31
SPDD0002						273.2	274	0.8	2.84
SPDD0002									
SPDD0002							342.7	1	1.03
	486105 4	783//17 7	371 6	.60	170	341.7	342.7 345.55	1	1.03
SPDD0002 SPDD0015	486105.4	7834417.7	374.6	-60	179		342.7 345.55 347.9	1 0.85 0.9	1.03 1.22 1.62

R	oad Runner RC	and Diamond- H	Road Runner RC and Diamond– Historical Drilling								
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)		
RRDD0001	494467	7702269	406	56	229	117.58	118.08	0.5	7.57		
KKDD0001	484467	7792368	406	-56	229	181.9	182.9	1	2.21		
RDD0001_A	484383.8	7792209	406.2	-60	44	19	20	1	1.46		
RRDD0002	484404	7792413	406	-55	230				No Significant Intercep		
RRDD0002_A	484367.9	7792193.4	406.3	-60	44				No Significant Intercept		
RRDD0003	484480.9	7792307.8	406.3	-60	223				No Significant Intercep		
RRDD0004	484508	7792215.7	406.5	-60	270				No Significant Intercep		
						13	14	1	2.71		
RRDD0005	484417.9	7792265.5	406.2	-60	270	18	19	1	1.13		
RRDD0006	484562.6	7792190.6	406.7	-60	270				No Significant Intercept		
RRDD0007	484548	7792040.6	406.9	-60	270				No Significant Intercept		
RRDD0008	484493.2	7792235.7	406.5	-60	262				No Significant Intercept		
RRRC0001	484054.2	7792446.7	405.2	-60	45				No Significant Intercept		
RRRC0002	484032.2	7792416.2	405.1	-60	45				No Significant Intercep		
RRRC0003	484114	7792466	406	-70.7	56				No Significant Intercep		
RRRC0004	483991.2	7792383.7	405.3	-60	45	19	20	1	3.37		
RRRC0005	484040.2	7792572.7	403.3	-60	45			·	No Significant Intercept		
RRRC0006	484019.2	7792551.7	404	-60	45				No Significant Intercept		
RRRC0007	484072	7792507	404	-69.3	55			· · · ·	No Significant Intercept		
RRRC0008	484072	7792507	406	-54.1	60				No Significant Intercept		
				-56.2							
RRRC0009	484114	7792466	406		56 45				No Significant Intercept		
RRRC0010	483949.2	7792621.7	403.5	-60					No Significant Intercept		
RRRC0011	483928.2	7792600.7	403.5	-60	45				No Significant Intercept		
RRRC0012	483908.5	7792582.9	404.6	-60	45				No Significant Intercept		
RRRC0013	484076.7	7792472.5	405.1	-60	48				No Significant Intercept		
RRRC0014	483970.2	7792368.4	405.5	-60	44	22	23	1	3.72		
RRRC0015	484084.1	7792619.3	404.7	-60	44				No Significant Intercep		
RRRC0016	484061.2	7792593.7	403.7	-60	44				No Significant Intercep		
RRRC0017	483956.2	7792488.7	404.2	-60	44				No Significant Intercept		
RRRC0018	483935.2	7792467.7	404.2	-60	44				No Significant Intercep		
RRRC0019	484033.6	7792710.1	404.3	-60	44				No Significant Intercept		
RRRC0020	484012.9	7792689.8	404.4	-60	44				No Significant Intercept		
RRRC0021	483992	7792668.4	404.4	-60	44				No Significant Intercept		
RRRC0022	483886.2	7792558.7	403.7	-60	44				No Significant Intercept		
RRRC0023	484084	7792619.3	404.6	-60	44				No Significant Intercept		
RRRC0024	484392	7792220	406.1	-60	44	19	23	4	5.81		
						22	26	4	2.88		
RRRC0025	484397.2	7792229.7	406.3	-60	44	58	59	1	1.15		
						69	70	1	2.59		
RRRC0026	484368	7792193.3	406.3	-60	44	78	80	2	2.85		
RRRC0027	484417.2	7792240.5	406.3	-60	225	20	21	1	5.08		
· · · ·						81	83	2	5.59		
RRRC0028	484437.8	7792260.5	406.3	-60	225	100	101	1	1.14		
RRRC0029	484458.5	7792278.8	406.3	-60	225	123	127	4	42.56		
RRRC0030	484390.7	7792283.7	406.2	-60	220	23	24	1	1.38		
	10-1000.7	1102200.1	100.2	50	220	33	34	1	2.19		
RRRC0031	484472	7792291.1	406.4	-60	220	36	38	2	1.56		
RRRC0032	484446	7792343.3	406.2	-60	225	~~	~~	-	No Significant Intercep		
RRRC0033	484417.1	7792240.2	406.3	-60	223				No Significant Intercep		
RRRC0034	483953.6	7792367.5	405.3	-60	223	20	21	1	3.98		
RRRC0034	484026.5	7792367.5	405.3	-60	273	20	21	1	1.64		
						21	22	I			
RRRC0036	484091.9	7792368.2	405.5	-60	270				No Significant Intercep		
RRRC0037	484125.5	7792366.4	405.6	-60	270				No Significant Intercep		
RRRC0038	483976.1	7792311.3	405.6	-60	273				No Significant Intercep		
RRRC0039	484081.6	7792314.8	405.7	-60	273	22	24	2	2.08		
RRRC0040	484116.5	7792315.7	405.7	-60	273				No Significant Intercept		
RRRC0041	484478.8	7792298.3	406.2	-60	225				No Significant Intercept		
RRRC0042	484306.3	7792215.8	406.2	-90	0				No Significant Intercept		
RRRC0043	484333.2	7792215.7	406.2	-90	0				No Significant Intercept		

Road Runner RC and Surface diamond drilling:

RRRC0044	484331.2	7792217.4	406.2	-60	90				No Significant Intercept
RRRC0045	484436.6	7792267.9	406.3	-60	270	21	22	1	1.11
RRRC0046	484260.7	7792267	405.9	-60	90				No Significant Intercept
RRRC0047	483864.1	7792354.1	405.2	-90	4				No Significant Intercept
RRRC0048	483863.5	7792371.9	405.1	-90	4				No Significant Intercept
RRRC0048B	483863.2	7792375.7	405.2	-90	4				No Significant Intercept
RRRC0049	483863.2	7792385.2	405.1	-90	4				No Significant Intercept
RRRC0050	483862.9	7792391.6	405	-90	4				No Significant Intercept
RRRC0051	483873	7792342.8	405.3	-90	4				No Significant Intercept
RRRC0052	483873.3	7792363.1	405.1	-90	4				No Significant Intercept
RRRC0053	483873.4	7792385	405.2	-90	4				No Significant Intercept
RRRC0054	483881.9	7792353	405.2	-90	4				No Significant Intercept
RRRC0055	483881.8	7792374.7	405.2	-90	4				No Significant Intercept
RRRC0056	483882.2	7792392.3	405.1	-90	4	-			No Significant Intercept
RRRC0057	483883	7792404.2	405.2	-90	4	16	17	1	1.77
RRRC0058	483894.8	7792333	405.3	-90	4				No Significant Intercept
RRRC0059	483894.5	7792343	405.3	-90	4				No Significant Intercept
RRRC0060	483893.2	7792364.1	405.2	-90	4	18	19	1	4.79
RRRC0061	483893	7792385.1	405.2	-90	4	. 10			No Significant Intercept
RRRC0062	483906	7792352.7	405.2	-90	4	-			No Significant Intercept
RRRC0063									. .
	483904.9	7792374.6	405.3	-90	4	47	40	4	No Significant Intercept
RRRC0064	483903.8	7792394.3	405.2	-90	4	17	18	1	1.22
RRRC0065	483902.5	7792405.9	405.1	-90	4				No Significant Intercept
RRRC0066	483914.6	7792326	405.4	-90	4				No Significant Intercept
RRRC0067	483914.4	7792336.9	405.4	-90	4				No Significant Intercept
RRRC0068	483914.4	7792347.6	405.2	-90	4				No Significant Intercept
RRRC0069	483924	7792354.7	405.4	-90	4	19	21	2	2.41
RRRC0070	483924.2	7792365	405.4	-90	4				No Significant Intercept
RRRC0071	483924.7	7792385.2	405.2	-90	4	18	19	1	1.67
RRRC0072	483924.3	7792396.2	405.3	-90	4				No Significant Intercept
RRRC0073	483924	7792407.3	405.2	-90	4				No Significant Intercept
RRRC0074	483934.4	7792315.5	405.4	-90	4				No Significant Intercept
RRRC0075	483935.6	7792409.1	405.2	-90	4				No Significant Intercept
RRRC0076	483944.4	7792355.6	405.4	-90	4	17	18	1	6.17
RRRC0077	483944.7	7792384.9	405.5	-90	4	·			No Significant Intercep
RRRC0078	483944.6	7792394.8	405.3	-90	4	19	20	1	1.66
RRRC0079	483964	7792326.5	405.3	-90	4	16	17	1	1.56
RRRC0080	483973.6	7792375.9	405.4	-90	4				No Significant Intercept
RRRC0081	483974	7792385.5	405.3	-90	4	18	19	1	1.05
RRRC0082	483984.4	7792365.8	405.4	-90	4				No Significant Intercept
RRRC0083	484004.9	7792369.6	405.3	-90	4	19	20	1	3.15
RRRC0084	484003.4	7792380.5	405.3	-90	4	10	20		No Significant Intercept
RRRC0085	484011.3	7792392.6	405.2	-90	4	18	19	1	1.29
RRRC0086	484024	7792324.1	405.6	-90	4	10	13		No Significant Intercept
									No Significant Intercept
RRRC0087	484033.8	7792313.3	405.6	-90	. 4				. 0 1
RRRC0088	484044	7792305.6	405.5	-90	4	10	04	0	No Significant Intercept
RRRC0089	484044	7792315.2	405.6	-90	4	19	21	2	6.84
RRRC0090	484044.6	7792324	405.4	-90	4				No Significant Intercept
RRRC0091	484054.3	7792336.5	405.4	-90	. 4				No Significant Intercept
RRRC0092	484063.9	7792306	405.6	-90	4	17	18	1	1.13
RRRC0093	484064.1	7792316.9	405.6	-90	4	18	19	1	1.14
RRRC0094	484064	7792325.2	405.5	-90	4				No Significant Intercep
RRRC0095	484073.7	7792333.6	405.6	-90	4				No Significant Intercep
RRRC0096	484073.6	7792344.9	405.5	-90	4				No Significant Intercep
RRRC0097	484084.2	7792325.1	405.6	-90	4				No Significant Intercep
RRRC0098	484094.2	7792346.1	405.4	-90	4				No Significant Intercep
RRRC0099	484093.6	7792355.2	405.5	-90	4	13	14	1	2.02
RRRC0100	484272.8	7792224.3	405.8	-90	4				No Significant Intercep
RRRC0101	484272.2	7792235.7	405.9	-90	4				No Significant Intercep
KKKCUIUI	484283	7792245.4	406	-90	4				No Significant Intercep
									• •
RRRC0102	484293 2	7792227 7	405 9	-90	4				No Significant Intercent
RRRC0102 RRRC0103	484293.2 484301.3	7792227.7	405.9	-90	4	18	10	1	
RRRC0102	484293.2 484301.3 484302.3	7792227.7 7792236.9 7792245.7	405.9 405.8 405.9	-90 -90 -90	4 4 4	18	19	1	No Significant Intercept 1.71 No Significant Intercept

RRRC0107	484304	7792265.7	405.9	-90	4				No Significant Intercept
RRRC0108	484363.4	7792214.5	406.1	-90	4				No Significant Intercept
RRRC0109	484363.6	7792225.5	406	-90	4	. 17	20	3	2.74
RRRC0110	484363.7	7792235.1	406.1	-90	4	18	20	2	17.16
RRRC0111	484363.7	7792243.5	406.2	-90	4	17	18	1	1.18
RRRC0112	484363.7	7792255.5	406.1	-90	4	18	21	3	4.28
RRRC0113	484373.6	7792225	406.1	-90	4	18	19	1	10.97
RRRC0114	484373.6	7792235.2	406.1	-90	4				No Significant Intercept
RRRC0115	484373.4	7792244.4	406.1	-90	4	20	21	1	1.4
RRRC0116	484373	7792255.7	406.1	-90	4	19	20	1	2.2
RRRC0117	484373	7792262.6	406	-90	4	17	18	1	2.09
RRRC0118	484382.2	7792245.5	405.9	-90	4	18	20	2	5.72
RRRC0119	484382.2	7792255.1	406.3	-90	4				No Significant Intercept
RRRC0120	484382.1	7792263.2	406.3	-90	4	18	22	4	1.6
RRRC0121	484393.3	7792205	406.4	-90	4				No Significant Intercept
RRRC0122	484393.3	7792233.8	406.2	-90	4	18	19	1	2.03
RRRC0123	484392.6	7792245.4	406.3	-90	4	19	22	3	1.07
RRRC0124	484392.4	7792255.2	406.3	-90	4	19	22	3	1.76
111100124	404032.4	1132233.2	+00.0	-50		24	25	1	1.14
RRRC0125	484392.7	7792275	406.2	-90	4	17	18	1	3.03
111100120	404032.1	1132213	400.2	-50	-	23	24	1	1.23
RRRC0126	484392.1	7792292.9	406.1	-90	4				No Significant Intercept
RRRC0127	484403.9	7792204.4	406.3	-90	4				No Significant Intercept
RRRC0128	484403.9	7792215.2	406.4	-90	4				No Significant Intercept
RRRC0129	484404	7792246	406.3	-90	4	16	20	4	1.39
RRRC0130	484403.6	7792255.1	406.4	-90	4	18	21	3	8.67
RRRC0132	484402.7	7792284.4	406.2	-90	4	17	18	1	1.09
RRRC0133	484413.5	7792226.5	406.4	-90	4	18	21	3	8.28
RRRC0134	484412.4	7792274.9	406.1	-90	4				No Significant Intercept
RRRC0135	484411.7	7792295.2	406.3	-90	4				No Significant Intercept
RRRC0136	484423.5	7792285.1	406.1	-90	4				No Significant Intercept
RRRC0137	484352.2	7792227.4	406	-90	4	16	18	2	1.68
RRRC0138	484424.4	7792235	406.2	-90	4	17	19	2	5.59
RRRC0139	484424.2	7792245.5	406.3	-90	4				No Significant Intercept
RRRC0140	484312.7	7792254.5	406	-90	4	19	21	2	12.06
RRRC0141	484424.3	7792254.8	406.3	-90	4	18	19	1	2.32
RRRC0142	483953.2	7792314.2	405.4	-90	4				No Significant Intercept
RRRC0143	484103.7	7792325.5	405.4	-90	4				No Significant Intercept
RRRC0144	483934.4	7792374.7	405.3	-90	4				No Significant Intercept
RRRC0145	483934.7	7792346.1	405.2	-90	4				No Significant Intercept
RRRC0146	483934.4	7792335.7	405.2	-90	4				No Significant Intercept
RRRC0147	484077.2	7792373.8	405.4	-60	270				No Significant Intercept
RRRC0148	484242.4	7792286.5	405.8	-90	4				No Significant Intercept
						1	2	1	2.84
RRRC0149	484446.8	7792225.5	406.3	-60	270	20	24	4	1.4
						84	85	1	1.36
RRRC0151	484374.9	7792225.5	406.1	-60	90	18	19	1	1.5

		Downhole							
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
RBDD0001	489240.4	7790151.1	427.7	-60	30	0	86	86	-0.01
RBDD0002	489225.4	7790125.1	427.7	-60	30	198	199	1	3.6
						93	94	1	5.26
RBDD0003	489327.9	7790302.7	426.3	-55	210	148	149	1	3.68
						164	165	1	7.52
RBRC0001	489074.6	7790372.3	426.1	-60	270	0	93	93	0.01
RBRC0002	489103.6	7790370.4	426.2	-60	274	95	96	1	11.6
RBRC0003	489133.6	7790370.3	426.2	-60	270	144	146	2	13.28
RBRC0004	489319.4	7790167.8	427.8	-60	260	0	93	93	0.02
RBRC0005	489349.3	7790167.6	427.8	-60	270	0	93	93	0.03
RBRC0006	489379.7	7790167.5	427.9	-60	270	0	153	153	0
						72	73	1	1.22
						76	79	3	2.37
RBRC0007	489259.9	7790167.8	427.7	-60	93	81	82	1	9.56
						120	121	1	6.21
RBRC0008	489149.8	7790193.8	426.9	-60	33	0	177	177	0.01
RBRC0009	489187.5	7790251.6	427	-60	213	0	93	93	-0.01
RBRC0010	489209.3	7790285	426.3	-60	213	0	183	183	0
RBRC0011	489231.2	7790318.5	426.3	-60	213	0	243	243	-0.01
						114	115	1	1.04
RBRC0012	489260.4	7790185.7	427.7	-60	30	121	123	2	1.69
						101	105	4	18.59
						109	110	1	1.54
RBRC0013	489242.9	7790155.4	427.7	-60	30	118	119	1	7.56
						125	126	1	1.28
						131	132	1	2.07
	·					29	30	1	2.46
RBRC0014	489301.2	7790156.4	427.8	-60	30	32	34	2	3.81
						73	74	1	5.26
						66	67	1	1.2
						80	81	1	4.67
RBRC0015	489283.7	7790126.1	427.8	-60	30	92	93	1	3.63
						121	122	1	7.15
RBRC0016	489268.7	7790100.1	427.8	-60	30	0	214	214	0
RBRC0017	489253.7	7790074.1	428.3	-60	30	0	238	238	-0.01
RBRC0018	489207.1	7790193.4	427	-60	26	1	184	183	-0.01
RBRC0019	489189.6	7790163.1	427.7	-60	26	94	95	1	1.06
RBRC0020	489174.6	7790137.1	427.6	-60	30	0	202	202	0
RBRC0021	489259.6	7790284.4	426.3	-60	30	0	184	184	-0.01
RBRC0022	489242.1	7790254.1	427	-60	26	0	184	184	-0.01
RBRC0023	489224.6	7790223.7	427	-60	26	0	190	190	-0.01
	100227.0	1100220.1	721			55	56	190	3.87
RBRC0024	489275.4	7790211.7	427.1	-60	26	68	69	1	1.06
RBRC0025	489319.5	7790088.1	428.5	-60	26	0	160	160	-0.01
RBRC0026	489302	7790057.8	428.5	-60	26	0	184	184	-0.01
RBRC0020	488886.5	7790338.1	425.6	-60	26	0	160	160	-0.01
RBRC0027	488869	7790307.8	425.6	-60	26	159	160	100	9.28

Road Runner East RC and Surface diamond drilling:

Pebbles RC and Diamond- Historical Drilling Downhole Hole_ID MGA_East MGA_North Au Grade (g/t) 51 50 1 1.08 PBDD0001 479488.4 7793911.2 406.8 -60 30 68 69 1 2.6 86 28.6 85 1 74 75 1 8.31 77 80 3 1.1 4.36 108 109 1 PBDD0002 479468.5 7793880.8 407 -60 30 5.23 114 115 1 140 141 1 1.87 56.9 158 159 1 PBRC0001 479535.5 7793941 -60 3 99 0.02 406.5 0 99 PBRC0002 479538.4 7794001 405.7 -60 183 0 111 111 0.01 50 51 1 1.37 PBRC0003 479432.6 7793866.3 407.2 -60 3 91 94 3 1.08 PBRC0004 479526.5 7793969.1 405.9 -59 39 90 91 1.13 1 5 6 1 2.17 PBRC0005 479507.1 7793939.9 406.6 -60 35 36 37 1.99 1 42 43 1 1.23 59 60 1 1.55 9.28 98 99 1 PBRC0006 7793851.7 479449.2 407.2 -60 33 124 125 1 2.5 135 136 1 24.7 7793902.5 PBRC0007 479423.8 407 -60 33 0 118 118 0.03 PBRC0008 479404.9 7793873.7 406.9 -60 33 65 66 1 1.97 56 57 1 1.84 PBRC0009 479386.3 7793845.3 85 86 1.71 406.9 -60 33 1 113 114 1.48 1 7793815.3 PBRC0010 479366.4 1.06 406.8 -60 33 144 145 1 PBRC0011 7793915 124 0.01 479371 406.4 -60 0 124 33 PBRC0012 479351.8 7793885.8 406.5 154 154 -60 33 0 0 2.74 124 125 1 PBRC0013 479431.2 7793827 407.1 -60 30 131 132 1 2.06 PBRC0014 479558.5 7794018.2 405.6 -60 213 0 99 99 0.01 85 1.03 86 1 PBRC0015 479572 7794036.1 405.4 -60 213 94 95 1 1.03 99 105 6 12.23 7794060.7 PBRC0016 479586.5 405.2 -60 213 0 177 177 -0.01 PBRC0017 479489.2 7793957.7 406.2 -60 33 0 153 153 0.01 28 29 1 1.81 32 33 1 1.18 PBRC0018 479467.4 7793924.6 406.7 -60 33 54 55 1 1.03 126 127 5.48 1 37 5.38 38 1 PBRC0019 479444.9 7793891 407.3 -60 33 60 61 1 5.26 2 64 66 3.33 61 62 1 2.54 68 69 1 2.16 PBRC0020 479422.4 7793857.7 407.2 -60 33 95 97 2 1.79 2.63 112 113 1 57 58 1 1.41 PBRC0021 479481.7 7793901.1 406.9 -60 33 91 92 1 1.09 1 32 33 1.19 91 92 1 1.5 PBRC0022 479459.8 7793867.4 407.2 33 -60 126 128 2 1.29 236 237 1 1.43 7.64 52 53 1 87 88 1 1.63 PBRC0023 479454.6 7793960.6 406.1 -60 123 95 96 1 1.64 103 104 1 1.12 117 118 1 1.73

Pebbles RC and Surface diamond drilling:

PBRC0024	479425.7	7793979.3	405.7	-60	123	2	183	181	0.01
PBRC0025	479395.6	7793998.2	405.4	-60	123	1	165	164	0.02
PBRC0026	479362.1	7794019.8	405.5	-60	123	0	214	214	0
PBRC0027	479328.9	7794040.7	405.1	-60	123	0	190	190	0
						38	40	2	1.31
PBRC0028	479401.7	7793932	406.6	-60	123	90	93	3	2.77
PBRC0020	479401.7	1193932	400.0	-00	123	107	108	1	3.21
						124	125	1	1.23
PBRC0029	479367.4	7793953.4	406	-60	129	164	165	1	7.53
PBRC0030	479342.2	7793969.1	406	-60	123	1	219	218	0.01
PBRC0031	479308.7	7793990.3	405.7	-60	123	45	46	1	1.08
PBRC0032	479933.2	7793415.7	407.5	-60	360	0	249	249	0
PBRC0033	479933.2	7793535.7	407.3	-60	360	0	249	249	0
PBRC0034	479933.2	7793745.7	406.7	-60	360	0	246	246	-0.01
PEBB0001	479419	7793790	406	-57.5	49	218	220	2	10.83
PEBB0002	479485	7793852	406	-59	39	150	151	1	2.74
T EBB0002	47 9400	1193032	400	-00	55	210	211	1	1.21
PEBB0003	479491	7793807	406	-58.4	41	0	276	276	0.01
PEBB0004	479470	7793768	406	-57.8	46	0	282	282	0.01
PEBB0005	479401	7793756	406	-58.3	38	0	282	282	0.01
						181	182	1	1.14
PEBB0006	479358	7793780	406	-59.3	44	185	190	5	10.14
						196	197	1	2.98
						38	40	2	2.5
						48	49	1	1.3
PEBB0007	479348	7793860	406	-58.9	42	68	69	1	1.04
	419040	1193000	400	-00.9	42	114	115	1	1.05
						213	214	1	1.45
						216	217	1	8.06

Co	yote Regional RC	and Diamond– H	listorical	Drilling				Dov	vnhole
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
CSDD0001	477857.6	7798670.7	410	-60	180				No Significant Intercept
CSDD0002	477853.7	7798973.7	410.1	-60	180				No Significant Intercept
CSDD0003	477849.4	7799319.1	411.5	-60	180				No Significant Intercept
CSDD0004	477833.2	7798765.7	386.6	-60	180				No Significant Intercept
CSRC0001	476133.2	7798330.7	385.9	-60	183				No Significant Intercept
CSRC0002	475486.9	7798644.3	409.6	-60	270				No Significant Intercept
CSRC0003	475537.3	7798642.7	409.8	-60	270				No Significant Intercept
CSRC0004	475587	7798641.1	409.8	-60	270				No Significant Intercept
CSRC0005	475637.5	7798639.8	409.8	-60	270				No Significant Intercept
CSRC0006	475687.4	7798638.2	409.7	-60	270				No Significant Intercept
CSRC0007	475741.5	7798638.8	409.7	-60	270				No Significant Intercept
CSRC0008	475635.6	7798288.7	409.1	-60	270				No Significant Intercept
CSRC0009	475694.7	7798288.1	408.9	-60	270				No Significant Intercept
CSRC0010	475754.5	7798287.9	409	-60	270				No Significant Intercept
CSRC0011	475814.1	7798288	408.9	-60	270				No Significant Intercept
CSRC0012	475875.8	7798288.6	409	-60	270				No Significant Intercept
CSRC0013	476933.2	7798707.7	386.8	-60	180				No Significant Intercept
CSRC0014	476933.2	7798765.7	386.8	-60	180				No Significant Intercept
CSRC0015	476933.2	7798825.7	387.2	-60	180			· · ·	No Significant Intercept
CSRC0016	476933.2	7798885.7	387.6	-60	180				No Significant Intercept
RRC0001	482760.2	7787765.7	421.8	-60	86			· · ·	No Significant Intercept
RRC0002	483563.2	7787865.7	422.6	-60	90				No Significant Intercept
RRC0003	483528.2	7787865.7	422.6	-60	90	71	72	1	3.3
						78	79	1	2.13
-RRC0004	483488.2	7787865.7	422.6	-60	90	37	38	1	2.16
-RRC0005	483448.2	7787865.7	422.9	-60	90	46	47	1	1.17
-RRC0006	483418.2	7787865.7	422.9	-60	90				No Significant Intercept
-RRC0007	483563.2	7787915.7	422.2	-60	90				No Significant Intercept
FRRC0008	483523.2	7787915.7	422.2	-60	90				No Significant Intercept
-RRC0009	483483.2	7787915.7	422.4	-60	90				No Significant Intercept
RRC0010	483563.2	7787965.7	422.2	-60	90				No Significant Intercept
RRC0011	483523.2	7787965.7	422.2	-60	90	49	50	1	1.07
FRRC0012	483493.2	7787965.7	422.2	-60	90	55	56	. 1 .	1.18
		1101000.1				60	61	1	1.43
FRRC0013	483453.2	7787965.7	422.4	-60	90				No Significant Intercept
FRRC0014	483823.2	7789565.7	411.7	-60	90				No Significant Intercept
						51	52	1	2.12
FRRC0015	483868.2	7789565.7	411.6	-60	90	61	62	1	1.48
						75	76	1	1.63
						49	50	1	1.25
RRC0016	483918.2	7789565.7	411.6	-60	90	71	72	1	1.17
						98	99	1	1.17
RRC0017	483968.2	7789565.7	411.5	-60	90				No Significant Intercept
RRC0018	484058.2	7789565.7	411.4	-60	270				No Significant Intercept

APPENDIX D - PAULSENS GOLD OPERATION REPRESENTATIVE SAMPLE OF HISTORICAL DRILLING

Paulsens underground diamond drilling (5% of 3,847 holes):

Paulsens	Underground Dia	amond– Historica	Drilling (rar	idom sam	ipie)	Downhole												
Hole_ID	Local_East	Local_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)									
PDU0018	9777.9	50252.7	1040.9	-7.9	302	0	6.75	6.75	9.54									
						33.1	34.1	1	14.05									
						45.74	46.1	0.36	1.51									
						47.7	49.84	2.14	2.62									
PDU0057	9783.3	50185.6	1012.2	3.9	298	63.17	63.7	0.53	5.57									
						65.75	69.28	3.53	9.73									
						77.5	78.16	0.66	1.1									
						92.63	99.83	0.53 3.53	8.47									
						28.86	29.38	0.52	3.55									
PDU0072	10006.9	50136	1111.8	-16.7	251	41.57	45.7	4.13	3.12									
						48	49.87	(m) 6.75 1 0.36 2.14 0.53 3.53 0.66 7.2 0.52 4.13 1.87 0.43 2 0.9 1.78 0.3 0.6 0.47 0.3 1.1 1.99 3.68 0.6 1.05 1.23 1.9 0.222 0.82 0.81 1.09 1.4 7 2.28 0.41 1.2 2 0.93 5.4 1 0.8 1.8 0.75 0.9 0.84	4.49									
						10.75	11.18	0.43	10.05									
						24.6	26.6	2	2.67									
						30.7	31.6	0.9	1.88									
						35.45	37.23		20.68									
PDU0080	9758.5	50234.8	1009.4	-4.2	331	41.52	41.82		42.2									
						43	43.6		7.36									
						45.38	45.85		21									
						68.25	68.55		2.16									
						2.5	3.6		2.39									
								5.21	7.2		11.33							
						8.78	12.46		3.74									
PDU0090	0720.0	50211.2	1004 6	11.0	227	22	22.6		2.52									
PD00090	9730.9	50211.3	1024.6	11.9	237													
						25.85	26.9		1.13									
						45.6	46.83		15.14									
						56.68	58.58		1.65									
PDU0095	9795.3	9795.3	9795.3	50267.5	1000.7	13.9	101	31.95	32.17		1.6							
						36.96	37.78	0.9 1.78 0.3 0.6 0.47 0.3 1.1 1.99 3.68 0.6 1.05 1.23 1.9 0.22 0.82 0.81 1.09 1.4 7 2.28 0.4 1.2 2	6.62									
						12.54	13.35		13.2									
PDU0105	10053.7	50297.5	1052.9	27.7	52	17.27	18.36		84.84									
						26.7	28.1		1.96									
PDU0207	9645.3	50265.5	963.9	-32.7	240	6.4	13.4		53.25									
PDU0241	10238.7	10238.7	10238.7	10238.7	10238.7	10238.7	10238.7	10238.7	10238.7	10238.7	50310.8	1100.6	9.4	339	11.52	13.8	(m) 6.75 1 0.36 2.14 0.53 3.53 0.66 7.2 0.52 4.13 1.87 0.43 2 0.9 1.78 0.3 0.6 0.47 0.3 1.11 1.99 3.68 0.6 1.05 1.23 1.9 0.22 0.82 0.81 1.09 1.4 7 2.28 0.41 2 0.93 5.4 1 0.8 1.8 0.75 0.9 0.84 0.5 0.39 0.74	28.05
						25.33	25.73		19.45									
						1	2.2		14.4									
PDU0230	10176.7	50318.1	1084.7	-10.3	165	28	30	2	31.7									
						32	34	2	11.63									
						32.07	33	0.93	2.28									
						39.6	45	5.4	7.08									
						49	50	1	8.69									
PDU0251	9665.7	50263.6	944.1	-8.1	247	63.8	64.6	0.8	7.14									
						76.2	78	1.8	3.19									
						80.25	81	0.75	250									
						82.1	83	0.9	1.85									
PDU0257	10380.4	50378	1087.7	-1.2	23				No Significant Inte									
PDU0268	10141.4	50303.8	1058.7	-8.3	347	20.56	21.4	0.84	45.4									
						5.8	6.3		1.35									
						9.78	10.17		3.9									
PDU0301	9590.2	50263.6	943.2	-5.2	212	13.6	14.34		9.95									
				. –	-	16	16.5		2.73									
						24.3	29.1	Interval (m) 6.75 1 0.36 2.14 0.53 3.53 0.66 7.2 0.52 4.13 1.87 0.43 2 0.9 1.78 0.3 0.6 0.43 2 0.9 1.78 0.3 1.1 1.99 3.68 0.6 1.05 1.23 1.9 0.22 0.82 0.81 1.09 1.4 7 2.28 0.41 1.2 2 0.93 5.4 1 0.8 1.8 0.75 0.9 0.84 0.5 0.39 <td< td=""><td>36.2</td></td<>	36.2									
PDU0362	9740.2	50276.7	953.6	32	41	38.05	43		31.46									
PDU0302	9740.2	50273.4	974.3	53.2	41	00.00		1 .00	No Significant Inte									
1 200391	3100.0	50273.4	314.3	JJ.Z	-+0	32.86	34.2	1.34	11.84									
PDU0405	9647	50307.1	904.8	14.8	309	32.86												
	<u>.</u>					36	36.7	0.7	1.45									
PDU0752	9462.5	50299.2	824	16.7	297	26.97	28	1.03	1.55									
						30.58	31	0.42	1.81									

						36.11	38.27	2.16	6.09													
						45.29	45.71	0.42	1.61													
						56.37	57	0.63	29.2													
						67	72	5	1.06													
						85.41	86	0.59	1.39													
						88.31	90.29	1.98	13.07													
						91.5	94.49	2.99	10.81													
PDU0886	9639.7	50302.5	943.1	52.8	259	14.78	15.9	1.12	17.31													
						47	48.3	1.3	2.05													
						72.43	73.2	0.77	9.18													
PDU0922	9446.6	50391.3	825	65.3	212	76.4	77.5		1.06													
						80.5	82		1.88													
						84	89		1.06													
PDU0943	9417.9	50293.1	826.9	-11.7	235	22.95	25.85		26.68													
	0	00200.1	020.0		200	49.92	50.72		17.55													
PDU1015	9502.8	50302.7	784.9	11.3	317	52.07	53.11		1.56													
PDU1025	9504.9	50323.1	785.7	-20.7	33	52.01	55.11	1.04	No Significant Interce													
					235																	
PDU1098	9401.2	50453.9	807.7	67.3	235				No Significant Interce													
PDU1114	9458.9	50385.9	807.8	44.1	63	54.5	55.3		1.09													
						60.7	61.5		3.93													
PDU1208	9402	50410.5	732.8	2.9	36	32.71	35.26		97.87													
	-			-	-	39.76	43.9		5.72													
PDU1212	9397.2	50409.1	733.1	-0.5	278	26.9	27.69	0.79	1.76													
	0001.L			0.0	2.0	38.04	38.77	0.73	1.7													
						26.78	28	1.22	4.66													
PDU1219	9401.3	50411.9	732.1	21.6	19	30	31	1 0.42 0.63 5 0.59 1.9 1.9 9 1.12 3 1.3 2 0.77 5 1.1 1.5 5 1.1 1.5 5 1.1 1.5 5 1.1 1.5 5 1.1 1.1 1.5 5 1.1 1.04 No 3 0.8 5 0.8 6 2.55 9 4.14 9 0.79 77 0.73 4 1 0.8 0.48 6 0.95 37 2.66 2 2.23 28 0.8 55 1.97 56 12.56 73	1.58													
						35	38.51		10													
						22	23	1	1.8													
PDU1371	9334.9	50456.7	809.4	32.1	211	120.14	121	0.86	1.54													
						124.12	126.88	0.42 0.63 5 0.59 1.98 2.99 1.12 1.3 0.77 1.1 1.5 2.99 0.8 1.04 N 0.8 2.55 4.14 0.79 0.73 1.22 1 3.51 1.22 1 0.86 2.76 0.48 0.95 2.66 2.23 0.8 1.097 2.56 1.1 3 1.97 12.56 2 1.5 1.62 1 3 1.915 1.14 N 0.56 0.75 0.26 1.45 0.82 1.95 1.45	25.5													
						40.6	41.08		2.61													
						54.05	55	0.95	1.16													
						61.21	63.87		5.51													
						74.97	77.2		6.22													
PDU1409	9125.6	50462.7	695.5	46.1	224	96.48	97.28		1.39													
Derive	9123.0	9123.0	9125.0	9125.0	9125.0	9125.0	9125.6	9125.6	9125.0	3123.0	5125.0	0.20.0	0120.0	0120.0	00102.1	095.5	40.1	221	121	125		4.11
																121	129.09		1.46			
						120			2													
							150.06															
						166.64	167.5		3.22													
						111	112		1.69													
						143	144		2.24													
PDU1473	9108.8	50473.6	695.3	73.1	187	147	150	0.42 0.63 5 0.59 9 1.98 9 1.98 9 1.12 1.3 0.77 1.1 1.5 5 2.99 1.12 1.3 0.77 1.1 1.5 5 2.9 0.8 0.8 0.8 0.79 7 0.73 1.22 1 3.51 1 0.86 8 0.76 2.23 0.8 0.48 0.95 7 2.66 2.06 5 0.8 4 9 1.09 6 2.06 3	48.42													
	0100.0		090.0	10.1		154.6	156.57		2.05													
						160	172.56	0.42 0.63 5 0.59 1.98 2.99 1.12 1.3 0.77 1.1 1.5 5 2.9 0.8 1.04 0.8 0.8 2.55 4.14 0.79 0.73 1.22 1 3.51 1 0.86 2.76 0.73 1.22 1 3.51 1 0.86 2.76 0.48 0.95 2.66 2.23 0.8 4.14 0.95 2.66 2.23 0.8 4.14 0.95 2.66 2.23 0.8 4.14 0.95 2.66 2.23 0.8 4.14 0.95 2.66 2.15 1.12 1.12 1.13 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.05 1.04 1.04 1.05 1.04 1.04 1.05 1.04 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05	5.92													
						173.73	175.73	2	4.2													
PDU1483	9108	50473.6	695.3	53	207	68.6	70.1	1.5	2.48													
PDU1508	0122 4	50472	605 1	82.0	25	159.7	161.32	1.62	5.54													
F DU 1308	9133.4	50472	695.1	82.9	35	176	177	1	22.2													
PDU1586	9287.8	50374.4	633.2	28.1	17	61.12	70.27	9.15	5.33													
PDU1588	9288.8	50375	634.6	-17	29	68.56	69.7	1.14	2.04													
PDU1608	9117.6	50475.4	695	75	273				No Significant Interce													
PDU1659B	9106.5	50474.5	695.9	14.9	322				No Significant Interce													
						48.44	49	0.56	2.9													
						53.25	54		2.97													
PDU1702	9141.3	50380	611.7	9.2	349	55.24	55.5															
							·		6.43													
						56.73	58.18		7.5													
PDU1723	9359.8	50455.8	809.6	3.9	180	97	97.82		1.35													
				-		99.85	101.8		2.49													
PDU1729	9359.6	50455.7	809.3	23.5	189	104	105	1	1.25													
. 551125		00700.1	505.5	20.0	103	110.8	112.1	1.3	4.99													
PDU1802	9018.7	50446.4	598.3	27.1	218				No Significant Interce													
		50466.7	624.9	81.2	88	61	63.75	2.75	19.48													
	9220.6	30400.7																				
PDU1829 PDU1873	9220.6 9086	50371	577	60	1				No Significant Interce													

						0	1.25	1.25	6.56
						4.39	4.75	0.36	1.45
PDU1884	9145.4	50445.6	628	-30	125	6.52	6.82	0.3	1.69
						7.82	8.42	0.6	1.72
PDU1896	9175.5	50447.5	628	-30	125	-	-		No Significant Interce
PDU1919	8921.8	50469.2	587.8	28	5	119.64	120	0.36	1.38
PDU1923	9206.4	50387.8	594.2	-9.3	336				No Significant Interce
PDU1956	9086.5	50371.2	578.4	28.9	3				No Significant Interce
						161.92	162.67	0.75	5.22
PDU1981	8909.5	50451.3	588.1	34.1	233	210	211	1	9.04
						212.12	213	0.88	5.06
PDU1996	9205.7	50387.5	593.1	9.4	343		•		No Significant Interce
						90	90.84	0.84	4.65
PDU2016	9208.2	50386.8	593.1	7.9	39	94.22	99.36	5.14	5.86
PDU2043	8910.5	50449.9	588.9	24.6	179				No Significant Interce
PDU2046	8910.9	50450	587.9	65.2	177				No Significant Interce
						149	149.71	0.71	24.2
						166.83	174.33	7.5	11.03
						192	192.87	0.87	19.16
						195	196	1	1.49
						204.27	206.65	2.38	1.97
						228.5	229	0.5	1.03
						309.06	310	0.94	3.81
						345	348	3	17.16
						353	354.09	1.09	1.66
PDU2153	8905.1	50472.6	588.4	27.9	250	391	392	1	1.74
	0000.1					393.31	394.48	1.17	16.25
						432.95	433.56	0.61	5.43
						456.76	457.56	0.8	1.83
						477.69	478.72	1.03	2.63
						483	487	4	8.44
						489.36	489.72	0.36	5.48
						494	496	2	8.69
						508	512	4	10.89
						540	543	3	7.05
PDU2204	9642.3	50373.2	881.6	9.9	155	26.65	26.95	0.3	1.54
1 002201	0012.0	00010.2	001.0	0.0	100	111.8	112.52	0.72	3.58
						115.34	122.78	7.44	34.78
						129.58	130.43	0.85	3.31
						134.83	135.53	0.7	3.59
						137.91	139	1.09	1.41
						156	157	1	1.81
						160	162.31	2.31	15.27
						166	166.51	0.51	10.25
						270.52	271.03	0.51	1.24
						301.7	304	2.3	3.13
PDU2245	8904.9	50471.8	588.1	27.8	238	307	307.81	0.81	1.63
FD02243	0904.9	50471.0	500.1	27.0	230	313	313.8	0.8	4.58
						340.57	342		3.55
						354	355	1.43	
						-		1	1.08
						377.48	377.72	0.24	2.69
						399.42	399.66	0.24	1.76
						408.35	409.44	1.09	4.67
						418.06	419	0.94	2.75
						428.43	429.23	0.8	1.71
						450.12	450.43	0.31	68.4
						453.08	453.73	0.65	1.25
PDU2320	9644.5	50374	881	31	110	50.95	51.6	0.65	3.96
PDU2338	9797.3	50270.4	1000.4	41.5	92	31.3	32	0.7	2.2
PDU2345	9797.5	50270.4	1000.7	36.4	78	36.1	39.05	2.95	3.18
	9796.4	50271.5	1000.7	25.1	47				No Significant Interc
	0100.1								
	0100.1					59	59.5	0.5	2.6
PDU2354 PDU2370	8924	50372.4	531.9	-8.3	307	59 61.85	59.5 63.56	0.5 1.71	2.6 3.68

						73.45	74.4	0.95	2.15							
						28.5	29.3	0.8	1.86							
						41	44	3	1.5							
PDU2385	8996.3	50472.5	529.9	50.5	321	60	61	1	1.25							
						80.3	84	3.7	22.77							
						86	87	1	1.21							
						51			19.52							
						66.19			3.83							
						69			1.01							
						72			1.01							
						100		0.8 3 1 3.7 1 3.7 1 3 0.41 1 0.5 1 0.74 1.33 0.34 0.59 1.95 1.29 N 0.24 0.45 N 0.7 0.93 0.43 0.52 0.69 0.72 0.5 1.95 1.1 1.1 1.89 1 0.3 0.7 0.44 0.52 0.69 0.72 0.5 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.29 N 0.24 0.45 N 0.7 0.43 0.72 0.5 1.95 1.95 1.95 1.95 1.29 N 0.24 0.45 N 0.7 0.43 0.72 0.5 1.95 1.95 1.95 1.95 1.1 1.1 1.1 1.89 1 0.3 0.7 0.44 0.3 0.7 0.64 0.64 0.22 0.3	3.75							
PDU2399	8924.7	50366.8	530.6	15	223	118.51			24.72							
						129.26			3.39							
						-			2.38							
						133										
						184.8			5.14							
						189.05			1.58							
PDU2426	9639.7	50372.8	880.8	35.7	138	52.85	54.14	1.29	2.35							
PDU2576	8705.5	50481	497.9	32.9	262				No Significant Inter							
PDU2594	10062.2	50138.6	1149	-27.8	331	29.2			21.6							
						38.55	39	0.45	1.08							
PDU2651	8906.2	50465.8	493.2	17.5	328				No Significant Inter							
						53.65	54.35	0.45 0.7 0.93 0.43 0.52 0.69 0.72 0.5	1.18							
						62.83	63.76	0.93	6.08							
						65.6	66.03	0.43	1.79							
PDU2698	8712.9	50458.2	497.8	17.9	211	67.52	68.04	29.3 0.8 44 3 61 1 84 3.7 87 1 54 3 66.6 0.41 70 1 72.5 0.5 101 1 119.25 0.74 130.59 1.33 133.34 0.34 185.39 0.59 191 1.95 54.14 1.29 29.44 0.24 39 0.45 7 0.3 66.03 0.43 66.03 0.43 68.04 0.52 72.69 0.69 86.43 0.72 93.66 0.5 6.1 1.95 29.1 1.1 43.5 1.1 50.59 1.89 53 1 27.07 0.3 33.7 0.7 10.79 0.44 <td>4.11</td>	4.11							
						72	72.69	0.69	63.8							
						85.71	86.43	0.72	287							
						93.16	93.66	0.5	1.87							
00110740	0440.0	50.400.4	540.0	40.0	455	4.15	6.1	0.8 3 1 3.7 1 3 0.41 1 0.5 1 0.74 1.33 0.34 0.59 1.95 1.29 0.24 0.45 0.7 0.24 0.45 0.7 0.24 0.45 0.7 0.24 0.45 0.7 0.93 0.43 0.52 0.69 0.72 0.5 1.95 1.11 1.1 1.89 1.95 1.11 1.11 1.89 1.25 0.69 0.72 0.5 1.95 1.11 1.11 1.89 1.25 0.69 0.72 0.5 1.95 1.12 0.43 0.52 0.69 0.72 0.5 1.95 1.11 1.11 1.89 1.03 0.7 0.44 0.67 0.64 6.32 0.64 0.62 0.64 0.22 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.42 0.44 0.45 0.44 0.45 0.44 0.45 0	1.25							
PDU2718	9119.2	50492.1	516.9	18.3	155	28	29.1	1.1	5.53							
						42.4	43.5	1.1	1.92							
PDU2827	8934.3	50407.8	497.1	-6.4	43	48.7	50.59	1.89	10.48							
						52	53		1.32							
						26.77		3 0.41 1 0.5 1 0.74 1.33 0.34 0.59 1.95 1.29 0.24 0.45 0.7 0.93 0.43 0.52 0.69 0.72 0.5 1.95 1.1 1.1 1.89 1.95 1.29 0.24 0.43 0.52 0.64 0.52 0.64 0.632 0.64 0.62 0.64 0.22 0.5 1.95 1.1 1.1 1.29 1.95 1.1 1.1 1.29 1.95 1.1 1.1 1.29 1.95 1.1 1.1 1.29 1.29 0.72 0.5 1.95 1.1 1.1 1.29 1.29 0.72 0.5 1.95 1.1 1.1 0.3 0.7 0.64 0.62 0.64 0.22 0.5 1.29 1.0 0.5 1.1 0.5 1.29 1.1 1.1 1.29 1.1 0.3 0.7 0.64 0.52 0.64 0.52 0.64 0.52 0.5 1.1 0.5 1.1 0.5 1.29 1.1 0.5 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 1.1 0.5 1.29 0.5 1.1 0.5 1.29 0.5 1.1 0.5 1.29 0.5 1.1 0.64 0.52 0.64 0.52 0.64 0.52 0.64 0.52 0.64 0.22 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	2.22							
PDU2872	10061.1	0061.1 50170	1146.1	1146.1	1146.1	1146.1	1146.1	1146.1	1146.1	1146.1	55.1	355	33	· · · · · · · · · · · · · · · · · · ·	1 3.7 1 3 0.41 1 0.5 1 0.74 1.33 0.34 0.59 1.95 1.29 0.24 0.45 0.7 0.93 0.43 0.52 0.69 0.72 0.5 1.95 1.95 1.95 1.11 1.1 1.89 1.29 0.24 0.43 0.52 0.69 0.72 0.55 1.95 1.1 0.64 0.62 0.64 0.62 0.64 0.22 0.42 0.38 1 0.73 0.73 0.73 0.74 0.44 0.25 0.38 1 0.73 0.73 0.73 0.73 0.73 0.74 0.75 0.7	1.56
						10.35			14.9							
PDU2940	9889.8	50307.4	976	-12.6	91	22.58			1.1							
	10062.1				225	67.5			4.44							
PDU2986		50131.9	1146.8	9.8		77.4			1.7							
1 202000		00101.0	1110.0	0.0	220	86			3.94							
						1.6			7.94							
PDU2989	10061.2	50132.5	1146.8	1.9	240											
DDU2011	0795 1	E0296 4	076	7.0	75	52.6	52.9	0.3	2.4							
PDU3011	9785.1	50286.4	976	7.9	75	100.40	140 70	0.00	No Significant Inter							
PDU3049	8713.5	50484.9	498.5	11.4	45	138.46			6.07							
	0004 5	F00 / F /		40.0	~~	1.78			167							
PDU3067	8694.8	50347.4	424.1	13.2	30	72.08			44							
						134.39			6.1							
						69.75			5.5							
						71.5			1.77							
						76			1.41							
	8630.2					84			14.1							
						105	105.65	0.65	82							
						117	119.98	2.98	6.67							
PDU3070		50340.3	424.5	39	210	166.62	167	0.38	4							
1 003010	8639.2	50340.3	424.0	39	210	176	177	1	1.32							
						216	216.28	0.28	5.1							
						242.27	243	0.73	2.07							
						265	265.6	0.6	1.55							
							267			1.38						
						307.39			24.8							
						313	314	1	3.07							
						313										
PDU3140	8684.9	50499.4	425.6	46.7	161		314 34.27 46.72	1 0.39 0.54	3.07 1.12 7.95							

							cc c=		•
						68.83	69.67	0.84	2.53
						75.42	75.69	0.27	4.59
						47.32	48.5	1.18	42.71
PDU3145	8684.2	50499.4	425.6	33.4	200	69.45	69.7	0.25	3.96
						71.07	72.14	1.07	6.36
PDU3162	10064.3	50172	1146.8	15.5	54	19.8		0.2	27.9
						72.51	73.34	0.83	17.83
						43.23	44.57	1.34	1.41
PDU3232	9833.2	50198.9	1019.2	-7.8	280	46	47	1	3.96
						48.47	51.7	3.23	4.48
						0	1	1	1.1
						7	8	1	1.9
						9.26	11.76	2.5	5.11
						113	113.83	0.83	19.2
						152.07	154.34	2.27	17.92
	0004.0	50245 7	404.0	24 5	202	166.51	167.2	0.69	14.6
PDU3242	8684.8	50345.7	424.6	34.5	293	168.74	169.41	0.67	1.84
						221	221.42	0.42	2.59
						224.6	225	0.4	1.25
						237	237.74	0.74	5.94
						270.68	271	0.32	3.18
						273	273.86	0.86	100
PDU3263	9426.1	50472.9	809	19.4	100	155	156.77	1.77	1.08
						9.16	12	2.84	5.97
						15.52	16.65	1.13	4.7
						27	28	1	3.09
						39	39.68	0.68	9.4
						41	42	1	1.26
							42	0.6	
						146.8			1.52
						175.8	179.6	3.8	8.04
						191	192.9	1.9	58.06
						205	206	1	1.54
						214	215.03	1.03	236.27
						221.92	222.82	0.9	1.09
						225	225.63	0.63	1
						248.8	250.27	1.47	5.95
						260	260.66	0.66	1.12
PDU3283	8684.8	50341.9	425	25	249	269.35	271	1.65	24.04
. 200200	000110	0001110	.20	20	2.0	275.36	281	5.64	4.24
						310.95	311.17	0.22	10.7
						366.83	367.3	0.47	8.7
						509.75	510.34	0.59	44
						512.65	513.23	0.58	4.53
						528.65	530.63	1.98	7.07
						532	533.06	1.06	22.4
						534.62	535	0.38	1.08
						545	545.46	0.46	7
						583.37	583.74	0.37	2.99
						597	598	1	1.04
						613.66	615.26	1.6	6.95
						618.32	619.05	0.73	2.5
						632.66	633.03	0.37	9.4
						640.37	640.6	0.23	18.1
						17.54	18	0.25	1
	8643.2					20.93	22	1.07	2.09
PDU3420		50340.7	424.5	29.1	175	42.5	44	1.07	3.63
. 000420	0040.2	50040.7	424.0	23.1	175	61.84	62.2	0.36	2.24
						75	76	1	9.2
						7.39	8	0.61	7.8
	8630	8639 50340.3	424.7	30.1	230	17.51	18.46	0.95	66.96
PDU3435	8639			00.1			22		
PDU3435	8639	50540.5				21.41	22	0.59	1.06
						21.41	24.4	0.59	1.96
PDU3435 PDU3457 PDU3460	8639 8560.7 8560.6	50340.3 50364.9 50364.9	346.6 346.5	4	310 310	-			

						44.00	40.44	1.40	0.00
						41.28	42.44	1.16	9.06
						49.7	51.14	1.44	9.44
						52.61	53.38	0.77	1.78
						68.8	69.95	1.15	9.64
						89.27	90.51	1.24	7.5
						99.02	99.8	0.78	7.6
						102.91	103.18	0.27	3.23
						106.17	106.43	0.26	1.32
						109.3	112.17	2.87	3.15
PDU3516	8655.8	50437.5	392	14.9	325	1.24	2	0.76	2.56
Decere	0000.0	00101.0	002		020	134	136	2	14.82
PDU3553	8671.3	50535.8	412	-12	290				No Significant Interce
	8713	50524 5	394.2	-10	312	44	44.76	0.76	3.68
PDU3574	0/13	50534.5	394.Z	-10	312	59.64	60	0.36	1.13
						6.17	6.67	0.5	6.8
PDU3623	8582.6	50387	346.2	-32	355	31.25	34.67	3.42	1.59
						54.14	55	0.86	1.97
	-					25.1	25.84	0.74	1.97
PDU3651	8516.6	50406.4	305.6	7	15	28	31	3	5.41
PDU3658	8546.8	50438.6	309.4	-24	39				No Significant Interce
1 200000	0010.0	00100.0	000.1	21	00	34	34.52	0.52	1.1
PDU3675	8508	50405.7	304.7	52	337	42.87	44.63	1.76	8.47
PDU3678	8460.1	50368.4	273.1	28	357	42.07	44.03	1.70	
									No Significant Interce
PDU3706	8416.1	50307	323.9	18	300	440.57	140	0.40	No Significant Interce
						148.57	149	0.43	1.08
						166.7	166.9	0.2	1.06
						179	179.7	0.7	11.26
						184.8	186	1.2	1.38
						189	191	2	4.27
PDU3708	8240.2	50254.2	262.5	49.1	286	244	245.15	1.15	1.28
1 200/00	0240.2	50204.2	202.0	40.1	200	314.27	316	1.73	1.26
						317.5	318.94	1.44	46.94
						328.82	331	2.18	5.34
						335	335.26	0.26	1.32
						359.63	360.62	0.99	2.75
						424	424.49	0.49	2.99
						209	209.82	0.82	52
						212.15	212.64	0.49	1.07
						240.42	241.38	0.96	1.87
	0040.0	50050 F	262.2	45 7	074	259.68	260.27	0.59	17.1
PDU3808	8240.3	50253.5	263.2	45.7	274	287	287.25	0.25	1.17
						325.54	326.38	0.84	2.91
						347	347.3	0.3	1.37
						356	357	1	1.41
						363.67	364	0.33	4.28
PDU3920	8286.9	50318.8	249.9	36.5	328	111.87	114.6	2.73	3.14
1 000020	0200.0	00010.0	240.0	00.0	520	116.4	116.78	0.38	13.9
						14.75	17	2.25	1.48
PDU3942	8472.3	50432.8	260	7.4	30	19	20.3	1.3	1.82
						21.45	22	0.55	1.97
						273	274.52	1.52	3.4
		_				366.93	368	1.07	5.3
PDU3966	9424	50489.9	809.1	14.3	357	378.44	378.74	0.3	8
						380.6	382	1.4	2.1
						127.9	128.5	0.6	7.4
							· · · · · · · · · · · · · · · · · · ·		
						147	148	1	1.19
PDU3972	8153.6	50170.4	248.6	47.6	331	182.07	182.73	0.66	5.26
		-		-	-	187	188.25	1.25	6.22
						280.12	280.41	0.29	2.11
						352	352.65	0.65	1.74
PDU3992	9423.8	50489.4	809.4	14.9	331	291.54	292.1	0.56	2
						309.9	310.51	0.61	3
PDU4000	9425.6	50489.5	810.1	0.4	32	313	313.5	0.5	1.16
			2.0						
						330.72	333	2.20	21.09
PDU4000	9425.6	50489.5	810.1	0.4	32				

						334.78	335.2	0.42	1.4
						339.42	340	0.58	3.32
PDU4060	8312.7	50396.4	188.2	-15	314	17	17.45	0.45	6.62
PD04060	0312.7	50590.4	100.2	-15	314	26.67	30.9	4.23	10.01
						177	177.5	0.5	3.94
PDU4172	8043.5	50418.9	130.9	55.4	187	197.64	200	2.36	2.45
						219.06	222.54	3.48	14.26
						147.37	147.69	0.32	6.18
PDU4192	9511	50645.2	777	7.6	309	149	153	4	18.89
						159.98	166	6.02	4.23
PDU4226	8372.2	50437.4	195	-21	24	31	33	2	7.99
PDU4298	9566.7	50388.5	770.6	52	242	19.21	22.68	3.47	15.66
						3.5	5.04	1.54	2.57
PDU4346	9532.8	50751.5	778.3	36.7	340	11.5	12.2	0.7	2.65
						24	27	3	7.97
PDU4367	8032	50420	130.6	45.5	207				No Significant Intercep
DD114206	0.490.4	50670	770 5	2.0	324	83	84	1	62.3
PDU4396	9489.1	50673	778.5	2.9	324	85.38	86.33	0.95	2.2

Downhole Paulsens Surface RC and Diamond- Historical Drilling (random sample) To (m) Hole ID Local_East Local_North RL Au Grade (g/t) BH13 421952.9 7503094.7 1200 -90 0 No Significant Intercept BH3b 422097.6 7503377.6 1200 -85 112 No Significant Intercept BH4 422117.1 7503349.8 1200 -85 228 No Significant Intercept 119.55 120.25 PAVDD0003 9244.7 50563.4 1206.6 -70 1 0.7 12 PERC001 423104.6 7503070.2 1203.6 -60 180 No Significant Intercept PERC009 423437.5 7502843.6 1201.5 -60 180 No Significant Intercept PGNDD011 422232.5 7503860.1 1202.5 -55 0 No Significant Intercept PGODD0001 421925.4 1198.7 211 7502908.7 -80 No Significant Intercept PGODD0003 421924.8 7502908.2 1198.8 -58.5 204 No Significant Intercept PGODD0019A 421821 7503241.2 1201.6 196 -60 No Significant Intercept PGODD0022A 421647.4 7502909.3 1196.9 -61.7 335 No Significant Intercept PGORC0002 421900 7502931.6 1198.5 -60 217 No Significant Intercept 1198.4 -70 PGORC0003 421900.6 7502931.7 219 No Significant Intercept PGORCD0007 421715.7 1220 -74.7 7503430.7 198 No Significant Intercept PLDD010 421994.2 7503914 1203.5 -62.3 180 No Significant Intercept 87 88 1 7.11 PLRC024 9999.2 50194.9 1202.9 -89.6 54 93 94 1 3.66 135 139 4 25.18 100 101 1.91 1 PLRC026 9973.7 50194.8 1202.1 -89.6 301 103 107 4 25.79 25 28 3 8.34 PLRC028 10001.5 50020.6 1205.3 -90 0 35 37 2 25.96 PLRC041 422632.3 7503341 1200.1 -90 0 No Significant Intercept 2 18 20 1.52 PLRC049 10100.5 50145.3 1210.2 -88.3 58 25 26 1 5.14 54 56 2 5.06 PLRC059 422247.2 7502853.4 1211.4 -90 0 No Significant Intercept 145 5 2.25 150 PLRC087 9800.5 50171 1199.4 -89.2 115 152 159 7 8.39 188 189 3.58 1 PLRC108 9850.6 50296.8 1200.5 -89.9 234 255 256 5.32 1 186 187 1 3.15 209 210 1 5 36 **PI RC125** 9651.3 50195 9 1199.8 -89.8 205 3.69 218 219 1 4.56 227 230 3 4.28 50170.4 PLRC154 9874.7 1200.3 -88.9 340 140 141 1 PLRC163 10125.7 50275.8 1202.5 120 -89 311 126 6 4.14 PLRC172 7503178.8 1201 -69 228 No Significant Intercept 422331.6 49 52 3 5.78 69 72 3 2.56 PLRC182 9977.2 50119.4 1203.2 90 0 95 1.84 96 1 170 171 1 4.8 PLRC187 9725.7 50170.5 1199.1 -88.5 343 173 175 2 7.37 178 199 21 6.92 194 198 4 7.93 PLRC206 10014.2 50338.4 1201.4 -64.8 224 200 202 2 7.28 PLRC207 10251.8 50399.2 1198.8 -60 225 157 16.3 158 1 PLRC232 422179.6 7502512.7 1201.4 -60 225 No Significant Intercept PLRC241 422061.3 7504043.3 1202.8 -60 180 No Significant Intercept PLRC243 422129.5 7504118.9 1204 -60 180 No Significant Intercept PLRC244 421830 7503169.2 1199.7 -65 45 No Significant Intercept PLRC267 10002 49960.9 1205.4 -90 0 12 16 4 2.03 PLRC280 10249.6 50144.2 1215.6 60 180 4 2 13.89 6 PLRC287 2 3.39 10199.6 50113.4 1220.3 -60 180 30 32 PLRC292 10125 49976.7 1211.1 -60 182 13 15 2 1.23 PLRC294 10149.9 50055 1215.1 -60 180 16 19 3 1.76 PLRC298D 9925.8 50346.8 1200.6 -70 207.85 1.85 180 206 3.19 179 184 5 8 17 -75 PLRC315 9699.9 50255.4 1200.7 181 199 204 5 14.03

Paulsens RC and Surface diamond drilling (6% of 1,126 holes):

						209	210	1	1.44
	10000 5	50070 0	1000.0		101	2	3	1	1.99
PLRC320	10203.5	50070.9	1228.9	60	181	37	40	3	7.87
PLRC343	422302.4	7502765.1	1231.5	-60	180		·		No Significant Intercept
						475.31	476	0.69	1.44
						483	484	1	15.45
						491.79	492.07	0.28	6.93
PLRCD0421	9400	50571.8	1207.4	-68.9	180	503.8	505	1.2	5.23
						517.95	521	3.05	1.53
						531.07	534.26	3.19	1.95
PLRCD0431	421630.4	7503407.8	1208.4	-69	180				No Significant Intercept
PLRCD107	9750.7	50296	1201.2	-89	237	124	130	6	5.68
. 2.102.101	0.001	00200	.202		20.	272.5	273	0.5	6.27
PLRCD119	9511.9	50329.1	1204.1	-80.2	141	276	280.5	4.5	2.96
T EROD TIS	5511.5	00020.1	1204.1	-00.2	141	282	286	4.0	17.48
						185	186	1	4.32
						193	194	1	2.79
						193	194	1	14.81
PLRCD137	9701.3	50296.5	1201.6	-89.8	312	204	206	2	14.81
I LIXED ISI	5701.5	30290.5	1201.0	-03.0	512	237	238	1	6.16
						291	292.5	1.5	2.2
						291	292.5	4	26.3
						451.5	452.5	1	7.17
						457	457.5	0.5	6.02
PLRCD142	9400.7	50445.6	1214.3	-79.1	135	437	437.5	2	8.13
						472	474	1	2.83
PLRCD175	422314.4	7503146.9	1201.6	-65	225	479	400	1	2.05 No Significant Intercept
T EROD ITS	422314.4	7303140.9	1201.0	-00	225	145.05	145.85	0.8	3.61
						147.5	143.00	5.5	2.33
PLRCD350	9775.5	50175.9	1199	-80	180	147.5	158	1	1.28
						157	160	1	1.37
						87.15	93.25	6.1	2.41
PLRCD366	9963.1	50119.8	1202.6	-60	180	102	93.25 102.6	0.6	5.17
	10075.6	50200.0	1201.0	70	180				
PLRCD367	10075.6	50300.9	1201.9	-70	100	127.83	129.4	1.57	1.5
PLRCD369	9725.4	50395.9	1204.8	-70	180	269.3	273.2	3.9	8.34
	10038.1	50205.0	1000.0	00	100	294	296	2	17.54 24.09
		50285.9	1202.3	-60	180 0	146.24	148.02	1.78	24.09 No Significant Intercept
PLRCD392		7500007	1102 2						No Significant Intercept
PMB4	421353.6	7502827	1193.2	-90					
PMB4 PMB9	421353.6 421016.1	7502834.3	1201	-90	319	-			
PMB4 PMB9 PPDDD0001A1	421353.6 421016.1 421468.1	7502834.3 7504424.6	1201 203.3	-90 -69.2	319 173	·			No Significant Intercept
PMB4 PMB9 PPDDD0001A1 PWEX009	421353.6 421016.1 421468.1 422877.3	7502834.3 7504424.6 7502975	1201 203.3 1198.7	-90 -69.2 -90	319 173 0	Λ	5	1	No Significant Intercept No Significant Intercept
PMB4 PMB9 PPDDD0001A1	421353.6 421016.1 421468.1	7502834.3 7504424.6	1201 203.3	-90 -69.2	319 173	4	5	1	No Significant Intercept No Significant Intercept 1.5
PMB4 PMB9 PPDDD0001A1 PWEX009	421353.6 421016.1 421468.1 422877.3	7502834.3 7504424.6 7502975	1201 203.3 1198.7	-90 -69.2 -90	319 173 0	11	12	1	No Significant Intercept No Significant Intercept 1.5 1.4
PMB4 PMB9 PPDDD0001A1 PWEX009 RC14-92	421353.6 421016.1 421468.1 422877.3 9987	7502834.3 7504424.6 7502975 49986.1	1201 203.3 1198.7 1204.2	-90 -69.2 -90 -90	319 173 0 0	11 13	12 14	1	No Significant Intercept No Significant Intercept 1.5 1.4 1.35
PMB4 PMB9 PPDDD0001A1 PWEX009 RC14-92	421353.6 421016.1 421468.1 422877.3 9987	7502834.3 7504424.6 7502975 49986.1	1201 203.3 1198.7 1204.2	-90 -69.2 -90 -90	319 173 0 0	11 13 12	12 14 13	1 1 1	No Significant Intercept No Significant Intercept 1.5 1.4 1.35 3.35
PMB4 PMB9 PPDDD0001A1 PWEX009 RC14-92 RC17-92 RC23-92	421353.6 421016.1 421468.1 422877.3 9987 10024 10001	7502834.3 7504424.6 7502975 49986.1 49998.5 50020.9	1201 203.3 1198.7 1204.2 1205.4 1205.7	-90 -69.2 -90 -90 -55 -55	319 173 0 0 181 181	11 13 12 16	12 14 13 17	1 1 1 1	No Significant Intercept No Significant Intercept 1.5 1.4 1.35 3.35 1.65
PMB4 PMB9 PPDDD0001A1 PWEX009 RC14-92 RC17-92	421353.6 421016.1 421468.1 422877.3 9987 10024	7502834.3 7504424.6 7502975 49986.1 49998.5	1201 203.3 1198.7 1204.2 1205.4	-90 -69.2 -90 -90 -55	319 173 0 0 181	11 13 12 16 18	12 14 13 17 19	1 1 1 1 1 1	No Significant Intercept No Significant Intercept 1.5 1.4 1.35 3.35 1.65 3.3
PMB4 PMB9 PPDDD0001A1 PWEX009 RC14-92 RC17-92 RC23-92 RC23-92	421353.6 421016.1 421468.1 422877.3 9987 10024 10001 10549.3	7502834.3 7504424.6 7502975 49986.1 49998.5 50020.9 50729.5	1201 203.3 1198.7 1204.2 1205.4 1205.7 1200.5	-90 -69.2 -90 -55 -55 -90	319 173 0 0 181 181 0	11 13 12 16 18 95	12 14 13 17 19 99	1 1 1 1 1 1 4	No Significant Intercept No Significant Intercept 1.5 1.4 1.35 3.35 1.65 3.3 2.44
PMB4 PMB9 PPDDD0001A1 PWEX009 RC14-92 RC17-92 RC23-92	421353.6 421016.1 421468.1 422877.3 9987 10024 10001	7502834.3 7504424.6 7502975 49986.1 49998.5 50020.9	1201 203.3 1198.7 1204.2 1205.4 1205.7	-90 -69.2 -90 -90 -55 -55	319 173 0 0 181 181	11 13 12 16 18	12 14 13 17 19	1 1 1 1 1 1	No Significant Intercept No Significant Intercept 1.5 1.4 1.35 3.35 1.65 3.3

Belvedere RC and Surface diamond drilling:

E	Belvedere RC ar	id Diamond– Hi	storical D	rilling				Dowr	nhole
Holed	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
BVRC001	427467.9	7499278.5	216.1	-60	50				No Significant Intercept
BVRC002	427458.1	7499278.9	215.1	-60	50				No Significant Intercept
BVRC003	427465.2	7499256.4	216.8	-60	50	11	12	1	11.3
BVRC004	427451.2	7499256.6	216.2	-60	50	20	22	2	22.66
BVRC005	427459.7	7499235.8	216.3	-60	50	12	14	2	1.87
BVRC006	427440	7499234	215	-60	50				No Significant Intercept
BVRC007	427093.2	7498662.5	206.6	-60	90				No Significant Intercept
BVRC008	427087.5	7498667.8	206.4	-60	90				No Significant Intercept
						5	9	4	9.36
BVRC009	427176.4	7498869.9	227.2	-59.8	91	11	13	2	6.91
						15	16	1	1.65
						14	16	2	1.87
3VRC010	427162.4	7498855.2	227	-60	90	20	22	2	1.34
						21	24	3	4.09
3VRC011	427149.9	7498839.8	228	-60	90	30	31	1	2.69
				20	20	55	57	2	3.92
						12	13	1	6.6
3VRC012	427140.1	7498828.3	228	-60	90	29	33	4	2.68
		00020.0		~~		65	66	1	8.97
3VRC013	427134.4	7498852.7	221	-60	90	37	44	7	2.1
51110010	121101.1	1100002.1		00		36	37	1	1.36
3VRC014	427124.6	7498841.2	221	-60	90	44	45	1	2.33
50110014	427 124.0	7400041.2	221	-00	50	48	52	4	2.72
3VRC015	427428.7	7499256.1	213.5	-60	50	40	52		No Significant Intercept
	427420.7	7433230.1	210.0	-00		26	34	8	7.02
3VRC016	427149.7	7498868.4	220.6	-56.1	87	93	96	3	12.27
3VRC017	427175	7498870.9	227.1	-89.6	183	93 12	19	7	6.62
BVRC017 BVRC018	427117.5	7498868.4	215.4	-58.9	90	50	54	4	3.64
BVRC018	427117.5	7498897.2	215.4	-56.9	90	30	31	4	1.15
						30	31	1	
BVRC020	427133.3	7498780.5	227.8	-58.7	88				No Significant Intercep
BVRC021	427109.4	7498798 7498742	219.7 216.3	-59.9	89				No Significant Intercept
BVRC022	427101.2			-60	90				No Significant Intercept
BVRC023	427085.7	7498758.1 7498686.5	216.2	-60 -60	90	24	28		No Significant Intercept 1.5
3VRC024 3VRC025		7498080.5			90	24	20	4	No Significant Intercept
	427074.7 427226.8	7498710.0	208.9 224.7	-60 -60	90	12	16	4	16.83
BVRC026					90	12	10	4	
BVRC027	427205.7	7498917.6	216.7	-60	90	•			No Significant Intercept
BVRC028	427264.6	7498921.1	217.9	-60	90				No Significant Intercept
3VRC029	427235	7498951.5	209.1	-60	90	00			No Significant Intercep
3VRC030	427073.9	7498885.3	205.5	-60	90	80	84	4	1.62
	407000.0	7400000 0	005	60		88	92	4	1.51
3VRC031	427080.8	7498898.6	205	-60	90				No Significant Intercept
3VRC032	427110.3	7498900.6	205.8	-60	90	400.05	400 75		No Significant Intercept
BEDD0001	427009.3	7498819.9	203.5	-75.9	131	180.25	180.75	0.5	5.83
BEDD0002	427105	7498844	215.5	-49.3	83				No Significant Intercept
BEDD0003	427104.5	7498846.3	215.2	-67.8	238	40.0	04	4.0	No Significant Intercept
BEDD0004	427127.6	7498785.1	227.9	-50.9	29	19.8	21	1.2	3.49
BEDD0005	427142	7498866.7	220.3	-36	24	400	100	4.05	No Significant Intercept
BEDD0006	427048	7498788.2	210	-42.7	9	106.65	108	1.35	5.56
BEDD0007	427108	7499116	210.2	-50	179	34.5	35	0.5	1.2
BEDD0008	427061	7499123.2	214.2	-50	179	24.7	25	0.3	2.73
						26.5	27.5	1	3.72
BERC0001	427259	7498995.2	216.1	-61.1	135	101	102	1	1.46
BERC0002	427066.9	7498924.1	207	-60.1	134	108	109	1	1.28
						134	135	1	2.04
BERC0003	427040.8	7498934.3	210.2	-60.2	130	140	141	1	5.82
BERC0004	427112.6	7498903.8	205.8	-61.2	130				No Significant Intercept
BERC0005	427094	7498919.2	206.6	-60.5	134				No Significant Intercept
BERC0006	427156.8	7498928.4	206.4	-59.7	136				No Significant Intercept

	1071010	7100015.0	005.0						N. 0: 17
PBERC0007 PBERC0008	427131.3 427056.7	7498915.3 7498863.9	205.9 205.1	-60.8 -60.2	131 130	97	100	3	No Significant Intercept 1.81
PBERC0009	427030.7	7498908.9	203.1	-60.6	130	51	100	5	No Significant Intercept
				-59.9	41	. 75		0.0	3.57
PBERC0010	427031.8	7499080.8	222.9			75	84.8	9.8	
PBERC0011	427258.3	7498993.8	216.3	-59.5	39				No Significant Intercept
PBERC0012	427062	7499063.1	220.2	-60.3	40				No Significant Intercept
PBERC0013	427118.9	7499051.7	212.6	-59	55		450		No Significant Intercept
PBERC0014	427109	7498929.2	207.5	-60.4	128	151	152	1	1.31
PBERC0015	427081.3	7498850.2	208.8	-45.6	125	69	73	4	28.95
						80	81	1	1.12
PBERC0016	427057.2	7498839.8	206.6	-59.9	135	92	94	2	1.84
PBERC0017	427018.7	7498811.3	203.4	-60.4	134				No Significant Intercept
PBERC0018	427054.2	7498782.5	210	-59.8	134				No Significant Intercept
PBERC0019	427083.9	7498814.3	212.3	-60.4	129	63	64	1	1.54
PBERC0020	427036.4	7498853.3	201.5	-59.1	130	107	116	9	8.72
PBERC0021	427079.2	7498848.9	208.2	-60.3	129	73	82	9	12.72
I BEIGOUZI	421013.2	7430040.3	200.2	-00.5	123	87	89	2	3.51
PBERC0022	426968.9	7498783.2	208	-59.8	129				No Significant Intercept
PBERC0023	427010.6	7498823.8	203.4	-85.7	132				No Significant Intercept
PBERC0024	427001.4	7498829.3	203.1	-89	189				No Significant Intercept
PBERC0026	427056.4	7498838.6	205.9	-57.2	123				No Significant Intercept
PBERC0027	427115.2	7498862.8	213.4	-60.8	130	50	54	4	2.83
PBERC0028	427103.6	7498831.6	213.8	-54.3	130	48	50	2	1.13
	121 10010	110000110	210.0	0110		56	61	5	9.51
PBERC0029	427102	7498894.7	205.9	-59.9	135	63	65	2	3.02
FBERCOUZS	427 102	7490094.7	205.9	-39.9	155	-			
						71	73	2	1.18
PBERC0030	427099.4	7498895	205.7	-55.4	147	66	67	1	5.82
						72	73	1	1.31
PBERC0031	427118.2	7498900.8	206.1	-45.8	153	56	62	6	3.01
						50	52	2	1.29
PBERC0032	427117.6	7498901.4	205.8	-55.1	154	57	62	5	2.36
						141	143	2	4.19
PBERC0033	427132.7	7498912.7	206.4	-54.5	130				No Significant Intercept
PBERC0034	426974.1	7498788	205	-86.4	76				No Significant Intercept
PBERC0035	427187.8	7499014.2	207.9	-60	91	·	·	· · · ·	No Significant Intercept
PBERC0036	427149.3	7499044.9	209.6	-60	90				No Significant Intercept
PBERC0037	427132.7	7499001.9	212.5	-60	89				No Significant Intercept
PBERC0038	427183.7	7498965.6	207.1	-60	89	108	109	1	1.61
PBERC0040	427028	7498829.4	203.5	-58	89	100	100	· · ·	No Significant Intercept
T BEI(C0040	427 020	7430023.4	200.0	-50	03	38	20	1	v 1
	407404 5	7400000 4	000.4	45	00		39	1	3.33
PBERC0044	427121.5	7498893.4				-			7 50
			206.1	-45	89	46	48		7.58
			200.1	-40	89	46 113	114	1	10.3
			. <u></u>	<u> </u>		46 113 0	114 1	1	10.3 1.3
PBERC0047	427176.6	7498871.2	200.1	-45	79	46 113 0 5	114 1 8	1 1 3	10.3 1.3 2.95
PBERC0047	427176.6		. <u></u>	<u> </u>		46 113 0	114 1	1	10.3 1.3
PBERC0047 PBERC0048	427176.6 427175.2		. <u></u>	<u> </u>		46 113 0 5	114 1 8	1 1 3	10.3 1.3 2.95
		7498871.2	227.6	-55	79	46 113 0 5 12	114 1 8 13	1 1 3 1	10.3 1.3 2.95 5.78 3.3
PBERC0048	427175.2	7498871.2 7498869.7	227.6 227.4	-55	79 101	46 113 0 5 12	114 1 8 13	1 1 3 1	10.3 1.3 2.95 5.78 3.3
PBERC0048 PBERC0049	427175.2 427086.4	7498871.2 7498869.7 7499149	227.6 227.4 211.6	-55 -55 -75	79 101 164	46 113 0 5 12 7	114 1 8 13 16	1 1 3 1 9	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18
PBERC0048 PBERC0049 PBERC0050	427175.2 427086.4 427028.1	7498871.2 7498869.7 7499149 7499134.2	227.6 227.4 211.6 215.5	-55 -55 -75 -60	79 101 164 164	46 113 0 5 12 7	114 1 8 13 16	1 1 3 1 9	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18
PBERC0048 PBERC0049 PBERC0050 PBERC0051 PBERC0052	427175.2 427086.4 427028.1 427142.3 427141.8	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5	227.6 227.4 211.6 215.5 209.8 209.9	-55 -55 -75 -60 -85 -60	79 101 164 164 164 164 164	46 113 0 5 12 7 36 24	114 1 8 13 16 37 25	1 1 3 1 9 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24
PBERC0048 PBERC0049 PBERC0050 PBERC0051 PBERC0052 PBERC0053	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8	227.6 227.4 211.6 215.5 209.8 209.9 222.8	-55 -55 -75 -60 -85 -60 -55	79 101 164 164 164 164 164	46 113 0 5 12 7 36	114 1 8 13 16 37	1 1 3 1 9 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48
PBERC0048 PBERC0049 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1	227.6 227.4 211.6 215.5 209.8 209.9 222.8 218.6	-55 -75 -60 -85 -60 -55 -60	79 101 164 164 164 164 164 164 164	46 113 0 5 12 7 36 24	114 1 8 13 16 37 25	1 1 3 1 9 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept
PBERC0048 PBERC0049 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054 PBERC0055	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068	227.6 227.4 211.6 215.5 209.8 209.9 222.8 218.6 208.9	-55 -75 -60 -85 -60 -55 -60 -70	79 101 164 164 164 164 164 164 164 164	46 113 0 5 12 7 36 24	114 1 8 13 16 37 25	1 1 3 1 9 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept 1.48 No Significant Intercept 1.48 No Significant Intercept No Significant Intercept No Significant Intercept
PBERC0048 PBERC0049 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1	227.6 227.4 211.6 215.5 209.8 209.9 222.8 218.6	-55 -75 -60 -85 -60 -55 -60	79 101 164 164 164 164 164 164 164	46 113 0 5 12 7 36 24 23	114 1 8 13 16 37 25 24	1 1 3 1 9 1 1 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept 1.48 No Significant Intercept
PBERC0048 PBERC0049 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054 PBERC0055	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068	227.6 227.4 211.6 215.5 209.8 209.9 222.8 218.6 208.9	-55 -75 -60 -85 -60 -55 -60 -70	79 101 164 164 164 164 164 164 164 164	46 113 0 5 12 7 36 24 23 34	114 1 8 13 16 37 25 24 35	1 1 3 1 9 1 1 1 1 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept 1.48 No Significant Intercept 3.83
PBERC0048 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054 PBERC0055 PBERC0056 PBERC0057	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2 427230.6 427214.1	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068 7499068 7499066.7 7498896.2	227.6 227.4 211.6 215.5 209.8 209.9 222.8 218.6 208.9 209 225	-55 -75 -60 -85 -60 -55 -60 -70 -50 -68	79 101 164 164 164 164 164 164 164 164 164 139	46 113 0 5 12 7 36 24 23 24 23 34 62	114 1 8 13 16 37 25 24 35 63	1 1 3 1 9 1 1 1 1 1 1 1 1 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept 1.48 No Significant Intercept No Significant Intercept No Significant Intercept No Significant Intercept 3.83 2.16
PBERC0048 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054 PBERC0055 PBERC0056	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2 427230.6 427214.1 427215.5	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068 7499068 7499066.7 7498896.2 7498895.3	227.6 227.4 211.6 215.5 209.8 209.9 222.8 218.6 208.9 209 209 225 225	-55 -75 -60 -85 -60 -55 -60 -70 -50 -50 -68 -52	79 101 164 164 164 164 164 164 164 164 164 139 124	46 113 0 5 12 7 36 24 23 34	114 1 8 13 16 37 25 24 35	1 1 3 1 9 1 1 1 1 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept 1.48 No Significant Intercept 3.83 2.16 16.75
PBERC0048 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054 PBERC0055 PBERC0056 PBERC0057	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2 427230.6 427214.1	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068 7499068 7499066.7 7498896.2	227.6 227.4 211.6 215.5 209.8 209.9 222.8 218.6 208.9 209 225	-55 -75 -60 -85 -60 -55 -60 -70 -50 -68	79 101 164 164 164 164 164 164 164 164 164 139	46 113 0 5 12 7 36 24 23 24 23 34 62	114 1 8 13 16 37 25 24 35 63	1 1 3 1 9 1 1 1 1 1 1 1 1 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept 1.48 No Significant Intercept 3.83 2.16 16.75
PBERC0048 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054 PBERC0055 PBERC0056 PBERC0057 PBERC0058	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2 427230.6 427214.1 427215.5	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068 7499068 7499066.7 7498896.2 7498895.3	227.6 227.4 211.6 215.5 209.8 209.9 222.8 218.6 208.9 209 209 225 225	-55 -75 -60 -85 -60 -55 -60 -70 -50 -50 -68 -52	79 101 164 164 164 164 164 164 164 164 164 139 124	46 113 0 5 12 7 36 24 23 24 23 34 62	114 1 8 13 16 37 25 24 35 63	1 1 3 1 9 1 1 1 1 1 1 1 1 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept No Significant Intercept 3.83 2.16 16.75 No Significant Intercept
PBERC0048 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054 PBERC0055 PBERC0056 PBERC0057 PBERC0058 PBERC0058 PBERC0059	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2 427230.6 427214.1 427215.5 427217.3	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068 7499068 7499066.7 7498896.2 7498895.3 7498897.3	227.6 211.6 215.5 209.8 209.9 222.8 218.6 208.9 209 225 225 225 225 224.8	-55 -75 -60 -85 -60 -55 -60 -70 -50 -50 -68 -52 -52 -52	79 101 164 164 164 164 164 164 164 164 164 139 124 95	46 113 0 5 12 7 36 24 23 24 23 34 62	114 1 8 13 16 37 25 24 35 63	1 1 3 1 9 1 1 1 1 1 1 1 1 1 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept No Significant Intercept 3.83 2.16 16.75 No Significant Intercept
PBERC0048 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054 PBERC0055 PBERC0056 PBERC0057 PBERC0058 PBERC0059 PBERC0060 PBERC0061	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2 427230.6 427214.1 427215.5 427217.3 427650.1	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068 7499068 7499066.7 7498896.2 7498895.3 749895.3 749895.3	227.6 211.6 215.5 209.8 209.9 222.8 218.6 208.9 209 225 225 225 224.8 211.4	-55 -75 -60 -85 -60 -55 -60 -70 -50 -50 -68 -52 -52 -52 -75	79 101 164 164 164 164 164 164 164 164 164 139 124 95 19	46 113 0 5 12 7 36 24 23 34 62 26	114 1 8 13 16 37 25 24 35 63 28	1 1 3 1 9 1 1 1 1 1 2	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept No Significant Intercept No Significant Intercept 3.83 2.16 16.75 No Significant Intercept No Significant Intercept No Significant Intercept No Significant Intercept No Significant Intercept
PBERC0048 PBERC0049 PBERC0050 PBERC0052 PBERC0053 PBERC0054 PBERC0055 PBERC0056 PBERC0057 PBERC0058 PBERC0059 PBERC0060 PBERC0061 PBERC0025	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2 427230.6 427214.1 427215.5 427217.3 427650.1 427038 427030	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068 7499066.7 7498896.2 7498895.3 7498895.3 7498895.3 7498895.9 7499161.7 7498858.3	227.6 211.6 215.5 209.8 209.9 222.8 218.6 208.9 209 225 225 225 224.8 211.4 215.1 203.9	-55 -75 -60 -85 -60 -55 -60 -70 -50 -60 -70 -50 -68 -52 -52 -52 -75 -75 -75 -74.1	79 101 164 164 164 164 164 164 164 164 139 124 95 19 164 144	46 113 0 5 12 7 36 24 23 24 23 34 62 26 93	114 1 8 13 16 37 25 24 35 63 28 94	1 1 3 1 9 1 1 1 1 1 2 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept No Significant Intercept No Significant Intercept No Significant Intercept 3.83 2.16 16.75 No Significant Intercept No Significant Intercept 1.68 8.01
PBERC0048 PBERC0050 PBERC0051 PBERC0052 PBERC0053 PBERC0054 PBERC0056 PBERC0056 PBERC0057 PBERC0058 PBERC0059 PBERC0059 PBERC0060	427175.2 427086.4 427028.1 427142.3 427141.8 427293.4 427307.4 427231.2 427230.6 427214.1 427215.5 427217.3 427650.1 427038	7498871.2 7498869.7 7499149 7499134.2 7499087.7 7499086.5 7499031.8 7499054.1 7499068 7499066.7 7498896.2 7498895.3 7498895.3 7498954.9 7499161.7	227.6 211.6 215.5 209.8 209.9 222.8 218.6 208.9 209 225 225 225 224.8 211.4 215.1	-55 -75 -60 -85 -60 -55 -60 -70 -50 -68 -52 -52 -52 -75 -75 -75	79 101 164 164 164 164 164 164 164 164 139 124 95 19 164	46 113 0 5 12 7 36 24 23 24 23 34 62 26 93	114 1 8 13 16 37 25 24 35 63 28 94	1 1 3 1 9 1 1 1 1 1 2 1	10.3 1.3 2.95 5.78 3.3 No Significant Intercept 1.18 No Significant Intercept 2.24 1.48 No Significant Intercept No Significant Intercept No Significant Intercept No Significant Intercept 3.83 2.16 16.75 No Significant Intercept No Significant Intercept 1.68

PBERCD0043	427035.2	7498887.1	205.3	-60.1	89				No Significant Intercept
						68.8	69.4	0.6	6.85
	407000.4	7400004 4	210.9	-66.3	89	71.5	72	0.5	2.32
PBERCD0045	427093.1	7498864.1	210.9	-00.3	89	77.05	79.65	2.6	2.46
						173.8	174.25	0.45	10.9
	407004.4	7400062.2	014	50	00	65.15	66.95	1.8	1.4
PBERCD0046	427094.1	7498863.3	211	-50	89	72.8	73.6	0.8	5.58
PBLRC0013	428383.9	7498734	265.5	-50.1	5				No Significant Intercept
PBLRC0014	428241.3	7498651.9	228.5	-70.5	330				No Significant Intercept
PBLRC0015	428240.9	7498652.6	228.9	-70	343				No Significant Intercept
PBLRC0016	428310.1	7498617.4	234.5	-59.9	340				No Significant Intercept
PBLRC0017	428387.6	7498732.3	265.4	-59.5	320				No Significant Intercept
PBLRC0018	428344	7498701.6	244.9	-60	347				No Significant Intercept
PBLRC0019	428434	7498765.4	236.7	-49.8	322	^	· · · · · ·		No Significant Intercept
PBLRC0020	427998	7498579.4	204.1	-55.8	137				No Significant Intercept
PBNRC0001	428871.5	7500474.8	228.2	-60	277				No Significant Intercept
PBNRC0002	428827.8	7500431.3	228.9	-60	277				No Significant Intercept
PBNRC0003	428681	7500387.5	223.8	-60	319				No Significant Intercept
PBNRC0004	428550	7500530	0	-60	264				No Significant Intercept
PBNRC0005	428327.7	7500382.7	234.8	-60	264				No Significant Intercept
TBRC001	429376.2	7498577.6	260	-60	349				No Significant Intercept
TBRC0013	429487.2	7498308.6	0	-60	9				No Significant Intercept
TBRC0014	429642.2	7498293.6	0	-60	9				No Significant Intercept
TBRC0015	429622.2	7498278.6	0	-60	9				No Significant Intercept
TBRC0016	429602.2	7498261.6	0	-60	9	69	71	2	4.98
TBRC0017	429439.3	7498264.2	215.3	-60	9				No Significant Intercept
TBRC0018	429523.2	7498349.2	218.4	-60	9				No Significant Intercept
TBRC0019	429572.4	7498394.8	219	-60	9				No Significant Intercept
TBRC002	429361.2	7498533.6	277	-60	349				No Significant Intercept
TBRC0020	429558.2	7498227.3	213.6	-60	9	73	74	1	2.81
TBRC0021	429511	7498189.5	214.8	-60	9				No Significant Intercept
TBRC003	429346.2	7498513.6	272	-60	349				No Significant Intercept
TBRC004	429319.2	7498473.6	274	-60	349				No Significant Intercept
TBRC005	429448.2	7498531.6	250	-60	349				No Significant Intercept
TBRC006	429415.2	7498467.6	255	-60	349	· · · · · ·	· · · · ·	· · · ·	No Significant Intercept
TBRC007	429377.2	7498411.6	254	-60	349				No Significant Intercept
TBRC008	429064.2	7498415.6	273	-60	349				No Significant Intercept
TBRC009	429094.2	7498303.6	240	-60	349				No Significant Intercept
TBRC010	428976.2	7498286.6	236	-60	349				No Significant Intercept
TBRC011	429202.2	7498351.6	238	-60	349				No Significant Intercept
TBRC012	429170.2	7498294.6	247	-60	349				No Significant Intercept

Mt Clement RC	and	Surface	diamond	drilling:
---------------	-----	---------	---------	-----------

M	It Clement RC and	d Diamond– Histo	Downhole						
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
8MCRC01	408692.6	7474986.9	0	-60	1	24	25	1	1.04
						27	28	1	5.2
						18	20	2	1.13
8MCRC02	408686.6	7474967.4	0	-60	1	37	40	3	5.26
						42	49	7	2.93
8MCRC03	408702.6	7475005.2	0	-60	1	16	17	1	1.25
	100102.0	1110000.2				35	38	3	7.21
						7	9	2	1.29
8MCRC04	408741.2	7474987.2	0	-60	1	12	17	5	1.96
	1007 11.2	1111001.2	Ū	00		27	30	3	2.15
						33	38	5	1.35
8MCRC05	408739.2	7474948.8	0	-60	357				No Significant Intercept
						23	24	1	1.03
						28	30	2	1.92
8MCRC06	408676.1	7474939.7	0	-60	357	34	36	2	1.83
	400070.1	1414909.1	0	-00	557	53	54	1	1.1
						57	59	2	1.29
						63	67	4	4.79
8MCRC07	408830.7	7474843.5	0	-60	1	1	8	7	1.8
	400030.7	7474045.5	0	-00	I	10	12	2	1.45
						3	7	4	2.31
8MCRC08	408828.6	7474837	0	-60	1	15	18	3	2.19
						62	63	1	1.85
8MCRC09	408860.3	7474833.4	0	-60	1	7	13	6	1.41
	400000.0	1414000.4	0	-00		44	49	5	1.22
8MCRC10	408866.1	7474844.7	0	-60	1				No Significant Intercept
						5	6	. 1	1.34
8MCRC11	408852.2	7474814.4	0	-60	1	15	16	1	2.03
8MCRC11 408852.2	7474014.4	0	-00	1	19	20	1	1.48	
						43	46	3	1.44
8MCRC12	408843.3	7474796.6	0	-60	1	8	9	1	1.23
	100010.0	111100.0				13	15	2	1.32
						37	39	2	2.58
8MCRC13	408699	7474915.4	0	-60	1	42	43	1	1.1
						44	45	1	1.52
8MCRC14	408716.3	7474909.4	0	-60	1				No Significant Intercept
8MCRC15	408709.8	7474890.2	0	-60	1				No Significant Intercept
8MCRC16	408686.1	7474836.3	0	-60	1				No Significant Intercept
8MCRC17	408754.9	7474793.6	0	-60	1	28	30	2	1.71
8MCRC18	408777.5	7474843.6	0	-60	1	21	22	1	3.69
8MCRC19	408716.9	7474853	0	-60	1	1	6	5	2.89
				00	1	39	44	5	1.04
8MCRC20	408701.5	7474871.6	0	-60	1	17	18	. 1	1.06
8MCRC21	408694.6	7474853.8	0	-60	1	10	12	2	1.67
						14	15	1	1.17
8MCRC22	409157.9	7474909.4	0	-60	1				No Significant Intercept
ARMC001	408397	7474807	250	-70	4				No Significant Intercept
ARMC002	408414	7474892	250	-70	274				No Significant Intercept
ARMC003	409005	7474882	250	-90	319				No Significant Intercept
ARMC004	409009	7474819	250	-90	319				No Significant Intercept
ARMC005	408935	7474826	250	-90	319				No Significant Intercept
CD01	409008.6	7474820.2	0	-70	338	61.43	71.05	9.62	5.41
CD02	408732.5	7474806.6	0	-65	360				No Significant Intercept
CD04	408642.8	7474914.2	0	-60	23	81.6	90.1	8.6	5.87
CD06	409198.9	7474822.8	0	-60	356				No Significant Intercept
CD06A	409200.5	7474821.6	0	-60	360				No Significant Intercept
CD07	408613	7474882.8	0	-75	33				No Significant Intercept
CD08	408718.4	7474962.3	0	-45	8	3.6	5.65	2.05	5.1
0000	+007 10.4	1414302.3	U	-40	0	38.65	39.65	1	2.42

						53.5	55.05	1.55	1.27
						56.8	57.8	1	1.42
						61.65	63.05	1.4	1.02
				· · ·		1.25	1.5	0.25	1.02
CD09	408824.1	7474903.2	0	-45	338	5.8	6.8	1	3
						6	7	1	1.25
CD10	408879.8	7474784.9	0	-45	344	10	11	1	1.08
5010	+00079.0	1717104.3	U	-40	0-1-1	13	16.42	3.42	7.46
						0.35	0.85	0.5	1
CD11	400002 7	7474920 6	0	45	220				
CD11	408883.7	7474839.6	0	-45	338	9.9	17.05	7.15	6.63
CD12	409040	7474000 7	_	E0	200	19.15	20.15	1	1.5
CD12	408612	7474898.7	0	-50	328	92.8	93.3	0.5	2.42
CD14	408878.3	7474777	0	-70	333	11	12	1	2
CD14A	408878.7	7474778.5	0	-70	339	27.5	27.75	0.25	2.42
AB (5			_			0	5.85	5.85	3.99
CD15	408724.7	7474822.6	0	-40	356	22.35	22.8	0.45	1.04
						26.25	32.4	6.15	1.91
						4.13	5.6	1.47	2.88
CD26D	409147.7	7474862.9	0	-60	348	8.98	10.15	1.17	1.48
						14.54	16	1.46	2.04
CD48	408969.4	7474811.2	0	-60	288	64.15	64.8	0.65	2.96
CD49	408700.2	7474995.9	0	-60	146	15.35	16.4	1.05	1.01
						15.35	25.9	10.55	4.66
CD50	408709.9	7474961.1	0	-50	286	29.5	30.8	1.3	1.23
0000	400109.9	1414901.1	U	-50	200	42.15	43	0.85	1.86
						50.2	51	0.8	5.25
CD51	408540.2	7475126.2	0	-50	195				No Significant Intercept
CP18	408684.6	7474730.2	0	-60	0	73	74	1	1.44
CPD16	408990.1	7474707.4	0	-60	326				No Significant Intercept
CPD17	408616.3	7474853.6	0	-75	331				No Significant Intercept
CR23	409007.6	7474868.2	0	-60	336				No Significant Intercept
						1.5	3	1.5	1.03
CR23A	409005.4	7474867.4	0	-60	336	6	16	10	2.25
						23.5	26.5	3	2.65
	·					5	6.5	1.5	3.11
						14	14.5	0.5	1.34
CR25	409104.9	7474872.1	0	-60	348	15.5	16	0.5	1.3
						10:0	17.5	0.5	1.84
CR25B	409107.9	7474871.9	0	-60	348				No Significant Intercept
CR25C	409107.6	7474870.2	0	-60	348				No Significant Intercept
			5		0.0	0.5	1	0.5	1.32
CR26	409147.3	7474863.2	0	-60	348	5	9	4	1.33
51120		1717000.2	U	-00	040	15.5	16	0.5	3.2
CR26B	409151.3	7474883.5	0	-60	348	29.5	30	0.5	1.68
	-10101.3	1414003.3	U	-00	340		<u> </u>	0.5	2.08
CR26C	409152.2	7474892.7	0	-60	348	8.5			
CDOO	400050.0	7474777 0	~	60	200	14.5	15	0.5	1.36
CR28	409058.2	7474777.8	0	-60	336				No Significant Intercept
CR28B	409058.1	7474775.7	0	-60	336	10 -		0.5	No Significant Intercept
CR40	409417.5	7474918.5	0	-60	326	10.5	. 11 .	0.5	1.43
						13	13.5	0.5	3.08
CR41	409498.2	7474884.7	0	-60	6				No Significant Intercept
CR42	409342	7474823.6	0	-60	346				No Significant Intercept
CRD20	409107.5	7474842.3	0	-60	336	28.5	30	1.5	1.79
						3.15	6	2.85	2.1
CRD47	408803.6	7474804.2	0	-60	0	6.3	6.72	0.42	1.04
2			5		0	9.91	12.97	3.06	1.05
						16.36	16.79	0.43	1.36
CRP19	409190.1	7474846.4	0	-60	0				No Significant Intercept
	400407.0	7474040.0	~		0	26	26.5	0.5	1.1
	409187.6	7474846.9	0	-60	0	33.5	35.5	2	2.1
CRP19B					226				No Cinnificant Intercent
CRP19B CRP21	408933.5	7474861.4	0	-60	326				No Significant Intercept
	408933.5 408935.7	7474861.4 7474861.2	0	-60 -60	326	24.5	25	0.5	1.12
CRP21						24.5	25	0.5	

						12	13.5	1.5	1.11
						16	17	1	2.11
CRP24	409058.1	7474871.1	0	-60	336				No Significant Intercept
CRP24A	409056	7474870.7	0	-60	336			· ·	No Significant Intercept
CRP29	400040 7	7474000 0	0	60	220	0.5	2.5	2	2.35
CRP29	408812.7	7474809.9	0	-60	336	23.5	24	0.5	1.28
						30	30.5	0.5	1.04
CRP30	408707.4	7474839.9	0	-60	0	31.5	32	0.5	1.6
						34	36	2	4.76
						0.5	1	0.5	2.64
						19	22.5	3.5	2.55
CRP31	408732.9	7474837.3	0	-60	0	57	57.5	0.5	1.07
						61.5	62	0.5	1.6
	·		· · · · ·			7	7.5	0.5	1.12
CRP32	408971.2	7474821.1	0	-60	336	11	19.5	8.5	1.5
0111 02	400371.2	7474021.1	0	-00	550	28	36.5	8.5	1.28
						5	6	1	2.03
00024	400704.0	7474995.5	0	60	0	9		4.5	7.99
CRP34	408701.2	7474995.5	0	-60	8	-	13.5		
00005	400740 4	7474000 4	~		0	33	33.5	0.5	1.07
CRP35	408716.4	7474962.4	0	-60	8	8	8.5	0.5	1.84
CRP36	408855.3	7474863.3	0	-60	0	38	38.5	0.5	7.2
0000-	1000		-	0.5	0-0	11	12	1	1.68
CRP37	408857.6	7474835.7	0	-60	270	14	16	2	1.03
						18	20	2	2.88
						3.5	6.5	3	3.15
CRP38	408883.5	7474835	0	-60	340	11	16.5	5.5	1.81
						19.5	25.5	6	4.23
CRP39	408774	7474837.2	0	-60	6				No Significant Intercept
CRP43	408710.2	7474801.9	0	-60	0				No Significant Intercept
						2.5	6	3.5	2.39
CRP44	408765.4	7474821.7	0	-60	6	8	8.5	0.5	1.28
						10	12	2	3
CRP45	409101.4	7474788.4	0	-60	336				No Significant Intercept
CRP46	409174.4	7474780.4	0	-60	348				No Significant Intercept
						25	26	1	1.56
CRP55	409002.6	7474822.2	0	-60	340	34	35	1	1.55
						38	41	3	1.57
CRP56	408881.1	7474761.4	0	-60	340				No Significant Intercept
CRP56A	408881.3	7474764	0	-75	340				No Significant Intercept
CRP57	408880.6	7474773.9	0	-60	338				No Significant Intercept
						8	12	4	1.33
						14	15	1	1.57
CRP58	408887.1	7474810.2	0	-60	340	17	21	4	2.16
						23	25	2	15.03
						61	62	1	1.13
CRP59	408883.9	7474818.4	0	-60	340			· · ·	No Significant Intercept
CRP60	408733.6	7474964	0	-60	338				No Significant Intercept
CRP61	408709.4	7474964	0	-60	338	35	36	1	1.66
CRP62	408687.8	7474931.9	0	-60	338	1	5	4	2.11
UNP02	400001.0	1414943	. 0	-00	330	62	5 64	2	2.11
CDDC2	400075 0	7474007 0	~	60	220				
CRP63	408675.3	7474937.9	0	-60	338	65	66	1	1.2
0000	400005.4	7474055	^	00		69	73	4	7.01
CRP64	408925.1	7474855	0	-60	1	19	25	6	1.68
CRP65	408962.9	7474856.1	0	-60	340	31	32	1	1.23
CRP66	408722.1	7474957.4	. 0	-60	338	4	5	1	1.23
CRP67	408779.3	7474846.6	0	-60	0	1	3	2	2.07
CRPD13	408416.6	7475044.9	0	-60	334				No Significant Intercept
CRPD28C	409059.5	7474788.4	0	-60	336	6	7	1	1.68
						13.5	16	2.5	2.59
CRPD33	408933.9	7474820.6	0	-60	296	37.15	37.69	0.54	7.83
01/1 000	+00303.3	1714020.0	U	-00	290	38.3	39.03	0.73	1.22
						39.9	45.54	5.64	2.61
						39.9	10.01	0.01	2.01
CRPD43A	408714.6	7474802	0	-60	2	89.71	90.1	0.39	1.92

EHRC002	410582.2	7475087.2	0	-60	350				No Significant Intercept
EHRC003	410530	7475078.4	0	-60	350				No Significant Intercept
MC97RC01	408806.9	7474901.1	0	-60	359				No Significant Intercept
MC97RC02	408833.8	7474947.6	0	-60	359				No Significant Intercept
MC97RC03	408873.1	7474897.5	0	-60	359				No Significant Intercept
						9	10	1	1.45
MC97RC04	408923.3	7474852.6	0	-60	340	16	21	5	1.63
						24	25	1	1.02
MCRC68	408800.5	7474804.6	0	-90	334				No Significant Intercept
MCRC69	409048.1	7474628.2	0	-90	334				No Significant Intercept
MCRC70	408718.9	7474911.1	0	-60	334	38	41	3	2.09

	Merlin RC and D	iamond– Histori	al Drillin	g		Downhole					
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)		
						34.8	38.8	4	3.19		
						40.6	41.5	0.9	2.15		
MD001	408923.7	7512891.8	162.2	-70	182	44.5	46.9	2.4	1.3		
						48.1	49.8	1.7	2.85		
						115	116	1	2.3		
						33	36.4	3.4	3.05		
MD002	408928	7512954.5	160.9	-60	182	49.4	51.4	2	1.01		
						108	109	1	4.02		
						20	21	1	1.22		
MD003	408862.5	7512906.8	164.1	-60	124	31	32	1	1.84		
						79	83.3	4.3	1.85		
100001	100510.0	7540044.0			400	97	105	. 8	4.3		
MRC001	408549.9	7512814.3	163.4	-60	182				No Significant Intercept		
MRC002	408548.3	7512917.4	161.1	-60	182				No Significant Intercept		
MRC003	409533.7	7512800.7	162.7	-60	182	50	50	4	No Significant Intercept		
MRC004	410939.3	7512808.5	164.5	-60	182	58	59	1	1.35		
MRC005	410938.4	7512902.4 7512868.4	165	-60	182				No Significant Intercept		
MRC006	409540.5	7512808.4	162.8	-60	182	38	49	11	No Significant Intercept 2.18		
MRC007	408922.6	7512884.7	162.6	-70	182	63	49 66	3	1.42		
			-			71	72	1	1.42		
MRC008	408639.2	7513004.9	159.3	-60	182	90	91	1	2.05		
MRC009	408639	7513048.8	159.1	-60	182	50	51		No Significant Intercept		
VIRC010	410240.4	7512804.4	164.9	-60	182	56	62	6	1.57		
MRC011	409039.4	7512901.1	161.7	-60	182				No Significant Intercept		
VRC012	409043.1	7512948	160.7	-60	182				No Significant Intercept		
VRC013	410239.1	7512854	163.8	-60	182			· · · · · ·	No Significant Intercept		
				· · · ·		21	22	1	1.08		
						24	25	1	3.65		
MRC014	410837.4	7512703.1	165	-60	182	27	29	2	1.96		
						33	36	3	2.43		
						33	35	2	2.07		
						79	80	1	1.28		
MRC015	408866.2	7512906.3	164.1	-60	122	89	91	2	3.22		
						99	106	7	3.19		
						123	124	1	2		
						10	17	7	1.8		
						33	36	3	1.66		
						38	40	2	1.28		
MRC016	408940.1	7512755.5	162.6	-60	2	47	49	2	1.53		
					-	53	57	4	2.09		
						66	67	1	1.04		
						87	88	1	1.07		
	440040.0	7540055 5	407	00	0	100	101	1	1.29		
MRC017	410243.2	7512655.5	167	-60	2	24	20		No Significant Intercept		
MRC018	410892.7	7512705.5	165.1	-60	92	21 18	26 19	5	2.26		
								4			
MRC019	410841.8	7512703.5	164.9	-60	92	28 55	32 61	6	1.99 1.15		
							66	1	1.15		
						29	34	5	2.65		
MRC020	410788.6	7512704.2	165.2	-60	92	42	43	5	1.36		
						25	26	1	2.15		
						23	20	1	1		
MRC021	410840.1	7512604.1	166.1	-60	2	41	49	8	1.27		
						160	161	1	1.39		
MRC022	410943.4	7512654.2	165.3	-60	2				No Significant Intercept		
MRC022	408802.9	7512941.8	162.3	-60	122				No Significant Intercept		

Merlin RC and Surface diamond drilling:

						39	40	1	1.26
						73	76	3	1.96
						94	95	1	1.13
MRC025	408760.7	7512893	164.7	-45	122	28	29	1	1.66
11110020	100700.1	1012000	101.7	10	122	210	211	1	1
MRC026	409139.6	7512537.1	164.7	-60	182				No Significant Intercept
MRC027	408880.8	7512588.5	165.5	-60	122	39	40	1	1.07
MRC028	408305.7	7511996.4	167.1	-60	45				No Significant Intercept
MRC029	408343.7	7512154.4	168.8	-60	59				No Significant Intercept
MRC030	408788.1	7512918	164.1	-60	107	56	57	1	1.66
MRC033	408970.7	7512951.9	160.6	-60	124				No Significant Intercept
MRC034	408913.3	7512990.2	160.4	-60	124	42	43	1	2.07
						98	99	1	1.22
MRC035	408848	7513031.8	160.6	-60	124	59	62	3	1.28
MRC036	408786.3	7513070.5	159.3	-60	124				No Significant Intercept
MRC037	408724.5	7513114.6	158.6	-60	124	92	93	1	2.08
						97	98	1	2.7
MRC038	409096.7	7512549.7	164.5	-60	124				No Significant Intercept
MRC039	409035.9	7512593.9	164.2	-60	124				No Significant Intercept
MRC040	408976.2	7512632.6	163.2	-60	124	44	45	1	1.11
MRC041	408916.1	7512672	165.1	-60	124				No Significant Intercept
MRC042	408996.8	7512819.7	161.8	-60	304	36	37	1	1.51
						40	41	1	2.68
MRC043	409028.8	7512724.2	163.3	-50	304	6	21	15	2.13
						52	53	1	1.67
MRC044	408839.4	7512726.3	164.6	-60	124	81	84	3	2.47
						91	92	1	1.07
MRC045	409034.2	7512796.5	162.7	-50	304	17	18	1	1.08
						19	20	1	1.24
MRC046	408318.9	7511950.6	167.4	-60	47	7	8	1	1.98
						39	40	1	1.29
MRC047	408368.9	7512002.4	170.3	-60	47	10	14	4	1.08
						28	33	5	1.24
						17	18	1	1.87
100010	400057.0	75404547	400.0			21	22	1	2.07
MRC048	408257.8	7512154.7	169.2	-60	47	29	32	3	1.19
						39	40	1	2.11
						42 78	43 79	1	2.31
MRC049	408177.9	7512071.7	164.9	-60	47	81	83	2	1.18
MRC050	409058.2	7512707.8	182	-60	317	01	03	2	No Significant Intercept
MRC051	409058.2	7512773.8	183	-60	124				No Significant Intercept
MRC052	408730.2	7512680.8	182	-60	124		·		No Significant Intercept
MIXOU02	+00120.2	1012000.0	102	-00	124	41	42	1	1.31
MRC053	408778.2	7512647.8	176	-60	124	41	42	1	1.75
MRC054	409058.2	7512707.8	169	-60	124				No Significant Intercept
MRC054 MRC055	409058.2	7512707.8	173	-60	124				No Significant Intercept
MRC056	408905.2	7512559.8	175	-60	124				No Significant Intercept
MRC057	408843.2	7512601.8	172	-60	124				No Significant Intercept
MRC058	408848.2	7512481.8	168	-60	124				No Significant Intercept
MRC059	408783.2	7512523.8	180	-60	124				No Significant Intercept
MRC060	408718.2	7512566.8	176	-60	124	-			No Significant Intercept
MRC061	408635.2	7512593.8	175	-60	124				No Significant Intercept
MRC062	408738.2	7512797.8	170	-60	124	91	92	1	2.07
MRC063	408745.2	7512753.8	169	-60	124	5.		-	No Significant Intercept
MRC064	408256.2	7512300.8	175	-60	47	41	42	1	1.26
MRC065	408133.2	7512151.8	184	-60	47				No Significant Intercept
MRC066	408183.2	7512218.8	171	-60	47	59	61	2	1.76
						136	139	3	1.02
MRC067	408110.2	7512004.8	169	-60	47	162	163	1	5.13
	408255.2	7511881.8	178	-60	47	182	183	1	1
MRC068									
MRC068 MRC069	408362.2	7511875.8	172	-60	47	49	50	1	1 66
MRC068 MRC069 MRWB001	408362.2 408926.8	7511875.8 7512788.4	172 163.8	-60 -90	47 319	49	50	1	1.66 No Significant Intercept

PMERC0003 410750 7512635 174 -60 359 No Significant Intercept PMERC0004 410913 7512576 174 -58 19 No Significant Intercept PMERC0005 410777 7512459 176 -60 359 No Significant Intercept PMERC0006 410806 7512551 176 -60 359 No Significant Intercept PMERC0007 410709 7512550 176 -60 359 No Significant Intercept PMERC0007 410231 7512833 171 -60 189 No Significant Intercept PMERC0010 410203 7512849 171 -60 189 No Significant Intercept PMERC0011 410169 7512849 171 -60 19 No Significant Intercept PMERC0012 409609 7512597 172 -60 19 No Significant Intercept PMERC0014 409357 7512651 172 -60 4 No Significant Intercept PMERC0016 4							38	39	1	1.21
PMERC0002 410727 7512731 173 -64 21 No Significant Intercept PMERC0003 410750 7512635 174 -60 359 No Significant Intercept PMERC0004 410913 7512576 174 -58 19 No Significant Intercept PMERC0005 410777 7512531 176 -60 359 No Significant Intercept PMERC0006 410806 7512530 176 -60 359 No Significant Intercept PMERC0007 410709 7512500 176 -60 359 No Significant Intercept PMERC0008 410326 7512709 171 -60 189 No Significant Intercept PMERC0010 410203 751280 171 -60 189 No Significant Intercept PMERC0012 409609 751268 172 -60 4 No Significant Intercept PMERC0014 409357 7512651 172 -60 4 No Significant Intercept PMERC0014 4093	MWB003	408651.3	7512994.4	159.6	-90	319				No Significant Intercept
PMERC0003 410750 7512635 174 -60 359 No Significant Intercept PMERC0004 410913 7512576 174 -58 19 No Significant Intercept PMERC0005 410777 7512459 176 -60 359 No Significant Intercept PMERC0006 410806 7512550 176 -60 359 No Significant Intercept PMERC0007 410709 7512550 176 -60 359 No Significant Intercept PMERC0007 410231 7512833 171 -60 189 No Significant Intercept PMERC0011 410169 7512849 171 -60 189 No Significant Intercept PMERC0012 409609 7512597 172 -60 19 No Significant Intercept PMERC0014 409357 7512568 172 -60 4 No Significant Intercept PMERC0016 409336 751234 175 -60 4 No Significant Intercept PMERC0016 409	PMERC0001	410818	7512763	173	-60	359				No Significant Intercept
PMERC0004 410913 7512576 174 -58 19 No Significant Intercept PMERC0005 410777 7512459 176 -60 359 No Significant Intercept PMERC0006 410806 751250 176 -60 359 No Significant Intercept PMERC0008 410326 7512709 175 -60 359 No Significant Intercept PMERC0008 410326 7512709 175 -60 189 No Significant Intercept PMERC0010 410203 7512801 171 -60 189 No Significant Intercept PMERC0012 409609 7512597 172 -60 19 No Significant Intercept PMERC013 409557 751268 172 -60 4 No Significant Intercept PMERC014 409357 7512651 172 -60 4 No Significant Intercept PMERC015 409306 7512874 175 -60 9 No Significant Intercept PMERC0017 4093272 </td <td>PMERC0002</td> <td>410727</td> <td>7512731</td> <td>173</td> <td>-64</td> <td>21</td> <td></td> <td></td> <td></td> <td>No Significant Intercept</td>	PMERC0002	410727	7512731	173	-64	21				No Significant Intercept
PMERC0005 410777 7512459 176 -60 359 No Significant Intercept PMERC0006 410806 7512531 176 -60 359 No Significant Intercept PMERC0007 410709 7512550 176 -60 359 No Significant Intercept PMERC0008 410326 7512709 175 -60 359 No Significant Intercept PMERC0009 410203 7512800 171 -60 189 No Significant Intercept PMERC0010 410203 7512800 171 -60 189 No Significant Intercept PMERC0012 409609 7512597 172 -60 19 No Significant Intercept PMERC0014 409357 7512661 172 -60 4 No Significant Intercept PMERC0015 409306 7512812 169 -60 4 No Significant Intercept PMERC0016 409136 751294 175 -60 9 No Significant Intercept PMERC0016 4091	PMERC0003	410750	7512635	174	-60	359				No Significant Intercept
PMERC0006 410806 7512531 176 -60 359 No Significant Intercept PMERC0007 410709 7512550 176 -60 359 No Significant Intercept PMERC0008 410326 7512709 175 -60 359 No Significant Intercept PMERC0009 410231 7512800 171 -60 189 No Significant Intercept PMERC0011 410169 7512849 171 -60 189 No Significant Intercept PMERC0012 409609 7512597 172 -60 19 No Significant Intercept PMERC0013 409557 7512568 172 -60 19 No Significant Intercept PMERC0014 409357 7512651 172 -60 4 No Significant Intercept PMERC0014 409357 7512757 170 -60 4 No Significant Intercept PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0017 4092	PMERC0004	410913	7512576	174	-58	19				No Significant Intercept
PMERC0007 410709 7512550 176 -60 359 No Significant Intercept PMERC0008 410326 7512709 175 -60 359 No Significant Intercept PMERC0009 410231 7512833 171 -60 189 No Significant Intercept PMERC0010 410203 7512800 171 -60 189 No Significant Intercept PMERC0012 400609 7512597 172 -60 19 No Significant Intercept PMERC0013 409557 7512651 172 -60 19 No Significant Intercept PMERC0014 409357 7512651 172 -60 4 No Significant Intercept PMERC0015 409306 7512872 169 -60 4 No Significant Intercept PMERC0016 409367 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 188 -60 24 No Significant Intercept PMERC0019 40700	PMERC0005	410777	7512459	176	-60	359				No Significant Intercept
PMERC0008 410326 7512709 175 -60 359 No Significant Intercept PMERC0009 410231 7512833 171 -60 189 No Significant Intercept PMERC0010 410203 7512800 171 -60 189 No Significant Intercept PMERC0011 410169 7512849 171 -60 189 No Significant Intercept PMERC0012 409609 7512567 172 -60 19 No Significant Intercept PMERC0014 409357 7512661 172 -60 4 No Significant Intercept PMERC0015 409306 7512872 169 -60 4 No Significant Intercept PMERC0016 409306 7512872 169 -60 4 No Significant Intercept PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0021 406861	PMERC0006	410806	7512531	176	-60	359				No Significant Intercept
PMERC0009 410231 7512833 171 -60 189 No Significant Intercept PMERC0010 410203 7512800 171 -60 189 No Significant Intercept PMERC0011 410169 7512849 171 -60 189 No Significant Intercept PMERC0012 409609 7512597 172 -60 19 No Significant Intercept PMERC0014 409557 7512681 172 -60 4 No Significant Intercept PMERC0015 409306 7512871 172 -60 4 No Significant Intercept PMERC0016 409306 7512871 170 -60 4 No Significant Intercept PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0022 407401	PMERC0007	410709	7512550	176	-60	359				No Significant Intercept
PMERC0010 410203 7512800 171 -60 189 No Significant Intercept PMERC0011 410169 7512849 171 -60 189 No Significant Intercept PMERC0012 409609 7512597 172 -60 19 No Significant Intercept PMERC0013 409557 7512568 172 -60 19 No Significant Intercept PMERC0014 409357 7512651 172 -60 4 No Significant Intercept PMERC0015 409306 7512872 169 -60 4 No Significant Intercept PMERC0016 409306 7512872 169 -60 4 No Significant Intercept PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0022 407401<	PMERC0008	410326	7512709	175	-60	359				No Significant Intercept
PMERC0011 410169 7512849 171 -60 189 No Significant Intercept PMERC0012 409609 7512597 172 -60 19 No Significant Intercept PMERC0013 409557 7512568 172 -60 19 No Significant Intercept PMERC0014 409357 7512651 172 -60 4 No Significant Intercept PMERC0015 409306 7512872 169 -60 4 No Significant Intercept PMERC0016 409136 7512394 175 -60 9 No Significant Intercept PMERC0016 409272 7512757 170 -60 4 No Significant Intercept PMERC0019 407007 7511214 173 -60 357 No Significant Intercept PMERC0020 406861 7511263 168 -60 24 No Significant Intercept PMERC0021 406585 7510483 174 </td <td>PMERC0009</td> <td>410231</td> <td>7512833</td> <td>171</td> <td>-60</td> <td>189</td> <td></td> <td></td> <td></td> <td>No Significant Intercept</td>	PMERC0009	410231	7512833	171	-60	189				No Significant Intercept
PMERC0012 409609 7512597 172 -60 19 No Significant Intercept PMERC0013 409557 7512568 172 -60 19 No Significant Intercept PMERC0014 409357 7512651 172 -60 4 No Significant Intercept PMERC0015 409306 7512872 169 -60 4 No Significant Intercept PMERC0016 409136 7512394 175 -60 9 No Significant Intercept PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC022 407401 751152 169 -60 24 No Significant Intercept PMERC0022 407401	PMERC0010	410203	7512800	171	-60	189				No Significant Intercept
PMERC0013 409557 7512668 172 -60 19 No Significant Intercept PMERC0014 409357 7512651 172 -60 4 No Significant Intercept PMERC0015 409306 7512872 169 -60 4 No Significant Intercept PMERC0016 409136 7512394 175 -60 9 No Significant Intercept PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0019 407007 7511214 173 -60 357 No Significant Intercept PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC0022 407401 7511952 169 -60 24 No Significant Intercept PMERC0023 407242 <td>PMERC0011</td> <td>410169</td> <td>7512849</td> <td>171</td> <td>-60</td> <td>189</td> <td></td> <td></td> <td></td> <td>No Significant Intercept</td>	PMERC0011	410169	7512849	171	-60	189				No Significant Intercept
PMERC0014 409357 7512651 172 -60 4 No Significant Intercept PMERC0015 409306 7512872 169 -60 4 No Significant Intercept PMERC0016 409136 7512872 169 -60 4 No Significant Intercept PMERC0016 409136 7512875 170 -60 4 No Significant Intercept PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0019 407007 7511214 173 -60 357 No Significant Intercept PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC0022 407401 7511952 169 -60 24 No Significant Intercept PMERC0023 407294 <td>PMERC0012</td> <td>409609</td> <td>7512597</td> <td>172</td> <td>-60</td> <td>19</td> <td></td> <td></td> <td></td> <td>No Significant Intercept</td>	PMERC0012	409609	7512597	172	-60	19				No Significant Intercept
PMERC0015 409306 7512872 169 -60 4 No Significant Intercept PMERC0016 409136 7512394 175 -60 9 No Significant Intercept PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0020 406861 7511241 173 -60 357 No Significant Intercept PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC022 407401 7511952 169 -60 24 No Significant Intercept PMERC023 407496 7511822 169 -60 24 No Significant Intercept PMERC024 407294 7511650 172 -60 14 No Significant Intercept PMERC025 407242 7511612 172 -60 14 No Significant Intercept PMERC026 407011	PMERC0013	409557	7512568	172	-60	19				No Significant Intercept
PMERC0016 409136 7512394 175 -60 9 No Significant Intercept PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0019 407007 7511214 173 -60 357 No Significant Intercept PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC0022 407401 7511952 169 -60 24 No Significant Intercept PMERC0023 407496 7511822 169 -60 24 No Significant Intercept PMERC0024 407294 7511650 172 -60 14 No Significant Intercept PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011<	PMERC0014	409357	7512651	172	-60	4				No Significant Intercept
PMERC0017 409272 7512757 170 -60 4 No Significant Intercept PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0019 407007 7511214 173 -60 357 No Significant Intercept PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC0022 407401 7511952 169 -60 24 No Significant Intercept PMERC0023 407496 7511822 169 -60 24 No Significant Intercept PMERC0024 407294 7511650 172 -60 14 No Significant Intercept PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 40682	PMERC0015	409306	7512872	169	-60	4				No Significant Intercept
PMERC0018 407525 7511848 168 -60 24 No Significant Intercept PMERC0019 407007 7511214 173 -60 357 No Significant Intercept PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC0022 407401 7511952 169 -60 24 No Significant Intercept PMERC0023 407496 7511822 169 -60 24 No Significant Intercept PMERC0024 407294 7511650 172 -60 14 No Significant Intercept PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 406821 7511194 174 -60 16 No Significant Intercept PMERC0028 4067	PMERC0016	409136	7512394	175	-60	9				No Significant Intercept
PMERC0019 407007 7511214 173 -60 357 No Significant Intercept PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC0022 407401 7511952 169 -60 24 No Significant Intercept PMERC0023 407496 7511822 169 -60 24 No Significant Intercept PMERC0024 407294 7511650 172 -60 14 No Significant Intercept PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 406821 7511119 176 -60 16 No Significant Intercept PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 4066	PMERC0017	409272	7512757	170	-60	4				No Significant Intercept
PMERC0020 406861 7511263 168 -60 357 No Significant Intercept PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC0022 407401 7511952 169 -60 24 No Significant Intercept PMERC0023 407496 7511822 169 -60 24 No Significant Intercept PMERC0024 407294 7511650 172 -60 14 No Significant Intercept PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 406821 751119 176 -60 16 No Significant Intercept PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 40662	PMERC0018	407525	7511848	168	-60	24				No Significant Intercept
PMERC0021 406585 7510483 174 -60 9 No Significant Intercept PMERC0022 407401 7511952 169 -60 24 No Significant Intercept PMERC0023 407496 7511822 169 -60 24 No Significant Intercept PMERC0024 407294 7511650 172 -60 14 No Significant Intercept PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 406821 751119 176 -60 16 No Significant Intercept PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465<	PMERC0019	407007	7511214	173	-60	357				No Significant Intercept
PMERC0022 407401 7511952 169 -60 24 No Significant Intercept PMERC0023 407496 7511822 169 -60 24 No Significant Intercept PMERC0024 407294 7511650 172 -60 14 No Significant Intercept PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 406821 751119 176 -60 16 No Significant Intercept PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0020	406861	7511263	168	-60	357				No Significant Intercept
PMERC0023 407496 7511822 169 -60 24 No Significant Intercept PMERC0024 407294 7511650 172 -60 14 No Significant Intercept PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 406821 751119 176 -60 16 No Significant Intercept PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0021	406585	7510483	174	-60	9				No Significant Intercept
PMERC0024 407294 7511650 172 -60 14 No Significant Intercept PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 406821 7511119 176 -60 16 No Significant Intercept PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0022	407401	7511952	169	-60	24				No Significant Intercept
PMERC0025 407242 7511612 172 -60 14 No Significant Intercept PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 406821 7511119 176 -60 16 No Significant Intercept PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0023	407496	7511822	169	-60	24				No Significant Intercept
PMERC0026 407011 7511258 170 -60 357 No Significant Intercept PMERC0027 406821 7511119 176 -60 16 No Significant Intercept PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0024	407294	7511650	172	-60	14				No Significant Intercept
PMERC0027 406821 7511119 176 -60 16 No Significant Intercept PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0025	407242	7511612	172	-60	14				No Significant Intercept
PMERC0028 406786 7511094 174 -60 16 No Significant Intercept PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0026	407011	7511258	170	-60	357				No Significant Intercept
PMERC0029 406674 7511284 167 -60 357 No Significant Intercept PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0027	406821	7511119	176	-60	16				No Significant Intercept
PMERC0030 406620 7510512 174 -60 9 No Significant Intercept PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0028	406786	7511094	174	-60	16				No Significant Intercept
PMERC0031 406465 7510579 172 -60 9 No Significant Intercept	PMERC0029	406674	7511284	167	-60	357				No Significant Intercept
	PMERC0030	406620	7510512	174	-60	9				No Significant Intercept
PMERC0032 406542 7510645 171 -60 9 No Significant Intercept	PMERC0031	406465	7510579	172	-60	9				No Significant Intercept
	PMERC0032	406542	7510645	171	-60	9				No Significant Intercept

Paulsens Regional RC and Surface	e diamond drilling:
----------------------------------	---------------------

Paulsens Regional RC and Diamond– Historical Drilling						Downhole			
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
82MS4	422437.3	7506053.8	250	-60	139				No Significant Intercept
82MS5	421537.3	7505353.8	250	-60	139	·		·	No Significant Intercept
BB0902	433661	7497760	204	-50	150				No Significant Intercept
BB0903	433745	7497765	214	-60	145				No Significant Intercept
BB0908	434207	7498054	215	-60	70				No Significant Intercept
BB0909	434214	7498035	215	-56	359				No Significant Intercept
BB0913	434208	7497980	213	-60	90				No Significant Intercept
BB0914	434213	7497865	210	-60	70				No Significant Intercept
BB0915	433654	7497762	212	-55	192				No Significant Intercept
BB0916	433658	7497763	212	-60	170				No Significant Intercept
3B0916A	433658	7497757	212	-50	170				No Significant Intercept
IRC0001	433792.2	7497893.5	207	-50	109	<u> </u>	6 9	<u> </u>	1.13
3LRC0002	433747.2	7497848.5	209	-50	109				No Significant Intercept
SLRC0003	433669.2	7497768.5	204	-50	109				No Significant Intercept
LRC0004	433614.2	7497764.5	210	-50	109				No Significant Intercept
CD03	410138.6	7474303.2	0	-56	358			·	No Significant Intercept
HRC004	410124.9	7474324.2	0	-60	357				No Significant Intercept
HRC005	410133.8	7474304.6	0	-55	360				No Significant Intercept
HRC006	409988.4	7474340.7	0	-60	360	27	28	1	1.3
	400000.0	7474004 7	0	60	200	46	47	1	4.5
EHRC007	409990.2	7474321.7	0	-60	360	55	56	1	3.38
HRC008	409744	7474225.9	0	-55	360				No Significant Intercept
EHRC013	409996.2	7474303.5	0	-60	360	85	87	2	1.2
EHRC014	409879.7	7474268.8	0	-60	360				No Significant Intercept
HRC015	409748.9	7474236.9	0	-60	30				No Significant Intercept
EHRC016	410055.2	7474318.6	0	-60	360				No Significant Intercept
HRC017	410044.3	7474342.5	0	-60	360				No Significant Intercept
GRC0001	423947	7488064.3	250	-60	360				No Significant Intercept
GRC0002	423912	7488100.3	250	-60	360				No Significant Intercept
GRC0003	423884	7488142.3	250	-60	360				No Significant Intercept
GRC0004	423855	7488184.3	250	-60	360				No Significant Intercept
GRC0005	423820	7488220.3	250	-60	360				No Significant Intercept
GRC0006	423788	7488266.3	250	-60	360				No Significant Intercept
GRC0007	423760	7488301.3	250	-60	360				No Significant Intercept
IR0901	434414	7498986	210	-60	202				No Significant Intercept
IR0903	434461	7498994	210 213	-60	202 0				No Significant Intercept
IR0910 IR0913	434500 434440	7499170 7498960	213	-60 -60	0				No Significant Intercept No Significant Intercept
IR0913	434440	7498960	210	-60	180			·	No Significant Intercept
ML01	434440	7490070	172	-60	354	6	7	1	1.94
ML01 ML02	422355.2	7489554.5	172	-60	354	0	1		No Significant Intercept
ML02 ML03	422712.2	7489123.5	184	-60	354				No Significant Intercept
ML03	422879.2	7489077.5	177	-60	354			·	No Significant Intercept
ML05	422972.2	7488950.5	170	-60	354				No Significant Intercept
ML06	422567.8	7489594.5	212	-60	319			·	No Significant Intercept
ML07	422566.4	7489600.5	212	-60	319				No Significant Intercept
ML08	422541	7489615.5	215	-60	319			·	No Significant Intercept
ML09	422591.7	7489590.5	210	-60	319				No Significant Intercept
ML10	422584.7	7489582.5	210	-60	319				No Significant Intercept
ML11	422618.4	7489587.5	208	-60	319	6	7	1	2.31
						5	6	1	2.17
ML12	422657.8	7489556.5	198	-60	319	8	9	1	5.84
						28	29	1	3.26
ML13	422701.5	7489521.5	200	-60	319				No Significant Intercept
MI 14	122604 7	7400540 5	200	60	240	16	17	1	1.82
ML14	422691.7	7489512.5	200	-60	319	35	36	1	2.57
ML15	422735.3	7489493.5	198	-60	319				No Significant Intercept
ML16	422731.2	7489481.5	198	-60	319	34	35	1	4.68

						38	39	1	1.29
ML17	422780.3	7489467.5	194	-60	319				No Significant Intercept
ML18	422776.2	7489459.5	194	-60	319				No Significant Intercept
ML19	422817	7489438.5	192	-60	319				No Significant Intercept
ML20	422812.8	7489429.5	192	-60	319				No Significant Intercept
ML21	422859.2	7489415.5	187	-60	319				No Significant Intercept
ML22	422853.6	7489405.5	187	-60	319				No Significant Intercept
ML23	422900	7489383.5	185	-60	319				No Significant Intercept
ML24	422891.7	7489371.5	185	-60	319				No Significant Intercept
ML25	422861	7489322.5	188	-60	319				No Significant Intercept
ML26	422851.3	7489307.5	188	-60	319				No Significant Intercept
ML27	422887.8	7489297.5	186	-60	319				No Significant Intercept
ML28	422879.5	7489284.5	186	-60	319				No Significant Intercept
MLRC01	422689.2	7489511.5	200	-90	319	31	32	1	1.72
WILKOUT	422009.2	7409511.5	200	-90	219	33	34	1	1
MLRC02	422372.2	7489533.5	175	-60	354				No Significant Intercept
MLRC03	422757.2	7489278.5	180	-50	354				No Significant Intercept
MRC031	413941	7508777	189.9	-60	2				No Significant Intercept
MRC032	413742	7508877.8	186	-60	2				No Significant Intercept
PB34	422115.4	7499323.4	180.9	-90	0				No Significant Intercept
PB35	420756.4	7500241.9	185.4	-90	0				No Significant Intercept
PDH1	409614.4	7473935.4	250	-65	343				No Significant Intercept
PDH2	409343.5	7473910.6	250	-56	341				No Significant Intercept
PDH4	409272.5	7474032.8	250	-70	323				No Significant Intercept
PGRC001	409375.6	7474058.3	0	-60	0				No Significant Intercept
PGRC002	409382.8	7474044.8	0	-60	0				No Significant Intercept
PGRC003	409373.2	7474070.3	0	-60	0				No Significant Intercept
PWEX001	420437.2	7500753.8	200	-90	0				No Significant Intercept
PWEX002	420617.2	7501033.8	200	-90	0				No Significant Intercept
PWEX003	420296.9	7501464.5	189.3	-90	0				No Significant Intercept
PWEX014	423430.4	7501914.4	201.9	-90	0				No Significant Intercept
RC97BL012	429515.3	7504993.7	500	-60	225				No Significant Intercept

APPENDIX E - PAULSENS GOLD OPERATION EXPLORATION DRILLING 2012 JORC TABLE 1

Section 1: Sampling Technique Criteria	JORC Code Explanation	Commentary				
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The area has had variable amounts of drilling, with most drilling occurring around known deposits with limited greenfields drillir completed. Testing has included geophysics, soil, stream, and rock chip sampling, limited aircore and RAB drilling, Reverse Circulation (RC), Diamond Drilling (DD) Underground sludge, and face chip sampling. Sample intervals are defined by the geologist to honour geological boundaries within diamond core				
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry practice. RC and most surface core drilling completed by previous operators to industry standard at the time (late 1990s to 2011).				
Sampling techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been does the world be relatively on a final data of the second and the second	Diamond drilling and face sampling are completed using varying sample lengths (0.3 to 1.2m) based on geological intervals, which are then crushed and pulverised to produce a ~200 g pulp sub sample to use in the assay process.				
	done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases, more wolcare in a same said where where there is parent said.	Pre-June 2013, diamond core samples are fire assayed (30g charge), current fire assay charge is 40 g. Face samples are assayed by Leachwell.				
	explanation may be required, such as where there is coarse gold that has inherent sampling problems.	Visible gold is occasionally encountered in core and face sampling.				
	Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	RC sampling to industry standard at the time. There is evidence of mineralisation widths being exaggerated in the lower zone particularly, these areas have now been mined out and do not affect current Resources.				
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling across the tenements has been completed using multiple methods. Only RC and Diamond drilling have been reported within this announcement. A summary of drilling types across project is listed below: Hole Type Number Metres RC 867 101,968 Surface DD 271 87,579 Underground DD 3,847 480,529 AC 76 204 RAB 939 19,852				
	Method of recording and assessing core and chip sample recoveries and results assessed.	Underground Sludge 1,777 19,742 Diamond drill recoveries are recorded as a percentage calculated from measured core versus drilled intervals. Achieving >95% recovery. Greater than 0.2 metre discrepancies are resolved with the drill supervisor. Surface RC drill recoveries are unknown. Surface RC drill recoveries are unknown.				
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Standard diamond drilling practice results in high recovery due to competent nature of the ground. RC drilling by previous operators to industry standard at the time.				
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade, sample recovery is very high.				
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Core logging is carried out by company geologists, who delineate intervals on geological, structural, alteration and/or mineralogical boundaries, to industry standard. Surface core and RC logging was completed by previous operators to industry standard.				
Logging	Whether logging is qualitative or quantitative in nature.	Logging is qualitative and all core is photographed. All sampled development faces are photographed. Visual estimates are mad				
	Core (or costean, channel, etc) photography.	of sulphide, quartz and alteration percentages.				
Sub-sampling techniques and sample preparation	The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken.	 100% of the drill core is logged. 100% of RC drilling is logged. LTK 60 is generally whole core sampled, NQ2 core is generally half core sampled. If not whole core sampled, then core i with an Almonté diamond core saw and halfcore sampled. The right half is sampled, to sample intervals defined by the logeologist along geological boundaries. The left half is archived. All major mineralised zones are sampled, plus associated visibly barren material, >5m of the hangingwall and footwall. Quartz veins >0.3m encountered outside the know ore zone and ±1m on either side are also sampled. Ideally, sample intervals are to be 1m in length, though range from 0.3m to 1.2m in length. Total weight of each sample generally. 				

Criteria	JORC Code Explanation	Commentary				
		All samples are oven-dried overnight, jaw crushed to <6mm, and split to <3kg in a static riffle splitter. The coarse reject is then discarded. The remainder is pulverised in an LM5 to >85% passing 75µm (Tyler 200m esh) and bagged. The analytical sample is further reduced to a 30 g charge weight using a spatula, and the pulp packet is stored. Post 2013, samples are crushed to 90% passing 3mm before a rotary split to 2.5kg, all of which is then pulverised to 90% passing 75 microns. For older core, pre- NSR, best practice is assumed.				
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 For older core, pre-NSR, best practice is assumed. Development face samples are chipped directly off the face into a sample bag, aiming for >2.5kg. Sample intervals range between 0.3 to 1.2m in length, modified to honour geological boundaries, and taken perpendicular to the mineralisation if practical. Site lab sample preparation since January 2013 uses a Boyd crusher to crush and split to 3mm. Before that, a jaw crusher (6mi aperture) and 50/50 rifle splitter were used. 				
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation is deemed adequate.				
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	For drill core the external labs coarse duplicates are used. One face sub sample per day is sent offsite for fire assay analysis to compare to Leachwell assay results. RC drilling by previous operators to industry standard at that time.				
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling.	Field duplicates, i.e., other half of cut core, are not been routinely assayed. For each development face, one field duplicate is taken of the highest grade area to assess the reproducibility of the assays, and the variability of the samples. Variability is very high due sampling technique and to nuggetty nature of the mineralisation. The variability is accepted, countered by the high density of sampling.				
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate.				
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	For all drill core samples, gold concentration is determined by fire assay using the lead collection technique with a 30 gram sample charge weight. An AAS finish is used, considered to be total gold. A 40 gram fire assay charge is used post June 2013. Various multi-element suites are analysed using a four-acid digest with an ICP-OES finish. Face samples are analysed using Leachwell process and are not considered total gold. RC drill samples by previous operators assumed fire assay with AAS finished.				
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No other sources of data reported.				
Quality of assay data and laboratory tests	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The QAQC protocols used include the following for all drill samples: Site sourced coarse blanks are inserted at an incidence of 1 in 40 samples. From April 2013, commercial blanks are used. Commercially prepared certified reference materials are inserted at an incidence of 1 in 40 samples. The CRM used is not identifiable to the laboratory. NSR's blanks and standards data is assessed on import to the database and reported monthly, quarterly and yearly. The primary laboratory QAQC protocols used include the following for all drill samples: Repeat of pulps at a rate of 5%. Screen tests (percentage of pulverised sample passing a 75µm mesh) are undertaken on 1 in 100 samples. The laboratory and Geology department report QAQC data monthly. Failed standards are followed up by re-assaying a second 30 g pulp sample of the failed standard ± 10 samples either side by th same method at the primary laboratory. One standard is inserted with every face sampling submission to assess site lab performance. Both the accuracy component (CRM's and umpire checks) and the precision component (duplicates and repeats) are deemed acceptable. QAQC protocols for surface RC and diamond drilling by previous operators is unknown, assumed to be industry standard.				
	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts have been reviewed by the competent person as part of the due diligence process.				
Verification of sampling and	The use of twinned holes.	Twinned holes are not specifically drilled. Occasionally deviating holes could be considered twins, showing similar tenor of mineralisation.				
Verification of sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Until June 2014, data was hard keyed or copied into excel spreadsheets for transfer and storage in an access database. Data is now entered in the OCRIS data capture system, where it is then exported to the GBIS Geology database after validating. Hard copies of face and core / assays and surveys are kept on site. All face sheets are scanned and saved electronically as well Internal checks are made comparing database to raw assays files. Visual checks are part of daily use of the data in Vulcan.				

Criteria	JORC Code Explanation	Commentary
		Data from previous operators taken from 2006 database compilation by Maxwell Geoservices and further maintained by a
		succession of Paulsens owners.
		All data now stored in GBIS and electronically logged and downloaded.
	Discuss any adjustment to assay data.	No adjustments are made to any assay data. First gold assay is utilised for any Resource estimation.
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collar positions are picked up by survey using a calibrated total station Leica 1203+ instrument. Drill hole, downhole surveys are recorded at 15m and 30m, and then every 30m after, by calibrated Pathfinder downhole cameras. Face samples are located by laser distance measurement device and digitised into Vulcan software. The faces are represented as "pseudo-drill holes" to allow assignation of survey, lithology, assay, and other relevant information. Underground workings are tied into defined surface survey stations. Surface hole collars picked up by the mine surveyors in mine grid. Pre - NSR survey accuracy and quality assumed to be industry standard.
ocation of data points		For Paulsens, A local grid system (Paulsen Mine Grid) is used. It is rotated 40.61 degrees to the west of GDA94 – MGA zone 50 grid. Local origin is 50,000N and 10,000E Conversion.
		MGA E = (East_LOC*0.75107808+North_LOC*0.659680194+381504.5)+137.5
	Specification of the grid system used.	MGA N = (East_LOC*-0.65968062+North_LOC*0.751079811+7471806)+153.7
		MGA RL = mRL_LOC-1000
		For all other locations (Merlin, Mt Clement, Belvedere, and regional exploration, drill holes are reported in MGA94 zone 50)
	Quality and adequacy of topographic control.	Topographic control varies depending on the area. Around mine areas, airborne surveys to a resolution of +/- 0.5m are used. Elsewhere collar pickups are considered adequate for the level of work being completed.
	Data spacing for reporting of Exploration Results.	Exploration result data spacing can be highly variable, up to 100's of metres and down to ~10m.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	It is sufficient. Where a Resource has been reported, this is discussed within the relevant Table 1.
	Whether sample compositing has been applied.	Reported intervals are composited into continuous intervals above 1 g/t Au. A maximum of 1m of continuous waste is permitted, with a minimum sample length of 0.2m provided the interval is greater than 1gram meter.
Drientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	For surface drilling, drilling orientation produces unbiased samples. UG drilling potentially produced bias due to oblique angles in some holes. This is factored into any use of data and is generally then redrilled from a better angle with grade control prior to mining.
5 5	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drill orientation to mineralised structures biases the number of samples per drill hole. It is not thought to make a material difference in the Resource estimation as opportunity arises, better angled holes are drilled with higher intersection angles.
Sample security	The measures taken to ensure sample security.	All samples are selected, cut and bagged in tied numbered calico bags, grouped in larger tied plastic bags, and placed in large sample cages with a sample submission sheet. The cages are transported via freight truck to Perth, with consignment note and receipts. Sample pulp splits are returned to NSR via return freight and stored in shelved containers on site. Pre NSR operator sample security assumed to be similar and adequate.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Recent external review confirmed core and face sampling techniques are to industry standard. Data handling is considered adequate and was further improved recently with a new database. Pre NSR data audits found less QAQC reports, though in line with industry standards at that time.

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)	
--	--

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure	Type, reference name/number, location and ownership including agreements or material issues with third parties such as Joint	The listed tenements are currently wholly owned by Northern Star Resources (NSR) and in good standing. They represent part of the proposed transaction whereby they will be transferred to Black Cat Syndicate.
status	Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	There are no heritage issues with the current operation. Relationship with the traditional owners have been historically good. A heritage agreement is currently in place, with a new agreement to be negotiated with the traditional owners when the acquisition is completed.

Criteria	JORC Code Explanation	Commentary					
		The tenements are in good standing and no known impediments exist.					
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenement Grant Expiry E08/1649 30/3/2007 29/3/2023 L08/14 11/8/1999 10/8/2041 E08/1649 30/3/2007 29/3/2023 L08/14 11/8/1999 10/8/2041 E08/1745 8/8/2007 7/8/2023 L08/15 15/3/2000 14/3/2042 E08/2499 12/11/2014 11/11/2024 L08/168 16/8/2018 15/8/2039 E08/2555 22/15/2015 21/15/2025 L08/169 1/3/2019 29/2/2040 E08/2556 22/5/2015 21/5/2025 L08/19 21/1/2023 21/8/2004 E08/2556 22/15/2015 21/5/2025 L08/9 3/4/2013 21/4/2034 E08/2560 22/5/2016 21/5/2025 M08/196 2/3/1999 2/3/2041 E08/2655 5/11/12015 4/11/2026 M08/196 2/3/1999 2/3/2042 E08/2655 5/10/2016 29/5/2026 M08/192 10/5/1999 9/5/2041 E08/2755 14/10/2021 13/10/2026 M08/192 10/5/1999 9/5/2041					
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	L08/13 11/8/1999 10/8/2041 L08/13 24/7/2013 23/7/2034 Exploration has been previously competed on the tenements by CRA, Hallmark, Taipan, St Barbara, Nustar Intrepid Mines Ltd, and Northern Star. The bulk of the data within the Resources was collected by Northern Star. Nustar Intrepid Mines Ltd, Northern Star.					
Geology	Deposit type, geological setting and style of mineralisation.	Paulsens is a high grade, guartz hosted, mesothermal gold deposit within metasediments.					
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Historical drilling is listed within this announcement. Due to the shear size of the databases for Paulsens, it is impractical to report all drilling and surface sampling data. A small selection of holes has been randomly selected to provide a guide as to the drilling that has occurred. Only RC and diamond drilling have been reported here. For all other prospects (Belvedere, Mt Clement, Merlin, and regional, all diamond and RC drilling that is available has been liste					
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high- grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some	Reported intervals are length weight composited into continuous intervals above 1 g/t Au. A maximum of 1m of continuous was is permitted, with a minimum sample length of 0.2m provided the interval is greater than 1gram meter. Weighted by length.					
	typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.					
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Aside from underground drilling, most drilling is assumed to have been drilled perpendicular to the mineralisation.					

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) JORC Code Explanation Criteria Commentary Appropriate maps and sections (with scales) and tabulations of Maps are located within the linked announcement describing the acquisition. intercepts should be included for any significant discovery being Diagrams reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration. Representative intersections are reported within this announcement. Results are not practicable, representative reporting of both low Balanced reporting and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; No other data has been reported within this announcement. geophysical survey results; geochemical survey results; bulk Other substantive exploration data samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. Upon completion of the acquisition, Black Cat is committed to targeted exploration around areas that have the potential to The nature and scale of planned further work (e.g. tests for lateral increase the Resource and supplement any restart. extensions or depth extensions or large-scale step-out drilling). Further work Diagrams clearly highlighting the areas of possible extensions, Appropriate diagrams have been included in the body of the announcement, with additional diagrams available in the primary including the main geological interpretations and future drilling announcement ASX 19th April 2022 "Funded Acquisition of Coyote & Paulsens Gold Operations"". areas, provided this information is not commercially sensitive.

APPENDIX F - COYOTE GOLD OPERATION EXPLORATION DRILLING 2012 JORC TABLE 1

Section 1: Sampling Techn	iques and Data						
Criteria	JORC Code Explanation	Commentary					
	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples characterized act to taken on the initian the bared measurements.	Sampling has been completed by AngloGold Ashanti and Tanami Gold NL over the life of the Coyote Gold operation. This comprised of RAB, Air core, RC, and diamond drilling. Underground face channel and soil samples were also taken. RC holes used a standardised 1m sampling interval. Diamond core initially used 1m sampling intervals, changing to geologically selective sampling in 2005 following a review. Diamond core sample lengths ranged from 0.25m to 1.1m.					
	should not be taken as limiting the broad meaning of sampling.	The various methods are considered good quality and in line with expected processes for sampling within the industry.					
		Samples collected from drilling and face sampling at the Coyote deposit appear to be of high quality and representative of the deposit. Duplicates were taken on RC drill samples, and results were validated by the stringent QAQC procedures of the relevant company.					
Sampling techniques	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Kavanagh was sampled from approximately 50m either side of the mineralisation zone. Core outside of this area was selected for inclusion in sampling based on the onsite logging geologist's observations. Half core samples were taken from the same (left) side of the orientated core. In areas where coarse visible gold was recognized two blank feldspar flushes were inserted at the laboratory to minimize the potential for contamination. From 2013, samples identified with coarse gold had an additional 1kg screen fire assay sample taken to reduce the effect of large amounts of coarse gold on small size fire assay.					
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling	Air core and RAB drilling were carried out by Acacia and subsequently AngloGold-Ashanti between 1992 – 2002. Extensive RC and diamond drilling was carried out by Tanami Gold (TGNL) following the acquisition of the project.					
	was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold	Diamond drilling and face sampling are completed using varying sample lengths (0.3 to 1.2m) based on geological intervals, which are then crushed and pulverised to produce a ~200 g pulp sub sample to use in the assay process.					
	that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	RC sampling to industry standard at the time. There is evidence of mineralisation widths being exaggerated in the lower zone particularly, these areas have now been mined out and do not affect current Resources.					
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling across the tenements has been completed using multiple methods. Only RC and Diamond drilling have been reported within this announcement. A summary of drilling types across project is listed below: Hole Type Number Metres RC 2,792 137,927 Surface DD 234 76,966 Underground DD 455 49,757 AC 2,569 210,747 RAB 7,274 158,675					
		Surface RC, surface diamond (including with RC pre-collars), underground diamond and underground face sampling techniques have been used to on the tenements. Both HQ3 and NQ2 were used in surface diamond drilling. Triple tube HQ3 was utilised to maximise recovery in heavily weathered zones. Diamond core was orientated using Reflex orientation tool where possible. Sludge hole drilling was used in the upper underground levels primarily to determine mineralisation widths.					
	Nothed of reporting and processing percent object ample reported	Recovery was recorded to the database as a part of the logging process. Holes drilled from surface encountered zones of poor recovery in the highly weathered profile.					
	Method of recording and assessing core and chip sample recoveries and results assessed.	In later drilling from underground, core recovery is logged as a percentage or each meter. Tanami Gold NL (TGNL) have reported acceptable core recovery with an average of 98% recovery across the Coyote deposit area. No known relationship between sample recovery and grade exists for the Kavanagh mineralization area. Core recovery was very poor in heavily weathered areas					
Drill sample recovery		Drilling techniques have been altered when broken ground is encountered to achieve maximum recovery. Triple tube HQ3 was utilised on surface diamond holes to maximise recovery in heavily weathered zones.					
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	From 2013, 1kg screen fire assays were taken on samples with coarse gold or whose initial assay returned a result of > 5 g/t. This was to the ensure the coarse gold was represented accurately. Duplicate face channels were taken to check reprehensively on underground face samples.					
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade.					

Criteria	JORC Code Explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Diamond core was logged for geology, structure where orientated, and rock quality designation (RQD). All core has been photographed and cut.
	The total length and percentage of the relevant intersections logged.	All relevant drilling has been logged.
	If core, whether cut or sawn and whether quarter, half or all core taken.	All core has been cut with an Almonte core saw on site. Half core was always taken from the left side of the cut core for sampling
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC drill samples were taken from a rig mounted riffle splitter in 1m intervals. The cyclone and splitter were cleaned at the start of each hole and after every 6m rod for wet holes. Wet samples occurred within the oxide.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation is in line with industry standards and suitable for use in the mineral resource estimate. RC and diamond sample used in the resource have been assayed at certified offsite commercial laboratories. A standard 50g fire assay process of drying, crushing and grinding has been used. From 2013, a 1kg screen fire assay process has been implemented for samples with coarse gold or elevated fire assay grades. Underground face samples were analysed at the onsite lab. Underground grade control drilling was also assayed onsite, unless i was to be used in a Mineral Resource Estimate in which case it was sent to an independent commercial laboratory.
Sub-sampling techniques and sample preparation	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Samples were submitted to commercial laboratory with field blanks inserted at an average of 1:20 samples and certified reference material at an average of 1:25 samples. The commercial laboratories used have internal quality control processes. Detailed sampling procedures were created and followed by previous owners to ensure representative samples were collected. There were routinely reviewed and results reported on. While these procedures are not available to Black Cat reports on QAQC appear to be appropriate.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling.	Field duplicates were routinely taken for RC drilling. From 2013, screen fire assays on high grade samples were used to check reprehensively of samples and account for coarse gold in diamond drilling. Duplicate underground face samples were routinely taken. QAQC was regularly reported on to identify sampling issues.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	From 2013, 1kg screen fire assays were utilized to assess the impact of coarse gold in high grade samples. Where coarse gold was identified two extra blank samples were inserted into the sample stream to mitigate the effects of coarse gold contamination. Sampling methods are considered appropriate for the deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	50 gram fire assay (FA50/AA) and 1kg screen fire assay (Au_PAL1000_ppm) methods were used. For 50 g fire assays samples were sent to commercial laboratories; ALS, Intertek Genalysis. Sample Preparation was completed in Alice Springs and analysis completed in Townsville or Perth. Samples were dried at 120° C, crushed and pulverised to 90% passing 75 µm. Where sample size was too large for pulverization of the entire sample it rotary split to >3kg. 50 gram fire assays utilized a lead prill and complete aqua regia digest. These were finished and measured with atomic absorption to and 0.005 g/t accuracy. From 2013, where visible gold was identified, or the fire assay returned a result >5g/t a 1 kg screen fire assay was utilised. This
		process involves screening a 1kg sample and firing the entire coarse fraction. Duplicate assays are carried out on the fine portion that has been passed through the 75µm screen. These duplicates are considered more homogenous and reproducible due to the smaller particle sizes. The total gold content is reported as a weighted average of the grades of the two screen fractions. The grades of both fractions are also reported separately so coarse gold content can be assessed. Test work comparing the above assay methods and bottle roll leach assay methods was also conducted and review by a QAQC consultant.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Both assay methods used measure total gold content.

Criteria	JORC Code Explanation	Commentary
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	For diamond drilling standards are inserted into the sample stream at a rate of 1 in 25. Procedure for field blanks is to be inserted at a rate of 1 in 20, unless a sample with visual coarse gold is encountered in which case 2 blanks are inserted immediately afterwards. Both 50 gram fire assay and 1kg screen fire assay methods are accurate and considered to be suitable for the mineralisation. No field duplicate checks or umpire labs checks have been undertaken.
		Detailed sampling procedures were created and followed by previous owners to ensure accuracy and precision of sampling.
	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts have been reviewed by the competent person as part of the due diligence process
	The use of twinned holes.	Drillhole twinning has not been completed.
Verification of sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All diamond core data was logged electronically into Logchief and synchronised with the onsite SQL server. The Logchief program has internal checks and notifications to disallow invalid data into the database. Most data was collected and archived electronically. Previous owners had detailed procedures surrounding this process and are assumed to have been adequate. The assay data was loaded into the SQL database. This database underwent routine validations by previous owners. The validation systems used filters, database scripts and visual validations in section.
	Discuss any adjustment to assay data.	After 2013, samples that have a 50 gram fire assay result were reassayed with 1kg screen fire assay result. Where this occurs screen fire assays have been prioritised. This is considered acceptable as most samples used in the mineral resource are 1kg screen fire assays. There has been no other data adjustment outside of this assay prioritization process.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collars for underground diamond drill holes are surveyed in mine grid. Collars for surface diamond drillholes are picked up via RTK GPS and handheld DGPS. Drillholes have been surveyed using a combination of magnetic single shot, multi shot and north seeking gyro down hole survey methods.
	Specification of the grid system used.	Drilling has been picked up in both local Coyote Mine Grid and GDA94 – MGA zone 52. Any local grid surveys have been converted to GDA94 – MGA zone 52. A direct conversion from local to DGA94 is: Easting: +407,552.766 Northing: +7,749,613.131 Elevation: -3,000
	Quality and adequacy of topographic control.	Topographic control varies depending on the area. Around mine areas, airborne surveys are used. Elsewhere collar pickups are considered adequate for the level of work being completed.
	Data spacing for reporting of Exploration Results.	Drilling ranged from 100's of metres at some prospects to 25m x 25m grids at some deposits with closer spaced infill conducted for grade control and productions as required. Spacing extends to greater than 100m at the extremities of the deposit.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	It is sufficient. Where a Resource has been reported, this is discussed within the relevant Table 1.
	Whether sample compositing has been applied.	Reported intervals are composited into continuous intervals above 1 g/t Au. A maximum of 1m of continuous waste is permitted, with a minimum sample length of 0.2m provided the interval is greater than 1gram meter.
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of the mineralised fold hinge zones is well understood and a key driver in drillhole orientation. A small number of drillholes have been removed where oblique intersection angles have resulted in unrealistic samples. This has not resulted in a material sampling bias and does not materially affect the drilling results or Mineral Resource Estimate.
Orientation of data in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The mineralised zones have been targeted from surface from both north and south directions, due to the complex folded geometry. The infill drilling targeting the mineralisation is underground diamond holes which are limited by available platforms. Drilling is designed to intercept the mineralisation as close to perpendicular as practical, given the platform location. Face sampling is conducted across the face perpendicular to mineralisation. Drillholes with highly oblique angles of intersection have been removed from interpretation and estimates as seen fit. This has not affected a significant portion of the data set. No orientation-based bias is known.

Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary
Sample security	The measures taken to ensure sample security.	Samples were collected and prepared onsite by trained staff and contractors. Samples are collected into calico sample bags. Sample bags are stored within waterproof green bags and secured with cable ties during the transport process. Samples are delivered to commercial labs which have sample security procedures in place.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A high-level audit of the database, interpretations, and estimation process was conducted as part of the due diligence process by Black Cat. Previous reviews of Resources have been completed by independent consultants.

Section 2: Reporting of Exp	loration Results	
Criteria	JORC Code Explanation	Commentary
	Type, reference name/number, location and ownership including agreements or material issues with third parties such as Joint	The listed tenements are currently wholly owned by Northern Star Resources (NSR) and in good standing. They represent part of the proposed transaction whereby they will be transferred to Black Cat Syndicate.
		There is currently a native title agreement over the Coyote deposit with the Tjurabalan People.
	Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental	All production is subject to a Western Australian state government Net Smelter Return ("NSR") royalty of 2.5%.
	settings.	There are various royalty agreements with third parties of various leases
		There are no registered pastoral compensation agreements over the tenements.
Mineral tenement and land		The tenements are in good standing and no known impediments exist.
tenure status	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	TenementGrantExpiryTenementGrantExpiryE 80/148316/4/199215/4/2022M 80/56326/9/2026E 80/173722/3/199421/3/2022M 80/56324/11/2005E 80/338815/5/200614/5/2022M 80/64516/12/2020E 80/338915/5/200614/5/2022M 80/64516/12/2021E 80/338915/5/200614/5/2022L 80/4611/2/2006E 80/338915/5/200614/5/2022L 80/4611/2/2006E 80/30391/3/201718/10/2021L 80/4611/2/2005E 80/50391/3/201728/2/2022L 80/5117/2/2006M 80/55915/9/200526/9/2026P 80/18403/4/2018M 80/56015/9/200526/9/2026P 80/18413/4/2018
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration was first undertaken in the region by Billiton in 1992. Acacia began exploring in 1995 before being purchased by AngloGold Australia in 2000. Exploration initially focused on shallow RAB drilling to test for low level gold and arsenic anomalies. This targeted structural zones of interest, such as fold hinges identified in aeromagnetic surveys By 1998 a large area of anomalous Au-As had been identified just east what is now the current Coyote Resource. An Additional RAB program infilling the area produced a 900m x 700m zone of interest with > 50 ppb Au. Deeper RAB and RC drilling started in 1990 and identified three sub-parallel east-west trending mineralised zones and produced samples containing visible gold. The Coyote corridor underwent extensive exploration by AngloGold between 1993 and 2002. A combined total of 322,846m of Air core, RAB, Diamond and RC drillholes were completed.
		Drilling continued over 2005 and 2006 before a completed feasibility study was carried out. Open pit mining commenced in 2006 and continued intermittently to 2008 when a portal was developed, and underground mining commenced. Open pit mining briefly commenced again in 2009 before it was again halted. Underground production continued until 2013 when the mine was placed on care and maintenance in June due to lower gold price and production issues.
		TNGL sold its combined Western Tanami Operation assets, which includes the Coyote deposit to Northern Star Resource (NSR) in late 2017.
		Northern Star Resources conducted minor exploration activities on the tenements, with no work completed directly on the Coyote deposit.
Geology	Deposit type, geological setting and style of mineralisation.	The Coyote Operation is hosted within the Tanami Orogen which comprises a sequence of folded metasediments, mafic volcanics and intrusive rocks unconformably overlying Archaean basement. The known Archaean basement includes the informally named

Criteria	JORC Code Explanation	Commentary
		'Billabong Complex' and the Browns Range Dome. The Tanami Orogen is a significant gold host with other major deposits located across the region including Callie, The Granites, and Groundrush.
		Lithology
		The local geology of Coyote is situated within the Killi Killi formation. These are sand rich Proterozoic turbidites comprised of poorly sorted sandstones, siltstones and variable amounts of carbonaceous mudstones. The Killi Killi sequence extends well over 100m in thickness, however the individual beds range from 0.3m to 15m thick. Within the Coytoe deposit, the 'Marker Siltstone' and 'Kavanagh Sandstone' are important marker units for mineralisation interpretation and boundaries.
		The Coyote deposit is obscured by a widespread paleochannel and is deeply weathered. The oxide profile comprises weakly consolidated sand, sheetwash and alluvial lithologies, and clay-dominated sequences. This is overlain by transported red aeolian sand. The deeply weathered profile sits directly over top of the in-situ bedrock with limited saprock present. Oxidised saprolite is commonly present to depths of more than 100m.
		Structure
		The entire Killi Killi sequence has been tightly folded into an angular anticline. The Coyote deposit is located east-west Coyote Anticline, a small parasitic fold within the greater anticline, and plunges shallowly west at approximately 15°. The anticline's limbs dip from 30-50° in the northern limb and 70-90° in the southern limb. The southern limb has a secondary fold axis know as the Buggsy anticline, a drag fold associated with the Coyote Fault that offsets the stratigraphy. These limbs contain smaller faults and parasitic fold controlling mineralisation at mine scale. The Marker Siltstone and Kavanagh Sandstone have been the primary units used to delineate the sequence and orientation of the bedding and fold structures.
		Mineralisation Mineralisation is hosted in narrow high grade quartz veins that are concentrated around the fold hinge areas. The mineralisation
		presents in the form of quartz veries parallel to bedding, and are often concentrated another the fold imiger areas. In the form of function of the such as Kavanagh these veries can extend completely through the fold hinge zone. These mineralised veries often hosts coarse visible gold.
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar; 	Historical drilling is listed within this announcement.
	 elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; 	Due to the shear size of the databases for Coyote and Bald Hill, it is impractical to report all drilling and surface sampling data. A small selection of holes has been randomly selected to provide a guide as to the drilling that has occurred. Only RC and diamond
Drill hole information	 dip and azimuth of the hole; 	drilling have been reported here.
	 down hole length and interception depth; 	
	 hole length; and 	For all other prospects (Roadrunner, Pebbles, and regional, all diamond and RC drilling that is available has been listed.
	 if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported intervals are length weight composited into continuous intervals above 1 g/t Au. A maximum of 1m of continuous waste is permitted, with a minimum sample length of 0.2m provided the interval is greater than 1gram metre.
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Weighted by length.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been reported.
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results.	Aside from underground drilling the rare hole, most drilling is assumed to have been drilled perpendicular to the mineralisation.
intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	

Section 2: Reporting of Explo	Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement.	
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative intersections are reported within this announcement.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geophysical surveys, structural studies, geochemical and petrographic studies have been carried out by previous owners to aid with interpretations and identify prospective structures in the project area. None of these have been reported within this announcement, however have contributed incrementally to the understanding of the local geology.	
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Upon completion of the acquisition, Black Cat is committed to targeted exploration around areas that have the potential to increase the Resource and supplement any restart.	
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Appropriate diagrams have been included in the body of the announcement, with additional diagrams available in the primary announcement ASX 19th April 2022 "Funded Acquisition of Coyote & Paulsens Gold Operations"".	

APPENDIX G - PAULSENS UNDERGROUND 2012 JORC TABLE 1

Section 1: Sampling Techniqu		
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	This deposit is sampled by Reverse Circulation (RC), Diamond Drilling (DD) and face chip sampling. Sample intervals are defined by the geologist to honour geological boundaries. RC drill results are used in the Upper Paulsens model.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry practice. RC and most surface core drilling completed by previous operators to industry standard at the time (late 1990s to 2011).
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Diamond drilling and face sampling are completed to industry standard using varying sample lengths (0.3 to 1.2m) based on geological intervals, which are then crushed and pulverised to produce a ~200 g pulp sub sample to use in the assay process. Pre-June 2013, diamond core samples are fire assayed (30g charge), current fire assay charge is 40 g. Face samples are assayed by Leachwell. Visible gold is occasionally encountered in core and face sampling. RC sampling to industry standard at the time. There is evidence of mineralisation widths being exaggerated in the lower zone particularly, these areas have now been mined out and do not affect current Resource.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Upper Paulsens: Surface RC drilling, 332 holes (face sampling hammer, ~5 1/4" bit size), Surface drill core, 140 holes, (NQ2 sized, standard tube), 999 Underground DD, 3,494 faces used to generate sample composite. Titan: Surface diamond drill holes 2, 565 Underground drill holes, 560 faces/rises used to generate sample composite. Voyager: 3,287 Underground drill holes and 7935 faces/rises used to generate the sample composite. Galileo: 502 Underground drill holes and 252 faces/rises used to generate the sample composite. Underground diamond holes are LTK60 or NQ2 size. Surface core is orientated using the EZ ORI-shot device, underground drill core is rarely oriented. Faces are chip sampled aiming to sample every ore development cut but ~10% of ore cuts were missed pre-2015, now all faces are mapped and sampled.
	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond drill recoveries are recorded as a percentage calculated from measured core versus drilled intervals. Achieving >95% recovery. Greater than 0.2 metre discrepancies are resolved with the drill supervisor. Surface RC drill recoveries are unknown.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Standard diamond drilling practice results in high recovery due to competent nature of the ground. RC drilling by previous operators to industry standard at the time.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade, sample recovery is very high.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Core logging is carried out by company geologists, who delineate intervals on geological, structural, alteration and/or mineralogical boundaries, to industry standard. Surface core and RC logging was completed by previous operators to industry standard.
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging is qualitative and all core is photographed. All sampled development faces are photographed. Visual estimates are made o sulphide, quartz and alteration percentages.
	The total length and percentage of the relevant intersections logged.	100% of the drill core is logged. 100% of RC drilling is logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	LTK 60 is generally whole core sampled, NQ2 core is generally half core sampled. If not whole core sampled, then core is half cut with an Almonté diamond core saw and halfcore sampled. The right half is sampled, to sample intervals defined by the logging geologist along geological boundaries. The left half is archived. All major mineralised zones are sampled, plus associated visibly barren material, >5m of the hangingwall and footwall. Quartz veins >0.3m encountered outside the know ore zone and ±1m on either side are also sampled. Ideally, sample intervals are to be 1m in length, though range from 0.3m to 1.2m in length. Total weight of each sample generally does not exceed 5kg.

Criteria	JORC Code Explanation	Commentary
		All samples are oven-dried overnight, jaw crushed to <6mm, and split to <3kg in a static riffle splitter. The coarse reject is then discarded. The remainder is pulverised in an LM5 to >85% passing 75µm (Tyler 200m esh) and bagged. The analytical sample is further reduced to a 30g charge weight using a spatula, and the pulp packet is stored. Post 2013, samples are crushed to 90% passing 3mm before a rotary split to 2.5kg, all of which is then pulverised to 90% passing 75 microns. For older core, pre- NSR, best practice is assumed.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Development face samples are chipped directly off the face into a sample bag, aiming for >2.5kg. Sample intervals range between 0.3 to 1.2m in length, modified to honour geological boundaries, and taken perpendicular to the mineralisation if practical. Site lab sample preparation since January 2013 uses a Boyd crusher to crush and split to 3mm. Before that, a jaw crusher (6mm aperture) and 50/50 rifle splitter were used.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation is deemed adequate.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	For drill core the external labs coarse duplicates are used. One face sub sample per day is sent offsite for fire assay analysis to compare to Leachwell assay results. RC drilling by previous operators to industry standard at that time.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling.	Field duplicates, i.e., other half of cut core, are not routinely assayed. For each development face, one field duplicate is taken of the highest grade area to assess the reproducibility of the assays, and the variability of the samples. Variability is very high due sampling technique and to nuggetty nature of the mineralisation. The variability is accepted, countered by the high density of sampling.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	For all drill core samples, gold concentration is determined by fire assay using the lead collection technique with a 30 gram sample charge weight. An AAS finish is used, considered to be total gold. A 40 gram fire assay charge is used post June 2013. Various multi-element suites are analysed using a four-acid digest with an ICP-OES finish. Face samples are analysed using Leachwell process and are not considered total gold. RC drill samples by previous operators assumed fire assay with AAS finished.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No other sources of data reported.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The QAQC protocols used include the following for all drill samples: Site sourced coarse blanks are inserted at an incidence of 1 in 40 samples. From April 2013, commercial blanks are used. Commercially prepared certified reference materials are inserted at an incidence of 1 in 40 samples. The CRM used is not identifiable to the laboratory. NSR's blanks and standards data is assessed on import to the database and reported monthly, quarterly and yearly. The primary laboratory QAQC protocols used include the following for all drill samples: Repeat of pulps at a rate of 5%. Screen tests (percentage of pulverised sample passing a 75µm mesh) are undertaken on 1 in 100 samples. The laboratory and Geology department report QAQC data monthly. Failed standards are followed up by re-assaying a second 30 g pulp sample of the failed standard ± 10 samples either side by the same method at the primary laboratory. One standard is inserted with every face sampling submission to assess site lab performance. Both the accuracy component (CRM's and umpire checks) and the precision component (duplicates and repeats) are deemed acceptable. QAQC protocols for surface RC and diamond drilling by previous operators is unknown, assumed to be industry standard.
	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts have been reviewed by the competent person as part of the due diligence process
Verification of sampling and	The use of twinned holes.	Twinned holes are not specifically drilled. Occasionally deviating holes could be considered twins, showing similar tenor of mineralisation.
assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Until June 2014, data was hard keyed or copied into excel spreadsheets for transfer and storage in an access database. Data is now entered in the OCRIS data capture system, where it is then exported to the GBIS Geology database after validating. Hard copies of face and core / assays and surveys are kept on site. All face sheets are scanned and saved electronically as well. Internal checks are made comparing database to raw assays files. Visual checks are part of daily use of the data in Vulcan.

Criteria	JORC Code Explanation	Commentary
		Data from previous operators taken from 2006 database compilation by Maxwell Geoservices and further maintained by a succession of Paulsens owners. All data now stored in GBIS and electronically logged and downloaded.
	Discuss any adjustment to assay data.	No adjustments are made to any assay data. First gold assay is utilised for any Resource estimation.
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collar positions are picked up by survey using a calibrated total station Leica 1203+ instrument. Drill hole, downhole surveys are recorded at 15m and 30m, and then every 30m after, by calibrated Pathfinder downhole cameras. Face samples are located by laser distance measurement device and digitised into Vulcan software. The faces are represented as "pseudo-drill holes" to allow assignation of survey, lithology, assay, and other relevant information. Underground workings are tied into defined surface survey stations. Surface hole collars picked up by the mine surveyors in mine grid. Pre - NSR survey accuracy and quality assumed to be industry standard.
Location of data points		A local grid system (Paulsen Mine Grid) is used. It is rotated 40.61 degrees to the west of GDA94 – MGA zone 50 grid. Local origin is 50,000N and 10,000E Conversion.
	Specification of the grid system used.	MGA E = (East_LOC*0.75107808+North_LOC*0.659680194+381504.5)+137.5
		MGA N = (East_LOC*-0.65968062+North_LOC*0.751079811+7471806)+153.7
		MGA RL = mRL_LOC-1000
	Quality and adequacy of topographic control.	Topographic control is not that relevant to the underground mine. For general use, airborne surveys are flown annually. Resolution is +/- 0.5m.
	Data spacing for reporting of Exploration Results.	Exploration result data spacing can be highly variable, up to 100m and down to 10m.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Measured data spacing is better than 7m x 7m and restricted to areas in immediate proximity to mined development. Data spacing for indicated material is approximately, or better than, 20m x 20m. All other areas where sample data is greater than 20m x 20m, or where intercept angle is low, is classified as inferred.
	Whether sample compositing has been applied.	Core and faces are sampled to geology, sample compositing is not applied until the estimation stage. RC samples are initially taken as 4m composites to be replaced by 1m samples in ores zones above assumed threshold.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Intercept angles are mixed; however, all material remains inferred until reconciled by moderate to high angle (45^{o} to 90^{o}) grade control drilling, or mining activities. Hanging-wall drill drives provide excellent intercept orientation to the geological structure used in the estimate.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drill orientation to mineralised structures biases the number of samples per drill hole. It is not thought to make a material difference in the Resource estimation as opportunity arises, better angled holes are drilled with higher intersection angles.
Sample security	The measures taken to ensure sample security.	All samples are selected, cut and bagged in tied numbered calico bags, grouped in larger tied plastic bags, and placed in large sample cages with a sample submission sheet. The cages are transported via freight truck to Perth, with consignment note and receipts. Sample pulp splits are returned to NSR via return freight and stored in shelved containers on site. Pre NSR operator sample security assumed to be similar and adequate.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Recent external review confirmed core and face sampling techniques are to industry standard. Data handling is considered adequate and was further improved recently with a new database. Pre NSR data audits found less QAQC reports, though in line with industry standards at that time.

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)		
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as Joint Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	M08/196 and M08/99 are currently wholly owned by Northern Star Resources (NSR) and in good standing. They represent part of the proposed transaction whereby they will be transferred to Black Cat Syndicate. Surface expression of the Paulsens Gold Mine is on M08/99, most of underground workings are on neighbouring M08/196. There are no heritage issues with the current operation. Relationship with the traditional owners have been historically good. A heritage agreement is currently in place, with a new agreement to be negotiated with the traditional owners when the acquisition is completed.

Criteria	JORC Code Explanation	Commentary
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	M08/196 expires on 2/3/2041 and M08/99 expires on 13/02/2032. Both tenements can be renewed.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Data relevant to these Resources was collected by CRA, Hallmark, Taipan, St Barbara, Nustar and Intrepid Mines Ltd before Northern Star. The bulk of the data within the Resource was collected by Northern Star.
Geology	Deposit type, geological setting and style of mineralisation.	Paulsens is a high grade, quartz hosted, mesothermal gold deposit within metasediments.
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar; 	
	 elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; 	Historical drilling is listed within this announcement.
Drill hole information	 dip and azimuth of the hole; 	Due to the shear size of the databases for Paulsens, it is impractical to report all drilling and surface sampling data. A small selection of holes has been randomly selected to provide a guide as to the drilling that has occurred. Only RC and diamond
	 down hole length and interception depth; 	drilling have been reported here.
	 hole length; and 	
	 if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high- grades) and cut-off grades are usually Material and should be stated.	Reported intervals are length weight composited into continuous intervals above 1 g/t Au. A maximum of 1m of continuous waster is permitted, with a minimum sample length of 0.2m provided the interval is greater than 1gram meter.
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Weighted by length when compositing for estimation
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.
	These relationships are particularly important in the reporting of Exploration Results.	
Relationship between mineralisation widths and intercept	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Aside from underground drilling the rare hole, most drilling is assumed to have been drilled perpendicular to the mineralisation
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement
	Where comprehensive reporting of all Exploration.	
Balanced reporting	Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative intersections are reported within this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk	Geophysical surveys, structural studies, geochemical and petrographic studies have been carried out by previous owners to aid with interpretations and identify prospective structures in the project area.

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
	samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	None of these were directly used in used in the production of the Mineral Resource however have contributed incrementally to the understanding of the local geology.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Upon completion of the acquisition, Black Cat is committed to targeted exploration around areas that have the potential to increase the Resource and supplement any restart.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Appropriate diagrams have been included in the body of the announcement, with additional diagrams available in the primary announcement ASX 19th April 2022 "Funded Acquisition of Coyote & Paulsens Gold Operations".

Criteria	JORC Code Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	Sampling and logging data are entered into the OCRIS logging data capture system then transferred to GBIS database. There are checks in place to avoid duplicate holes and sample numbers. Where possible, raw data is loaded directly to the database from the laboratory. Pre-Northern Star Resources (NSR) data assumed correct, maintained by database administrators. Random checks through use of the data as well as database validations. Checks as part of reporting significant intersections and end of program completion reports are also completed. In addition to this, 5% of the underground drill holes, faces and sludge samples have been validated against the raw data collected. Maxwell Geo Services extensively validated the 2006 data compilation.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The CP has visited the Paulsens site as part of the due diligence of the acquisition. This included a review and discussion on the geology with previous mine geologists and visiting of various deposits including underground at Paulsens.
	If no site visits have been undertaken indicate why this is the case.	
	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The interpretation of the deposit was carried out using a systematic approach to ensure continuity of the geology and estimated mineral Resource. The confidence in the geological interpretation is high with all the information and plus 13 years of operation.
	Nature of the data used and of any assumptions made.	
Geological interpretation	The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation.	All available geological data was used in the interpretation including mapping, drilling faces, photos, structures. No substantially different, alternative interpretations have been completed or put forward. Most of the mineralisation is located within a large, variably folded and faulted quartz host, close to, or on, the contacts with the surrounding wall rock sediments between an offset Gabbro intrusive. Drill core logging and face development is used to create 3D constrained wireframes.
	The factors affecting continuity both of grade and geology.	Grade continuity is related to the quartz and sulphide events within the boundaries of the gabbro extent. Mineralised veins are also within the gabbro.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	Upper Paulsens: Strike length = 1,100m down plunge at 30-35deg to the west; Width = ~80m (though high-grade component ~ 5m wide); Depth = from ~130m below surface to ~550m below surface; Voyager: Strike length = 1,850m down plunge, 25-30 deg to grid west; Width = ~190m; Depth = from ~550m below surface to ~1,100m below surface;
	surface to the upper and lower limits of the Minteral Resource.	Titan: Strike length = 350m down plunge, 25 degrees to grid west; Width = 50m; Depth = from 750 to 925m below surface;

Criteria	JORC Code Explanation	Commentary
		Width = 50m;
		Depth = from 380 to 520m below surface; Inverse distance squared (ID^{2}) was used to estimate this Resource, using Vulcan 11.
	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Mineralisation domains (combined into one model) were used to constrain the various lodes, defined by orientation, geologica continuity, and grade population. Each domain is validated against the lithology, and then snapped to the drill-hole and face data to constrain the mineralised envelope as a 3D wireframe. Compositing of drill-hole samples was completed against these wireframed domains at 1m (downhole) interval.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	Recent reconciliations of the area have been in line with Resource expectations.
Estimation and modelling techniques	The assumptions made regarding recovery of by-products.	No assumptions are made, but silver is a by-product that makes up part of the refinery revenue. This is not in the model and only gold is defined for estimation.
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	No deleterious elements estimated in the model.
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Block size is 5m x 4m x 5m, sub-blocked to 1m x 0.25m x 1m to suit the narrow east-west orientation of most of the domains. Average sample spacing is 3.5m in the case of face samples. Search ellipsoids are 25 * 12 * 6m to 50 * 20 * 10m, varying the minimum number of samples required on successive passes as well as utilizing an octant search to decluster.
	Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates.	No assumptions made. No assumptions made. Mineralisation wireframes are created within the geological shapes based on drill core logs, mapping and grade. Low grades can form part of an ore wireframe.
	Discussion of basis for using or not using grade cutting or capping.	Top cuts were used based on statistical analysis undertaken in Supervisor that ranges from 10 to 200gpt on individual domains. Top cuts are set to incorporate approximately 97.5% of the available sample population for each domain.
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Validation is through swath plots comparing composites to block model grades, along 20m eastings and RL, comparing the block model means vs composite means for each domain.
		Visually, block grades are assessed against drill hole data.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content	Tonnages are estimated on a dry basis. Moisture content within the ore is low (~1-2 %).
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	Resource reporting based on MSO (Mining Stope Optimiser) using blocks 10m high by 10m wide (variable widths) at a grade of 3.1gpt based on a gold price of \$2,250 and mine restart costs Individual MSO Blocks are then visually assessed for "mineability". Remnant stope "skins", small remote blocks and inaccessible pillars are removed.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Standard sub level retreat mining methods are predominantly used. Historical mining and reconciliation data have been taker into consideration but without affecting wire frame interpretation. The total model has been coded to identify previously mined areas and only reports remnant mineralisation. Mine Stope Optimiser (MSO) was run at 10m by 10m blocks to identify potentially economic material. This is coarser than the manually created reserve shapes. Small reserve shapes, not picked up by the Resource MOS process, were added to the overall resource.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to	The ore is free milling (Life of Mine over 14 years 91.5% recovery), average hardness (BWI15-16), and with no significant refractory component. There are few deleterious elements, the footwall graphitic shales being a concern in that this can affect

Section 3: Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.) Criteria JORC Code Explanation Commentary consider potential metallurgical methods, but the assumptions recovery through preq-robbing if processed in isolation. High percentages of pyrrhotite and chalcopyrite have been known to regarding metallurgical treatment processes and parameters made affect recovery. This known effect is managed through blending the ROM feed to the crusher prior to milling. when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of Paulsens was recently an operating mine, currently on Care and maintenance, and all permits and closure plans are in place. determining reasonable prospects for eventual economic extraction to As with all unweathered, underground deposits, when mined, natural oxidation and weathering occurs, however, the ore and consider the potential environmental impacts of the mining and waste material mined at Paulsens has been reviewed multiple times by both independent and contracted consultants with the Environmental factors or processing operation. While at this stage the determination of overall finding that there appears to be no major effects on the environment outside of the environmental conditions imposed assumptions potential environmental impacts, particularly for a greenfields project, with the granting of the initial mining Licence. may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. Whether assumed or determined. If assumed, the basis for the Over 4,000 bulk density measurements from diamond drill holes have been taken from 647 mineralised and un-mineralised assumptions. If determined, the method used, whether wet or dry, the intervals within the project area. The bulk densities are derived from laboratory pycnometer readings, with some of the domain frequency of the measurements, the nature, size and densities adjusted over time through mine tonnage reconciliations. representativeness of the samples. Immersion method SG calculations are now routinely preformed to validate against the block model bulk density estimates. Minimal voids are encountered in the ore zones and underground environment. Bulk densitv The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Individual bulk densities are applied to deological units and ore zones. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. The basis for the classification of the Mineral Resources into varying confidence categories. Classification is defined by data spacing of diamond holes, face/wall and rise sampling and reflects the degree of confidence in the areas specified Measured Resource classification is where the estimate is supported by data less than 5m apart and/or within 5-7m of development. Indicated Resource classification is where the mineralisation has been sufficiently defined by a drill spacing of 12-15m x 12-15m or better, and/or where development has occurred within 12-15m. Inferred Resource is based in addition to the above to a maximum search distance of 50m from last sample point and high Classification angle drill intercepts. The area has also been externally estimated by Ordinary Kriging (Hellman and Schofield 2007-2010). Inverse distance (ResEval Pty Ltd) 2004-2006, Conditional Simulation and Ordinary Kriging (Golders) 2002. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, This Mineral Resource Estimate is considered representative. quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. Audits or reviews The results of any audits or reviews of Mineral Resource estimates. The Resource has been reviewed by the CP as part of the due diligence and no fatal flaws were identified. This Resource is one in an iterative, evolutionary approach, attempting to increase confidence with each estimation. Taking Where appropriate a statement of the relative accuracy and account of all reconciliation, audits, mentor, and increased ore body knowledge the qualitative confidence improves with confidence level in the Mineral Resource estimate using an approach mining and drilling. or procedure deemed appropriate by the Competent Person. For Discussion of relative accuracy/ example, the application of statistical or geostatistical procedures to confidence quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.

Section 3: Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code Explanation	Commentary
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	This Resource report relates to the Upper Paulsens, Voyager, Titan and Galileo areas, and will show local variability. The global assessment is more of a reflection of the average tonnes and grade estimate.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	The current inverse distance estimation methodology appears to perform sufficiently as an estimation technique for the Paulsens mineralisation.

APPENDIX H - PAULSENS OPEN PIT (BELVEDERE) 2012 JORC TABLE 1

Section 1: Sampling Technique		
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	This deposit is sampled by Diamond Drilling (DD) and Reverse Circulation (RC) drilling. Diamond core sample intervals are defined by the geologist to honour geological boundaries. RC initially sampled to 4m comps, any samples reporting > 0.1gpt were re-split and re-assayed as 1m composites.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry practice. RC drilling completed by previous operators, assumed to be to industry standard at the time (1998). Northern Star Resources (NSR) sampling methodologies are to current industry standard.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	DD completed to industry standard using varying sample lengths (0.3 to 1.2m) based on geological intervals, which are then crushed and pulverised to produce a ~200g pulp sub sample to use in the assay process. NSR and Intrepid Mines Ltd diamond core samples are fire assayed (50gm charge). Fine grained free gold is encountered occasionally. Pre NSR, Taipan Resources NL RC sampling assumed to be industry standard at that time. NSR RC sampling using mounted static cone splitter for dry samples to yield a primary sample of approximately 4kg.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Surface RC drilling used ~5.25" face sampling bit. Surface DD core used NQ2. The surface core was orientated using the ORI- shot device.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC – Approximate recoveries are sometimes recorded as percentage ranges based on a visual weight estimate of the sample. DD – Recoveries are recorded as a percentage calculated from measured core versus drilled intervals. Overall recoveries are good.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC and diamond drilling by previous operators to industry standard at that time.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There has been no work completed on the relationship between recovery and grade.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical	RC chips and surface DD core logged by company geologists to industry standard. All relevant items such as interval, lithologies structure, texture. Grain size, alterations, oxidation mineralisation, quartz percentages and sulphide types and percentages are recorded in the geological logs.
Logging	studies.	RC logging completed by previous operators to industry standard.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging is qualitative, all core photographed, and visual estimates are made of sulphide, quartz alteration percentages.
	The total length and percentage of the relevant intersections logged.	100% of the drill core and RC drilling chips were logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core sample intervals are generally to 0.3-1.2m in length, honouring lithological boundaries to intervals less than 1m as deemed appropriate.
		NQ2 core is half core sampled cut with Almonté diamond core saw. The right half is sampled, to sample intervals defined by the Logging Geologist along geological boundaries. The left half of core is archived.
		All samples are oven-dried overnight (105^{0} C), jaw crushed to <10mm. The total sample is pulverised in an LM5 to 90% passing 75µm and bagged. The analytical sample is further reduced to a 50g charge weight using a spatula, and the pulp packe is stored awaiting collection by NSR.

Criteria	JORC Code Explanation	Commentary
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	NSR RC initially sampled to 4m comps, any samples reporting > 0.1gpt were re-split and re-assayed as 1m composites. Rig mounted static cone splitter used for dry samples to yield a primary sample of approximately 4kg. Off-split retained. Duplicate samples are taken at an incidence of 1 in 25 samples. Pre- NSR assumed to be industry standard.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	There was no data available on Taipan Resources NL sample preparation practices. It is assumed to be industry standard along with NSR processes which are Industry standard.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	NSR standard QAQC procedures and previous owners in the case of Taipan Resources NL are assumed as Industry standard.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling.	The field QAQC protocols include duplicate samples at a rate of 1 in 25, coarse blanks inserted at a rate of 3%, commercial standards submitted at a rate of 4%. Industry standard QAQC procedures are assumed to have been employed by Taipan.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	DD - Core is half cut. Repeat analysis of pulp samples (for all sample types – diamond, RC, rock and soil) occurs at an incidence of 2 in 50 samples. Total gold is determined by fire assay using the lead collection technique (50 g sample charge weight) and AAS finish. Various multi-element suites are analysed using a four-acid digest with an ICP-OES finish. Taipan Resources NL assay techniques were assumed to be industry standard.
Quality of assay data and aboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools are used or reporting of analyses.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The laboratory QAQC protocols include a repeat of pulps at a rate of 3%, sizing at a rate of 1 per batch. The labs internal QAQC is loaded into NST database. In addition to the above, about 5% of samples are sent to an umpire laboratory. Failed standards trigger re-assaying a second 5 g pulp sample of all samples in the fire above 0.1ppm. Both the accuracy component (CRM's and umpire checks) and the precision component (duplicates and repeats) are deemed acceptable. Although no formal heterogeneity study has been carried out or nomograph plotted, informal analysis suggests that the sampling protocol currently in use is appropriate to the mineralisation encountered and should provide representative results. Industry standard QAQC procedures are assumed to have been employed by pre NSR operators
	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts have been reviewed by the competent person as part of the due diligence process
/erification of sampling and	The use of twinned holes.	There is no purpose drilled twin holes however holes BVRC018 and BVRC027 are 4m apart and reported 6m @ 2.6gpt and 5m @ 2.4gpt respectively.
issaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	NSR data thoroughly vetted by database administrators. Data is stored in GBIS database and has inbuilt validations. Taipan Resources NL holes of the 2006 database collated and extensively verified by third party consultancy.
	Discuss any adjustment to assay data.	No adjustments are made to any assay data.
_ocation of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	NST collar positions were surveyed using DGPS. Taipan Resources NL collars were surveyed at the end of a drill program. Old mine workings have been picked up on surface, but actual extent and depth has been estimated using 1930s survey plan. Topographic control uses airborne photo data supplemented with local DGPS pickups.
	Specification of the grid system used.	GDA94 – MGA zone 50.
	Quality and adequacy of topographic control.	Topographic control is based on the collar surveys and airborne photogrammetric survey.
	Data spacing for reporting of Exploration Results.	Exploration results are based on the drill traces as attached.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the	Data spacing is approximately 20m by 20m. Except one area where deviating holes have left a larger gap of 20m by 40m. Data spacing is adequate for the Resource estimation.

Section 1: Sampling Techniques and Data		
Criteria	JORC Code Explanation	Commentary
	Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	
	Whether sample compositing has been applied.	Drill core is sampled to geology; sample compositing is not applied until the estimation stage. NSR RC samples initially taken as 4m composites to be replaced by 1m samples if assays >0.1gpt were reported. Taipan RC samples treated similarly though historical details not fully reviewed.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Intercept angles are predominantly moderate to high angle (70^{o} to 90^{o}) to the interpreted mineralisation resulting in unbiased sampling.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is considered to have been introduced.
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by NSR. Samples are stored on site and are delivered to assay laboratory in Perth by Contracted Transport Company. Consignment notes in place to track the samples. Whilst in storage they are kept in a locked yard. Pre NSR operator sample security assumed to be adequate.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have not been reviews of sampling techniques on NSR drilling phases.

Section 2: Reporting of Exploratio	n Results (Criteria listed in the preceding section also apply to this section	n.)
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as Joint Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Mining Lease M08/222 is currently wholly owned by Northern Star Resources (NSR) and in good standing. It represent part of the proposed transaction whereby it will be transferred to Black Cat Syndicate. Heritage surveys have been conducted and the area was cleared for drilling. Relationship with the traditional owners is well informed and adequate.
status	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Mining Lease M08/222 is valid currently to August 2042. The access road L08/15 is valid until March 2042.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Pre NSR data relevant to this Resource was collected by Taipan Resources NL (35 RC holes in 1998).
Geology	Deposit type, geological setting and style of mineralisation.	Mineralisation at this deposit is considered a mesothermal quartz reef (s) associated with quartz carbonate +/ pyrite, arsenopyrite chalcopyrite and galena, on the contact of by a north south trending dolerite dyke and surrounding sediments. A smaller domain is fault hosted and external to the dolerite host.
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar; 	
	 elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; 	All available drillholes are listed within this report.
Drill hole information	 dip and azimuth of the hole; 	
	 down hole length and interception depth; 	
	 hole length; and 	
	 if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	

Section 2: Reporting of Exploration Results	(Criteria listed in the r	preceding section als	so apply to this section.)

Criteria	JORC Code Explanation	Commentary
	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high- grades) and cut-off grades are usually Material and should be stated.	Reported intervals are length weight composited into continuous intervals above 1 g/t Au. A maximum of 1m of continuous waste is permitted, with a minimum sample length of 0.2m provided the interval is greater than 1gram meter.
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Weighted by length when compositing for estimation.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.
Relationship between mineralisation widths and intercept	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Geometry of the mineralisation to drill hole intercepts is at a high angle, often nearing perpendicular.
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative intersections are reported within this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geophysical surveys, structural studies, geochemical and petrographic studies have been carried out by previous owners to aid with interpretations and identify prospective structures in the project area. None of these were directly used in used in the production of the Mineral Resource however have contributed incrementally to the understanding of the local geology.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Upon completion of the acquisition, Black Cat is committed to targeted exploration around areas that have the potential to increase the Resource and supplement any restart. Appropriate diagrams have been included in the body of the announcement, with additional diagrams available in the primary announcement ASX 19th April 2022 "Funded Acquisition of Coyote & Paulsens Gold Operations".

Section 3: Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Sampling and logging data are entered directly into the logging package OCRIS. Constrained look-up lists, depth and some interval validation are inbuilt and ensure that the data collected is correct at source. Data is imported to a GBIS relational geological database where additional validation checks are carried out, including depth checks, interval validation, out of range data and coding. Where possible, raw data is loaded directly to the database. Pre-Northern Star Resources Limited (NSR) data assumed correct, but no validation has been undertaken. For all data, the drilling looked reliable visually and no overlapping intervals were noted.
	Data validation procedures used.	NSR data validated by database administrators by checking 2% of raw data files. Taipan Resources NL data has not been validated apart from resurveying the old collar positions where found. No inconsistencies were found.

Section 3: Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.) Criteria JORC Code Explanation Commentary Comment on any site visits undertaken by the Competent Person and The CP has visited the Paulsens site as part of the due diligence of the acquisition. This included a review and discussion on the the outcome of those visits. Site visits geology with previous mine geologists and visiting of various deposits including Belvedere. If no site visits have been undertaken indicate why this is the case. Confidence in (or conversely, the uncertainty of) the geological The interpretation of the deposit was carried out using a systematic approach to ensure continuity of the geology by the interpretation of the mineral deposit. supervising and logging geologists. Sectional interpretations were digitised in Vulcan software and triangulated to form three dimensional solids. Confidence in the geological interpretation is moderate. Weathering zones and bedrock sub surfaces were also created. Nature of the data used and of any assumptions made. All available valid data was used including drill data, mapping previous interpretations and existing 1930s mine development extents Geological interpretation Where pre-NSR drill data was used, it is assumed to be correct. The effect, if any, of alternative interpretations on Mineral Resource estimation. There are currently no different interpretations. The use of geology in guiding and controlling Mineral Resource Geology is used to constrain the guartz veins to the dolerite host. estimation. Grade continuity is related to quartz vein extent, within the constrained dolerite dyke host. The factors affecting continuity both of grade and geology. The extent and variability of the Mineral Resource expressed as Strike length = 150m: Dimensions length (along strike or otherwise), plan width, and depth below Width = 80m with zones 2 to 3m thick; surface to the upper and lower limits of the Mineral Resource. Depth = from surface to ~160m below surface (top ~20m mined in the 1930s and wholly excluded from the Resource). ID^{2} was used to estimate this Resource using Vulcan 9.1 software. Domains are snapped to drilling, and composited to 1m downhole, Composites of less than 0.15m length are merged with the The nature and appropriateness of the estimation technique(s) last composite. Four domains were used to reflect the 2 styles of mineralisation. applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine A Resource was estimated by Norther Star geologists in June 2015. production records and whether the Mineral Resource estimate takes appropriate account of such data. No assumptions of by product recovery are made. The assumptions made regarding recovery of by-products. No deleterious elements estimated in the model. Estimation of deleterious elements or other non-grade variables of Estimation and modelling economic significance (e.g. sulphur for acid mine drainage techniques characterisation). Block size is 2.5m x 2.5m x 2.5m. Sub-celled down to 1.25m x 1.25m x 1.25m to best fit estimation domains. Average drill hole spacing is variable ranging from <10m to 40m (average sample spacing~ 25m). In the case of block model interpolation, the block size in relation to Two search ellipse 70m x 25m x 9m (for Main, hanging wall and footwall zone) and 50m x 50m x 10m (Belvedere fault zone) the average sample spacing and the search employed. were used. Minimum of 4 samples to estimate, max 2 samples per octant. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. No assumptions made. Description of how the geological interpretation was used to control No assumptions made. the resource estimates. Mineralisation wireframes are created within the geological shapes based on drill core logs, mapping and grade. Low grades can Discussion of basis for using or not using grade cutting or capping. form part of a mineralised wire frame. The process of validation, the checking process used, the Composites were cut to 20gpt (Main and hanging wall) and 5gpt (Footwall and Belvedere Fault mineralisation) based on log comparison of model data to drill hole data, and use of reconciliation distribution. data if available. Block grades were compared visually to drilling data. Validation is also through swath plots comparing composites to block model grades, along 10m eastings, 10m nothings and 5m

- -	orting of Mineral Resources (Criteria listed in section 1, and where releva		
Criteria	JORC Code Explanation	Commentary	
		elevations, comparing Inverse Distance to nearest neighbour estimations. All compared favourable but there was no reconciliation against previous mining.	
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content	Tonnages are estimated on a dry basis. Moisture content within the ore is expected to be low (~1-2 %) as it is fresh rock with minimal voids reported.	
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	Reporting cut off = 1.0gpt based on similar gold projects in the Ashburton Goldfields. Modelling lower grade cut off = 0.3gpt nominally, not more than 2m of internal dilution and requires minimum 2 holes.	
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	It is assumed Belvedere will initially be mined by open cut mining methods, and quick evaluations support the economics. Below the economic pit depth, grades are high enough to potentially be mined by underground methods.	
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Extensive metallurgical testing including comminution, leaching and adsorption, flocculation, rheology and geochemistry test work was completed by ALS metallurgy in early 2015. Belvedere ore will be amenable to processing in the existing plant though the thickener may need to be optimised for best recovery.	
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No environmental, permitting, legal, taxation, socio-economic, marketing or other relevant issues are known, that may affect the estimate.	
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	Bulk density used was based on 756 samples. Measurements were taken using the immersion method and related back to dominant rock code. Bulk density of the host rock is well covered, but of the mineralisation only lower grade intersections are represented in only 7 samples. Ten samples were used to determine an average SG of weathered rock.	
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Individual bulk densities are applied to geological units.	
	The basis for the classification of the Mineral Resources into varying confidence categories.	Classification is based on drill spacing to delineate Resource classifications.	
Classification	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	Confidence in the relative tonnage and grade is high, NSR data input reliable, Taipan Resources NL data assumed to be reliable (based on Paulsens experience). Distribution of data and continuity is moderate.	
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The result appropriately reflects the Competent Person(s)' view of the deposit.	

Section 3: Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The Resource has been reviewed by the CP as part of the due diligence and no fatal flaws were identified.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	This Mineral Resource Estimate is considered robust and representative. The application of geostatistical methods has helped to increase the confidence of the model and quantify the relative accuracy of the Resource on a global scale. It relies on historical data being of similar standard as recent infill drilling. This applies to approximately half of the holes. The relevant tonnages and grade are variable on a local scale.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The global assessment is more of a reflection of the average tonnes and grade estimate. Local variations are anticipated.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	There is no production data available.

APPENDIX I - COYOTE RESOURCE JORC 2012 TABLE 1

Section 1: Sampling Tech	iniques and Data	
Criteria	JORC Code Explanation	Commentary
	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples	Sampling has been completed by AngloGold Ashanti and Tanami Gold NL over the life of the Coyote Gold operation. This comprised of RAB, Air core, RC, and diamond drilling. Underground face channel and soil samples were also taken. RC holes used a standardised 1m sampling interval. Diamond core initially used 1m sampling intervals, changing to geologically selective sampling in 2005 following a review. Diamond core sample lengths ranged from 0.25m to 1.1m.
	should not be taken as limiting the broad meaning of sampling.	The various methods are considered good quality and in line with expected processes for sampling within the industry.
	Include reference to measures taken to ensure sample representivity	Samples collected from drilling and face sampling at the Coyote deposit appear to be of high quality and representative of the deposit. Duplicates were taken on RC drill samples, and results were validated by the stringent QAQC procedures of the relevant company.
Sampling techniques	and the appropriate calibration of any measurement tools or systems used.	Kavanagh was sampled from approximately 50m either side of the mineralisation zone. Core outside of this area was selected for inclusion in sampling based on the onsite logging geologist's observations. Half core samples were taken from the same (left) side of the orientated core. In areas where coarse visible gold was recognized two blank feldspar flushes were inserted at the laboratory to minimize the potential for contamination. From 2013, samples identified with coarse gold had an additional 1kg screen fire assay sample taken to reduce the effect of large amounts of coarse gold on small size fire assay.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more	Air core and RAB drilling were carried out by Acacia and subsequently AngloGold-Ashanti between 1992 – 2002. Extensive RC and diamond drilling was carried out by Tanami Gold (TGNL) following the acquisition of the project.
	explanation may be required, such as where there is coarse gold that has inherent sampling problems.	From 2013 (Kavanagh lode), when coarse gold was visually identified prior to sampling, the assay process is adjusted to a 1 kg screen fire assay. Two feldspar blank flushes are inserted after the sample with visible gold. All samples that return an initial 50g fire assay result of greater than 5 g/t are selected for a follow up 1kg screen fire assay
	Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Surface RC, surface diamond (including with RC pre-collars), underground diamond and underground face sampling techniques have been used to delineate the Coyote mineralization. Rotary air blast (RAB), post-hole RAB and air core drilling were also using in exploration phases. Both HQ3 and NQ2 were used in surface diamond drilling. Triple tube HQ3 was utilised to maximise recovery in heavily weathered zones. Diamond core was orientated using Reflex orientation tool where possible. Sludge hole drilling was used in the upper underground levels primarily to determine mineralisation widths.
	Method of recording and assessing core and chip sample recoveries and results assessed.	Recovery was recorded to the database as a part of the logging process. Holes drilled from surface encountered zones of poor recovery in the highly weathered profile.
		In later drilling from underground, core recovery is logged as a percentage or each meter. Tanami Gold NL (TGNL) have reported acceptable core recovery with an average of 98% recovery across the Coyote deposit area. No known relationship between sample recovery and grade exists for the Kavanagh mineralization area. Core recovery was very poor in heavily weathered areas
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Drilling techniques have been altered when broken ground is encountered to achieve maximum recovery. Triple tube HQ3 was utilised on surface diamond holes to maximise recovery in heavily weathered zones.
		From 2013, 1kg screen fire assays were taken on samples with coarse gold or whose initial assay returned a result of > 5 g/t. This was to the ensure the coarse gold was represented accurately. Duplicate face channels were taken to check reprehensively on underground face samples.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is gualitative or guantitative in nature.	Diamond core was logged for geology, structure where orientated, and rock quality designation (RQD). All core has been photographed and cut.

Criteria	JORC Code Explanation	Commentary
Unterna	Core (or costean, channel, etc) photography.	- Commentary
	The total length and percentage of the relevant intersections logged.	All relevant drilling has been logged.
	If core, whether cut or sawn and whether quarter, half or all core taken.	All core has been cut with an Almonte core saw on site. Half core was always taken from the left side of the cut core for sampling.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC drill samples were taken from a rig mounted riffle splitter in 1m intervals. The cyclone and splitter were cleaned at the start of each hole and after every 6m rod for wet holes. Wet samples occurred within the oxide.
		The sample preparation is in line with industry standards and suitable for use in the mineral resource estimate.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	RC and diamond sample used in the resource have been assayed at certified offsite commercial laboratories. A standard 50g fire assay process of drying, crushing and grinding has been used. From 2013, a 1kg screen fire assay process has been implemented for samples with coarse gold or elevated fire assay grades.
		Underground face samples were analysed at the onsite lab. Underground grade control drilling was also assayed onsite, unless it was to be used in a Mineral Resource Estimate in which case it was sent to an independent commercial laboratory.
Sub-sampling techniques and sample preparation	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Samples used in the Resource were submitted to commercial laboratory with field blanks inserted at an average of 1:20 samples and certified reference material at an average of 1:25 samples. The commercial laboratories used have internal quality control processes.
		Detailed sampling procedures were created and followed by previous owners to ensure representative samples were collected. There were routinely reviewed and results reported on. While these procedures are not available to Black Cat reports on QAQC appear to be appropriate.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling.	Field duplicates were routinely taken for RC drilling. No field duplicates were taken from the diamond core samples used for the Kavanagh Mineral Resource, as this would have consumed the remaining piece of half core. Screen fire assays on high grade samples were used to check reprehensively of samples and account for coarse gold.
		Duplicate underground face samples were routinely taken. QAQC was regularly reported on to identify sampling issues.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	From 2013, 1kg screen fire assays were utilized to assess the impact of coarse gold in high grade samples. Where coarse gold was observed by the onsite geologists the samples were designated to be screen fired. Where visible coarse gold was identified two extra blank samples were inserted into the sample stream to mitigate the effects of coarse gold contamination.
		Sampling methods are considered appropriate for the deposit.
		50 gram fire assay (FA50/AA) and 1kg screen fire assay (Au_PAL1000_ppm) methods were used.
		For 50 g fire assays samples were sent to commercial laboratories; ALS, Intertek Genalysis. Sample Preparation was completed in Alice Springs and analysis completed in Townsville or Perth. Samples were dried at 120° C, crushed and pulverised to 90% passing 75 µm. Where sample size was too large for pulverization of the entire sample it rotary split to >3kg. 50 gram fire assays utilized a lead prill and complete aqua regia digest. These were finished and measured with atomic absorption to and 0.005 g/t accuracy.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	From 2013, where visible gold was identified, or the fire assay returned a result >5g/t a 1 kg screen fire assay was utilised. This process involves screening a 1kg sample and firing the entire coarse fraction. Duplicate assays are carried out on the fine portion that has been passed through the 75µm screen. These duplicates are considered more homogenous and reproducible due to the smaller particle sizes. The total gold content is reported as a weighted average of the grades of the two screen fractions. The grades of both fractions are also reported separately so coarse gold content can be assessed.
		Test work comparing the above assay methods and bottle roll leach assay methods was also conducted and review by a QAQC consultant.
		Both assay methods used measure total gold content.

Criteria	JORC Code Explanation	Commentary
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical or additional tools were used in this Mineral Resource.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	For diamond drilling standards are inserted into the sample stream at a rate of 1 in 25. Procedure for field blanks is to be inserted at a rate of 1 in 20, unless a sample with visual coarse gold is encountered in which case 2 blanks are inserted immediately afterwards. Both 50 gram fire assay and 1kg screen fire assay methods are accurate and considered to be suitable for the mineralisation. No field duplicate checks or umpire labs checks have been undertaken.
	established.	Detailed sampling procedures were created and followed by previous owners to ensure accuracy and precision of sampling.
	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts have been reviewed by the competent person.
	The use of twinned holes.	Drillhole twinning has not been completed.
Verification of sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All diamond core data was logged electronically into Logchief and synchronised with the onsite SQL server. The Logchief program has internal checks and notifications to disallow invalid data into the database. Most data was collected and archived electronically. Previous owners had detailed procedures surrounding this process and are assumed to have been adequate.
	····· ,	The assay data was loaded into the SQL database. This database underwent routine validations by previous owners. The validation systems used filters, database scripts and visual validations in section.
	Discuss any adjustment to assay data.	After 2013, samples that have a 50 gram fire assay result were reassayed with 1kg screen fire assay result. Where this occurs screen fire assays have been prioritised. This is considered acceptable as most samples used in the mineral resource are 1kg screen fire assays. There has been no other data adjustment outside of this assay prioritization process.
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collars for underground diamond drill holes are surveyed in mine grid. Collars for surface diamond drillholes are picked up via RTK GPS and handheld DGPS.
		Drillholes have been surveyed using a combination of magnetic single shot, multi shot and north seeking gyro down hole survey methods.
		Individual lode Resources were mostly estimated into the local Coyote Mine Grid. These were converted to GDA94 – MGA zone 52 during collation of the various lodes.
Location of data points	Specification of the grid system used.	A direct conversion from local to DGA94 is:
		Easting: +407,552.766 Northing: +7,749,613.131
		Elevation: -3.000
	Quality and adequacy of topographic control.	A high-quality surface survey was undertaken by a survey contractor. This has been cross referenced to drill hole collar GPS pickups.
	Data spacing for reporting of Exploration Results.	Drilling at the Coyote deposits a 25m x 25m grid with closer spaced infill conducted for grade control and productions as required. Spacing extends to greater than 100m at the extremities of the deposit.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The mineralised zones are well drilled in the central area and demonstrate significant continuity. The data spacing is considered adequate for the mineral resource classifications applied.
		Sample compositing has not been applied for interpretation purposes and mineralised lodes were defined from raw assay data.
Orientation of data in relation		Samples were composited to 1m lengths within the mineralized domains for Mineral Resource Estimation and geostatistical purposes. Residual lengths were distributed evenly.
to geological structure	Whether sample compositing has been applied.	For the Bommie and South Zone lodes, a diluted 2m composite was used. to deal with a significant range of sample lengths. The original wireframes were created around un-composited sample data. A second iteration of dilutions wireframes were created at 2m downhole width around the first set. Drillhole samples were then selected and composited to the full 2m length of this dilution

Section 1: Sampling Te	echniques and Data	
Criteria	JORC Code Explanation	Commentary
		wireframe. These dilutions composites included waste material previously excluded from the original undiluted wireframe. The 2m dilution composites were used for statistical analysis, top cuts, model estimation samples and validation comparisons.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of the mineralised fold hinge zones is well understood and a key driver in drillhole orientation. A small number of drillholes have been removed where oblique intersection angles have resulted in unrealistic samples. This has not resulted in a material sampling bias and does not materially affect the drilling results or Mineral Resource Estimate.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The mineralised zones have been targeted from surface from both north and south directions, due to the complex folded geometry. The infill drilling targeting the mineralisation is underground diamond holes which are limited by available platforms. Drilling is designed to intercept the mineralisation as close to perpendicular as practical, given the platform location. Face sampling is conducted across the face perpendicular to mineralisation. Drillholes with highly oblique angles of intersection have been removed from interpretation and estimates as seen fit. This has not affected a significant portion of the data set. No orientation-based bias is known.
Sample security	The measures taken to ensure sample security.	Samples were collected and prepared onsite by trained staff and contractors. Samples are collected into calico sample bags. Sample bags are stored within waterproof green bags and secured with cable ties during the transport process. Samples are delivered to commercial labs which have sample security procedures in place.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A high-level audit of the database, interpretations, and estimation process was conducted as part of the due diligence process by Black Cat. Previous reviews of Resources have been completed by independent consultants.

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as Joint Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	M80/559 are currently wholly owned by Northern Star Resources (NSR) and in good standing. They represent part of the proposed transaction whereby they will be transferred to Black Cat Syndicate.
		M80/559 is valid until 26/09/2026 and is renewable for an additional 21 years.
		There is currently a native title agreement over the Coyote deposit with the Tjurabalan People.
		All production is subject to a Western Australian state government Net Smelter Return ("NSR") royalty of 2.5%.
		M80/559 is subject to a royalty agreement with third parties.
		There are no registered pastoral compensation agreements over the tenements.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration was first undertaken in the region by Billiton in 1992. Acacia began exploring in 1995 before being purchased by AngloGold Australia in 2000. Exploration initially focused on shallow RAB drilling to test for low level gold and arsenic anomalies. This targeted structural zones of interest, such as fold hinges identified in aeromagnetic surveys
		By 1998 a large area of anomalous Au-As had been identified just east what is now the current Coyote Resource. An Additional RAB program infilling the area produced a 900m x 700m zone of interest with > 50 ppb Au. Deeper RAB and RC drilling started in 1990 and identified three sub-parallel east-west trending mineralised zones and produced samples containing visible gold. The Coyote corridor underwent extensive exploration by AngloGold between 1993 and 2002. A combined total of 322,846m of Air core RAB, Diamond and RC drillholes were completed.
		Tanami Gold NL (TNGL) acquired Coyote in 2003. TNGL's initial drilling aimed at verifying the existing resources and extend its ounce profile. Further holes were later aimed at testing geological models, exploration targets and infilling for open pit resource

Criteria	JORC Code Explanation	Commentary
		upgrades. In late 2004 a program of deep underground drilling commenced targeting the Gonzales mineralisation for underground potential. Following a review of the resource in 2005 significant diamond drilling was conducted to infill and upgrade the underground mineral resource and geological models.
		Drilling continued over 2005 and 2006 before a completed feasibility study was carried out. Open pit mining commenced in 2006 and continued intermittently to 2008 when a portal was developed, and underground mining commenced. Open pit mining briefly commenced again in 2009 before it was again halted. Underground production continued until 2013 when the mine was placed on care and maintenance in June due to lower gold price and production issues.
		TNGL sold its combined Western Tanami Operation assets, which includes the Coyote deposit to Northern Star Resource (NSR) in late 2017.
		Northern Star Resources conducted minor exploration activities on the tenements, with no work completed directly on the Coyote deposit.
		The Coyote Operation is hosted within the Tanami Orogen which comprises a sequence of folded metasediments, mafic volcanics and intrusive rocks unconformably overlying Archaean basement. The known Archaean basement includes the informally named 'Billabong Complex' and the Browns Range Dome. The Tanami Orogen is a significant gold host with other major deposits located across the region including Callie, The Granites, and Groundrush.
		Lithology
		The local geology of Coyote is situated within the Killi Killi formation. These are sand rich Proterozoic turbidites comprised of poorl sorted sandstones, siltstones and variable amounts of carbonaceous mudstones. The Killi Killi sequence extends well over 100m i thickness, however the individual beds range from 0.3m to 15m thick. Within the Coytoe deposit, the 'Marker Siltstone' and 'Kavanagh Sandstone' are important marker units for mineralisation interpretation and boundaries.
Geology	Deposit type, geological setting and style of mineralisation.	The Coyote deposit is obscured by a widespread paleochannel and is deeply weathered. The oxide profile comprises weakly consolidated sand, sheetwash and alluvial lithologies, and clay-dominated sequences. This is overlain by transported red aeolian sand. The deeply weathered profile sits directly over top of the in-situ bedrock with limited saprock present. Oxidised saprolite is commonly present to depths of more than 100m.
		Structure
		The entire Killi Killi sequence has been tightly folded into an angular anticline. The Coyote deposit is located east-west Coyote Anticline, a small parasitic fold within the greater anticline, and plunges shallowly west at approximately 15°. The anticline's limbs dip from 30-50° in the northern limb and 70-90° in the southern limb. The southern limb has a secondary fold axis know as the Buggsy anticline, a drag fold associated with the Coyote Fault that offsets the stratigraphy. These limbs contain smaller faults and parasitic fold controlling mineralisation at mine scale. The Marker Siltstone and Kavanagh Sandstone have been the primary units used to delineate the sequence and orientation of the bedding and fold structures.
		Mineralisation is hosted in narrow high grade quartz veins that are concentrated around the fold hinge areas. The mineralisation presents in the form of quartz veins parallel to bedding, and are often concentrated in areas of local folding. In areas such as Kavanagh these veins can extend completely through the fold hinge zone. These mineralised veins often hosts coarse visible gold
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar; 	Historical drilling is listed within this announcement.
Drill hole information	 elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; 	Due to the shear size of the databases for Coyote, it is impractical to report all drilling and surface sampling data. A small selection of holes has been randomly selected to provide a guide as to the drilling that has occurred. Only RC and diamond drilling have
	 dip and azimuth of the hole; 	or holes has been randomly selected to provide a guide as to the drining that has occurred. Only NC and dramond drining have been reported here.
	 down hole length and interception depth; 	
	 hole length; and 	
	 if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not 	

Section 2: Reporting of Explo		
Criteria	JORC Code Explanation	Commentary
	detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported intervals are length weight composited into continuous intervals above 1 g/t Au. A maximum of 1m of continuous waste i permitted, with a minimum sample length of 0.2m provided the interval is greater than 1gram metre.
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Weighted by length when compositing for estimation
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been reported.
	These relationships are particularly important in the reporting of Exploration Results.	
Relationship between mineralisation widths and intercent lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	At Coyote, the geometry of the mineralisation to drill hole intercepts is variable due to the folded nature of the mineralisation and available underground platforms to drill from. Oblique intercepts have been factored into and dealt with during modelling and estimation, either through exclusion or careful wireframing.
intercept lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative intersections are reported within this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geophysical surveys, structural studies, geochemical and petrographic studies have been carried out by previous owners to aid with interpretations and identify prospective structures in the project area. None of these were directly used in used in the production of the Mineral Resource however have contributed incrementally to the understanding of the local geology.
	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Upon completion of the acquisition, Black Cat is committed to targeted exploration around areas that have the potential to increase the Resource and supplement any restart.
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Appropriate diagrams have been included in the body of the announcement, with additional diagrams available in the primary announcement ASX 19th April 2022 "Funded Acquisition of Coyote & Paulsens Gold Operations"".
Section 3: Estimation and Re	porting of Mineral Resources (Criteria listed in Section 1, and where rele	evant in Section 2, also apply to this section.)
Criteria	JORC Code Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource Estimation purposes. Data validation procedures used.	Data has been stored in an SQL server database that has inbuilt controls for data validation on entry. Preliminary reviews of the database and intercepts have been undertaken as part of the due diligence process.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	The competent person has not visited site at this point due to factors outside of their control. Black Cat personnel, including geologists, have visited the site as part of the due diligence process, with discussions around pertinent observations competed. Coyote is considered a fairly mature Resource, having been drilled, studied, and mined extensively. A significant amount of information is available and has been reviewed by the competent person during the conversion of the Resource from JORC2004 t 2012. This includes drillholes (photos, logging, assays), pit mapping (maps and photos), underground development (face maps,

Criteria	JORC Code Explanation	Commentary	
		photos, face sampling), past Resource estimates and external reviews, and production data. Additionally, during due diligence, discussions were conducted between Black Cat personnel and geologists who worked on both the original discovery and mining o the deposit.	
		With the consideration around the amount of data available, site visits completed by Black Cat Personnel, and the inability to access underground workings (flooded), it is not considered material that a personal site visit has not yet been conducted by the relevant person. A site visit will be completed at the first opportunity.	
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	The geological interpretation of the Coyote deposit is primarily informed by lithological logging and assay grade. Several recognizable lithological marker units have been identified. These units are used to guide the mineralised sediment package boundaries and mineralised vein interpretations. Gold assays taken within these quartz veins have been modelled in section to for the mineralised domains for estimation. The current geological and structural model are well understood and provide a high level or confidence in the interpretations used in the Mineral Resource. Additional drilling is expected to build on the current interpretations but not lead to significant changes. Alternative interpretations have evolved with data addition. The current model is considered robust and fit for purpose.	
	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	Mineralisation at Coyote is made up of a number of discrete zones hosted within the hinges and proximal limbs of the Coyote Anticline. Lodes are repeated through the stratigraphic sequence.	
		Single zones range in strike length from 200-600m, height of 100-200m and widths from 2-20m in width.	
Dimensions		Overall, the extents of the Resource are ,1,260m strike by 340m width, by 440m depth.	
		The Resource is considered open both along strike and deeper into the stratigraphic sequence.	
		Kavanagh	
	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Gold grades were estimated in Vulcan and utilized ordinary kriging and inverse distance squared. For domains with less than 3 samples these were assigned weighted average grade of the domain samples and assigned an unclassified resource classification. For estimation and geostatistics purposes the mineralised domains were sub-domained on the axial plane of the fold structure.	
		This was to isolate samples on either side of the fold limb and limit influence in a non-primary direction on parallel fold limbs. Not a mineralised domains were modelled in both fold limbs.	
Estimation and modelling techniques	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	Top cuts were applied to domains ranging from 60 g/t Au to 100 g/t Au. Top cutting in a highly variable coarse gold deposit is considered appropriate to limit the effects of extreme outliers in the estimation process. The top cuts applied were reviewed vs	
	The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	population distribution and fragmentation, mean and co-covariance values within Supervisor software. Variography was undertaken in Snowden Supervisor software for geostatistical continuity analysis. Due to the limited data in some of the sub domains this was conducted on the grouped domains. The top cut data was transformed to normal scores space due to	
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	the highly negatively skewed data. Downhole variograms were used to determine nugget values and these applied to individual semi-variogram models. Variograms were modelled for each direction and the final combined variogram model was back	
	Any assumptions behind modelling of selective mining units.	transformed for use in Vulcan software. Maximum continuity of around 50, 50, 25 were determined.	
	Any assumptions about correlation between variables.	Blocks were populated and estimated within each estimation domain. The boundaries of these estimation domains were treated a	
	Description of how the geological interpretation was used to control the resource estimates.	discrete hard boundaries. Multiple interactions of search passes were used with expanding search neighbourhoods to fill the	
	Discussion of basis for using or not using grade cutting or capping.	wireframed estimations domains. The 4 th and final pass used a full length composited data set and a nearest neighbour search method in order to ensure all blocks were filled. These blocks were set to unclassified.	
	The process of validation, the checking process used, the		
	comparison of model data to drill hole data, and use of reconciliation	Parent block sizes of 20m with subceiling down to 0.5m in all directions was used. This is considered acceptable with relation to	

riteria	JORC Code Explanation	Commentary
		Ordinary kriging, inverse distance squared and nearest neighbour estimates were run on both top cut and raw data for all domair as check estimates.
		Only Au grade was estimated. No other elements were estimated.
		No deleterious elements were estimated or assumed.
		No active mining has occurred in Kavanagh mineralisation so no reconciliation data has been compared.
		The model was validated by comparing statistics of the estimated blocks against the composited sample data as well as visual examination of the block grades versus assay data in section. Estimation domains block model volumes were validated against estimation domain wireframe values. Swath plots and grade tonnage curves reviewed in supervisor as part of the validation process.
		Gonzales, Pit, Speedy Zones:
		The Gonzales lodes were estimated using Micromine with an inverse distance to the power of 2.5 method (ID2.5). For estimatio purposes the mineralised domains were split on axial planes of the local fold structures to create estimation domains. The samp and the blocks within these estimation domains were coded with the subdomain code to delineate parent mineralization lode an fold limb. These domains were treated as hard boundaries with only samples inside selected to be used in the estimation proce
		Top cuts were assessed for the combined domains of the individual zones by reviewing the population distribution on log proba and log histogram plots. High grades were capped at a range of 13 g/t Au up to 120 g/t Au. These were validated against estimations for consistency.
		Variography was conducted on a sub area of Gonzales where there was a high density of face sample data points in filling the existing exploration drilling. Variography was performed in cut and uncut data for both face samples, drillholes and combined d This produced search ranges of 30m (X), 8m (Y) and 20m (Z) with a plunge of -20° to the west. Search ranges were used in for sequential passes in order to fill the entirety of the wireframe. Search distances applied a factor of 1,2,3 & 30 to the initial mast search ranges. Search parameters defined minimum numbers of holes, samples and samples per search quadrant for each sequential search pass. Search directions, criteria and plunge components and were adjusted for different domains based on locally different geometry.
		Blocks were populated inside each domain. Parent blocks were 25m (X) 5m (Y), 25m (Z) with sub blocks down to 2.5m (X), 0.5 (Y), 2.5m (Z) in order to adequately fill the mineralisation wireframes. This block size was considered adequate given drillhole spacing. Face samples and sludge holes were excluded from the estimation. Mineralisation volumes were cross checked vs blool volumes for discrepancies.
		Blocks were validated visually by comparing block grades to sample grades on several sections. Block grades and samples graver validated using swath plots. Statistical comparison of block mean grades vs composite mean grades were carried out for global population as well as per single domain.
		No additional check estimates methods were estimated or compared.
		Only Au grade was estimated. No other elements were estimated.
		No deleterious elements were estimated or assumed.
		Reconciliation of mined ounces vs. the Resource have been compared as part of the due diligence process. A good correlation been obtained and is discussed later in the Table 1.
		Bommie (2010):
		Bommie was estimated using Micromine using an inverse distance cubed (ID3) method.

Section 3: Estimation and Reporting of Mineral Resources (Criteria listed in Section 1, and where relevant in Section 2, also apply to this section.)		tion 1, and where relevant in Section 2, also apply to this section.)
Criteria	JORC Code Explanation	Commentary
		Parent cells were 30m (X), 2.5m (Y), and 30m (Z) in size. These were sub-celled down to 4 m(X), 0.25m (Y) and 4m (Z) in order to adequately fill the mineralised wireframes. The block vs wireframe volumes were extracted and compared for each domain. For estimation purposes the mineralisation domains were treated as hard boundaries for compositing and estimation.
		Due to variable widths of the mineralisation within the zone, a diluted model was used for estimation. An undiluted model was first created, and then based off this interpretation, a diluted wireframe model with a 2m downhole width was created. 2m was selected for the diluted model as in encompassed all sample lengths and matched the minimum mining width. The 2m downhole diluted model was then used for compositing, with these values used for statistical analysis, top cuts, model estimation samples and validation comparisons.
		Top cutting was undertaken to address extreme outliers within the composited data. The composite dataset was assessed as a whole due to some individual domains being too small to provide robust statistics. Log probability plots, population mean, and co- variance were the primary statistical tools used. A top cut of 95 g/t was chosen as it indicated a break in the population grade frequency trend.
		Individual domains did not have sufficient data to form coherent variogram models. Variography was carried out on the combined 2m diluted composite file to determine continuity of grade. It was assumed this combined continuity analysis was representative of all domains. The combined analysis produced a search range of 80m (Major), 40m (semi-major), 7m (minor) plunging at -16° to the west. The plunge was the same as the Gonzales zone plunge. The search ellipsoid was applied to all domains, with minor modifications to strike and search distances made to support slight variations in orientation.
		Blocks were estimated over 5 distinct search passes which factored the original search distance by 1,1,1,2,3 times respectively. Each search pass had decreasing limits on minimum number of individual drill holes and numbers of samples that were required. All searches limited samples to a maximum of 4 per search quadrant.
		Blocks were visually validated in cross section by comparing estimated grade to composite sample grade. Swath plots were produced in east and vertical directions were reviewed for estimation validation. Global and per lode model and sample averages were also compared in statistical tables for validation purposes.
		No additional check estimates methods were estimated or compared.
		Only Au grade was estimated. No other elements were estimated.
		No deleterious elements were estimated or assumed.
		No reconciliation data has been compared as the Mineral Resource Estimate occurred prior to mining the Bommie lodes.
		Southzone (2010):
		The south zone was estimated in Micromine using an inverse distance cubed (ID3) method.
		The parent block size was 30m (X), 2m (Y), 30m (Z), with sub-cells down to 3m (X), 0.2m (Y), 3m (Z) to sufficiently fill the mineralised wireframed volumes. The block vs wireframe volumes were extracted and compared for each domain. For estimation purposes the mineralisation domains were treated as hard boundaries for compositing and estimation.
		Due to variable widths of the mineralisation within the zone, a diluted model was used for estimation. An undiluted model was first created, and then based off this interpretation, a diluted wireframe model with a 2m downhole width was created. 2m was selected for the diluted model as in encompassed all sample lengths and matched the minimum mining width. The 2m downhole diluted model was then used for compositing, with these values used for statistical analysis, top cuts, model estimation samples and validation comparisons.
		Top cutting was undertaken to address extreme outliers within the composited data. The composite dataset was assessed as a whole due to some individual domains being too small to provide robust statistics. Log probability plots, population mean, and co-variance were the primary statistical tools used.

Criteria		evant in Section 2, also apply to this section.)
Criteria	JORC Code Explanation	Commentary
		Individual domains did not have sufficient data to form coherent variogram models. Variography was carried out on the combined 2m diluted composite file to determine continuity of grade. It was assumed this combined continuity analysis was representative of all domains. The combined analysis produced a search range of 50m (Major), 30m (semi-major), 10m (minor) with no significant plunge component. The plunge was the same as the Gonzales zone plunge. The search ellipsoid was applied to all domains, with minor modifications to strike and search distances made to support slight variations in orientation.
		Blocks were estimated over 5 distinct search passes which factored the original search distance by 1,1,1,2,3 times respectively. Each search pass had decreasing limits on minimum number of individual drill holes and numbers of samples that were required. All searches limited samples to a maximum of 4 per search quadrant.
		Blocks were visually validated in cross section by comparing estimated grade to composite sample grade. Swath plots were produced in East and vertical directions were reviewed for estimation validation. Global and per lode model and sample averages were also compared in statistical tables for validation purposes.
		No additional check estimates methods were estimated or compared.
		Only Au grade was estimated. No other elements were estimated.
		No deleterious elements were estimated or assumed.
		No reconciliation data has been compared as the Mineral Resource Estimate occurred prior to mining the Bommie lodes.
		Muttley & West zones (2012):
		The Muttley and West zones were estimated using Micromine inverse distance. For estimation purposes the mineralised domains were split on axial planes of the local fold structures to create estimation domains. The samples and the blocks within these estimation domains were coded with the subdomain code to delineate parent mineralization lode and fold limb. These domains were treated as hard boundaries with only samples inside selected to be used in the estimation process.
		Blocks were validated visually by comparing block grades to sample grades on several sections. Block grades and samples grade were validated using swath plots. Statistical comparison of block mean grades vs composite mean grades were carried out for the global population as well as per single domain.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages are reported on a 'dry' basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	All Resources have been reported at a lower cut-off of 2 g/t Au based off Black Cat's Resource reporting for other deposits
	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	No minimum width has been applied to the Resource (with the exception of Bommie and Southzone). Minimum widths are
Mining factors or assumptions		assessed and applied using Mining Shape Optimiser software during the Reserve process. It is assumed that planned dilution is factored into the process at the stage of Reserve and stope design planning.
		Bommie and Southzone were estimated with an assumed minimum mining width of 2m. This resulted in the composites , mineralised domains and blocks estimated being to a minimum downhole width of 2m. See "estimation and modelling techniques" section for more details on the process.
		This was used as a solution for addressing variable widths of mineralisation to assign standard composite length. This assumption is not assumed to completely address all potential dilution issues when extracting the Mineral Resource. A minimum mining width and dilution factors are still expected to be applied during the reserve planning process.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to	There is a processing facility at Coyote that has historically been used to process Coyote mineralisation.

Section 3: Estimation and Reporting of Mineral Resources (Criteria listed in Section 1, and where relevant in Section 2, also apply to this section.) Criteria **JORC Code Explanation** Commentary consider potential metallurgical methods, but the assumptions No metallurgical assumptions have been built or applied to the Resource model. Any metallurgical assumptions and costs would be regarding metallurgical treatment processes and parameters made expected to be applied in the reserve planning stage. High recovery above 90% has been observed when previously processed at when reporting Mineral Resources may not always be rigorous. the onsite processing facility. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and A conventional above ground storage facility has historically been used for the process plant tailings. Environmental factors or processing operation. While at this stage the determination of Waste rock is to be stored in a traditional waste rock landform 'waste dump'. There is no evidence to indicate the presence of assumptions potential environmental impacts, particularly for a greenfields project, deleterious elements within the deposit. may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the Bulk density is assigned based on wreathing profile. Densities assigned are; fresh rock 2.72 t/m3, Sapprock 2.62 t/m3, Saprolite frequency of the measurements, the nature, size and representativeness of the samples. 2.36 t/m³. Depleted zone 2.19 t/m³ and alluvial material 2.00 t/m³. These densities were assigned uniformly to all material within the assigned weathering type wireframe boundaries. The density values are derived from extensive density measurements. The bulk density for bulk material must have been measured by Bulk density methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones Kavanagh was assigned a bulk density of 2.75 t/m3 based on measurements on diamond core using the Archimedes method which within the deposit. occurs entirely in fresh rock. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. Classification was completed by the competent person to comply with JORC 2012 standards. A review of the Resource was completed during the due diligence process to investigate the confidence in the reported Resource. No fatal flaws in the estimation of the Resources were identified, however, it was found that the currently reported Resource from Tanami Gold could not be replicated, and the history of the reported Resource could not be confidently traced under the lower required information reporting standard of JORC 2004. Additionally, issues with using the as-built pickup for depletion were identified, due to the narrow vein nature of the deposit. Lodes running along the wall or just outside of the as-built were classified as The basis for the classification of the Mineral Resources into varying confidence categories. in situ when they were probably mined. To overcome this issue, and err on the side of caution, the model was manually depleted with mineralised blocks on the edge of the as-built assessed individually and classified as mined. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of Classification input data, confidence in continuity of geology and metal values, A comparison of the claimed mined ounces (from quarterly reporting) for the underground was compared to the mined ounces from quality, quantity and distribution of the data). the Resource model. Tanami Gold claimed 144,169 ounces of gold mined between the September 2008 and June 2013 quarters, Whether the result appropriately reflects the Competent Person's compared to an estimated 147,164 ounces within the Resource model. This equates to a variance of just 2% between the models view of the deposit. over the life of mine providing confidence in the Resource on a global scale. Classification of the Resource was updated for this review based off all available information. Indicated was assigned in areas where there was extensive development within the Gonzalez zone, where there was significant information from grade control drilling, face sampling, and production data to validate the Resource. A minimum drill spacing of 25m was also required. Other lodes were classified as Inferred up to a drill hole spacing of 50m with anything else, along with any pass 4 estimates, were reported as unclassified. Resources were regularly reviewed by an independent consultant at the time of estimation. The results of any audits or reviews of Mineral Resource Estimates. Audits or reviews Black Cat has completed a due diligence review on the Coyote Resource with no fatal flaws identified. This included a comparison of mined ounces within the Resource against reported production within the ASX quarterly reports. A high correlation was found adding confidence to the estimation process.

Section 3: Estimation and Reporting of Mineral Resources (Criteria listed in Section 1, and where relevant in Section 2, also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. The estimated uncertainty for ± 10% Measured Mineral Resources; ± 20% for Indicated Mineral Resources and ± 30% for Inferred Mineral Resources.
		Tanami Gold could not be replicated, and the history of the reported Resource could not be confidently traced under the lower required information reporting standard of JORC 2004. Additionally, issues with using the as-built pickup for depletion were identified, due to the narrow vein nature of the deposit. Lodes running along the wall or just outside of the as-built were classified as in situ when they were probably mined. To overcome this issue, and err on the side of caution, the model was manually depleted with mineralised blocks on the edge of the as-built assessed individually and classified as mined.