

Further assays support shallow gold mineralisation at Rover Gold Project, WA

HIGHLIGHTS:

- 1m splits from 4m composite gold assays returned and confirm shallow gold mineralisation
- A total of 42 of the 141 1m samples submitted¹ returned >0.1ppm Au
- Highlights include:
 - 0 1m @ 1.94g/t Au from 135m (21RVRC002)
 - 1m @ 1.21g/t Au from 77m (21RVRC001)
 - 6m @ 0.40g/t Au from 30m within a much larger interval of 31m @ 0.22g/t Au from 21m (21RVRC006)
- RC drilling completed in December 2021 targeted the *Harmonic*, *Four Corners* and *Blue Hills* Prospects and comprised 31 holes for a total of 2,161m
- Multi element assay results are still pending due to the backlog at the lab and results are expected in the coming weeks

Twenty Seven Co. Limited (ASX: TSC) ("**TSC**" or "**the Company**") is pleased to advise that is has received the 1m assay results from the Reverse Circulation ("**RC**") drilling programme completed at the Rover Gold Project in December 2021. Initial 4m gold composites results were reported to the ASX on the 4th February 2022.

Importantly, the new detailed 1m results from this drilling campaign have further highlighted the mineralised potential of the Rover Project area, and in particular at the Harmonic Prospect.

Commenting on the receipt of the 1m splits, Non-Exec Chairman Rohan Dalziell said:

"We are pleased with the latest batch of assays received from Rover as they continue to support our aim of extending the existing gold system at Harmonic and Creasy to further increase the overall prospectivity of the Rover Project. We are continuing to build our understanding of the mineralised system at Rover and the confirmation of further shallow gold mineralisation is encouraging as we plan our future work programmes in the area. We look forward to providing further updates in due course."

Figure 1: Rover Gold Project relative to Greenstone belts and selected peer operations

Harmonic Prospect: 1m splits of 3m Composites

All of the 1m splits sample assays have been returned from the lab for RC drilling completed over the *Harmonic*, *Four Corners* and *Blue Hills Prospects* in December 2021. Pleasingly, the 1m splits include a zone of mineralisation with grades up to 1m @ 1.94g/t Au in hole 21RVRC002 and a broader interval of 6m @ 0.40g/t Au in hole 21RVRC006.

The mineralisation intersected at Harmonic drilling shows good continuity along strike and down dip of the previous holes drilled by TSC in 2019 and 2020^{2 and 3}, which highlights the strong mineralised potential at Harmonic and across the broader Rover Project area.

Near-Term Exploration Plans:

The following work programmes are currently underway and/or planned for TSC's WA and NSW tenement portfolios:

- Yarbu Gold Project: Analyse pending assay results from auger drilling and identify areas of mineralisation/ anomalism for follow-up exploration and drilling activity.
- **NSW portfolio:** Undertake soil and rock chip sampling programme over the northern end of Perseus, southern end of Trident and eastern side of Midas.
- Mt Dimer Gold and Silver Project: All options currently being assessed by TSC.
- **Rover Gold Project:** Awaiting final multi element results before refining next phase of exploration.

Figure 2: Prospect map with 6 holes around Harmonic and 25 holes at Blue Hills and Four Corners

References

- 1. ASX: TSC: 4 February 2021, Rover drilling results update
- 2. ASX: TSC: 23 December 2019, High-grade shallow gold discovery at Rover Project
- 3. ASX: TSC: 21 October 2020, Gold from surface intersected at Harmonic

The Board of Twenty Seven Co. Limited authorised the release of this announcement to the ASX.

For further information please contact:

Rohan Dalziell Non-executive Chairman

Phone: (08) 9385 6911 Mobile: + 61 407 994 507 Email: <u>enquiries@twentysevenco.com.au</u>

Competent Person's Statement

The information in this report relates to historical mineral exploration results and is based on work reviewed and compiled by Mr. Stephen F Pearson, a Competent Person and Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Pearson is a beneficiary of a trust which is shareholder of TSC. Mr. Pearson is a Senior Geologist for GEKO-Co Pty Ltd and contracted to the Company as Exploration Manager and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Pearson consents to the inclusion in this report of the information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release. Cautionary Statement - Historical exploration results reported in this announcement are based on data reported in historical reports rather than data that has been produced by Twenty Seven Co. Limited; - Historical exploration results have not been reported in accordance with the JORC Code 2012; - A Competent Person has not done sufficient work to disclose the historical exploration work in accordance with JORC 2012; - It is possible that following further evaluation and/or exploration work that the confidence in the historical exploration results may be reduced when reported under JORC Code 2012; -Nothing has come to the attention of the acquirer that causes it to question the accuracy or reliability of the former owners' historical exploration results, but - The acquirer has not independently validated the former owners' historical exploration results and therefore is not to be regarded as reporting, adopting or endorsing those historical results.

About Twenty Seven Co. Limited

Twenty Seven Co. Limited (ASX: TSC) is an ASX-listed explorer. TSC's Australian assets comprise two tenure groupings detailed briefly as follows:

WA Archaean Gold assets:

- **Mt Dimer Project:** is made up of mining lease M77/515 and exploration license E77/2383. The project is highly prospective for Archean gold.
- Yarbu Project: This project is located on the Marda Greenstone belt ~ 80km to the northwest of the Mt Dimer Project. Yarbu consists of three exploration licenses (E77/2442, E77/2540 and E77/2539) which cover approximately 223sq km and are highly prospective for Archean gold deposits.
- Rover Project: TSC's 100% owned Rover project is located near Sandstone in a base metals and gold mineral rich area associated with Archean greenstone belts. Rover Project is a large 460sqkm tenure package covering two linear Archean greenstones, with a combined length of around 160km. Historically the area is underexplored and is currently undergoing a resurgence in exploration.

NSW Iron Oxide-Copper-Gold and Tin assets:

- **Midas Project:** is prospective for iron oxide copper gold (IOCG) and is located 40km NE of Broken Hill.
- **Perseus Project:** is prospective for iron oxide copper gold (IOCG) and historically has been underexplored and is located ~50km west of Broken Hill.
- **Trident Project:** is prospective for iron oxide copper gold (IOCG) and Tin and is located ~35km north-east of Broken Hill

Appendix 1 Drilling summary

Table 1 below is a summary of the significant TSC 1m re-sampling intervals at Rover Project from the 2021 RC drilling

Hole_ID	SampleID	From	То	Length	Sample_Type	Sample_Method	Au_Batch_No	Method	Au_ppm	WtTotal_g
21RVRC001	21RV0064A	60	61	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.06	1780
21RVRC001	21RV0065A	61	62	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.47	2040
21RVRC001	21RV0066A	62	63	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	2210
21RVRC001	21RV0067A	63	64	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.01	2140
21RVRC001	21RV0068A	64	65	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.33	2530
21RVRC001	21RV0069A	65	66	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.54	2950
21RVRC001	21RV0070A	66	67	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.08	2750
21RVRC001	21RV0071A	67	68	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	3230
21RVRC001	21RV0081A	76	77	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.17	2670
21RVRC001	21RV0082A	77	78	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	1.21	3680
21RVRC001	21RV0083A	78	79	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	4190
21RVRC001	21RV0084A	79	80	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2870
21RVRC001	21RV0097A	92	93	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2670
21RVRC001	21RV0098A	93	94	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	3160
21RVRC001	21RV0099A	94	95	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.25	2040
21RVRC001	21RV0101A	95	96	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	2570
21RVRC001	21RV0114A	108	109	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2180
21RVRC001	21RV0115A	109	110	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2820
21RVRC002	21RV0116A	110	111	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.3	2480
21RVRC002	21RV0181A	60	61	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	3390
21RVRC002	21RV0182A	61	62	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2390
21RVRC002	21RV0183A	62	63	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	3040
21RVRC002	21RV0184A	63	64	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2410
21RVRC002	21RV0252A	128	129	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.14	2790
21RVRC002	21RV0253A	129	130	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	1350
21RVRC002	21RV0254A	130	131	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.13	2690
21RVRC002	21RV0255A	131	132	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.08	2560
21RVRC002	21RV0256A	132	133	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.01	2500
21RVRC002	21RV0257A	133	134	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.16	3250
21RVRC002	21RV0258A	134	135	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.09	2460
21RVRC002	21RV0259A	135	136	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	1.94	1440
21RVRC002	21RV0265A	140	141	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.04	2810
21RVRC002	21RV0266A	141	142	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	1770
21RVRC002	21RV0267A	142	143	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2150
21RVRC002	21RV0268A	143	144	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.07	3140
21RVRC002	21RV0269A	144	145	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	3010
21RVRC002	21RV0270A	145	146	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.78	3330
21RVRC002	21RV0271A	146	147	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	2490
21RVRC002	21RV0272A	147	148	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.36	1600
21RVRC002	21RV0282A	156	157	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2750

21RVRC002		157	158	1	CHIPS	Cone split	JTIP2203295	FA50 AAS	-0.01	2480
21RVRC002	21RV0284A	158	159	1	CHIPS	Cone split	JTIP2203295	FA50 AAS	-0.01	2560
21RVRC002	21RV0285A	159	160	1	CHIPS	Cone split	JTIP2203295	FA50 AAS	-0.01	1460
21RVRC002	21RV0290A	164	165	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.42	2610
21RVRC002	21RV0291A	165	166	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	1110
21RVRC002	21RV0292A	166	167	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.01	2200
21RVRC002	21RV0293A	167	168	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.01	2060
21RVRC002	21RV0294A	168	169	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.01	2200
21RVRC002	21RV0295A	169	170	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	2280
21RVRC002	21RV0296A	170	171	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.09	2340
21RVRC003	21RV0297A	0	1	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.07	900
21RVRC003	21RV0298A	1	2	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.13	1260
21RVRC003	21RV0299A	2	3	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.12	1280
21RVRC003	21RV0301A	3	4	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.08	1180
21RVRC003	21RV0323A	24	25	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.21	1370
21RVRC003	21RV0324A	25	26	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.05	1670
21RVRC003	21RV0325A	26	27	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.04	2130
21RVRC003	21RV0326A	27	28	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.06	1900
21RVRC003	21RV0394A	92	93	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.92	2990
21RVRC003	21RV0395A	93	94	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.34	1980
21RVRC003	21RV0396A	94	95	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.01	3310
21RVRC003	21RV0397A	95	96	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.01	1930
21RVRC006	21RV0475A	16	17	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	1490
21RVRC006	21RV0476A	17	18	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.51	1900
21RVRC006	21RV0477A	18	19	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.06	1160
21RVRC006	21RV0478A	19	20	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	1960
21RVRC006	21RV0479A	20	21	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.07	1880
21RVRC006	21RV0481A	21	22	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.22	1770
21RVRC006	21RV0482A	22	23	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.16	1650
21RVRC006	21RV0483A	23	24	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.14	1420
21RVRC006	21RV0484A	24	25	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.19	1280
21RVRC006	21RV0485A	25	26	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.78	1910
21RVRC006	21RV0486A	26	27	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.14	1520
21RVRC006	21RV0487A	27	28	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	1530
21RVRC006	21RV0488A	28	29	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.04	1790
21RVRC006	21RV0489A	29	30	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	1480
21RVRC006	21RV0490A	30	31	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.26	1740
21RVRC006	21RV0491A	31	32	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.61	1490
21RVRC006	21RV0492A	32	33	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.84	1110
21RVRC006	21RV0493A	33	34	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.23	1720
21RVRC006	21RV0494A	34	35	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.23	1400
21RVRC006	21RV0495A	35	36	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.25	1800
21RVRC006	21RV0501A	40	41	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.54	1870
21RVRC006	21RV0502A	41	42	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.19	1540
21RVRC006	21RV0503A	42	43	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.26	1970
21RVRC006	21RV0504A	43	44	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.07	1290
21RVRC006	21RV0505A	44	45	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.26	1570

21RVRC006	21RV0506A	45	46	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.24	1700
21RVRC006	21RV0507A	46	47	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.07	1990
21RVRC006	21RV0508A	47	48	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.1	1410
21RVRC006	21RV0509A	48	49	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.04	1470
21RVRC006	21RV0510A	49	50	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.1	1220
21RVRC006	21RV0511A	50	51	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.05	1280
21RVRC006	21RV0512A	51	52	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.58	1440
21RVRC010	21RV0734A	4	5	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	1700
21RVRC010	21RV0735A	5	6	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	800
21RVRC010	21RV0736A	6	7	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	770
21RVRC010	21RV0737A	7	8	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.26	1000
21RVRC011	21RV0822A	24	25	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	1500
21RVRC011	21RV0823A	25	26	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.01	1500
21RVRC011	21RV0824A	26	27	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	1710
21RVRC011	21RV0825A	27	28	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	1710
21RVRC012	21RV0896A	32	33	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	1870
21RVRC012	21RV0897A	33	34	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	1720
21RVRC012	21RV0898A	34	35	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	2690
21RVRC012	21RV0899A	35	36	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2360
21RVRC013	21RV0973A	36	37	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	2660
21RVRC013	21RV0974A	37	38	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2980
21RVRC013	21RV0975A	38	39	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.01	2180
21RVRC013	21RV0976A	39	40	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2210
21RVRC018	21RV1250A	8	9	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.06	1660
21RVRC018	21RV1251A	9	10	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	2100
21RVRC018	21RV1252A	10	11	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	2030
21RVRC018	21RV1253A	11	12	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	1770
21RVRC021	21RV1613A	96	97	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.07	2870
21RVRC021	21RV1614A	97	98	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.07	2940
21RVRC021	21RV1615A	98	99	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.25	2340
21RVRC022	21RV1667A	48	49	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2860
21RVRC022	21RV1668A	49	50	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.05	1750
21RVRC022	21RV1669A	50	51	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.04	2760
21RVRC022	21RV1670A	51	52	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2640
21RVRC022	21RV1671A	52	53	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	3060
21RVRC022	21RV1672A	53	54	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	1990
21RVRC022	21RV1673A	54	55	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	1520
21RVRC022	21RV1674A	55	56	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2710
21RVRC023	21RV1692A	3	4	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	1990
21RVRC023	21RV1693A	4	5	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2090
21RVRC023	21RV1694A	5	6	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	1780
21RVRC023	21RV1695A	6	7	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2030
21RVRC023	21RV1696A	7	8	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2150
21RVRC023	21RV1697A	8	9	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	1800
21RVRC023	21RV1698A	9	10	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	2060
21RVRC023	21RV1699A	10	11	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2020
21RVRC023	21RV1701A	11	12	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	2050

21RVRC027	21RV2007A	52	53	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	1480
21RVRC027	21RV2008A	53	54	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.03	1680
21RVRC027	21RV2009A	54	55	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	0.02	2490
21RVRC027	21RV2010A	55	56	1	CHIPS	Cone split	JTIP2203295	FA50_AAS	-0.01	3810

TSC JORC Code 2012 Edition Summary (Table 1) – Rover Gold RC Drilling December 2021

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	• Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Reverse circulation (RC) percussion drill chips collected through a cycloneand cone splitter at 1m intervals and placed in a corresponding pre-numbered bag
	• Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Splitter is cleaned regularly during drilling. Splitter is cleaned and levelled and the start of each hole.
	• Aspects of the determination of mineralisation that are Material to the Public Report.	 Mineralisation determined qualitatively through rock type, vein style and type, alteration, minerals present, sulphides present, weathering, colour, foliation, texture and grain size. Mineralisation determined quantitatively via assay (1m or 4m intervals) split and pulverised before using a 50g Fire assay with AAS for gold. Multi element results are still pending at the time of the announcement
	• In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrantdisclosure of detailed information.	 Reverse circulation drilling was used to obtain 1 m samples from which an average of 2.51kg was pulverised to produce a 50 g charge for fire assay'. RC samples pulverized to 75 μm
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• Drilling was completed using a Schramm T685 Truck mounted drill rig with an external booster, a 146-147mm diameter face sampling bit was used.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 RC drill chip recoveries recorded at the time of logging and stored in a database. Samples have also been weighted at the lab
	• Measures taken to maximise sample recovery and ensure representative nature of the samples.	 RC Drilling: sample splitter is cleaned at the end of each rod to ensure no sample contamination. Wet samples due to excess ground water were noted when present.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• There is no known relationship between sample recovery. Sample recovery was good for the entire drill program with the average sample weight being 2.51kg.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	• Holes logged to a level of detail to support future Mineral Resource Estimation.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Drill hole logging is qualitative.All RC holes are chipped and archived.
	• The total length and percentage of the relevant intersections logged.	All holes are logged for the entire length of hole.
Sub-sampling techniques	• If core, whether cut or sawn and whether quarter, half or all core taken.	• N/A
and sample preparation	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 RC drill utilised a cone splitter. Sample condition (wet, dry or damp) is recorded at the time of logging with all samples were recorded as being dry.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Industry standard practices were applied. The entire ~3kg RC sample is pulverized to 75µm (85% passing).
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 Blanks were inserted in to the sampling sequence at 20 bag intervals. All 1meter RC samples were sampled on a dual cone splitter with 1 calico on each side of the splitter and labeled bag "A" and bag "B". A 4m composite samples was taken on every 4 samples to reduce assay costs which were labeled with bag "C" If mineralisation >0.2g/t Au is identified within the "C" bag then the "A" bag will be sampled. Pulp duplicates taken at the pulverising stage and selective repeats conducted at the laboratories discretion.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	• Duplicate samples taken ever meter (bag "A" and bag "B") however no duplicate samples taken at the time of drilling. Internal lab dups are taken as standard
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample size appropriate for grain size of samples material.

Criteria	JORC Code explanation	Commentary
Quality of assay dataand laboratory	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• Fire assay with AAS finish by Jinning Perth was used, which and is a total digest technique.
tests	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical instruments used.
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Blanks are inserted in the field at approximately 1 ever 20 samples Lab pulp duplicates are taken on average 1 in every 20 samples. Accuracy and precision levels have been determined to be satisfactory after analysis of these QAQC samples.
Verification of Sampling and	• The verification of significant intersections by either independent or alternative company personnel.	All significant intercepts have been verified by the CP
assaying	The use of twinned holes.	No twinned holes were drilled during this drill program.
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Holes are digitally logged in the field and data is collected in auto validating excel spreadsheets. These sheets were loaded into an SQL Database and further validation steps were taken. The responsible geologist makes the DBA aware of any errors and/or omissions to the database and the corrections (if required) are corrected in the database immediately. Visual checks of data are completed within micromine software by company geologists.
	Discuss any adjustment to assay data.	 No adjustments or calibrations are made to any of the assay data recorded in the database.
Location of datapoints	• Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 All drill hole collars are picked up using accurate DGPS survey control by an outside contractor. All down hole surveys are collected using downhole gyro surveying techniques provided by the drilling contractors
	Specification of the grid system used.	Holes are located in MGA94 Zone 50.
	Quality and adequacy of topographic control.	• Estimated RLs were assigned during drilling and were corrected after the holes were picked up by the survey contractor.

Criteria	JORC Code explanation	Commentary
Data spacing anddistribution	Data spacing for reporting of Exploration Results.	Holes were drilled on a variable collar spacing.
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 At the current stage of exploration, drill spacing is suitable to give confidence in the position of mineralisation, however the area is not yet progressed to the point of Resource Estimation.
Data spacing and distribution	Whether sample compositing has been applied.	 Sample composites (4m) have been taken on ever hole. Where the 4m comps return >0.2g/t Au then the corresponding 1m splits will be sampled
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 The drilling is orientated orthogonal to the interpreted strike and dip of the mineralisation and is considered to give unbiased sampling.
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation bias is evident
Sample security	The measures taken to ensure sample security.	 All samples are selected and bagged in sequentially numbered calico bags and grouped into larger polyweave bags and cable tied. Polyweave bags are then placed into larger bulka bags with a sample submission sheet place inside and within the sample sleeve on the outside of the bulka bag and then tied shut. Company details and delivery address details are written on the side of the bag and were driven to either the Kalgoorlie or Perth labs by company personnel and a third sample submission sheet was emailed to the lab.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No external audits have been completed to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The tenement referred to in this release is E57/1085 is owned by TSC Exploration Pty Ltd, a wholly owned subsidiary of Twenty Seven Co. Limited. E57/1085 was granted on 12/12/2018 and consists of 70 blocks. Tenement E57/1120 was granted on 16/9/19 to Twenty Seven Co. Limited. Tenement E57/1134 is in application and owned by TSC Exploration Pty Ltd a wholly owned subsidiary of Twenty Seven Co. Limited
	• The security of the tenure held at the time of reporting along with anyknown impediments to obtaining a licence to operate in the area.	 Currently the tenements are in good standing. There are no known impediments to operate in the area.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Rover Project, WA – The historic tenure reports indicated that: Austminex NL held the historic tenement EL57/223, E7/224 E57/357 between 1996 and 1998. During that time the Bulga Downs Project consisted of; regolith mapping, laterite sampling, soil sampling, rock chip sampling, RAB drilling, aeromagnetics. Mindax limited held the historic tenement E29/534 between 20 November 2004 and 19 November 2008. During that time the Bulga Downs Project consisted of; soil sampling, airborne magnetic-radiometric, rock chip sampling and RC drilling. Mindax limited held the historic tenement E29/533 between 21 February 2005 and 15 November 2010. During that time the Bulga Downs Project consisted of; aeromagnetic survey, soil sampling, rock chip sampling and RC drilling. Mindax Limited held historic tenement E57/551 from 2003 to 2008. Work completed included soil and rock chip sampling, RAB / RC drilling. Cliffs Asia Pacific Iron Ore Pty Limited held the historic tenement E57/803-I between 31 May 2010 and 25th June 2014. During that time the Maynard Project consisted of; RC drilling, geological mapping and rock chip sampling tenements
Geology	• Deposit type, geological setting and style of mineralisation.	 The Rover Project is an Archean aged gold project with common host rocks including komatiite, mafic basalt and heavily sheared and talc altered ultramafics, as well as the quartz veins which host the mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for allMaterial drill holes: 	• Please refer to Table 1 which can be found in the main body of the text.

	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All current holes are addressed in Table 1.
Data aggregation methods	• In reporting Exploration Results, weighting averaging techniques, • maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No top-cuts have been applied when reporting results.
Criteria	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Length weighted averaging is used to determine intercept grades. Intercepts include all assays above 0.2 g/t with a maximum 3 meters included waste.
Data aggregation methods Relationship between	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalent values are used for reporting exploration results.
mineralisation widths and interceptlengths Diagrams	 These relationships are particularly important in the reporting of ExplorationResults. If the geometry of the mineralisation with respect to the drill hole angle isknown, its nature should be reported. If it is not known and only the down hole lengths are reported, there shouldbe a clear statement to this effect (eg 'down hole length, true width not known'). 	The exact geometry and thickness of the mineralisation is variable due to the nature of the deposit, however the deposit has a reasonably consistent dip around 355 degrees. Holes are close to perpendicular to the strike and at -60 dip would result in intercepts slightly longer than perpendicular/true thickness.
	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These shouldinclude, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to body of this announcement.

TWENTY SEVEN Co.
TSC

Bala	nced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.		All significant results are included in the tables
Othe explo	er substantive oration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical surveyresults; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	•	All meaningful and material information has been included in the body ofthe text. No metallurgical assessments have been completed at the date of thisreport.
Furti	her work	 The nature and scale of planned further work (eg tests for lateral extensionsor depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	•	Further work mainly comprises of further drilling programs. No details or diagrams are attached for this announcement.