

ASX ANNOUNCEMENT

16 May 2022 ASX Code: MYL

BOARD OF DIRECTORS

Mr Jeff Moore Non-Executive Chairman

Mr John Lamb Managing Director

Mr Rowan Caren Executive Director

Mr Paul Arndt Non-Executive Director

ISSUED CAPITAL

Shares190 m.Performance Rights5 m.Unlisted Options5 m.

Mallee Resources Limited

Suite 1, Ground Floor, 9 Havelock Street West Perth 6005 Western Australia

info@malleeresources.com.au P +61 (0)8 6147 8100 malleeresources.com.au

ABN: 48 124 943 728

Binding Agreement to Acquire a Highly Prospective Exploration Licence

Mallee Resources Limited ("MYL" or "the Company") is pleased to announce that it has entered into a binding agreement with Zebs Minerals Pty Ltd ("Zebs") and D&B Mining Pty Ltd, a wholly owned subsidiary of Zebs, Moina Gold Pty Ltd and Mr Geoffrey Summers (collectively "the Vendors"), to acquire the exploration licence EL5/2020 in western Tasmania near to the Avebury Nickel Project, a Sandvik LH517 mine loader and all the geological and mining data and information held by the Vendors in relation to both the Melba tenements and the Avebury Nickel Project ("the Agreement").

Consideration of A\$5.5 million will be payable to the Vendors, satisfied by the issuance of 13,095,238 fully paid ordinary shares. Shareholder approval for the issuance of the shares will be sought at the Company's forthcoming General Meeting.

The acquisition is subject to the securities of MYL being reinstated to trading on the official list of the ASX (after MYL re-complies with Chapters 1 and 2 of the ASX Listing Rules), any conditions to the effectuation of the Deed of Company Arrangement ("DOCA") being satisfied or waived and MYL shareholder approval, amongst other things. The DOCA contemplates MYL (through a wholly owned subsidiary) acquiring Allegiance Mining Pty Ltd (Subject to Deed of Company Arrangement) (Receivers and Managers Appointed) ("Allegiance") as announced on 11 March 2022, which wholly owns the Avebury Nickel Project.

Further details in respect of the Agreement are set out below.

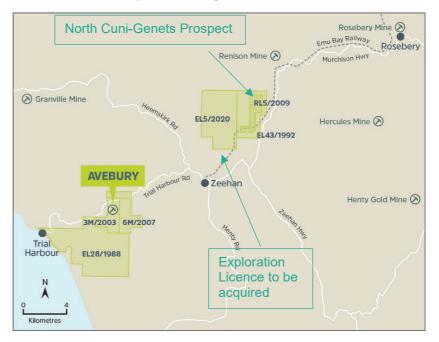


Figure 1. Map of Avebury Tenements and EL5/2020

John Lamb, Managing Director, commented:

"I am delighted with this transaction. Upon completion, MYL will more than double its ground-holding in the highly mineralised Melba Flats area, a region known for high grade mineralisation and small-scale historical mining, which is proximal to the Avebury Nickel Project owned by Allegiance. We will also secure our first underground mine loader for Avebury, which is already being utilised under a hire arrangement in mining operations on site, and important geological IP related to both Melba and Avebury."

Exploration Licence – EL5 /2020

EL5/2020 is a 14km² exploration license granted by Mineral Resources Tasmania on 12 June 2021 and has a five year term. EL5/2020 is located immediately to the west of EL43/1992 and RL5/2009, two licences held by Allegiance (part of the "Avebury Tenements"). The presence of nickel at the Melba Flats area has been known about for over 100 years. Some historic small-scale mining has taken place and additionally limited systematic nickel exploration has occurred.

No recent material exploration on EL5/2020 has been carried out.¹ Results of historical exploration at the North Cuni-Genets prospect located on Allegiance's Melba Flats licence RL5/2009, which is adjacent to EL5/2020, provide context to the prospectivity of EL5/2020. Data relating to North Cuni-Genets has been compiled from regional data from the Avebury database.

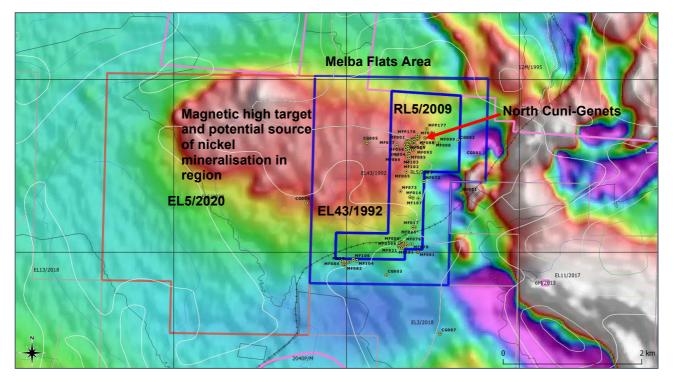


Figure 2. Map of Melba Flats Area with Regional Aeromagnetic Imagery

Nickel mineralisation at Melba Flats is typically disseminated through gabbro dykes within enclosing sediments. Unlike Avebury nickel-sulphides, nickel at Melba Flats is associated with copper, platinum-group-elements and gold.

¹ Based on a search of the Mineral Resources Tasmania website.

Notable historical drilling intercepts at the North Cuni-Genets prospect includes:

- Drillhole MF34 1.4m at 9.55% Ni, 3.9% Cu, 0.25 g/t Au, 0.32 g/t Pt, 0.44% Pd from 35.2m,
- Drillhole MF64 1.8m at 1.04% Ni, 5.4% Cu, 0.19 g/t Au, 0.38 g/t Pt, 0.73 g/t Pd from 8.8m and 1.3m at 1.01% Ni, 3.75 % Cu, 0.98 g/t Au, 0.97 g/t Pt, 1.21 g/t Pd from 11.8m, and
- Drillhole MF59 1m at 1.23 % Ni, 3.55% Cu, 0.75 g/t Au, 1.74 g/t Pt, 0.97 g/t Pd from 40.1m.

Historical drilling details at the North Cuni-Genets prospect, including mineralised intercepts can be found in Appendix 1 and 2. The North Cuni-Genets results are provided for context. No historical results are provided for EL5/2020.

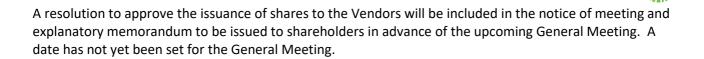
The different geochemical signature of the Melba Flats nickel-copper sulphide mineralisation suggests a potential primary magmatic sulphide origin of the metals, as opposed to the interpreted hydrothermal origin of the purely Ni-Co sulphide mineralisation of Avebury. If the Melba Flats mineralisation does have a magmatic origin, it would require a geological body of magmatic sulphide hosted in a larger intrusive mass close to the current Melba Flat sulphide occurrences at time of formation.

The Melba Flats area is underlain by the eastern portion of a significant magnetic-high. The magnetic high (red area covering the eastern portion of the Avebury Tenements extending west into EL5/2020 in Figure 2) could represent mafic-ultramafic complex (large intrusive mass), the ultimate source of the nickel sulphides discovered to date at the Melba Flats, and hence a high-priority exploration target.

The Vendors also hold geological models and other geoscience information related to the Avebury Nickel Project ("Mining Information"). In accordance with the terms of the Agreement, rights to this information will be assigned to MYL. Of particular interest are detailed studies and models based on the drilling completed by MMG Limited between 2009-2011. This analysis reinterprets the genesis of the Avebury deposit and will allow revised and more detailed geo-metallurgical domaining of the deposit.

Sandvik Loader

MYL will also acquire a Sandvik LH517 underground mine loader. This loader has a 15 tonne load capacity and is suitable for the size of the underground mine at Avebury.


Figure 3. Mine loader at Avebury

The underground mine loader which is currently on hire, together with other mining equipment at site, has allowed for a start to mining operations at Avebury.

Key Terms of the Agreement

Term	Details
Acquisition of Assets Consideration	 Exploration Licence EL5/2020. Underground mine loader. Mining and geological information. The purchase price for the assets is \$5.5 million, to be satisfied by an issue of
	13,095,238 fully paid ordinary shares in MYL. These shares may be subject to ASX escrow restrictions for a period of up to 24 months from the date of re-quotation of MYL's shares on ASX.
Conditions Precedent	 Completion of the transaction is conditional upon the satisfaction (or waiver by MYL) of the following conditions precedent: the securities of MYL being reinstated to trading on the official list of the ASX (after MYL re-complies with Chapters 1 and 2 of the ASX Listing Rules); any conditions to the effectuation of the DOCA being satisfied or waived; entry into a geological consulting agreement between MYL and Moina Gold Pty Ltd, an affiliate of Zebs; execution of a deed of release with each of Zeb Minerals and its principal, whereby these parties shall agree to settle and release any claims either may have or assert against Allegiance and its Related Entities on terms acceptable to MYL; MYL completing and being satisfied, in its sole discretion, with the outcome of due diligence investigations on the assets; the parties obtaining all necessary regulatory, shareholder and third-party approvals, consents or waivers that are required to give effect to the terms of the transaction; the parties obtaining all third party approvals and consents, including the consent of the Minister responsible for the Mineral Resources Development Act 1995 (Tas) (Mining Act) (if required), necessary to lawfully complete the matters set out in the Agreement; and there being no event occurring prior to the date of completion which materially and adversely affects the assets.
Completion	Completion of the transaction will occur on a date to be agreed between the parties, which must be no later than 60 days following after the satisfaction or waiver of the last of the conditions precedent.
Maintenance of Tenement	The Vendors are responsible for maintaining EL5/2020 in good standing until the Agreement completes.
Representations & Warranties	Customary representations for a transaction of this nature.
Exclusivity	A period of exclusivity will apply until the Agreement has completed or terminated.

Approved for release to the ASX by

and a

John Lamb

Managing Director

About Mallee Resources Limited

Mallee Resources Limited (ASX: MYL) is an explorer and mine developer listed on the Australian Securities Exchange. MYL aims to become a leading regional base metals producer. The Company is seeking to acquire 100% of the Avebury Nickel Project in Tasmania pursuant to the terms of a Deed of Company Arrangement.

COMPETENT PERSON STATEMENTS

The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code") sets out minimum standards, recommendations and guidelines for Public Reporting in Australasia of Exploration Results, Mineral Resources and Ore Reserves. The information in this announcement that relates to Exploration Results is based, and fairly reflects, information compiled by Mr Tony Chisnall, who is a member of the Australasian Institute of Mining and Metallurgy. Mr Chisnall has reviewed previous information, data and reports related to the historical drilling results at the Tenement being reported and considers that the information in this announcement. Mr Chisnall is a full-time employee of Mallee Resources Limited. Mr Chisnall has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in JORC Code. Mr Chisnall consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

Appendix 1: JORC Table 1

JORC Table 1 Section 1 – Sampling Techniques and Data

In relation to exploration results for North Cuni Genets unless otherwise noted

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	After logging, the core was sawn in half longitudinally, and half core was crushed, and all the crushed material was pulverized of assay. All crushed and pulverized samples not consumed by assay by the assay process were retrieved and were stored in Allegiance's Zeehan coreshed.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Core recovery at Melba Flats was a problem in early drilling, however triple-tube drilling was used from at least 2004 onwards and core recoveries in the gabbro and sulphide mineralisation were good. There was no systematic core loss in the mineralisation considered in historical resource estimates. There were some poor recoveries in weathered overburden but recoveries were close to 100% in gabbro and sulphide mineralisation.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. "RC drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay"). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The majority of drillholes post 2000 were by HQ triple-tube wireline drilling. After logging, the core was sawn in half longitudinally, half core was crushed and all of the crushed material was pulverized prior to assay. All crushed and pulverized samples not consumed by the assay process were retrieved and were stored in Allegiance's Zeehan coreshed.
Drilling techniques	Drill type (e.g. core, RC, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	HQ triple-tube diamond drilling
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	All drill logs describe rock-types and mineralisation intersected and are accompanied by core recoveries, assays and some petrological descriptions.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Drilling since at least 2004 included the used of triple tube, with core recovery near 100% in gabbro and mineralization.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no demonstrated relationship between sample recovery and grade. Core recoveries since at least 2004 have been described as good.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Drill core was logged by Michael V. McKeown of McKeown Mining Pty Ltd, a Fellow of the Australian Institute of Mining and Metallurgy, with more than five years of relevant experience in

Criteria	JORC Code explanation	Commentary
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	the estimation, assessment and evaluation of Mineral Resources of this style of mineralisation and type of deposit.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Hard copies of drill logs are kept at the Avebury Mine offices of Allegiance Metals as well as hard copy assay data as received from analytical laboratories.
		All drillhole data has been captured and digitally transferred to a centralized drillhole database also held at the Avebury mine site.
	The total length and percentage of the relevant intersections logged.	100% of intersections are geologically logged
Subsampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	The core was sawn in half longitudinally by diamond saw and one half taken for sampling.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All samples are core.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sampling technique was appropriate and completed to industry standard for sampling diamond core.
	Quality control procedures adopted for all subsampling stages to maximise representivity of samples.	Half core was crushed, and all the crushed material was pulverized for assay.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	No information on such measures is available.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All nickel assays were total nickel assays determined by ICP following an acid leach. All assays were performed by SGS, NATA registered laboratories; sample preparation was carried out in Burnie, and assays in Townsville.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysics tools were used.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	No information is available on quality control procedures.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Geological and sampling data has been reviewed and reported on by Independent Technical Experts.
	The use of twinned holes.	No dedicated twin drill holes were completed.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	No such documentation exists.
	Discuss any adjustment to assay data.	No adjustments or calibrations have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and	The co-ordinates of the collars and collar bearings of all drill holes by Allegiance were determined by theodolite traverse, most

Criteria	JORC Code explanation	Commentary
	other locations used in Mineral Resource estimation.	collars dips were also determined by theodolite traverse, a few by clinometer.
		Information regarding the method of downhole survey has not been located.
	Specification of the grid system used.	All co-ordinates of the drillholes are in AMG and RLs are actual heights above MSL.
	Quality and adequacy of topographic control.	All hole collar locations were surveyed by a licensed surveyor.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill hole spacing over known deposits and mineral occurrences is generally 25x25m or less.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No Mineral Resource Estimate is being reported.
	Whether sample compositing has been applied.	No compositing has been applied at the sampling stage.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Geological interpretation show that sulphide mineralisation is associated with gabbro sills within a sequence of volcaniclastics and siltstones. The sills are generally between 8 to 10m thick, with nickel-sulphides concentrated at the bottom of the sill. The gabbro sill swarm strikes more or less north-south and dips generally range from 30 to 60 degrees.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling orientation is not considered to have introduced any sampling bias.
Sample security	The measures taken to ensure sample security.	 Measures to provide sample security included: Core yard facility with security fence and well-maintained sampling sheds Further information on historical sampling protocols is unavailable.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No specific audits or reviews of sampling techniques employed at Melba Flats have been located.

JORC 2012 Table 1 Section 2 – Reporting of Exploration Results

Mineral	Type, reference name/number, location	For the Tenement being acquired details are as follows:										
tenement and land tenure	and ownership including agreements or material issues with third parties such as	Lease	Lease type	Expiry date	Holder	Status	Size	Description				
status	joint ventures, partnerships, overriding royalties, native title interests, historical	EL5/2020	Exploration	11 Jun 2026	D & B Mining Pty Ltd	Granted	14 km²					
	sites, wilderness or national park and environmental settings.		of the infor maps.thelis									
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenure of EL5/2020 is secure and there are no known impediments to obtaining a licence to operate.										
Exploration done by other	Acknowledgment and appraisal of exploration by other parties.							f Australia's nickel Melba Flats.				
parties		The North Cuni – Genet's area was drilled in the past by former lease and licence holders, including EZ Exploration, Eagle Metals and CRA Exploration (CRAE), and the Tasmania Department of Mines.										

		Allegiance Mining has carried out mineral exploration over the Melba Flats licence areas since the early 2000's.						
Geology	Deposit type, geological setting and style of mineralisation.	At Melba Flats several Cambrian gabbro sills occur within a sequence of volcanoclastics and siltstones of the Cambrian Crimson Creek Formation or a coeval equivalent. Nickel sulphide mineralisation occurs spatially, but not necessarily genetically, associated with gabbro sills.						
		The sills range up to 15 metres or so in true thickness and are generally 8 to 10 metres thick. The sill swarm strikes north-south although the sills at the know northern and southern ends of the field swing away from this strike; dips generally range from 30 to 60 degrees. The sills are offset by small faults, probably Tabberabberan in origin, which are a common feature of the geological structure in Zeehan to Renison Bell area.						
		Three sills are identified at North Cuni and Genet's and are numbered from the top sill, G6, to the bottom sill, G8. Significant nickel sulphide mineralisation has been identified in G7 only. Where present, sulphide mineralisation occurs from disseminated to massive sulphide in the lower part of the G7 gabbro and the massive sulphide tends to occur on, or nearby, the footwall of the gabbro.						
		The sulphide mineral assemblage is usually simple: penlandite, chalcopyrite and pyrite. Almost everywhere, arsenopyrite is below detection levels except where associated with sphalerite and galena in quartz-dolomite veins which are rarely transecting the gabbros.						
		Massive sulphides carry elevated Pt, Pd and Au. Arsenic levels are low, typically less than 500ppm.						
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – Elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Downhole length and interception depth Hole length. 	Information in relation to the North Cuni-Gents drilling is provided in Appendix 2. Based on a search of the website of Mineral Resources Tasmania no recent material exploration activities have been undertaken on EL5/2020.						
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Not applicable – drillhole information has been provided.						
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No weighting averaging techniques, maximum and/or minimum grade truncations have been used.						
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No aggregation of assay results has been used.						

	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are reported.							
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Only intercept lengths are being reported.							
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	No mineralization widths are being reported.							
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. "downhole length, true width not known").	The reported results are downhole lengths, and no true widths are reported.							
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	No significant discovery is being reported. The drill hole intercepts are reported based on historical data, previously published by Allegiance in October 2004.							
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The remaining historical drill intercepts can be compared to surrounding results at the North Cuni-Genets Prospect at Melba Flats to provide context.							
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Apart from drilling data other data at the North Cuni-Genets Prospect includes historical, geophysical and geochemical survey results. These are in the process of being collated and assessed to ascertain their coverage and quality in determining additional drill targets in the area.							
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Future work at Melba Flats is planned, which will include building a comprehensive geological model, based on existing data, information and interpretations, and supported by focused geological, geochemical and geophysical investigations to define future drill targets.							
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	available.							

Appendix 2 – Drilling data

Table 1 North Cuni-Genets Prospect Collar Details, GDA94 and drillhole intercept assay results

Hole ID	EAST GDA94	NORTH_GDA94	RL	Azimuth_TrueNorth	Dip	Max Depth (m)	Year Drilled	Depth From	Depth To	Interval	Ni %	Cu %	Co ppm	Au ppm	Pt ppm	Pd ppm	
DD03	366547	5367987	201.6	327	-45	32.6	1930	0	32.6	32.6	No Assay Res	ults					
DD04	366544	5367954	210	322	-45	47.5	1930	0	47.5	47.5	No Assay Res	No Assay Results					
DD09	366566	5367911	210	317	-65	105.5	1939	0	105.5	105.5	No Assay Res	No Assay Results					
EM1	366464	5367930	207	341	-45	36.6	1953	21.3	24	2.7	1.72	0.1					
EM2	366464	5367932	207	280	-50	36.6	1953	20.1	21.3	1.2	0.5	0.7					
EM2								24	24.6	0.6	1	0.7					
EM3	366451	5367836	207	280	-45	36.6	1953	21.3	25.9	4.6	1.1	0.82					
EM4	366472	5367770	205	280	-45	42.7	1953	30.1	31	0.9	0	0					
EM4								35.9	36.5	0.6	0.1	2					
EM4								36.5	36.8	0.3	0.9	0.7					
EM5	366508	5367769	206	280	-45	19.8	1953	0	19.8	19.8	No Assay Res	ults			-		
M8	366531	5367965	209	322	-50	34.4	1956	20.7	26.7	6	0.02	0.008	47				
M8								27.1	28.7	1.6	0.8	1.02					
M9C	366566	5367912	210	317	-65	105.5	1939	0	105.5	105.5	No Assay Res	ults					
M9G	366539	5367930	209	323	-55	86.9	1956	71.1	83.5	12.4	No Significant	Assays					
MF01	366549.2	5367954	210	320	-45	62.3	1994	26.15	45.7	19.55	No Significant	Assays					
MF01								45.7	46.2	0.5	0.58	0.6898	168	0.189	0.246	0.309	
MF01								46.2	46.8	0.6	0.35	0.5173	118	0.182	0.189	0.212	
MF01								46.8	47.75	0.95	0.11	0.204	82				
MF01								47.75	48.5	0.75	0.24	0.3134	107				
MF01								48.5	49.2	0.7	9.3	4.5	1331	0.83	0.846	1.4	
MF01								49.2	62.25	13.05	No Significant	Assays			-		
MF02	366549.6	5367953.5	210	320	-60	115.5	1994	15.55	115.5	99.95	No Significant	Assays					
MF03	366452	5367883	207	300	-45	82.5	1994	18.4	24.6	6.2	No Significant	Assays					
MF03								24.6	25.1	0.5	7.71	2.91	1154	1.13	1.06	1.14	
MF03								25.1	77.1	52	No Significant	Assays					
MF04	366472	5367843	210	270	-45	75	1994	28	36.9	8.9	No Significant	Assays					
MF04								36.9	37.75	0.85	0.47	0.4832	135	0.14	0.184	0.236	
MF04								37.75	38.55	0.8	7.75	10.3	715	1.94	1.22	1.56	
MF04								38.55	68.9	30.35	No Significant Assays						
MF05	366502	5367633	200	270	-45	82.2	1994	9.2	73.65	64.45	No Significant Assays						
MF05								73.65	75.6	1.95	0.44	0.6323	111	0.222	0.24	0.3	
MF05								75.6	82.2	6.6	No Significant Assays						
MF10	366557	5367783	210	265	-50	249.5	1998	58	249.5	191.5	No Significant Assays						

MF100	366818.3	5368022.8	215	0	-90	307	2008	179.6	208	28.4	No Significant	Accove					
MF100	366817.2	5368023.7	216.8	305	-53	276.5	2008	126	182	56	No Significant	,					
MF101	366479.61	5367543	207.9	267.5	-61	151	2008	120	121.2	104.2	No Significant Assays						
MF102	366477	5367633	208	270	-60	160	2008	54.9	64.85	9.95	No Significant Assays						
MF27	366466.6	5367797.5	205.4	292	-47	86.5	2004	27.9	39.6	11.7		No Significant Assays					
MF28	366578.7	5367994.8	208.4	325	-46	96.6	2004	20.6	24.5	3.9	No Significant						
MF29	366563.6	5367997.6	207.9	317	-46	61.2	2004	21.6	22.6	1	0.32	0.223	145	0.01	0.04	0.06	
MF29								24.5	25.3	0.8	0.65	0.572	195	0.11	0.14	0.2	
MF29								25.3	25.6	0.3	5.85	9.15	1670	0.7	1.26	1.79	
MF29								25.6	26.25	0.65	0.54	0.449	180	0.06	0.13	0.16	
MF29								26.25	26.9	0.65	0.08	0.069	89	0.01	0.01	0.01	
MF30	366564.5	5367973.4	208.8	325	-45	60.5	2004	35.9	45.75	9.85	No Significant	Assays	-	•		•	
MF31	366542.9	5367975	210.2	325	-45	45.4	2004	20.2	30.3	10.1	No Significant	Assays					
MF32	366538.2	5367951.2	208.8	328	-45	50.3	2004	29.8	37.8	8	No Significant	Assays					
MF32								36.8	37.8	1	0.14	0.179	94	0.03	0.03	0.04	
MF32								37.8	38.8	1	0.55	0.666	155	0.12	0.15	0.2	
MF32								38.8	39.8	1	0.77	1.32	185	0.26	0.3	0.37	
MF32								39.8	40.8	1	0.45	0.692	135	0.09	0.11	0.15	
MF32								40.8	41.55	0.75	0.32	0.631	125	0.27	0.59	0.55	
MF32								41.55	42.3	0.75	9.2	4.55	1710	0.92	0.9	1.55	
MF32								42.3	43.3	1	No Significant	Assays					
MF33	366538.6	5367950.9	208.8	323.9	-60	76	2004	34.8	45.8	11	No Significant	Assays					
MF34	366522.3	5367953.9	208.7	323	-43	48	2004	22.3	31.3	9	No Significant	Assays					
MF34								23.3	24.3	1	0.04	0.0235	72	0.01	0	0	
MF34								31.3	32.8	1.5	0.65	1.31	170	0.38	0.37	0.43	
MF34								32.8	33.8	1	0.43	0.649	125	0.17	0.16	0.18	
MF34								33.8	34.6	0.8	0.71	0.537	175	0.09	0.11	0.14	
MF34								34.6	35.2	0.6	3.6	3	730	0.24	0.28	0.55	
MF34								35.2	36.6	1.4	9.55	3.9	1830	0.25	0.32	0.44	
MF34								36.6	37.6	1	0.04	0.0175	54	0.02	0.01	0.01	
MF35	366519.1	5367940.5	208.3	324.3	-44	112.5	2004	30.7	104.6	73.9	No Significant	Assays					
MF36	366498.7	5367946.9	207.7	328.3	-45	48.7	2004	20.2	25.6	5.4	No Significant	Assays					
MF36					+		ļ	25.6	26.6	1	0.58	1.39	150	0.51	0.39	0.43	
MF36								26.6	27.6	1	0.58	1.34	145	0.45	0.37	0.43	
MF36								27.6	28.6	1	0.37	0.471	140	0.14	0.12	0.15	
MF36					$ \rightarrow $		ļ	28.6	28.8	0.2	9.15	1.02	1710	0.2	0.63	1	
MF36								28.8	29.8	1	0.1 0.0555 68 0.01 0.01 0.01					0.01	

MF37	366499.2	5367946.2	207.7	328.8	-65	36.9	2004	No Significant As	savs			•				
MF37								0.82	1.18	220						
MF37								0.06	0.124	70						
MF38	366523.5	5367969.5	210.2	323	-44	26	2004	14.5	17.5	3	No Significant	Assays		•		
MF38								17.5	18.9	1.4	0.17	0.186	86	0.01	0.05	0.07
MF38								18.9	19.7	0.8	11.5	4.35	1760	1.23	0.95	3.2
MF38								19.7	20.7	1	0.07	0.071	58	0.02	0.01	0.02
MF39	366512.1	5367966.5	209.8	322	-45	24	2004	10	14	4	No Significant	Assays		•	•	
MF39								14	15	1	0.52	1.07	165	0.37	0.35	0.42
MF39								15	15.8	0.8	0.56	0.504	170	0.12	0.12	0.16
MF39								15.8	16.1	0.3	9.75	7.75	1450	0.45	0.5	0.37
MF39								16.1	16.9	0.8	0.57	1.09	195	0.09	0.09	0.13
MF39								16.9	17.9	1	0.06	0.0815	62	0.01	0	0.01
MF40	366479.3	5367948.9	207.1	327	-42	83.3	2004	7	12.5	5.5	No Significant	Assays				
MF40								12.5	13.5	1	0.49	0.362	165			
MF40								13.5	14.5	1	0.39	0.256	160			
MF40								14.5	16	1.5	0.43	0.513	150			
MF40								16	16.5	0.5	0.24	0.196	320			
MF40								16.5	77	60.5	No Significant	Assays				
MF41	366475.2	5367934.3	207	326	-42	37	2004	14.9	21	6.1	No Significant	Assays	•			
MF41								21	22	1	0.49	0.489	155			
MF41								22	23	1	0.97	0.882	275			
MF41								23	23.7	0.7	0.95	0.784	285			
MF41								23.7	24.7	1	0.03	0.0096	78			
MF42	366596.8	5368003.7	208.5	319	-49	64.9	2004	3	37.9	34.9	No Significant	Assays		•	•	
MF42								37.9	38.9	1	0.88	0.645	270			
MF42								38.9	39.9	1	0.71	0.58	290			
MF42								39.9	40.9	1	0.81	0.59	265			
MF42								40.9	41.8	0.9	0.79	0.603	245			
MF42								41.8	42.8	1	0.06	0.044	97			
MF43	366597.5	5368002.7	208.8	331	-68	67.5	2004	37.9	38.9	1	0.01	0.0205	74			
MF43								38.9	39.6	0.7	0.03	3.15	200			
MF43								39.6	41.9	2.3	No Significant	Assays				
MF44	366582.4	5368007.8	208	322	-44	40.9	2004	20.3	27.3	7	No Significant	Assays		•	1	
MF44								27.3	28.3	1	0.68	0.536	225			
MF44								28.3	29.3	1	0.65	0.532	210			
MF44								29.3	31	1.7	0.8	0.637	235			
MF44								31	35.3	4.3	No Significant	Assays				

MF45	366543.2	5367972.7	210.1	321	-70	54.6	2004	26.1	35.3	9.2	No Significant Assays					
MF45								34.3	35.3	1	0.41	0.429	160			
MF45								35.3	36.3	1	0.6	0.438	205			
MF45								36.3	37.3	1	0.17	0.295	120			
MF45								37.3	38.8	1.5	0.37	0.738	140			
MF45								38.8	39.8	1	0.04	0.05	96			
MF46	366543.6	5367972.4	210.2	312	-84	55	2004	33.8	44.9	11.1	No Significant	Assays		•		
MF47	366564.8	5367973.8	208.8	319	-62	56.5	2004	39.5	45.6	6.1	No Significant	Assays				
MF47								45.6	46.6	1	0.79	0.524	230			
MF47								46.6	47.6	1	0.43	0.228	165			
MF47								47.6	50.2	2.6	No Significant	Assays				
MF48	366565.1	5367973.5	208.7	317	-78	78	2004	46.8	51.1	4.3	No Significant	Assays				
MF49	366522.8	5367954.7	208.5	325	-61	46.5	2004	25.3	37.1	11.8	No Significant	Assays				
MF51	366451.6	5367921.7	206.6	324	-43	56	2004	41.8	53.85	12.05	No Significant	Assays				
MF52	366483.3	5367849.3	211.3	297	-39	93.4	2004	29.9	35.2	5.3	No Significant	Assays				
MF52								35.2	36.2	1	0.75	0.81	390			
MF52								36.2	37.2	1	1.17	0.941	330			
MF52								37.2	38.2	1	0.93	0.782	275			
MF52								38.2	39.2	1	0.26	0.581	115			
MF52								39.2	72.9	33.7	No Significant	Assays				
MF54	366483.2	5367883.5	208.6	323	-45	92	2004	68.85	84.7	15.85	No Significant	Assays				
MF55	366457.9	5367855.9	210.5	284	-43	58	2004	13.4	18.4	5	No Significant	Assays				
MF55								18.4	19.4	1	0.2	0.133	120			
MF55								19.4	20.8	1.4	0.86	2.4	220			
MF55								20.8	53.6	32.8	No Significant	Assays				
MF56	366446.9	5367867	210.8	282	-44	63.5	2004	7	8	1	0.06	0.168	45			
MF56								8	9	1	0.32	0.638	205			
MF56								9	10	1	0.3	0.654	285			
MF56								10	11.2	1.2	0.42	1.04	150			
MF56								11.2	52.2	41	No Significant	Assays				
MF57	366455	5367888.9	208.7	300	-39	72.2	2004	20.9	23.7	2.8	No Significant	Assays				
MF57								23.7	24.6	0.9	0.27	0.533	100	0.12	0.12	0.15
MF57								24.6	64.6	40	No Significant	Assays	-	-		
MF58	366471.9	5367816.5	208.5	297	-46	80	2004	30.6	36.3	5.7	No Significant	Assays				
MF58								36.3	37.6	1.3	0.27	0.373	124	0.06	0.07	0.09
MF58								37.6	38.2	0.6	2.36	5.28	420	1.08	1.4	1.97
MF58								38.2	39	0.8	0.83	1.5	220	0.2	0.17	0.2
MF58								39	39.8	0.8	10.5	4.6	2023	0.64	1.31	1.45
MF58								39.8	62.35	22.55	No Significant	Assays				

MF59	366472.6	5367816.2	208.7	292	-59	50.5	2004	33.7	37.1	3.4	No Significant	Assays				
MF59								37.1	38.1	1	0.73	0.555	235	0.05	0.11	0.13
MF59								38.1	39.1	1	1.12	0.855	300	0.08	0.16	0.21
MF59								39.1	40.1	1	1.23	1.74	250	0.38	0.56	0.66
MF59								40.1	41.1	1	1.23	3.55	315	0.75	1.74	0.97
MF59								41.1	42.7	1.6	0.35	0.622	130	0.07	0.13	0.16
MF59								42.7	43.1	0.4	12.4	7.35	1760	0	0	0
MF59								43.1	44.1	1	0.12	0.087	71	0.52	1.4	0.96
MF60	366473	5367816	208.8	293	-75	64.5	2004	39.9	45	5.1	No Significant	Assays				
MF60								45	46	1	0.25	0.164	125			
MF60								46	47	1	0.97	0.787	286			
MF60								47	48	1	1.14	1.03	290			
MF60								48	49	1	0.74	0.68	220			
MF60								49	51.4	2.4	No Significant	Assays				
MF61	366454.1	5367832	206.6	298	-48	32	2004	11.1	18.6	7.5	No Significant	Assays				
MF61								18.6	19.6	1	0.96	1.38	205	0.01	0.02	0.02
MF61								19.6	20.6	1	0.83	0.726	235	0.24	0.35	0.45
MF61								20.6	21.9	1.3	0.93	0.898	235	0.07	0.12	0.16
MF61								21.9	22.3	0.4	1.37	15.8	460	0.19	0.28	0.38
MF61								22.3	23.6	1.3	0.04	0.0705	67	0.31	0.47	0.64
MF61								23.6	24.6	1	0.03	0.0775	62	0.03	0.01	0.01
MF62	366483.9	5367849.2	211.7	297	-79	70.5	2004	48.25	53.4	5.15	No Significant	Assays				
MF62								53.4	53.9	0.5	0.33	0.215	170	0.01	0.04	0.06
MF62								53.9	55.5	1.6	0.75	0.549	235	0.05	0.1	0.14
MF62								55.5	56.5	1	0.02	0.0135	66	0.02	0	0
MF63	366483.5	5367849.5	211.2	292	-65	57	2004	36.5	41.3	4.8	No Significant	Assays				
MF63								41.3	42.3	1	0.49	0.356	215	0.08	0.08	0.09
MF63								42.3	43.3	1	0.98	0.751	280	0.15	0.17	0.23
MF63								43.3	44.3	1	0.95	0.681	280	0.2	0.13	0.18
MF63								44.3	45.4	1.1	0.51	0.523	165	0.12	0.12	0.14
MF63								45.4	49	3.6	No Significant	Assays				
MF64	366444.9	5367813.6	204.9	0	-90	20.5	2004	8	8.8	0.8	0.04	0.0615	24	0.06	0.05	0.13
MF64								8.8	10.6	1.8	1.04	5.4	305	0.19	0.38	0.73
MF64								10.6	11.8	1.2	0.64	3.7	210	0.23	0.34	0.65
MF64								11.8	13.1	1.3	1.01	3.75	485	0.98	0.97	1.21
MF64								13.1	14.1	1	1.06	1.65	300	0.43	0.47	0.6
MF64								14.1	14.7	0.6	1.16	1.33	350	0.13	0.21	0.35
MF64								14.7	15.5	0.8	1.27	0.942	345	0.14	0.18	0.25
MF64	_							15.5	16.1	0.6	3.05	2.6	970	0.36	0.45	0.81
MF64								16.1	17.2	1.1	0.1	0.0505	135	0.01	0.01	0.01

MF66	366322.2	5367678.9	208.8	272	-49	299.5	2006	182.7	197.5	14.8	No Significant Assays						
MF66								226	234	8	No Significant Assays						
MF67	366318.8	5367867.1	204.6	267	-51	256	2006	27.2	103.4	76.2	No Significant			r	1	1	
MF68	366440.9	5367877.3	210.7	326	-50	261	2006	0	210.7	210.7	No Significant						
MF69	366441.3	5367876.6	210.7	326	-70	332.8	2006	1	208.4	207.4	No Significant	Assays					
MF70	366572.2	5367985.6	208.4	319	-51	321	2006	2	209	207	No Significant	Assays					
MF71	366636.4	5368038.9	209	324	-50	265	2006	3	214.203	211.203	No Significant	Assays					
MF74	366539.9	5367825.2	214.203	300	-70	452	2006	4	209.3	205.3	No Significant	Assays					
MF87	366620	5367999	209.3	147.41	-50	212.6	2007	0	116	116	No Significant Assays						
MF87								116	116.25	0.25	0.67	0.5067		0.11	-0.01	-0.01	
MF87								116.25	117	0.75	0.47	0.3457		0.07	-0.01	-0.01	
MF87								117	118.2	1.2	0.34	0.2476		0.07	-0.01	-0.01	
MF87								117	123.6	6.6	No Significant	Assays					
MF87								123.6	123.7	0.1	0.26	0.2024		-0.01	-0.01	-0.01	
MF87								123.7	124.6	0.9	0.13	0.103		-0.01	-0.01	-0.01	
MF87								124.6	125.9	1.3	0.25	0.1786		0.03	-0.01	-0.01	
MF87								125.9	127	1.1	0.15	0.0949		0.02	-0.01	-0.01	
MF87								127	212.6	85.6	No Significant Assays						
MF88	366621	5367998	209.3	0	-90	268	2007	18	71.9	53.9	No Significant Assays						
MF88								71.9	73.6	1.7	0.43	0.2309					
MF88								73.6	75	1.4	0.12	0.0804		0.05	-0.01	-0.01	
MF88								75	76	1	0.63	0.4738		0.01	-0.01	-0.01	
MF88								76	77	1	0.69	0.5403		0.09	-0.01	-0.01	
MF88								77	78	1	0.78	0.6309		0.1	-0.01	-0.01	
MF88								78	79	1	1.15	0.9017		0.13	-0.01	-0.01	
MF88								79	80.1	1.1		0.8048		0.16	-0.01	-0.01	
MF88								80.1	170	89.9	No Significant	No Significant Assays					
MF89	366608	5367862	211.2	322.05	-56	427	2008	50	95.7	45.7	No Significant						
MF89								95.7	97	1.3	0.68	0.5899		0.11	-0.01	-0.01	
MF89							1	97	98	1	0.94	0.7351		0.13	-0.01	-0.01	
MF89								98	98.9	0.9	0.58	0.5022		0.11	-0.01	-0.01	
MF93	366667.6	5367826.1	212.9		-65	499	2008	130	138.8	8.8	No Significant						
MF93								151.1	152	0.9	0.66	0.5191			0	0	
MF93							1	152	153	1	0.42	0.3241			0	0	
MF93								153	154	1	0.73	0.5727			0	0	
MF93								153	155	1	1.71	1.1328			0	0	
MF93								155	155.8	0.8	0.6	0.5833			0	0	
MF93		<u> </u>						155.8	157	1.2	0.16	0.1093			0	0	
MF93 MF93							1	155.8	157	1.2	0.16	0.0385			0	0	
MF93 MF93								157	159.4	1.4	0.7	0.0385			0	0	
MF93 MF93								158	381.9					ļ	U	U	
MF93		ļ	ļ				ļ	159.4	381.9	222.5	No Significant	Assays	-	-	-		

					<u> </u>		1			1	1	1		r				
MF94	366684.3	5367919	213.4	0	-90	300	2008	140.8	142	1.2	0.39	0.2808		0	0	0		
MF94								142	143	1	0.78	0.5837		0	0	0		
MF94								143	144	1	0.76	0.5884		0	0	0		
MF94								144	145	1	1.69	1.05		0	0	0		
MF94								145	146	1	1.85	1.17		0	0	0		
MF94								146	147	1	0.83	0.625		0	0	0		
MF94								147	148	1	0.33	0.2589		0	0	0		
MF94								148	247.1	99.1	No Significant	No Significant Assays						
MF95	366722.8	5368017.5	212.9	0	-90	293.5	2008	122.9	124	1.1	1.3	0.8918		0	0	0		
MF95								124	125	1	1.47	0.9964		0	0	0		
MF95								125	126.1	1.1	0.64	0.5274		0	0	0		
MF95								126.1	127	0.9	0.12	0.1858		0	0	0		
MF95								127	226.3	99.3	No Significant	Assays						
MF96	366722	5368017	213		-50	256	2008	99	100	1	0.12	0.0694		0	0	0		
MF96								100	101	1	1.5	1.15		0	0	0		
MF96								101	101.9	0.9	0.47	0.4085		0	0	0		
MF96								101.9	181.1	79.2	No Significant	No Significant Assays						
MF97	366705.4	5367855.5	214.1	0	-90	336.2	2008	174	210	36	No Significant Assays							
MF97								210	211	1	0.64	0.018	180	0	0	0		
MF97								211	212	1	0.33	0.6614	120	0	0	0		
MF97								212	213	1	1.15	0.9746	260	0	0	0		
MF97								213	214	1	1.53	0.7667	300	0	0	0		
MF97								214	215	1	0.63	0.9971	140	0	0	0		
MF97								215	216	1	0.43	0.5436	120	0	0	0		
MF97								216	297	81	No Significant	Assays						
MF98	366850.9	5367935.6	215	0	-90	403	2008	228	385	157	No Significant							
MF99	366919.6	5367925.2	215.7	0	-90	524	2008	412.6	432	19.4	No Significant							
MF99								495	496	1	0.2	0.0882	100	0	0	0		
MF99								496	497	1	0.16	0.0715	80	0	0	0		
MF99								497	498	1	0.21	0.0974	100	0	0	0		
MFP109	366501	5367785	205	270	-65	134.4	1965	65.7	66.3	0.6	0.14	0.3						
MFP109								66.3	67.1	0.8	0.05	0.25						
MFP109							İ	67.1	68	0.9	0.07	0.45						
MFP109								68	68.7	0.7	0.12	0.2						
MFP109								68.7	70	1.3	0	0.25						
MFP109								70	72.8	2.8	0.44	0.4						
MFP109								72.8	75	2.2	0.4	0.55						
MFP109								75	75.9	0.9	0.13	0.25						
MIT 103							L	15	15.5	0.0	0.15	0.20			1	1		

MFP111	366561	5367966	198	322	-45	141.7	1965	42.7	43.3	0.6		0.2					
MFP111								43.3	43.9	0.6		0.45					
MFP111								43.9	44.5	0.6		0.83					
MFP126	366507	5367935	209	321	-40	39.9	1968	33.5	34.1	0.6	0.63	1.72					
MFP126								34.1	34.7	0.6	0.61	0.92					
MFP126								34.7	36.6	1.9	0.11	0.18					
MFP127	366524	5367915	197	321	-50	121.9	1968	85.3	86.9	1.6	0.17	0.02					
MFP127								86.9	88.4	1.5	0.18	0.03					
MFP127								88.4	89.9	1.5	0.24	0.04					
MFP127								89.9	91.4	1.5	0.2	0.03					
MFP128	366595	5367997	209	312	-30	50.9	1968	39.6	41.7	2.1	0.22	0.08					
MFP128								41.7	42.4	0.7	0.34	0.18					
MFP128								42.4	43	0.6	0.96	0.48					
MFP128								43	43.6	0.6	1.14	0.52					
MFP128								43.6	44.2	0.6	0.9	0.41					
MFP128								44.2	44.8	0.6	0.9	0.37					
MFP128								44.8	45.7	0.9	1.08	0.5					
MFP130	366524	5367915	197	153.5	-48	98.8	1968	76.2	91.3	15.1	No Significant	Assays		•			
MFP131	366481	5367871	198	274	-30	88.9	1968	0	88.9	88.9	No Assay Res	ults					
MFP132	366476	5367830	207	274	-60	69.5	1968	46.9	48.5	1.6	0.44	0.48					
MFP132								48.5	50	1.5	0.4	0.6					
MFP173	366595	5368037	199	322	-45	29.3	1973	11.6	13.1	1.5	0.08	0.02					
MFP173								15.8	17.1	1.3	0.82	0.61					
MFP173								17.1	18	0.9	0.99	0.74					
MFP173								18	18.6	0.6	1.09	1.1					
MFP174	366611	5368024	208	322	-45	39	1973	0	39	39	No Assay Results						
MFP176	366611	5368064	208	322	-45	59.7	1973	1	59.7	58.7	No Assay Results						
MFX10	366557	5367783	210	265	-50	249.5	1998	2	249.5	247.5	No Assay Results						