

23 May 2022

# **Kingwest Resources Ltd**

**ASX: KWR** 

**Shares on Issue** 242,973,025

**Directors & Management** 

**Chairman**Gregory Bittar

**CEO** Ed Turner

**Non Executive Directors** Jonathan Downes Ashok Parekh

Company Secretary Stephen Brockhurst

Principal Place of Business
Unit 3, Churchill Court
335 Hay Street
Subiaco WA 6008

Registered Office Level 11 216 St Georges Terrace Perth WA 6000

#### Contact

T 08 9481 0389

E <u>admin@kingwestresources.com.au</u>
W www.kingwestresources.com.au

**Investor Relations** 

Lucas Robinson

T +61 408 228 889

E <u>lucas@corporatestorytime.com</u>

Extensive Zones of Nickeliferous Ultramafic identified with Goongarrie Aircore Drilling

Sir Laurence diamond core drilling now making steady progress

# Highlights:

- Assays from the first pass aircore drilling of Kingwest's 11km of the nickel-fertile Highway Ultramafic at lake Goongarrie, along with some historic drilling, have identified two strike extensive zones of highly nickel anomalous ultramafic
- ➤ Drilling has extended the width of the Highway Ultramafic package to 500m over most of its length, which is twice its width in the original magnetic interpretation. Isoclinal folding and thrusting have created multiple repetitions of the nickel prospective contacts thus significantly increasing the number of potential nickel sulphide mineralised horizons
- The Northern Nickel Zone is 2,600m long and 100m wide, with peak values of 8m @ 0.5% Ni from 4m in KGA0873; 8m @ 0.5% Ni from 12m in KGA0906; and 8m @ 0.5% Ni from 12m in KGA0920
- The Southern Nickel Zone is 1,700m long and 100m wide, with peak values of 4m @ 0.4% Ni from 20m in 06BGSA0005 and 10m @ 0.4% Ni from 12m in 06BGSA0007<sup>1</sup>
- Diamond core drill testing of Sir Laurence Gold Discovery is now progressing as planned after some initial mechanical related delays
- Non-Executive Director Adrian Byass' announced intention to step off the Board has occurred

CEO, Ed Turner commented: "We are very pleased with the results of this first nickel sulphide exploration drilling programme at our Lake Goongarrie Project. They have confirmed the nickel fertility of the 11km of the Highway Ultramafic within our tenements, have significantly extended the width of our prospective ultramafic package, and crucially, have successfully

identified two high calibre shallow nickel sulphide exploration targets which we believe would warrant MLEM geophysical evaluation and potentially deeper RC drilling. These targets are located along strike from other Kambalda-type nickel sulphide deposits and present a compelling nickel exploration opportunity for Kingwest.

I am also happy to report that after some early, mainly mechanical interruptions, our diamond drill core testing of our Sir Laurence Gold Discovery we are now making good progress and we look forward to having initial results to report in the first half of June".

### **INTRODUCTION**

Kingwest commenced exploring an 11km strike length of the nickel fertile Highway Ultramafic within the E29/996 and E29/966 licences in early 2022. This section of the ultramafic is entirely covered by salt-lake sediments.

A total of 223 aircore holes (KGA0815 – KGA1033) were drilled for 7,788 metres early in 2022<sup>1</sup>. **All** assays have now been received.

Figure 1 shows all drill hole locations with maximum nickel intersections in each hole. Significant nickel intersections are included in Table 1. Full drill hole collar details are included in Table 2 (N.B. also reported on 21 March 2022).

The Highway Ultramafic location and significant nickel intersections are shown in more detail in Figures 2, 3 and 4.

#### **DISCUSSION OF RESULTS**

This initial aircore nickel drilling was a reconnaissance program of 15 widely spaced lines using 25-50m spaced partly overlapping angled holes. Some vertical holes were also drilled on Lines N7 and N9 due to the locally deep Tertiary alluvial channel cover in that area.

## The program was designed to:

- 1. Test the position and the lateral extent of the Highway Ultramafic as interpreted from Kingwest's recent high resolution aeromagnetic survey
- 2. Locate the exact position of its eastern and western contacts
- 3. To confirm the nickel fertility of the ultramafic at several points along its length
- 4. To identify the hanging wall and footwall contact lithologies
- 5. To test for signs of nickel mineralisation at komatiite flow boundaries and contacts and within the ultramafic package.

**Kingwest's Highway ultramafic package was confirmed to be continuous over its entire 11km strike length.** It was found to have an average width of about 500m, which was almost twice the width originally interpreted from a highly magnetic, eastern serpentinised komatiite unit. The additional width on the western side is a sequence of coarser grained dunite-peridotite and pyroxenitic ultramafics, which are far less serpentinised and therefore far less magnetic.

The Nickel fertility of Kingwest's 11km strike of the Highway Ultramafic has been clearly demonstrated by analytical results of numerous 4m composite intersections with +0.4% Ni accompanied by Ni/Cr ratios of greater than 1.

These intersections are all from within semi fresh to fresh rock and not Nickel laterite mineralisation.

The hanging wall, footwall and internal contact lithologies were identified as: graphitic, quartzitic and felsic metasediments; high grade metamorphic gneiss; amphibolitised metabasalts and dolerite. The footwall and intercalated metasediments within the ultramafic sequence are important, as they are required to provide a source of sulphur, from which to generate massive sulphide nickel deposits.

The potential for nickel mineralisation at depth is clearly demonstrated by the many intersections of +0.4% nickel, with Ni/Cr ratios of +1, in moderately weathered to fresh ultramafic. A maximum value of 4m @ 0.64% Ni from 8-12m with a Ni/Cr ration of 2.34 was intersected in KGA00873. The Northern Nickel Target is particularly encouraging, as it corresponds to a clearly defined magnetic feature, and returned broad intersections of +0.4% Ni on three successive reconnaissance aircore lines (N1S, N2 and N3S) over an average width of 100m and a strike length of 2,600m.

The nickel sulphide potential of both the Northern Nickel Target area and the Southern Nickel Target area is sufficiently high that Kingwest will consider next steps which may likely include a Moving Loop Electromagnetic (MLEM) Survey over these areas.

There remains a further 2.5km strike of largely untested Highway Ultramafic within the southern half of E29/966. Many holes there on Lines 7 and 8 failed to reach bedrock due to a deep alluvial channel. However, the ultramafic that was intersected also returned elevated nickel values, so this segment of the Highway Ultramafic also requires further investigation.

Table 1: Significant Aircore composite nickel intersections (minimum 4m @ 0.20 % Ni)

| Line     | Hole ID | Depth<br>From (m) | Depth To<br>(m) | Interval<br>(m) | Ni (%) | Description             |
|----------|---------|-------------------|-----------------|-----------------|--------|-------------------------|
| N3 South | KGA0873 | 4                 | 20              | 16              | 0.43   | 16m @ 0.43 % Ni from 4m |
| N3 South | Inc     | 4                 | 12              | 8               | 0.52   | 8m @ 0.52 % Ni from 4m  |
| N3 South | KGA0874 | 8                 | 34              | 26              | 0.34   | 26m @ 0.34 % Ni from 8m |
| N3 South | Inc     | 16                | 20              | 4               | 0.48   | 4m @ 0.48 % Ni from 16m |
| N3 South | Inc     | 24                | 32              | 8               | 0.42   | 8m @ 0.42 % Ni from 24m |
| N3 South | KGA0875 | 8                 | 12              | 4               | 0.22   | 4m @ 0.22 % Ni from 8m  |
| N3 South | KGA0875 | 28                | 32              | 4               | 0.24   | 4m @ 0.24 % Ni from 28m |
| N2       | KGA0900 | 4                 | 13              | 9               | 0.22   | 9m @ 0.22 % Ni from 4m  |
| N2       | KGA0901 | 20                | 28              | 8               | 0.28   | 8m @ 0.28 % Ni from 20m |
| N2       | KGA0902 | 4                 | 24              | 20              | 0.25   | 20m @ 0.25 % Ni from 4m |
| N2       | KGA0902 | 32                | 36              | 4               | 0.23   | 4m @ 0.23 % Ni from 32m |
| N2       | KGA0903 | 4                 | 15              | 11              | 0.33   | 11m @ 0.33 % Ni from 4m |
| N2       | KGA0904 | 8                 | 24              | 16              | 0.20   | 16m @ 0.20 % Ni from 8m |
| N2       | KGA0904 | 32                | 36              | 4               | 0.23   | 4m @ 0.23 % Ni from 32m |
| N2       | KGA0905 | 4                 | 9               | 5               | 0.33   | 5m @ 0.33 % Ni from 4m  |
| N2       | KGA0906 | 0                 | 24              | 24              | 0.29   | 24m @ 0.29 % Ni from 0m |
| N2       | Inc     | 12                | 20              | 8               | 0.49   | 8m @ 0.49 % Ni from 12m |
| N1S      | KGA0916 | 4                 | 16              | 12              | 0.24   | 12m @ 0.24 % Ni from 4m |
| N1S      | KGA0917 | 4                 | 20              | 16              | 0.31   | 16m @ 0.31 % Ni from 4m |
| N1S      | Inc     | 4                 | 12              | 8               | 0.40   | 8m @ 0.40 % Ni from 4m  |
| N1S      | KGA0918 | 4                 | 29              | 25              | 0.28   | 25m @ 0.28 % Ni from 4m |

| N1S | KGA0919 | 16 | 36 | 20 | 0.30 | 20m @ 0.30 % Ni from 16m |
|-----|---------|----|----|----|------|--------------------------|
| N1S | KGA0920 | 4  | 24 | 20 | 0.36 | 20m @ 0.36 % Ni from 4m  |
| N1S | Inc     | 12 | 20 | 8  | 0.47 | 8m @ 0.47 % Ni from 12m  |
| N1S | KGA0921 | 0  | 32 | 32 | 0.39 | 32m @ 0.39 % Ni from 0m  |
| N1S | Inc     | 4  | 28 | 24 | 0.42 | 24m @ 0.42 % Ni from 4m  |
| N1  | KGA0931 | 4  | 8  | 4  | 0.25 | 4m @ 0.25 % Ni from 4m   |
| N8  | KGA0975 | 60 | 64 | 4  | 0.29 | 4m @ 0.29 % Ni from 60m  |
| N9  | KGA0986 | 24 | 28 | 4  | 0.20 | 4m @ 0.20 % Ni from 24m  |

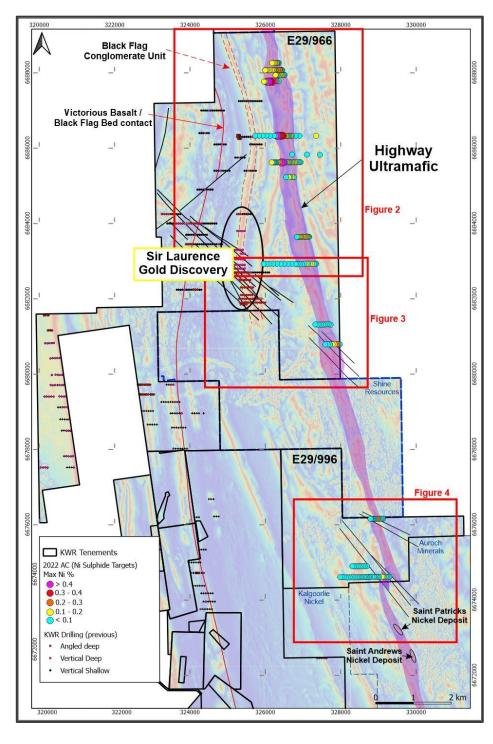



Figure 1: Lake Goongarrie Aircore hole locations with anomalous Ni within the Highway Ultramafic and on aeromagnetic background

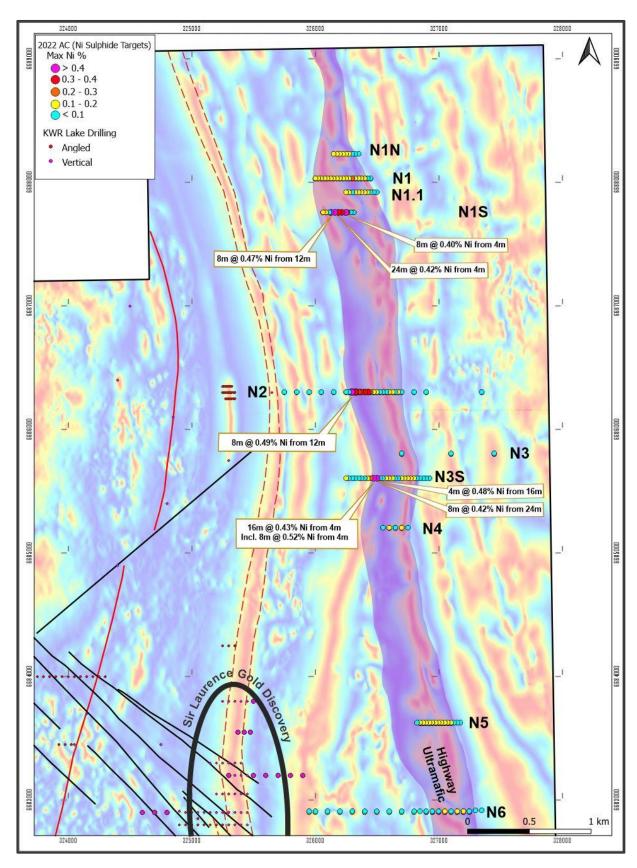



Figure 2: Northern area of Lake Goongarrie showing Aircore hole locations with anomalous Ni within the Highway Ultramafic on aeromagnetic image background

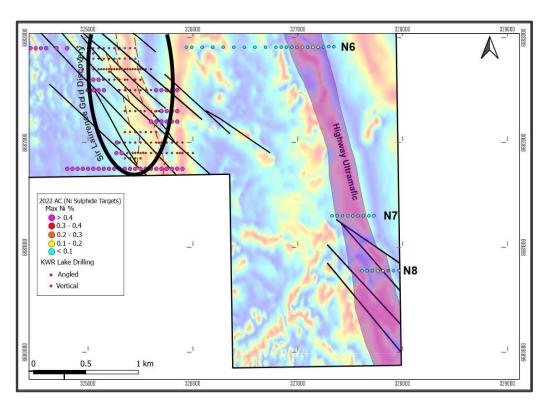



Figure 3: The Central area of Lake Goongarrie showing Aircore hole locations with anomalous Ni within the Highway Ultramafic on aeromagnetic image background

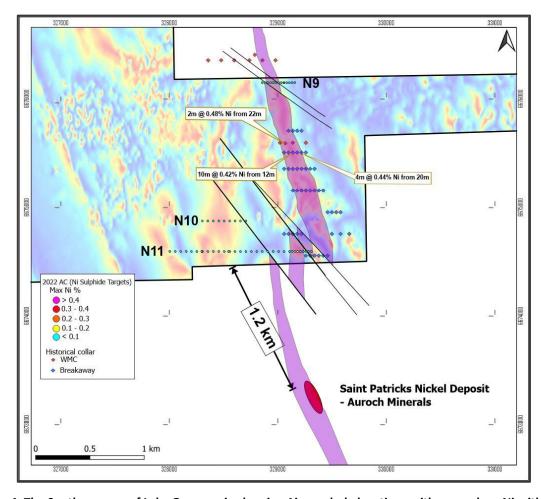



Figure 4: The Southern area of Lake Goongarrie showing Aircore hole locations with anomalous Ni within the Highway Ultramafic on aeromagnetic image background

### SIR LAURENCE DIAMOND CORE DRILLING UPDATE

Diamond core drill testing of the Sir Laurence Gold Discovery is in progress with 645.8m of the 4,000m inaugural programme completed.

The program experienced early delays due to mechanical problems and challenging ground conditions however further alterations to the drill rig have been made to account for these issues. With the modifications made and the drilling now making good progress, it is expected that the drilling of the initial 4,000m programme will be completed by the end of July.

To date the first hole, KGD001 has been completed at 432.4m. This comprised 87m drilled with Rotary Mud method and the remainder with NQ core. This was collared at 325055E/6682690N and drilled at -60 degrees towards the east. Assays are pending.

The second hole, KGD002 was collared at 325100E/6682690N and is currently at a depth of 213.4m with the first 98.3m being drilled with Rotary Mud method and the remainder with NQ core. It is also being drilled at -60 degrees towards the east and is planned to extend to approximately 400m.

### **NEXT STEPS**

The Company is considering conducting Moving Loop EM (MLEM) surveys over Kingwest's aircoredefined Northern and Southern Nickel targets. This should detect any underlying nickel sulphide conductors in these areas down to approximately 300m depth, and potentially deeper, depending upon the conductivity of the lake cover.

#### **BOARD CHANGE**

The Company announced Non-Executive Director Adrian Byass' intention to resign on 2 May 2022 and Mr Byass has now stepped off the Kingwest Board. Chairman Greg Bittar commented that "The Company would like to thank Adrian for his contribution and support both as Chairman and more recently Non-Executive Director and we wish him all the best".

**Table 2: KWR Nickel target completed Aircore drill holes** 

| Line ID | Hole ID | Easting | Northing | Azimuth | Dip | EOH |
|---------|---------|---------|----------|---------|-----|-----|
| N6      | KGA0815 | 325950  | 6682900  | 0       | -90 | 94  |
| N6      | KGA0816 | 326000  | 6682900  | 0       | -90 | 78  |
| N6      | KGA0817 | 326100  | 6682900  | 0       | -90 | 74  |
| N6      | KGA0818 | 326200  | 6682900  | 0       | -90 | 79  |
| N6      | KGA0819 | 326300  | 6682900  | 0       | -90 | 58  |
| N6      | KGA0820 | 326400  | 6682900  | 0       | -90 | 43  |
| N6      | KGA0821 | 326500  | 6682900  | 0       | -90 | 29  |
| N6      | KGA0822 | 326600  | 6682900  | 0       | -90 | 31  |
| N6      | KGA0823 | 326700  | 6682900  | 0       | -90 | 14  |
| N6      | KGA0824 | 326800  | 6682900  | 0       | -90 | 6   |
| N6      | KGA0825 | 326900  | 6682900  | 0       | -90 | 26  |
| N6      | KGA0826 | 326950  | 6682900  | 0       | -90 | 36  |
| N6      | KGA0827 | 327000  | 6682900  | 0       | -90 | 14  |
| N6      | KGA0828 | 327050  | 6682900  | 0       | -90 | 39  |
| N6      | KGA0829 | 327100  | 6682900  | 0       | -90 | 31  |
| N6      | KGA0830 | 327150  | 6682900  | 0       | -90 | 48  |
| N6      | KGA0831 | 327200  | 6682900  | 0       | -90 | 32  |

| Line ID | Hole ID            | Easting          | Northing           | Azimuth | Dip       | EOH |
|---------|--------------------|------------------|--------------------|---------|-----------|-----|
| N6      | KGA0832            | 327250           | 6682900            | 0       | -90       | 17  |
| N6      | KGA0833            | 327300           | 6682907            | 0       | -90       | 59  |
| N6      | KGA0834            | 327350           | 6682906            | 0       | -90       | 59  |
| N6      | KGA0835            | 326850           | 6682900            | 0       | -90       | 13  |
| N5      | KGA0836            | 327175           | 6683620            | 90      | -60       | 39  |
| N5      | KGA0837            | 327150           | 6683620            | 90      | -60       | 45  |
| N5      | KGA0838            | 327125           | 6683620            | 90      | -60       | 48  |
| N5      | KGA0839            | 327100           | 6683620            | 90      | -60       | 33  |
| N5      | KGA0840            | 327075           | 6683620            | 90      | -60       | 25  |
| N5      | KGA0841            | 327050           | 6683620            | 90      | -60       | 30  |
| N5      | KGA0842            | 327025           | 6683620            | 90      | -60       | 14  |
| N5      | KGA0843            | 327000           | 6683620            | 90      | -60       | 21  |
| N5      | KGA0844            | 326975           | 6683620            | 90      | -60       | 42  |
| N5      | KGA0845            | 326950           | 6683620            | 90      | -60       | 40  |
| N5      | KGA0846            | 326925           | 6683620            | 90      | -60       | 36  |
| N5      | KGA0847            | 326900           | 6683620            | 90      | -60       | 40  |
| N5      | KGA0848            | 326875           | 6683620            | 90      | -60       | 28  |
| N5      | KGA0849            | 326850           | 6683620            | 90      | -60       | 58  |
| N5      | KGA0850            | 326825           | 6683620            | 90      | -60       | 28  |
| N4      | KGA0851            | 326750           | 6685200            | 90      | -60       | 16  |
| N4      | KGA0852            | 326700           | 6685200            | 90      | -60       | 20  |
| N4      | KGA0853            | 326650           | 6685200            | 90      | -60       | 20  |
| N4      | KGA0854            | 326600           | 6685200            | 90      | -60       | 21  |
| N4      | KGA0855            | 326550           | 6685200            | 90      | -60       | 19  |
| N3S     | KGA0856            | 326925           | 6685600            | 90      | -60       | 65  |
| N3S     | KGA0857            | 326900           | 6685600            | 90      | -60       | 70  |
| N3S     | KGA0858            | 326875           | 6685600            | 90      | -60       | 67  |
| N3S     | KGA0859            | 326850           | 6685600            | 90      | -60       | 83  |
| N3S     | KGA0860            | 326825           | 6685600            | 90      | -60       | 50  |
| N3S     | KGA0861            | 326800           | 6685600            | 90      | -60       | 55  |
| N3S     | KGA0862            | 326775           | 6685600            | 90      | -60       | 56  |
| N3S     | KGA0863            | 326750           | 6685600            | 90      | -60       | 53  |
| N3S     | KGA0864            | 326725           | 6685600            | 90      | -60       | 48  |
| N3S     | KGA0865            | 326700           | 6685600            | 90      | -60       | 57  |
| N3S     | KGA0866            | 326675           | 6685600            | 90      | -60       | 46  |
| N3S     | KGA0867            | 326650           | 6685600            | 90      | -60       | 29  |
| N3S     | KGA0868            | 326625           | 6685600            | 90      | -60       | 35  |
| N3S     | KGA0869            | 326600           | 6685600            | 90      | -60       | 36  |
| N3S     | KGA0870            | 326575           | 6685600            | 90      | -60       | 28  |
| N3S     | KGA0870<br>KGA0871 |                  |                    | 90      | -60       | 14  |
| N3S     | KGA0871<br>KGA0872 | 326550<br>326525 | 6685600<br>6685600 | 90      | -60       | 14  |
| N3S     | KGA0872<br>KGA0873 | 326525           | 6685600            | 90      | -60       | 26  |
| N3S     | KGA0873<br>KGA0874 | 326300           | 6685600            | 90      | -60       | 34  |
| N3S     |                    |                  |                    | 90      | -60       | 40  |
| N3S     | KGA0875<br>KGA0876 | 326450<br>326425 | 6685600<br>6685600 | 90      | -60       | 38  |
| N3S     | KGA0876<br>KGA0877 | 326425           | 6685600            | 90      | -60       | 15  |
| N3S     | KGA0877<br>KGA0878 | 326400           | 6685600            | 90      | -60       | 6   |
| N3S     | KGA0878<br>KGA0879 |                  |                    | 90      | -60       | 6   |
| N3S     |                    | 326350           | 6685600            | 90      | -60       | 7   |
|         | KGA0880            | 326325           | 6685600            |         |           |     |
| N3S     | KGA0881            | 326300           | 6685600            | 90      | -60<br>60 | 18  |
| N3S     | KGA0882            | 326275           | 6685600            | 90      | -60       | 25  |
| N3S     | KGA0883            | 326250           | 6685600            | 90      | -60       | 28  |
| N3      | KGA0884            | 326700           | 6685800            | 0       | -90       | 36  |

| Line ID    | Hole ID            | Easting          | Northing           | Azimuth  | Dip        | EOH     |
|------------|--------------------|------------------|--------------------|----------|------------|---------|
| N3         | KGA0885            | 327100           | 6685800            | 0        | -90        | 58      |
| N3         | KGA0886            | 327450           | 6685800            | 0        | -90        | 8       |
| N2         | KGA0887            | 327350           | 6686300            | 0        | -90        | 101     |
| N2         | KGA0888            | 326900           | 6686300            | 0        | -90        | 68      |
| N2         | KGA0889            | 326800           | 6686300            | 0        | -90        | 43      |
| N2         | KGA0890            | 326700           | 6686300            | 90       | -60        | 42      |
| N2         | KGA0891            | 326675           | 6686300            | 90       | -60        | 42      |
| N2         | KGA0892            | 326650           | 6686300            | 90       | -60        | 6       |
| N2         | KGA0893            | 326625           | 6686300            | 90       | -60        | 43      |
| N2         | KGA0894            | 326600           | 6686300            | 90       | -60        | 34      |
| N2         | KGA0895            | 326575           | 6686300            | 90       | -60        | 6       |
| N2         | KGA0896            | 326550           | 6686300            | 90       | -60        | 9       |
| N2         | KGA0897            | 326525           | 6686300            | 90       | -60        | 11      |
| N2         | KGA0898            | 326500           | 6686300            | 90       | -60        | 12      |
| N2         | KGA0899            | 326475           | 6686300            | 90       | -60        | 6       |
| N2         | KGA0900            | 326450           | 6686300            | 90       | -60        | 13      |
| N2         | KGA0901            | 326425           | 6686300            | 90       | -60        | 34      |
| N2         | KGA0902            | 326400           | 6686300            | 90       | -60        | 54      |
| N2         | KGA0903            | 326375           | 6686300            | 90       | -60        | 15      |
| N2         | KGA0904            | 326350           | 6686300            | 90       | -60        | 38      |
| N2         | KGA0905            | 326325           | 6686300            | 90       | -60        | 9       |
| N2         | KGA0906            | 326300           | 6686300            | 90       | -60        | 36      |
| N2         | KGA0907            | 326275           | 6686300            | 90       | -60        | 20      |
| N2         | KGA0908            | 326250           | 6686300            | 90       | -60        | 9       |
| N2         | KGA0909            | 326150           | 6686300            | 0        | -90        | 24      |
| N2         | KGA0910            | 326050           | 6686300            | 0        | -90        | 25      |
| N2         | KGA0911            | 325950           | 6686300            | 0        | -90        | 16      |
| N2         | KGA0912            | 325850           | 6686300            | 0        | -90        | 4       |
| N2         | KGA0913            | 325750           | 6686300            | 0        | -90        | 11      |
| N1S        | KGA0914            | 326313           | 6687757            | 90       | -60        | 3       |
| N1S        | KGA0914<br>KGA0915 | 326288           | 6687757            | 90       | -60        | 3       |
| N1S        | KGA0915<br>KGA0916 | 326263           | 6687757            | 90       | -60        | 18      |
| N1S        | KGA0910<br>KGA0917 | 326238           | 6687757            | 90       | -60        | 24      |
| N1S        | KGA0917<br>KGA0918 | 326213           | 6687757            | 90       | -60        | 29      |
| N1S        | KGA0918<br>KGA0919 |                  | 6687757            | 90       | -60        | 46      |
| N1S        | KGA0919<br>KGA0920 | 326188           |                    | 90       | -60        | 33      |
| N1S        |                    | 326163           | 6687757            | 90       | -60        | 34      |
|            | KGA0921            | 326138           | 6687757            |          |            |         |
| N1S<br>N1S | KGA0922            | 326113           | 6687757            | 90       | -60<br>60  | 24      |
| N1S<br>N1S | KGA0923<br>KGA0924 | 326088           | 6687757            | 90<br>90 | -60<br>-60 | 24<br>9 |
| N13        |                    | 326063<br>326450 | 6687757            | 90       | -60        | 3       |
| N1         | KGA0925            | 326425           | 6688030<br>6688030 | 90       | -60        | 9       |
| N1         | KGA0926<br>KGA0927 | 326400           | 6688030            | 90       | -60        | 22      |
| N1         | KGA0927<br>KGA0928 | 326400           | 6688030            | 90       | -60        | 18      |
|            |                    |                  |                    |          |            | 17      |
| N1         | KGA0929            | 326350           | 6688030            | 90       | -60<br>60  |         |
| N1         | KGA0930            | 326325           | 6688030            | 90       | -60<br>60  | 26      |
| N1         | KGA0931            | 326300           | 6688030            | 90       | -60<br>60  | 21      |
| N1         | KGA0932            | 326275           | 6688030            | 90       | -60<br>60  | 22      |
| N1         | KGA0933            | 326250           | 6688030            | 90       | -60        | 10      |
| N1         | KGA0934            | 326225           | 6688030            | 90       | -60        | 24      |
| N1         | KGA0935            | 326200           | 6688030            | 90       | -60        | 21      |
| N1         | KGA0936            | 326175           | 6688030            | 90       | -60        | 9       |
| N1         | KGA0937            | 326150           | 6688030            | 90       | -60        | 9       |
| N1         | KGA0938            | 326125           | 6688030            | 90       | -60        | 26      |

| Line ID | Hole ID  | Easting | Northing | Azimuth | Dip | ЕОН |
|---------|----------|---------|----------|---------|-----|-----|
| N1      | KGA0939  | 326100  | 6688030  | 90      | -60 | 21  |
| N1      | KGA0940  | 326075  | 6688030  | 90      | -60 | 21  |
| N1      | KGA0941  | 326050  | 6688030  | 90      | -60 | 22  |
| N1      | KGA0942  | 326025  | 6688030  | 90      | -60 | 22  |
| N1      | KGA0943  | 326000  | 6688030  | 90      | -60 | 34  |
| N1N     | KGA0944  | 326350  | 6688230  | 90      | -60 | 6   |
| N1N     | KGA0945  | 326325  | 6688230  | 90      | -60 | 5   |
| N1N     | KGA0946  | 326300  | 6688230  | 90      | -60 | 18  |
| N1N     | KGA0947  | 326275  | 6688230  | 90      | -60 | 20  |
| N1N     | KGA0948  | 326250  | 6688230  | 90      | -60 | 9   |
| N1N     | KGA0949  | 326225  | 6688230  | 90      | -60 | 27  |
| N1N     | KGA0950  | 326200  | 6688230  | 90      | -60 | 22  |
| N1N     | KGA0951  | 326175  | 6688230  | 90      | -60 | 17  |
| N1N     | KGA0952  | 326150  | 6688230  | 90      | -60 | 16  |
| N1.1    | KGA0953  | 326500  | 6687920  | 90      | -60 | 20  |
| N1.1    | KGA0954  | 326475  | 6687920  | 90      | -60 | 18  |
| N1.1    | KGA0955  | 326450  | 6687920  | 90      | -60 | 5   |
| N1.1    | KGA0956  | 326425  | 6687920  | 90      | -60 | 25  |
| N1.1    | KGA0957  | 326400  | 6687920  | 90      | -60 | 23  |
| N1.1    | KGA0958  | 326375  | 6687920  | 90      | -60 | 20  |
| N1.1    | KGA0959  | 326350  | 6687920  | 90      | -60 | 9   |
| N1.1    | KGA0960  | 326325  | 6687920  | 90      | -60 | 58  |
| N1.1    | KGA0961  | 326300  | 6687920  | 90      | -60 | 17  |
| N1.1    | KGA0962  | 326275  | 6687920  | 90      | -60 | 26  |
| N1.1    | KGA0963  | 326250  | 6687920  | 90      | -60 | 24  |
| N7      | KGA0964  | 327330  | 6681300  | 0       | -90 | 81  |
| N7      | KGA0965  | 327380  | 6681300  | 0       | -90 | 73  |
| N7      | KGA0966  | 327430  | 6681300  | 0       | -90 | 67  |
| N7      | KGA0967  | 327480  | 6681300  | 0       | -90 | 80  |
| N7      | KGA0968  | 327530  | 6681300  | 0       | -90 | 78  |
| N7      | KGA0969  | 327580  | 6681300  | 0       | -90 | 78  |
| N7      | KGA0970  | 327630  | 6681300  | 0       | -90 | 79  |
| N7      | KGA0971  | 327680  | 6681300  | 0       | -90 | 82  |
| N7      | KGA0972  | 327730  | 6681300  | 0       | -90 | 102 |
| N8      | KGA0973  | 327965  | 6680780  | 0       | -90 | 96  |
| N8      | KGA0974  | 327915  | 6680780  | 0       | -90 | 94  |
| N8      | KGA0975  | 327865  | 6680780  | 0       | -90 | 74  |
| N8      | KGA0975  | 327805  | 6680780  | 0       | -90 | 57  |
|         |          |         |          | _       |     |     |
| N8      | KGA0977  | 327765  | 6680780  | 0       | -90 | 25  |
| N8      | KGA0978  | 327715  | 6680780  | 0       | -90 | 53  |
| N8      | KGA0979  | 327665  | 6680780  | 0       | -90 | 26  |
| N8      | KGA0980  | 327615  | 6680780  | 0       | -90 | 40  |
| N9      | KGA0981  | 329150  | 6676150  | 90      | 60  | 65  |
| N9      | KGA0982  | 329125  | 6676150  | 90      | 60  | 68  |
| N9      | KGA0983  | 329100  | 6676150  | 90      | 60  | 38  |
| N9      | KGA0984  | 329075  | 6676150  | 90      | 60  | 35  |
| N9      | KGA0985  | 329050  | 6676150  | 90      | 60  | 19  |
| N9      | KGA0985A | 329050  | 6676150  | 90      | 60  | 25  |
| N9      | KGA0986  | 329025  | 6676150  | 90      | 60  | 30  |
| N9      | KGA0987  | 329000  | 6676150  | 90      | 60  | 30  |
| N9      | KGA0988  | 328975  | 6676150  | 90      | 60  | 32  |
| N9      | KGA0989  | 328950  | 6676150  | 90      | 60  | 28  |

| Line ID    | Hole ID            | Easting | Northing | Azimuth | Dip | EOH |
|------------|--------------------|---------|----------|---------|-----|-----|
| N9         | KGA0990            | 328925  | 6676150  | 90      | 60  | 26  |
| N9         | KGA0991            | 328900  | 6676150  | 90      | 60  | 33  |
| N9         | KGA0992            | 328875  | 6676150  | 90      | 60  | 48  |
| N9         | KGA0993            | 328850  | 6676150  | 90      | 60  | 43  |
| N10        | KGA0994            | 328700  | 6674880  | 90      | 60  | 48  |
| N10        | KGA0995            | 328650  | 6674880  | 90      | 60  | 97  |
| N10        | KGA0996            | 328600  | 6674880  | 90      | 60  | 23  |
| N10        | KGA0997            | 328550  | 6674880  | 90      | 60  | 18  |
| N10        | KGA0998            | 328500  | 6674880  | 90      | 60  | 25  |
| N10        | KGA0999            | 328450  | 6674880  | 90      | 60  | 52  |
| N10        | KGA1000            | 328400  | 6674880  | 90      | 60  | 66  |
| N10        | KGA1001            | 328350  | 6674880  | 90      | 60  | 51  |
| N10        | KGA1002            | 328300  | 6674880  | 90      | 60  | 30  |
| N11        | KGA1002            | 328650  | 6674600  | 90      | 60  | 49  |
| N11        | KGA1003            | 328600  | 6674600  | 90      | 60  | 98  |
| N11<br>N11 | KGA1004<br>KGA1005 |         |          | 90      | 60  | 15  |
| N11<br>N11 |                    | 328550  | 6674600  |         |     |     |
|            | KGA1005A           | 328510  | 6674600  | 90      | 60  | 91  |
| N11        | KGA1006            | 328500  | 6674600  | 90      | 60  | 49  |
| N11        | KGA1007            | 328450  | 6674600  | 90      | 60  | 58  |
| N11        | KGA1008            | 328400  | 6674600  | 90      | 60  | 39  |
| N11        | KGA1009            | 328350  | 6674600  | 90      | 60  | 22  |
| N11        | KGA1010            | 328300  | 6674600  | 90      | 60  | 3   |
| N11        | KGA1010A           | 328297  | 6674600  | 90      | 60  | 3   |
| N11        | KGA1010B           | 328294  | 6674600  | 90      | 60  | 3   |
| N11        | KGA1011            | 328250  | 6674600  | 90      | 60  | 19  |
| N11        | KGA1012            | 328700  | 6674600  | 90      | 60  | 70  |
| N11        | KGA1013            | 329100  | 6674600  | 90      | 60  | 58  |
| N11        | KGA1014            | 329050  | 6674600  | 90      | 60  | 67  |
| N11        | KGA1015            | 329000  | 6674600  | 90      | 60  | 69  |
| N11        | KGA1016            | 328950  | 6674600  | 90      | 60  | 54  |
| N11        | KGA1017            | 328900  | 6674600  | 90      | 60  | 49  |
| N11        | KGA1018            | 328850  | 6674600  | 90      | 60  | 58  |
| N11        | KGA1019            | 328800  | 6674600  | 90      | 60  | 65  |
| N11        | KGA1020            | 328750  | 6674600  | 90      | 60  | 72  |
| N11        | KGA1021            | 329300  | 6674600  | 90      | 60  | 23  |
| N11        | KGA1022            | 329275  | 6674600  | 90      | 60  | 17  |
| N11        | KGA1023            | 329250  | 6674600  | 90      | 60  | 32  |
| N11        | KGA1024            | 329225  | 6674600  | 90      | 60  | 39  |
| N11        | KGA1025            | 329200  | 6674600  | 90      | 60  | 44  |
| N11        | KGA1026            | 329175  | 6674600  | 90      | 60  | 21  |
| N11        | KGA1027            | 329150  | 6674600  | 90      | 60  | 45  |
| N11        | KGA1028            | 329125  | 6674600  | 90      | 60  | 30  |
| N11        | KGA1029            | 328200  | 6674600  | 90      | 60  | 8   |
| N11        | KGA1030            | 328150  | 6674600  | 90      | 60  | 4   |
| N11        | KGA1031            | 328100  | 6674600  | 90      | 60  | 16  |
| N11        | KGA1032            | 328050  | 6674600  | 90      | 60  | 26  |
| N11        | KGA1033            | 328000  | 6674600  | 90      | 60  | 3   |

## ABOUT KINGWEST'S MENZIES GOLD PROJECT (MGP)

Besides the Goongarrie Project Kingwest owns the MGP.

The MGP is one of Western Australia's major historic gold fields. Located 130km north of the globally significant gold deposits of Kalgoorlie (Figure 5). The MGP covers a contiguous land package over a strike length in excess of 15km. Within the MGP a series of structurally controlled high-grade gold deposits have been historically mined and display extensive exploration potential for high-grade extensions. Modern exploration since closure over 20 years ago has been limited.

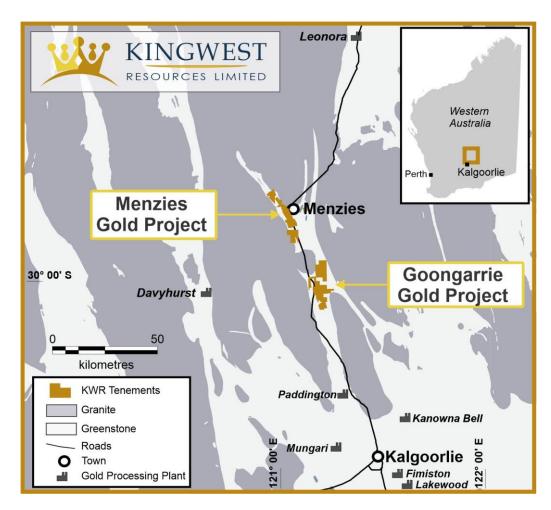



Figure 5: MGP and GGP locations

The MGP has recorded historical production of 643,200 oz @ 22.5g/t  $Au^2$  from underground (U/G) between 1895 and 1943 plus 145,000 oz @ 2.6g/t  $Au^2$  open cut between 1995 and 1999, for a total of 787,200 oz @ 18.9g/t<sup>2</sup> Au.

The MGP is hosted within the Menzies Shear Zone. All deposits lie within granted Mining Leases and are 100% owned by KWR (Figure 6). Current JORC mineral resources total 505,100 oz @ 1.33 g/t Au<sup>3</sup> using a 0.5 g/t Au cut-off (Table 3).

Importantly the MGP lies on the Goldfields Highway, has power and water and is within trucking distance of numerous Gold Processing Plants.

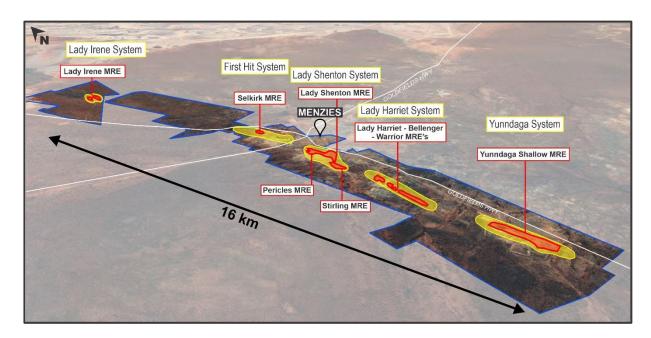



Figure 6: MGP aerial view showing the main mineralised systems as well as the MRE locations

Table 3: Menzies Project Mineral Resource Estimates, April 2022

| Category        | Indicated      |      |        |         | Inferre | ed     |         | Total |        |         |
|-----------------|----------------|------|--------|---------|---------|--------|---------|-------|--------|---------|
| Deposit         | Au Cut-<br>off | Mt   | Au g/t | Ounces  | Mt      | Au g/t | Ounces  | Mt    | Au g/t | Ounces  |
| Pericles        | 0.5            | 2.31 | 1.29   | 95,600  | 2.46    | 1.22   | 96,800  | 4.77  | 1.26   | 192,400 |
| Lady<br>Shenton | 0.5            | -    | -      | -       | 1.04    | 1.45   | 48,400  | 1.04  | 1.45   | 48,400  |
| Stirling        | 0.5            | 0.46 | 1.54   | 22,700  | 0.70    | 1.14   | 25,700  | 1.16  | 1.30   | 48,500  |
|                 | 0.5            | 1.27 | 1.31   | 53,500  | 2.05    | 1.37   | 90,000  | 3.31  | 1.35   | 143,500 |
| Yunndaga        | 2.0            | -    | -      | -       | 0.11    | 3.32   | 12,200  | 0.11  | 3.32   | 12,200  |
| Lady Harriet    | 0.5            | 0.17 | 2.11   | 11,800  | 0.32    | 1.14   | 11,600  | 0.49  | 1.48   | 23,300  |
| Bellenger       | 0.5            | 0.32 | 0.92   | 9,400   | 0.08    | 0.89   | 2,400   | 0.40  | 0.91   | 11,800  |
| Warrior         | 0.5            | 0.03 | 1.37   | 1,200   | 0.19    | 1.11   | 6,700   | 0.22  | 1.15   | 8,000   |
| Selkirk         | 0.5            | 0.03 | 6.25   | 6,200   | 0.14    | 1.21   | 5,300   | 0.17  | 2.15   | 11,500  |
| Lady Irene      | 0.5            |      |        |         | 0.10    | 1.73   | 5,600   | 0.10  | 1.73   | 5,600   |
| Total           |                | 4.6  | 1.36   | 200,400 | 7.18    | 1.32   | 304,700 | 11.77 | 1.33   | 505,100 |

# References

 $<sup>^{\</sup>rm 1}$  As announced to the ASX on 21 March 2022 (ASX:KWR)

<sup>&</sup>lt;sup>2</sup> As announced to the ASX on 9 July 2019 (ASX:KWR)

<sup>&</sup>lt;sup>3</sup> As announced to the ASX on 26 April 2022 (ASX:KWR)

#### Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Kingwest Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Kingwest believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

#### Competent Person Statement

The information in this report that relates to Exploration results is based on information compiled by Mr Laurence Kirk who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Kirk is a Consultant Geologist to Kingwest Resources Limited. Mr Kirk has sufficient experience that is relevant to the style of mineralisation, type of deposit under consideration and to the activity that they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' and consents to the inclusion in this report of the matters based on their information in the form and context in which they appear.

#### **Compliance Statement**

With reference to previously reported Exploration results and mineral resources, the company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

### -Ends-

The Board of Kingwest Resources Limited authorised this announcement to be given to ASX.

Further information contact:

Ed Turner CEO

T: +61 8 9481 0389

E: admin@kingwestresources.com.au

### Appendix 1: JORC Code, 2012 Edition - Table 1

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> </ul> | <ul> <li>All KWR aircore holes were sampled with a spear on 1m - 4m composite intervals. The historical drill holes mentioned in this announcement are from four Companies: Minotaur, WMC (Western Mining Corporation) and Breakaway Resources. These holes have all been assayed for multielement analysis including Nickel and Gold.</li> <li>Industry standard AC drilling and sampling protocols are assumed to have been used during this drilling campaigns between 1996 and 2006.</li> </ul> |

| Criteria                                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | • In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Drilling<br>techniques                                      | <ul> <li>Drill type (eg core, reverse circulation, open-<br/>hole hammer, rotary air blast, auger, Bangka,<br/>sonic, etc) and details (eg core diameter, triple<br/>or standard tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core is<br/>oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Aircore drilling was with a standard<br/>diameter.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Drill sample<br>recovery                                    | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                            | <ul> <li>All KWR aircore samples were collected in plastic bags.</li> <li>All grades are from AC samples of sufficient quantity to have a representative assay.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Logging                                                     | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                  | <ul> <li>All KWR AC holes were logged on one metre intervals by the geologist from drill chips in detail sufficient to support Exploration reporting. Aircore drill samples are not considered of sufficient quality and size to support Mineral Resource estimates, mining and metallurgical studies. Logging included regolith, lithology, texture, veining, grain size, alteration and mineralisation.</li> <li>Historic drill hole logging has been extracted from WAMEX reports and compiled into an excel spreadsheet which has been incorporated to our Datashed database.</li> <li>Logging is qualitative in nature.</li> </ul> |
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the</li> </ul> | <ul> <li>No sampling method was reported for historic holes.</li> <li>The entire drill hole was sampled with 1 to 4 metre intervals.</li> <li>Sample preparation comprised industry standard oven drying, crushing, and pulverisation to less than 75 microns. Homogenised pulp material was used for assaying.</li> </ul>                                                                                                                                                                                                                                                                                                              |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data<br>and<br>laboratory<br>tests              | <ul> <li>grain size of the material being sampled.</li> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>The historic drill samples were submitted to different labs (ALS, SGS, Genalysis) in Kalgoorlie and Perth where the entire sample was pulverised, split and assayed for multi-elements. All KWR samples were assayed at Bureau Veritas in Perth for multi-element analysis method ICP302 and the technique is considered partial assays.</li> <li>Results from geophysical tools are not reported here.</li> <li>Duplicates are reporting within acceptable range.</li> </ul> |
| Verification<br>of sampling<br>and<br>assaying                      | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Significant intersections are being cross checked against drill logs but are not suitable for possible inclusion in MRE's so independent checks are not required.</li> <li>Twinning of holes is not required at this stage of exploration.</li> <li>Data storage is in CSV files.</li> <li>No data was adjusted.</li> </ul>                                                                                                                                                   |
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>All AC holes were drilled on E-W grid lines.</li> <li>The grid system used is MGA94 Zone 51. All reported coordinates are referenced to this grid. The original coordinates for historic holes where in local grid or AMG84. All the coordinates have been converted.</li> <li>The topography is flat (lake surface).</li> </ul>                                                                                                                                              |
| Data<br>spacing and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing and distribution is<br/>sufficient to establish the degree of geological<br/>and grade continuity appropriate for the<br/>Mineral Resource and Ore Reserve estimation<br/>procedure(s) and classifications applied.</li> <li>Whether sample compositing has been<br/>applied.</li> </ul>                                                                                                                                                                                                                                                                                              | <ul> <li>Holes are variably spaced ranging from 25 metres to 300m spacing. The E-W lines are variably spaced from 100m to 1000m.</li> <li>Aircore drilling does not produce samples considered appropriate for Mineral Resource estimation.</li> </ul>                                                                                                                                                                                                                                 |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul>                                                                                                                                                                                                                                                                                      | <ul> <li>The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias.</li> <li>No drilling orientation related sampling bias has been identified at the project.</li> </ul>                                                                                                                                                                                                                   |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Samples were collected and transported to<br/>the laboratory by Company personnel<br/>following company procedures.</li> </ul>                                                                                                                                                                                                                                                                                                                                                |
| Audits or reviews                                                   | <ul> <li>The results of any audits or reviews of<br/>sampling techniques and data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Sampling techniques and sample data is<br/>continually reviewed internally within the<br/>Company. As none of data is appropriate for</li> </ul>                                                                                                                                                                                                                                                                                                                              |

| Criteria | JORC Code explanation | Commentary                                  |
|----------|-----------------------|---------------------------------------------|
|          |                       | inclusion in MRE's no independent review is |
|          |                       | considered necessary at this time.          |

# **Section 2 Reporting of Exploration Results**

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                                                                                                                                                  | <ul> <li>There is no native title over the project area and no historical sites, wilderness or national parks.</li> <li>The tenements are in good standing and no known impediments exist.</li> </ul>                                                                                                                                                                                                                                                                     |
| Exploration<br>done by other<br>parties          | <ul> <li>Acknowledgment and appraisal of exploration<br/>by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • Previous workers in the area include: Dalrymple who brought in WMC as operator on its western lake and Goon HMC tenement. Then WMC did most of the major exploration and Dalrymple eventually bought out WMC including tenements WMC had added and the Scotia Mine tenements. Dalrymple then changed its name to Scotia Nickel who then merged with LionOre at Goongarrie. The holding Co Scotia Nickel was then sold to Breakaway which was then acquired by Minotaur. |
| Geology                                          | <ul> <li>Deposit type, geological setting and style of<br/>mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nickel Sulphide, Kambalda Nickel style.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Drill hole<br>Information                        | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | A summary of the material drill holes is tabulated in the main body of this report.                                                                                                                                                                                                                                                                                                                                                                                       |
| Data<br>aggregation<br>methods                   | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated</li> </ul>                                                                                                                                                                                                                                                                                                                                      | <ul> <li>No weighting or averaging calculations were made, assays reported. Significant intersections for composites are reported for all intervals above 1m@0.2% Ni.</li> <li>As above.</li> <li>No metal equivalent calculations were applied.</li> </ul>                                                                                                                                                                                                               |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | <ul> <li>and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul> | <ul> <li>Mineralisation is generally west dipping at about 50 to 60 degrees.</li> <li>AC drillholes are penetrating only a few meters into the bedrock.</li> <li>Downhole widths reported in this announcement are believed to be approximately 80% of the true width. This is a first pass drilling program focused on locating anomalous mineralisation and not to define mineral resources so the exact widths are not expected to be estimated.</li> </ul> |
| Diagrams                                                                        | <ul> <li>Appropriate maps and sections (with scales)         and tabulations of intercepts should be         included for any significant discovery being         reported These should include, but not be         limited to a plan view of drill hole collar         locations and appropriate sectional views.</li> </ul>                                                                                     | <ul> <li>Appropriate figures, tables, maps and<br/>sections are included with the report to<br/>illustrate the historical exploration results.</li> </ul>                                                                                                                                                                                                                                                                                                      |
| Balanced<br>reporting                                                           | <ul> <li>Where comprehensive reporting of all<br/>Exploration Results is not practicable,<br/>representative reporting of both low and high<br/>grades and/or widths should be practiced to<br/>avoid misleading reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                                 | <ul> <li>Results known to date from all drill-holes in<br/>the program have been reported and their<br/>context discussed.</li> </ul>                                                                                                                                                                                                                                                                                                                          |
| Other<br>substantive<br>exploration<br>data                                     | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.                             | No other exploration data is reported here.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work<br/>(eg. tests for lateral extensions or depth<br/>extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of<br/>possible extensions, including the main<br/>geological interpretations and future drilling<br/>areas, provided this information is not<br/>commercially sensitive.</li> </ul>                      | <ul> <li>Additional exploration programmes<br/>have not yet been planned.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           |