

30 May 2022

CONFIRMATION OF HIGH-GRADE ASSAYS FROM NAMIBE LITHIUM PROJECT

KEY HIGHLIGHTS

- Assay result of 7.49% Li₂O (19b) from high purity spodumene
- Other significant results include:
 - * 4.56% Li₂0 (21n);
 - * 3.85% Li₂0 (21l);
 - * 3.44% Li₂0 (21l)
- LCT enrichment present in all pegmatites sampled to-date
- Potential to discover additional lithium pegmatites throughout the project

Tyranna director Joe Graziano commented: "the initial first pass early-stage results provided by Angolan Minerals Pty Ltd are very encouraging and point to the great potential of the project. These initial results reinforce our belief that this project warrants further detailed and systematic exploration to uncover its true potential and look forward to the exciting road ahead for the company and its shareholders."

SUMMARY

Tyranna Resources Ltd **(ASX: TYX)** is pleased to provide the assay results received from Angolan Minerals Pty Ltd, proposed acquisition announced 16 May 2022, for the Namibe Lithium Project from the historical rock-chip sampling completed in 2019 and 2021 of pegmatites within the Giraul Pegmatite Field, with the outcome of results summarised below:

- Total number of pegmatites = approximately 600
- Total number of pegmatites sampled = 16
- Total number of sampled pegmatites belonging to LCT pegmatite family = 16
- Number of sampled pegmatites yielding highly anomalous Li, Cs, Ta assay results = 11
- Of these 11 pegmatites, number confirmed to contain Li minerals = 6
- Of these 6 pegmatites, number confirmed to contain spodumene = 3

•••

Level 3, 101 St Georges Terrace, PERTH WA 6000 | GPO Box 2704, PERTH WA 6001 T +61 6558 0886 | F +61 8 6316 3337 | E info@tyrannaresources.com | W tyrannaresources.com

BACKGROUND

The project area was briefly visited in 2019 to verify the reported occurrence of lithium (Li) minerals but this "due diligence" inspection was only a small part of a field program that included inspection and sampling of three other projects in Angola. A total of 31 samples (AAR001-AAR031) were collected from four projects, with only two samples (AAR012 and AAR013) being collected from the Namibe Lithium Project. These two samples were taken from different pegmatites, to which the site codes 19a and 19b have been allocated.

In 2021 an additional 14 pegmatites were sampled, to which the site codes 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, 21i, 21j, 21k, 21l, 21m and 21n have been allocated. A total of 153 rock chip samples (most having prefix LPR; two prefixed LPM) were collected during this sampling campaign. Of these 153 samples, 152 samples were from pegmatites, with one sample (LPR086 Litho) being of rock adjacent to a pegmatite.

SAMPLING METHOD

Although pegmatites are abundant and well-exposed in the project, the nature of the exposure is highly variable, with some pegmatites mostly covered by gravel and rubble derived from eroded outcrops (Figure 1). The sampling methodology used in the 2021 fieldwork was designed in recognition of this challenge.

Figure 1: Pegmatite exposure, site 21b. Actual outcrop very limited; mostly covered by thin layer of gravel or rubble.

In situations where pegmatites have limited outcrop, those outcrops available to be sampled may not contain obvious readily identifiable lithium minerals, even if the pegmatite is in fact a lithium-bearing pegmatite, especially if the outcrop is quite weathered.

Sampling of microcline (a potassium feldspar mineral present in pegmatites) and muscovite (a pale flaky potassium mica mineral present in pegmatites) from pegmatites is an established method (e.g, Selway et al, 2005) of determining the potential of a poorly-outcropping pegmatite to contain lithium mineralisation. Assuming a comprehensive assay suite and suitable total-digest prior to assay, assay results from both microcline and muscovite allow the calculation of various ratios (e.g. potassium:rubidium [**K:Rb**] and potassium:caesium [**K:Cs**]) that indicate the potential for a pegmatite to contain Li minerals. Muscovite is particularly useful because if the pegmatite is enriched in Li, Cs or Tantalum (**Ta**), i.e. the defining characteristic of LCT pegmatites, then concentrations of these elements, as well as Rb and Tin (**Sn**), will be elevated.

For this reason, the fieldwork team were directed to inspect the available outcrop and collect specimens of microcline and muscovite, along with samples of rocks that they believed to contain lithium minerals or suspected may contain lithium minerals.

The specific locations from which each sample was collected, along with descriptions of the samples, is attached as Appendix 1.

SAMPLING RESULTS

The assay results are attached as Appendix 2.

The significance of the assay results is summarized in Table 1:

Site Code	Max. Li ₂ O (%)	Max. Cs (ppm)	Max. Ta (ppm)	Max. Rb (ppm)	Max. Sn (ppm)	COMMENT
19a	0.94	28.1	BLLD*1	9.78	BLLD*1	confirmed as a Li prospect
19b	7.49	1100	BLLD*1	30.6	275	confirmed as a Li prospect
21a	0.08	537	130	1960	263	follow-up warranted
21b	0.06	633	125	1730	611	follow-up warranted
21c	0.07	82.3	40	1030	130	adequately tested
21d	0.11	108	55	1600	199	adequately tested
21e	0.06	32.5	20	726	78	adequately tested
21f	0.14	323	105	2130	132	follow-up warranted
21g	0.57	378	230	4810	903	confirmed as a Li prospect
21h	0.12	423	55	1230	640	follow-up warranted
21i	0.10	83.6	15	1540	191	adequately tested
21j	0.13	81.6	115	2350	281	follow-up warranted
21k	0.10* ²	185	40	3180	303	confirmed^{*2} as a Li prospect
21	3.85	2390	170	4050	570	confirmed as a Li prospect
21m	0.06	56.6	30	1090	108	adequately tested
21n	4.56	4580	260	>5000*3	618	confirmed as a Li prospect

Table 1: Summary of significance of assays from each sampling site

<u>Notes:</u>

*1 BLLD = Below lower limit of detection

 \star2 Li phosphate minerals known to be present (confirmed 2019) but were not sampled

 *3 Upper limit of detection by the assay method used was 5000ppm Rb

The best assay result for lithium was from sample AAR013, comprised of spodumene fragments from a large spodumene crystal (Figure 2) at site 19b, with the location of this confirmed Li prospect and the other confirmed Li prospects displayed in Figure 3.

Figure 2: Spodumene crystal (outlined in red and labelled spd) at 226115mE/8323024mN (WGS-84 z33L), site 19b. Sample AAR013 was taken from this location.

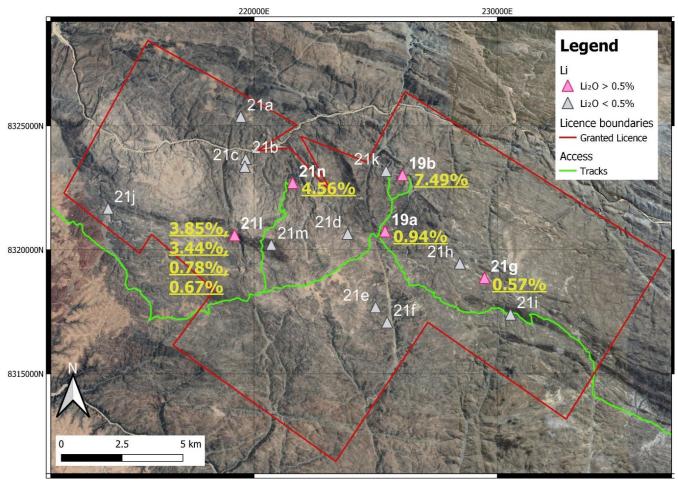


Figure 3: Sample sites including best assay results of Li (> 0.5% Li₂0)

At all sites sampled, elevated concentrations of Li, Cs, Ta, along with elevated Rb and Sn were detected, confirming that all the pegmatites sampled are members of the LCT pegmatite family. For some sites, although the concentration of Li was not high enough to suggest that an actual Li mineral was present in the samples collected, concentrations of other "LCT signature elements," namely Cs, Ta, Rb and Sn, were sufficiently elevated to suggest that the pegmatites may contain Li minerals. For these pegmatites, displayed in Figure 4, follow-up investigation is warranted.

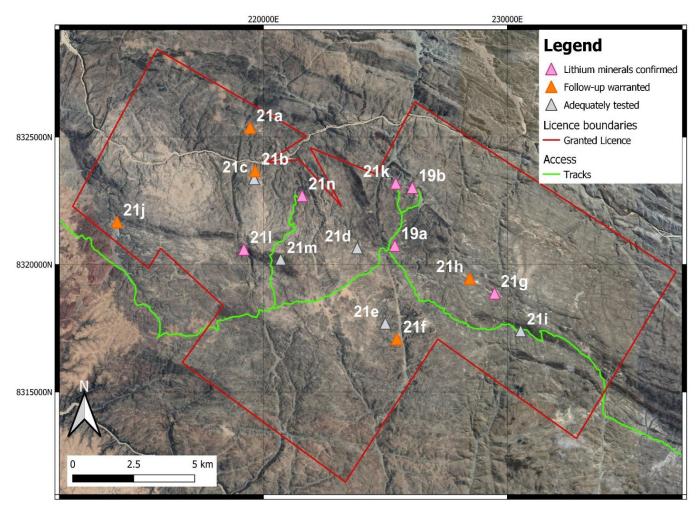


Figure 4: Confirmed Li prospects and sites where follow-up investigation is warranted

It is important to note that the sampling completed to-date has confirmed widespread Li, Cs, Ta, Rb and Sn anomalism, as displayed in Figures 3 and 4, but does not display any clear pattern of lithium mineral distribution. *Remembering that only 16 of the estimated 600 pegmatites have been sampled, with lithium mineralisation confirmed at 6 locations,* the apparently random distribution of enrichment suggests that:

- *lithium pegmatites may be present throughout the project,* rather than being restricted to any particular zone of the Giraul Pegmatite Field
- the potential to find many more lithium pegmatites within the project is high

NEXT STEPS

- 1. Completion of detailed inspection of established best prospects (Sites 19a, 19b, 21g, 21k, 21l & 21n), including mapping and additional sampling
- 2. Complete follow-up inspection of sites 21a, 21b, 21f, 21h & 21j
- 3. Investigate additional as-yet uninspected sites to find additional lithium pegmatites

Once we have received the necessary shareholder approvals, Tyranna's short-term goal will be to define drill-targets with an intention to commence drilling as soon as possible.

Authorised by the Board of Tyranna Resources Ltd

Joe Graziano

Director

References:

Selway, J.B., Breaks, F.W. and Tindle, A.G. (2005)

"A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits." Exploration and Mining Geology, v14, no. 1-4, p. 1-30

Competent Person's Statement

The information in this report that relates to exploration results for the Namibe Lithium Project is based on, and fairly represents, information and supporting geological information and documentation that has been compiled by Mr Peter Spitalny who is a Member of the AusIMM. Mr Spitalny is a substantial shareholder of Angolan Minerals Pty Ltd. He is employed by Han-Ree Holdings Pty Ltd, through whom he provides his services to Tyranna. Upon completion of the Angolan Minerals acquisition, Mr Spitalny will join Tyranna as their Principal Technical Adviser. Mr Spitalny has more than five years relevant experience in the exploration of pegmatites and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Spitalny consents to the inclusion of the information in this report in the form and context in which it appears.

Forward Looking Statement

This announcement may contain some references to forecasts, estimates, assumptions and other forwardlooking statements. Although the company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved. They may be affected by a variety of variables and changes in underlying assumptions that are subject to risk factors associated with the nature of the business, which could cause actual results to differ materially from those expressed herein. All references to dollars (\$) and cents in this presentation are to Australian currency, unless otherwise stated. Investors should make and rely upon their own enquires and assessments before deciding to acquire or deal in the Company's securities.

APPENDIX 1: Sample location and description

Site Code	Sample I.D.	Easting (mE)	Northing (mN)	Grid	Source	Field identification
19a	AAR012	225395	8320754	WGS-84 z33L	quarry wall	mineral specimen; lithiophilite-triphylite
19b	AAR013	226115	8323024	WGS-84 z33L	trench wall	mineral specimen; spodumene
21a	LPR001	218561	8325487	WGS-84 z33L	outcrop	mineral specimen; microcline
21a	LPR002	218636	8325457	WGS-84 z33L	outcrop	mineral specimen; muscovite
21a	LPR003	218814	8325455	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21a	LPR004	218995	8325420	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21a	LPR004 Litho	218995	8325420	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21a	LPR005	219433	8325405	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21a	LPR006	219519	8325342	WGS-84 z33L	outcrop	mineral specimen; muscovite
21a	LPR007	219590	8325276	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21a 21a	LPR008	219390	8325215	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21a 21a						
	LPR009	219832	8325235	WGS-84 z33L	outcrop	Mineral specimen; microcline
21a	LPR010	219911	8325229	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21b	LPR011	219797	8323497	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21b	LPR012	219513	8323754	WGS-84 z33L	outcrop	mineral specimen; muscovite
21b	LPR013	219514	8323749	WGS-84 z33L	outcrop	mineral specimen; microcline
21b	LPR014	219523	8323863	WGS-84 z33L	outcrop	mineral specimen; muscovite
21b	LPR015	219522	8323859	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21b	LPR016	219583	8323720	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21b	LPR017	219601	8323717	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21b	LPR018	219692	8323633	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21b	LPR019	219701	8323603	WGS-84 z33L	outcrop	mineral specimen; microcline
21b	LPR020	219751	8323470	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21c	LPR021	219486	8323529	WGS-84 z33L	outcrop	mineral specimen; microcline
21c	LPR022	219576	8323425	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21c	LPR023	219757	8323246	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21c	LPR024	219822	8323228	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21c	LPR025	219812	8323248	WGS-84 z33L	outcrop	mineral specimen; muscovite
21c	LPR026	219798	8323247	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21c	LPR027	219774	8323238	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21c	LPR028	219995	8323142	WGS-84 z33L	outcrop	mineral specimen; microcline
21c	LPR029	220023	8323100	WGS-84 z33L	outcrop	mineral specimen; muscovite
21d	LPR031	223852	8320603	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21d	LPR031 Litho	223852	8320603	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21d	LPR032	223507	8320470	WGS-84 z33L	outcrop	mineral specimen; muscovite
21d 21d	LPR032 Litho	223507				· · · · ·
			8320470	WGS-84 z33L	outcrop	mineral specimen; muscovite
21d	LPR033	223601	8320548	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21d	LPR034	223730	8320563	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21d	LPR035	223769	8320664	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21d	LPR036	223895	8320644	WGS-84 z33L	outcrop	composited microcline with adherent qtz
21d	LPR037	223496	8320737	WGS-84 z33L	outcrop	mineral specimen; muscovite
21d	LPR038	223962	8320896	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21d	LPR039	223960	8320920	WGS-84 z33L	outcrop	mineral specimen; microcline
21e	LPR040	225048	8317742	WGS-84 z33L	outcrop	mineral specimen; microcline
21e	LPR041	224990	8317754	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21e	LPR042	225040	8319604	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21e	LPR043	225007	8317529	WGS-84 z33L	outcrop	mineral specimen; muscovite
21e	LPR044	225027	8317523	WGS-84 z33L	outcrop	mineral specimen; microcline
21e	LPR045	225026	8317456	WGS-84 z33L	outcrop	mineral specimen; muscovite
21e	LPR046	225035	8317408	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21e	LPR047	225058	8317388	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21e	LPR048	225067	8317496	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21f	LPR049	225641	8316888	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21f	LPR050	225607	8316923	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21f	LPR051	225515	8317046	WGS-84 z33L	outcrop	mineral specimen; muscovite
211 21f	LPR052	225230	8317040	WGS-84 z33L	outcrop	mineral specimen; muscovite
						· · ·
21f	LPR053	225204	8317054	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21f	LPR054	225299	8317034	WGS-84 z33L	outcrop	mineral specimen; microcline
21f	LPR055	225324	8317033	WGS-84 z33L	outcrop	rock sample; mixture of minerals

APPENDIX 1: Sample location and description (continued)

Site Code	Sample I.D.	Easting (mE)	Northing (mN)	Grid	Source	Field identification
21f	LPR056	225407	8317038	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21f	LPR056 Litho	225407	8317038	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21f	LPR057	225439	8317068	WGS-84 z33L	outcrop	mineral specimen; microcline
21f	LPR058	225528	8317011	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21g	LPR059	229705	8318779	WGS-84 z33L	outcrop	mineral specimen; muscovite
21g	LPR060	229512	8318896	WGS-84 z33L	trench wall	mineral specimen; muscovite
21g	LPR060 Litho	229512	8318896	WGS-84 z33L	trench wall	rock sample; mixture of minerals
21g	LPR061	229518	8318823	WGS-84 z33L	trench wall	mineral specimen; microcline
21g	LPR062	229394	8318931	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc rubellite)
21g	LPR062 Litho	229394	8318931	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc rubellite)
21g	LPR062B	229395	8318925	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21g	LPR062B Litho	229395	8318925	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21g	LPR063	229332	8318944	WGS-84 z33L	trench wall	mineral specimen; microcline
21g	LPR064	229425	8318902	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21g	LPR065	229456	8316893	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21g	LPR066	229579	8318792	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21g	LPR066 Litho	229487	8318828	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc indicolite)
21g	LPR067	229736	8318751	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21g	LPR067B	229437	8318862	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21g	LPR067B Litho	229437	8318862	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21h	LPR068	228206	8319602	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc spodumene?)
21h	LPR069	228235	8319559	WGS-84 z33L	outcrop	mineral specimen; microcline
21h	LPR070	228283	8319541	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21h	LPR071	228374	8319510	WGS-84 z33L	outcrop	mineral specimen; muscovite
21h	LPR072	228392	8319506	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21h	LPR073	228456	8319464	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21h	LPR074	228617	8319398	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc spodumene?)
21h	LPR075	228686	8319342	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc spodumene?)
21h	LPR076	228700	8319321	WGS-84 z33L	outcrop	mineral specimen; muscovite
21h	LPR077	228729	8319312	WGS-84 z33L	outcrop	mineral specimen; microcline
21h	LPR078	228725	8319302	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21h	LPR079	228772	8319284	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21h	LPR080	228805	8319314	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc spodumene?)
21i	LPR081	230617	8317373	WGS-84 z33L	outcrop	mineral specimen; muscovite
21i	LPR082	230666	8317368	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21i	LPR083	230648	8317405	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21i	LPR084	230614	8317399	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21i	LPR084 Litho	230614	8317399	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21i	LPR085	230611	8317402	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21i	LPR085 Litho	230611	8317402	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21i	LPR087	230607	8317373	WGS-84 z33L	outcrop	mineral specimen; microcline
21i	LPR088	230595	8317362	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21i	LPR089	230563	8317371	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21i	LPR090	230540	8317380	WGS-84 z33L	outcrop	mineral specimen; microcline
21i	LPR091	230526	8317343	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21i	LPR092	230526	8317372	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21i	LPR093	230412	8317372	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21j	LPR094	213850	8321633	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21j	LPR095	213650	8321756	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21j	LPR096	213688	8321749	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21j	LPR097	213792	8321730	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21j	LPR098	213851	8321717	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21j	LPR099	213837	8321715	WGS-84 z33L	outcrop	mineral specimen; muscovite
21j	LPR100	213879	8321653	WGS-84 z33L	outcrop	mineral specimen; microcline
21j	LPR101	213895	8321733	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21j	LPR102	213983	8321674	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21j	LPR103	213995	8321672	WGS-84 z33L	outcrop	mineral specimen; muscovite
21j	LPR104	214065	8321660	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21j	LPR104Litho	214065	8321660	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21j	LPR105	214130	8321638	WGS-84 z33L	outcrop	mineral specimen; microcline

Site Code	Sample I.D.	Easting (mE)	Northing (mN)	Grid	Source	Field identification
21j	LPR106	214144	8321626	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21k	LPR107	225549	8323087	WGS-84 z33L	outcrop	mineral specimen; muscovite
21k	LPR108	225549	8323087	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21k	LPR109	225566	8323117	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21k	LPR110	225526	8323029	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21k	LPR111	225508	8323104	WGS-84 z33L	trench wall	mineral specimen; microcline
21k	LPR112	225460	8323178	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21k	LPR113	225439	8323175	WGS-84 z33L	trench wall	mineral specimen; microcline
21k	LPR114	225436	8323187	WGS-84 z33L	outcrop	mineral specimen; muscovite
21k	LPR115	225418	8323187	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21k	LPR116	225400	8323206	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21k	LPR117	225402	8323234	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21k	LPR118	225368	8323249	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21k	LPR119	225290	8323284	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21	LPR120	219232	8320608	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc Li minerals?)
21	LPR121	219224	8320586	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21	LPR122	219212	8320598	WGS-84 z33L	trench wall	mineral specimen; muscovite
21	LPR123	219212	8320598	WGS-84 z33L	trench wall	rock sample; mixed minerals (inc spodumene?)
21	LPR123 LITHO A	219212	8320598	WGS-84 z33L	trench wall	rock sample; mixed minerals (inc Li minerals?)
21	LPR123 LITHO B	219212	8320598	WGS-84 z33L	trench wall	rock sample; mixed minerals (inc spodumene?)
21	LPR124	219194	8320602	WGS-84 z33L	trench wall	rock sample; mixed minerals (inc Li minerals?)
21	LPR125	219194	8320602	WGS-84 z33L	trench wall	mineral specimen; muscovite
21	LPR126	219188	8320582	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc fluorescent mineral)
21	LPR127	219160	8320599	WGS-84 z33L	outcrop	mineral specimen; microcline
21	LPR128	219154	8320610	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc Li minerals?)
21	LPR129	219129	8320623	WGS-84 z33L	outcrop	rock sample; mixed minerals (inc Li minerals?)
21m	LPR130	220677	8320177	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21m	LPR130 LITHO	220677	8320177	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21m	LPR131	220677	8320177	WGS-84 z33L	outcrop	mineral specimen; microcline
21m	LPR132	220648	8320169	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21m	LPR133	220633	8320196	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21m	LPR134	220598	8320164	WGS-84 z33L	outcrop	rock sample; mixture of minerals
21m	LPR135	220597	8320163	WGS-84 z33L	outcrop	mineral specimen; muscovite
21n	LPM001	221588	8322703	WGS-84 z33L	dump	rock sample; mixed Li minerals (inc spodumene?)
21n	LPM002	221588	8322703	WGS-84 z33L	dump	rock sample; mixture of minerals
21i	LPR086 Litho	230602	8317386	WGS-84 z33L	outcrop	Host-rock to pegmatite: dark grey aphanitic rock

APPENDIX 2: ASSAY RESULTS

3 (ppm	P (ppm)	Mn (ppm)	Fe (%)	K (%)	Sn (ppm)	Rb (ppm)	Ta (ppm)	Cs (ppm)	Li2O (% calc)	Li (ppm)	Sample I.D.	Site Code
2	no assay	>10000	19.3	0.16	2	9.78	x	28.1	0.94	4360	AAR012	19a
6	no assay	236	0.61	0.01	275	30.6	x	1100	7.49	34800	AAR013	19b
(870	30	0.11	8.5	2	672	x	11.6	0.00	5	LPR001	21a
8	230	150	1.66	7.9	263	1960	130	537	0.08	375	LPR002	21a
(830	285	0.39	6.9	8	634	x	28.1	0.01	45	LPR003	21a
(1460	110	0.25	8.7	2	748	x	18.9	0.00	15	LPR004	21a
ĸ	Х	35	0.33	0.05	2	7.1	x	0.5	0.00	5	LPR004 Litho	21a
9	1520	155	0.33	7.5	10	790	x	42.9	0.01	25	LPR005	21a
13	360	200	1.46	7.6	90	1210	15	31.6	0.07	305	LPR006	21a
7	990	85	0.21	7.4	7	417	x	17.8	0.00	15	LPR007	21a
17	1160	90	0.36	7.1	10	438	x	13.2	0.00	15	LPR008	21a
<	1380	30	0.12	9.4	6	457	x	8.3	0.01	50	LPR009	21a
5	980	60	0.34	7	7	379			0.00	20	LPR010	21a
44	660	175	1.18	2	2	121	x	6.8	0.01	40	LPR011	21b
9	330	270	1.73	7.6	107	1190	30	46	0.06	265	LPR012	21b
<		25	0.13	9	2	584	x	14	0.01	35	LPR013	21b
11		250	1.39	7.7	611	1730	125	633	0.05	215	LPR014	21b
169		660	0.96	3.1	14	203		17.7	0.01	60	LPR015	21b
		30	0.12	8.9	7	543		19.9	0.01	50	LPR016	21b
. 7			0.16	7.4	8	408		12.5	0.01	45	LPR017	21b
18		140	0.32	7.3	6	449		20.3	0.01	25	LPR018	21b 21b
		80	0.32	8.5	6	1020		20.3	0.01	50	LPR018	210 21b
` 100		665	0.14	4.4	6	227		18.3	0.01	25	LPR019	21b 21b
										40		
2		30	0.11	9.1	5	482		15.9	0.01	40	LPR021	21c
		125	0.23	6.9	7	452		10.7	0.01		LPR022	21c
36		70	0.44	6	11	422		22.4	0.01	40	LPR023	21c
36		325	0.39	4.8	14	338		30.2	0.01	35	LPR024	21c
16		200	1.39	7.9	130		40	82.3	0.07	335	LPR025	21c
		35	0.12	9.4	6	480		11.1	0.01	65	LPR026	21c
63		410	0.6	4.2	6	188		5.8	0.01	25	LPR027	21c
		60	0.15	8.8	5	668		10.1	0.01	30	LPR028	21c
40		390	2.35	7.1	58		20	27.3	0.05	245	LPR029	21c
14		595	0.64	3.7	9	286		12.8	0.01	65	LPR031	21d
4	850	115	0.22	7.6	2	612	x	64.6	0.00	15	LPR031 Litho	21d
8	540	305	1.66	7.6	199	1600	45	108	0.06	290	LPR032	21d
(1080	3490	1.76	4.2	10	317	x	32.2	0.01	55	LPR032 Litho	21d
3		115	0.22	7.5	6	496		19.1	0.01	60	LPR033	21d
(1020	140	0.35	7.1	10	433	x	19.1	0.01	40	LPR034	21d
4	1030	90	0.21	7.3	9	605	x	33.7	0.01	30	LPR035	21d
10	990	195	0.37	7.3	9	586	x	54.8	0.01	40	LPR036	21d
29	620	340	1.68	7.6	130	1250	55	83.7	0.11	520	LPR037	21d
2	960	165	0.23	6.3	2	413	x	12.3	0.01	65	LPR038	21d
<	2800	45	0.1	8.5	14	887	x	27	0.02	80	LPR039	21d
<	500	90	0.17	8	2	371	x	6.8	0.00	10	LPR040	21e
<	790	1770	0.94	3.7	6	271	x	11.7	0.01	30	LPR041	21e
2	750	175	0.23	7.1	8	460	x	32.5	0.01	25	LPR042	21e
5	440	550	2.07	7.3	64	720	20	26.6	0.06	260	LPR043	21e
<	990	110	0.21	8.5	5	489	x	10.1	0.00	5	LPR044	21e
7	330	415	1.98	7.4	78	726	15		0.06	280	LPR045	21e
			0.47		7	157			0.00	15	LPR046	21e
2			0.64		9	181				30	LPR047	21e
31			0.36		2	382			0.00	15	LPR048	21e
10			0.79				^ 10		0.00	35	LPR049	21¢
6		480	0.63		13	451			0.01	25	LPR050	21f
11		905	1.84	4.5			^ 60		0.01	645	LPR050	21f
8		370	1.84				105		0.14	245	LPR051 LPR052	211 21f
10			0.5			2130			0.05	45	LPR052 LPR053	211 21f
				3								
٤			0.17			973 438			0.00	5 10	LPR054 LPR055	21f 21f

APPENDIX 2: ASSAY RESULTS (continued)

Site Code	Sample I.D.	Li (ppm)	Li2O (% calc)	Cs (ppm)	Ta (ppm)	Rb (ppm)	Sn (ppm)	К (%)	Fe (%)	Mn (ppm)	P (ppm)	B (ppm)
21f	LPR056	20	0.00	56.3	10	440	2	5.6	0.49	500	870	135
21f	LPR056 Litho	55	0.01	11.4	х	246	10	2.9	0.63	415	1060	165
21f	LPR057	15	0.00	34.6	х	861	6	8.5	0.14	55	1090	x
21f	LPR058	20	0.00	35.4	х	573	2	5.5	0.39	200	690	140
21g	LPR059	270	0.06	119	230	1870	356	7.3	1.72	300	370	235
21g	LPR060	885	0.19	378	60	4810	903	8	1.05	330	190	140
21g	LPR060 Litho	2660	0.57	3.1	х	21.7	2	0.6	25.4	89700	113000	800
21g	LPR061	75	0.02	92.8	х	1420	19	9.3	0.13	15	1500	x
21g	LPR062	10	0.00	9.1	х	227	9	3.2	0.57	100	1150	1010
21g	LPR062 Litho	25	0.01	6.5	х	92.3	8	1.4	1.62	1210	1190	2720
21g	LPR062B	5	0.00	4.3	х	159	10	2	0.42	60	1190	215
21g	LPR062B Litho	10	0.00	9.4	х	304	8	3.8	0.22	80	1050	260
21g	LPR063	40	0.01	129	55	1280	21	9.6	0.14	45	2280	x
21g	LPR064	25	0.01	17.3	х	349	7	5.6	0.29	100	920	260
21g	LPR065	65	0.01	25	х	789	15	8.8	0.3	190	1700	130
21g	LPR066	25	0.01	29.4	х	418	10	7.6	0.22	40	720	95
21g	LPR066 Litho	35	0.01	25.8	х	513	10	7.4	0.2	180	1050	45
21g	LPR067	15	0.00	6.7	x	262	8	4.4	0.99	170	790	2070
21g	LPR067B	15	0.00	20.9	x	367	10	5.6	0.42	45	790	145
21g	LPR067B Litho	20	0.00	28.6	x	534	13	7.3	0.25	55	920	100
21h	LPR068	15	0.00	12.7	x	141	7	3.1	0.4	135	570	725
21h	LPR069	30	0.01	17.4		533		9.1	0.13		1200	
21h	LPR070	5	0.00	6.1		67.3			0.79		610	950
21h	LPR071	535	0.12	60.7	30				1.6			
21h	LPR072	55	0.01	4.4		178			0.41		450	
21h	LPR073	30	0.01	34.6		261			0.23		690	
21h	LPR074	25	0.01	18.4		131			0.98		640	
21h	LPR075	55	0.01	19.2		227			0.65		500	
21h	LPR076	235	0.05	423	55				1.41		340	
21h	LPR077	85	0.02	40.3		802			0.13			
21h	LPR078	45	0.01	21.2		374			0.88		830	
21h	LPR079	15	0.00	5		73.4			0.61		700	
21h	LPR080	5	0.00	9.5		293			0.33		1380	
211	LPR081	440	0.09	45.3	^ 35				1.41			
21i	LPR082	20	0.00	55.4		660			0.51			
21i	LPR083	40	0.00	35.4	^ 15							
21i	LPR084	20	0.01	28.5		385						
21i	LPR084 Litho	25	0.01			338						
21i	LPR085	30	0.01	60.8		799						
21i	LPR085 Litho	20	0.01			779						
21i	LPR087	35	0.00			1040			0.31			
21i	LPR088	30	0.01	6.1		224			0.51			
21i 21i	LPR089	60	0.01			389			0.31			
21i 21i	LPR089	200	0.01			901			0.41			
21i 21i	LPR090	55	0.04	83.6		1040						
21i 21i	LPR091 LPR092	30	0.01			363			0.18			
21i 21i	LPR092	20	0.01			345						
	LPR093	15	0.00			708						
21j						104						
21j	LPR095 LPR096	20 25	0.00			99.7						
21j												
21j	LPR097	30	0.01			45.5						
21j	LPR098	25	0.01			58.3						
21j	LPR099	620	0.13		95							
21j	LPR100	25	0.01			654			0.12			
21j	LPR101	20	0.00			82.5			0.62			
21j	LPR102	10	0.00			44.9						
21j	LPR103	150	0.03		115							
21j	LPR104	5	0.00			540						
21j	LPR104Litho	5	0.00			642						
21j	LPR105	10	0.00	32.5	х	621	5	9.1	0.14	30	1340	X

APPENDIX 2: ASSAY RESULTS (continued)

Site Code	Sample I.D.	Li (ppm)	Li2O (% calc)	Cs (ppm)	Ta (ppm)	Rb (ppm)	Sn (ppm)	К (%)	Fe (%)	Mn (ppm)	P (ppm)	B (ppm
21j	LPR106	15	0.00	5.8	x	89.5	2	0.9	0.72	245	360	40
21k	LPR107	265	0.06	48.9	35	1710	119	7.3	1.56	275	790	24
21k	LPR108	25	0.01	36.8	x	635	29	4.9	0.54	155	1670	24
21k	LPR109	75	0.02	24.3	x	290	47	3.8	1.3	630	1400	2250
21k	LPR110	65	0.01	33.4	x	340	23	3.4	0.66	95	1030	460
21k	LPR111	35	0.01	164	x	3180	30	9.8	0.18	25	2390	x
21k	LPR112	25	0.01	10	x	99.5	19	0.5	0.62	150	1030	2
21k	LPR113	35	0.01	56.8	x	2140	22	9.7	0.13	20	2610	x
21k	LPR114	485	0.10	95.8	40	2730	303	7.8	1.62	150	980	11
21k	LPR115	80	0.02	72.2	25	297	59	1.1	0.38	90	1550	30
21k	LPR116	55	0.01	60.7	x	266	18	1.4	0.69	210	1660	67
21k	LPR117	105	0.02	28.5	x	293	34	1.2	0.91	200	1590	620
21k	LPR118	45	0.01	185	x	1130	21	5.6	0.23	75	1580	110
21k	LPR119	105	0.02	54	x	212	32	0.8	3.7	3190	1180	590
21	LPR120	65	0.01	5.4	20	65.1	37	0.3	0.49	580	2810	650
21	LPR121	30	0.01	7.7	10	48.2	12	0.3	0.66	335	2140	1220
21	LPR122	3120	0.67	341	45	3520	570	7.8	1.13	735	230	62
21	LPR123	17900	3.85	1450	45	552	197	0.5	0.4	320	730	31
21	LPR123 LITHO A	50	0.01	15.5	15	30.5	2	0.2	0.5	100	890	x
21	LPR123 LITHO B	16000	3.44	2390	70	4050	165	3.1	0.6	995	380	1650
21	LPR124	100	0.02	25	15	149	25	0.6	0.62	495	3580	1010
21	LPR125	3600	0.78	441	65	3640	518	7.4	1.13	675	470	750
21	LPR126	205	0.04	70	170	273	41	0.6	0.29	160	1230	10
21	LPR127	70			x	1770	27	7.3	0.21	175	1540	x
21	LPR128	20	0.00	9.9	x	30.2	7	0.6	0.39	135	960	42
21	LPR129	15	0.00	4.9	x	62.1	7	1.3	0.58	245	1230	430
21m	LPR130	30	0.01	41	x	361	21	4.2	0.71	315	1460	114
21m	LPR130 LITHO	45	0.01	38.2	x	334	23	3.8	0.68	345	1390	112
21m	LPR131	25	0.01	12.6	x	440	10	7.9	0.27	115	1050	140
21m	LPR132	55	0.01		x	1090	23	8.2	0.15	75	2790	х
21m	LPR133	15	0.00			206			0.78	825	1440	28
21m	LPR134	60			x	238	15	3.4	0.64	335	1070	31
21m	LPR135	285	0.06					7.7	1.56		630	10
21n	LPM001	21200	4.56		260	>5000	618	6.6	0.13	1520	150	261
21n	LPM002	745	0.16		80	504			2.89	505	1510	4
21i	LPR086 Litho	300	0.06	2.9	x	115	x	2.5	2.87	475	970	x

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Rock-chip samples. Samples collected were around 2-3kg and comprised of grab samples of rock or of mineral specimens, mostly collected from pegmatite outcrop. Samples included grab samples of rock from random outcrops along with selected mineral specimens chosen to enable determination of fractionation indices or confirm presence of diagnostic LCT enrichment and enable geochemical characterisation of individual pegmatites. Specimens of suspected lithium minerals are a valid means of assessing the tenor and quality of lithium mineralisation and may enable verification of mineral species. A total of 155 samples were collected by an experienced field geologist and sent to Geoangol Laboratories (Angola) for processing to pulps, with pulps then exported to SGS Perth for analyses. Laboratory QAQC duplicates and blanks were inserted.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Not applicable; no drilling results discussed.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Not applicable; no drilling results discussed.

Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	• Rock-chip samples are not logged, however basic topography, environment, sample nature and geological, mineralogical, and petrographic details are recorded.				
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.					
	• The total length and percentage of the relevant intersections logged.					
Sub-sampling techniques	• If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable; drilling results not discussed.All samples dry.				
and sample preparation	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	• Laboratory standards, splits and repeats were used for quality control.				
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• The sample type and method was of acceptable standard for first pass pegmatite mapping or sampling and represents standard industry practice at this stage of investigation.				
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	practice at this stage of investigation.				
	• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.					
	Whether sample sizes are appropriate to the grain size of the material being sampled.					
Quality of assay data and	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• Sample preparation is integral to the analysis process as it ensures a representative sample is presented for assay. The preparation process includes sorting, drying, crushing, splitting and pulverising.				
laboratory tests	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Rock Chip samples were assayed by SGS Perth Laboratories for multi-elements using Sodium Peroxide Fusion and ICPAES analysis for Al, B, Ca, Fe, K, Li, Mg, Mn, Si, Ti and P, and ICPMS analysis for Ba, Be, Cs, Nb, Rb, Sn, and Ta. Laboratory standards, splits and repeats were used for quality control. 				
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.					
Verification of sampling and	• The verification of significant intersections by either independent or alternative company personnel.	 Sample results have been checked by a consultant geologist. Assays reported by laboratory as Excel files and secure pdf files. 				
assaying	The use of twinned holes.					

	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Data entry carried out by field personnel thus minimizing transcription or other errors. Careful field documentation procedures and rigorous database validation ensure that field and assay data are merged accurately. Data has been checked. No adjustments are made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations picked up with handheld Garmin <i>GPSmap64</i>, having an accuracy of approximately +/- 3m. (sufficient for first pass pegmatite mapping). All locations recorded in WGS-84 Zone 33L Topographic locations interpreted from GPS pickups (barometric altimeter) and field observations. Adequate for first pass pegmatite mapping.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Samples were selected by the geologist to assist with identification of the nature of the mineralisation present at each location. No set sample spacing was used and samples were taken based upon geological variation at the location. Sample compositing was not applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• Surface samples of "points" only. Does not provide orientation, width information. Associated structural measurements and interpretation by geologist can assist in understanding geological context.
Sample security	The measures taken to ensure sample security.	 Samples were securely packaged when transported to ensure safe arrival at assay facility.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	Not necessary at this stage of the exploration.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Namibe Lithium Project is comprised of a single licence, Prospecting Title No. 001/02/01/T.P/ANG-MIREMPET/2022, held 100% by VIG World Angola LDA, who have signed a legally binding agreement with Angolan Minerals Pty Ltd, such that Angolan Minerals Pty Ltd will purchase the licence to acquire 100% ownership. Tyranna has signed a legally binding agreement in which it acquires 80% ownership of Angolan Minerals Pty Ltd and thus has an 80% ownership of the Namibe Lithium Project. The project is located in an undeveloped land east of the city of Namibe, provincial capital of Namibe Province in southwest Angola. The project area is not within reserves or land allocated to special purposes and is not subject to any operational or development restrictions. The granted licence (Prospecting Title) was granted 25/02/2022 and is valid until 25/02/2024, at which time the term may be extended for an additional 5 years. The licence is maintained in good-standing
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historical exploration was completed in the late 1960's until 1975 by The Lobito Mining Company, who produced feldspar and beryl from one of the pegmatites. Another company, Genius Mineira LDA was also active in the area at this time. There was no activity from 1975 until the mid-2000's because of the Angolan Civil War. There has been very little activity since that time, with investigation restricted to academic research, re-mapping of the region as part of the Planageo initiative and an assessment by VIG World Angola LDA in 2019 of the potential to produce feldspar from the pegmatite field. Exploration by VIG World focussed upon mapping of some pegmatites and selective rock-chip sampling to determine feldspar quality.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Giraul Pegmatite Field is comprised of an estimated 600 pegmatites that have chiefly intruded metamorphic rocks of the Paleoproterozoic Namibe Group. The pegmatites are also of Paleoproterozoic age and their formation is related to the Eburnean Orogeny. The pegmatite bodies vary in orientation, with some conformable with the foliation of enclosing metamorphic rocks while others are

Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 discordant, cross-cutting lithology and foliation. The largest pegmatites are up to 1500m long and outcrop widths exceed 100m. Pegmatites within the pegmatite field vary in texture and composition, ranging from very coarse-grained through to finer-grained rocks, with zonation common. Some of the pegmatites contain lithium minerals although no clear control upon the location of the lithium pegmatites is known at present and the distribution of the lithium pegmatites appears somewhat random. The pegmatites of the Giraul Pegmatite Field are members of the Lithium-Caesium-Tantalum (LCT) family and include LCT-Complex spodumene pegmatites. Not applicable; drilling results not included in the announcement. The location and description of samples is included in the report as Appendix 1.
Data aggregation methods	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Not applicable; rock chip sample results reported as individual surface samples.
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Not applicable, rock chip sample results reported as individual surface samples.

intercept lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Drilling is not discussed in the report, so drill plans and cross-sections are not included. Maps displaying locations of mineralised samples collected from the surface are included in the report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Results of assays for Li, Cs, Ta, Rb, Sn (and K, Fe, Mn, P) of all samples reported in Appendix 2
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful & material exploration data has been reported
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• At the time of reporting, the results were still being evaluated but it is envisaged that in the short term further mapping and sampling is warranted to investigate potential additional lithium pegmatites. In the longer term, drilling to test extensions at depth will be required.