Astro secures highly prospective US lithium project and 80% interest in Australian IOCG project

Transaction will see highly regarded lithium industry executives Neil Biddle and Tony Leibowitz join the Astro Board

Key Highlights

$>$ Astro has staked highly-prospective lithium claims in the Kibby Basin, Nevada. The Kibby Basin hosts a number of major lithium clay projects, including loneer Ltd's Rhyolite Ridge Project and American Lithium Corporation's TLC Lithium Project.
$>$ The claims provide Astro with low-cost entry to a high-value battery metals commodity in a world-class resources jurisdiction.
$>$ Astro to also acquire 80\% of Greenvale Mining's Georgina IOCG Project in the new East Tennant Mineral Province of the NT, with the right to increase to 100%.
> Consideration payable to Greenvale Mining is 1.150 billion ARO shares or approximately 19.7% of the existing share capital, plus a 2% net smelter royalty.
$>$ The Georgina Project comprises a 4,500km ${ }^{2}$ tenement holding in the highly prospective East Tennant Mineral Province, and offers IOCG and sediment-hosted base metal discovery potential.
> Highly regarded Greenvale directors and experienced battery minerals executives Neil Biddle and Tony Leibowitz will join the Astro Board, bringing a vast depth of expertise and a strong track record of value creation in the junior and mid-tier Australian mining sector, including as founding directors of ASX-200 lithium producer Pilbara Minerals.
$>$ Key Greenvale operational staff to transfer to Astro, including CEO Matthew Healy.
$>$ Astro to undertake a share placement of $\$ 2.25$ million, of which $\$ 1$ million is to be supported by Neil Biddle and Tony Leibowitz. Major shareholder Holdmark property group also to retain its approximately 19.9% shareholding.

Astro Resources NL (ASX: ARO) ("ARO", "Astro" or "the Company") is pleased to announce that it has secured an exceptional opportunity in the battery materials sector, with the Company successfully staking a number of highly-prospective lithium brine and clay claims in the Kibby Basin, Nevada.

In addition, ARO has also entered into a conditional letter of intent (LOI) to acquire an 80% interest in the world-class Georgina IOCG Exploration Project in the Northern Territory from Greenvale Mining Limited (Greenvale ASX: GRV), with highly regarded Greenvale directors and experienced battery minerals executives Neil Biddle and Tony Leibowitz to join the Astro Board.

The Kibby Basin is home to several large-scale lithium development projects, including loneer's (ASX: INR) DFS-stage US\$1.265B after-tax NPV Rhyolite Ridge project ${ }^{7}$, and the American Lithium Corporation's (OTCMKTS: LIACF) 7.13Mt LCE (Lithium Carbonate Equivalent) TLC Lithium Project ${ }^{8}$.

Astro Chairman, Jacob Khouri, commented: "These claims in the Kibby Basin provide Astro with an outstanding, low-cost entry into a proven lithium producing district. This represents an exciting opportunity for Astro to gain exposure to a future facing battery commodity with an exceptional growth outlook. Holdmark's ongoing participation in the placement and retention of its position as a major shareholder of the Company reinforces the decision with the above changes."
"In addition, we have the opportunity to acquire a compelling IOCG exploration project in one of Australia's most exciting new mineral provinces. I am particularly delighted that, as part of this transaction, two of Australia's most respected mining executives - Neil Biddle and Tony Leibowitz - will be joining the board of Astro, bringing a wealth of specialist battery metals expertise. Both Neil and Tony played a pivotal role in the formation and development of Pilbara Minerals, which is now one of Australia's most successful lithium producers.
"Neil and Tony have an exceptional track record of value creation in the resource sector, and I am looking forward to their contribution - with a strengthened leadership team also set to benefit Astro's other projects. In short, I am confident that this represents a major turning point for Astro."

Commenting on the transaction and his appointment to the Astro Board, Neil Biddle said: "I am excited by the opportunity that Astro has secured in the Kibby Basin, which represents a compelling asset in a proven lithium province, and also look forward to further advancing the Georgina Basin Project as part of a focused and well-resourced international exploration company. These assets present an exciting opportunity to create value for Astro and its shareholders, including Greenvale as a new cornerstone shareholder."

Staking of Kibby Basin Lithium Claims

Kibby Basin Lithium Claims

The Company has recently applied for an area of claims in the Kibby Basin to the immediate south of Belmont Resources' Kibby Basin Project ${ }^{5}$. The Kibby Basin Project is located 60km north of Clayton Valley Basin, which hosts the majority of lithium projects in the state, including Albermarle's Silver Peak lithium brine operation, the sole lithium producer in North America.

The new claim area comprises overlapping placer and lode claims, providing the Company with rights to explore for both lithium-rich brines and lithium-bearing clays.

Page | 2

The Basin and Range topography across much of Nevada can contain substantial thicknesses of felsic volcanic rocks, some of which contain abundant lithium-bearing rhyolite glass. The reactive nature of the glass combined with porous nature of the rocks makes them prone to weathering, which releases the contained lithium for capture by fine-grained clays and/or lithium-bearing brine accumulation.

Figure 1. Schematic deposit model for lithium brines showing part of a closed-basin system consisting of interconnected subbasins. The subbasin containing the salar is the lowest.

Figure 9. Models of formation for lithium-bearing brines and clays

A number of lithium clay projects are located in the region, including the loneer (ASX: INR) DFS-stage US $\$ 1.265$ B after-tax NPV Rhyolite Ridge project ${ }^{7}$, and the American Lithium Corporation (OTCMKTS: LIACF) 7.13Mt LCE (Lithium Carbonate Equivalent) TLC Lithium Project ${ }^{8}$.

These projects highlight the value and size potential of lithium in Nevada and support Astro's technical and commercial rationale for exploration for the high-value commodity in this region.

Figure 10. Astro Kibby Basin claim area, boundary of outcropping rocks and alluvial fan

Geophysical surveying conducted by Belmont has indicated the Kibby Basin to be a closed basin with a strong magnetotelluric conductor located beneath the playa (lake) bed, interpreted to represent the presence of a lithium rich brine ${ }^{5}$. Belmont's ASX-listed joint venture partner, Marquee Resources Ltd (ASX:MQR), has commenced drilling at the project ${ }^{6}$.

The Company's new claim position covers a prospective southern portion of the basin, abutting basement outcrop which may represent an upthrown horst along the margin of an east-west structure, a down-thrust block to the north that is currently filled with the Kibby playa lake. This structural setting would be similar to that shown for Silver Peak in the Clayton Valley.

Next steps

Astro intends to commence exploration by conducting a shallow initial air-core drilling program to confirm the presence of lithium-bearing clay mineralisation before advancing to a more comprehensive drilling campaign.

Figure 1. Kibby Basin location, select lithium projects, recent sedimentary basins (yellow) and lakes (green)

Acquisition of Georgina Project

Astro has entered into a conditional letter of intent (LOI) to acquire an 80% interest in the world-class Georgina IOCG Exploration Project in the Northern Territory from Greenvale Mining Limited (Greenvale ASX: GRV).

Under the agreement, Astro will acquire 80\% of Greenvale's subsidiary Knox Resources Pty Ltd (Knox), the 100% owner of the Georgina Project tenement holding.

About the Georgina Project

Located in the highly prospective East Tennant province in the Northern Territory, the Georgina Project comprises eight granted Exploration Licences, and five under application, for a combined total of 4,522km².

The East Tennant province has been the subject of intense geoscientific investigation by both Geoscience Australia and the Northern Territory Geological Survey for over five years. Pre-competitive work undertaken as part of the Federal Government's $\$ 225$ million Exploring for the Future program (EFTF) included solid geology interpretation, alteration proxy mapping and mineral prospectivity mapping for IronOxide Copper Gold (IOCG) deposits. The collaborative MinEx CRC National Drilling Initiative, conducted in late 2020, confirmed the highly prospective nature of the region by intersecting prospective host rocks, IOCG-style alteration and sulphide mineralisation as part of a 10-hole program at East Tennant.

Figure 2. Granted Knox tenements and selected nearby tenement holders.

IOCG deposits are typically large, economically attractive copper-gold deposits with some smaller highgrade variants - most notably those at Tennant Creek. This style of deposit contains elevated levels (10$60 \mathrm{wt} \%$) of the iron oxide minerals magnetite and hematite, which gives rise to their (typically) elevated magnetic and gravity (density) properties. Australian IOCG's include the South Australian Olympic Dam, Prominent Hill, and Carrapateena deposits, Ernest Henry in north-west Queensland, and the high-grade Northern Territory Warrego and Juno deposits, located west of the Georgina Project at Tennant Creek.

Tenement ID	Status	Area	Surface Area (km²)
EL32282	Granted	West	805.7
EL32281	Granted	West	27.7
EL32296	Granted	West	112.8
EL32283	Granted	Central	400.8
EL32295	Granted	Central	425.5
EL32964	Granted	Central	1.0
EL32285	Granted	East	726.6
EL32286	Granted	East	672.0
EL32280	Application	West	580.2
EL32284	Application	Central	708.7
EL32820	Application	Central	10.7
EL32821	Application	Central	38.7
EL32965	Application	Central	12.4

Table 1. Knox Resources Tenement Listing
In addition to IOCG prospectivity, the Knox eastern tenements overlie interpreted South Nicholson basin and Mount Isa Group sedimentary rocks which are prospective for sediment-hosted base metal deposits such as the world-class Century and Mount Isa deposits (George Fisher).

Knox was a successful applicant as part of a competitive tender process with the award of nine tenements, of which seven progressed to grant in September 2020. Since then, several further applications have been made to consolidate Knox's tenure position in the region. The Georgina Project has seen an intense level of investment in exploration over the past 18 months, with work conducted to date including:

- 27,879 line kilometres of airborne magnetic geophysical surveying, at 100 m line spacing in central and western tenement areas;
- 2,274 gravity station measurements, comprising 1x1km stations over EL32282 and EL32296, with in-fill to $200 \times 200 \mathrm{~m}$ over select prospect areas;
- Trial spinifex vegetation sampling and ultrafine soil sampling, with 230 samples taken of each;
- Euler deconvolution depth to basement modelling;
- Inversion modelling of gravity and magnetic geophysical data, including for remnant magnetisation, to support drill targeting;
- Solid geology interpretation, mineral systems analysis and exploration targeting by highly-regarded consultants SRK Consulting;
- Drilling of two permitted ground water bores to support drilling operations;
- Two exploration diamond drill holes at the Twin Peaks prospects for a combined 1,697.5m, which intersected anomalous geochemistry in copper, as well as gold, bismuth and uranium;
- Associated drill sample petrographic polished section preparation and analysis; and
- Down-hole geophysical surveying.

A rolling target generation exploration work program, including geophysical gravity and passive seismic surveying on the eastern Ranken tenement group is planned for the 2022 field season, ensuring a continual flow of prospects into the drill pipeline for systematic drill testing. Two such targets, Banks and Leichhardt, are drill-ready and will be tested by initial diamond drill holes this year.

Figure 3. Knox granted (solid green) and application (cross-hatch) tenements over regional TMI-RTP magnetic imagery

Figure 4. Knox granted (solid green) and application (cross-hatch) tenements over regional IVD Gravity imagery

Significant Exploration Investment made to date

Over $\$ 2.6$ million has been expended by Greenvale on the Georgina Project to date, with an additional $\$ 80 \mathrm{k}$ contributed to exploration by the NTGS as part of two successful co-funded geophysical projects under the Geophysics and Drilling Collaborations program, of the Resourcing the Territory initiative.

Exploration work completed includes desktop studies, geophysical surveying, target generation, surface sampling and drill testing.

Figure 5. SRK Consulting mineral systems analysis image of interpreted prospectivity on central and western tenements
Highly-regarded consultants SRK Consulting were engaged in 2021 to complete a review and compilation of regional, local and historical datasets, structural and solid geological interpretation, and generation of ranked Tennant Creek-style IOCG exploration targets. Over 90 conceptual targets were identified as part of the SRK review.

Airborne magnetic-radiometric surveys were flown over select central and western tenements in order to upgrade magnetic survey resolution from the NTGS open file $400 / 200 \mathrm{~m}$ to 100 m line spacing, to improve geological interpretations and targeting ability. In addition, gravity surveying was conducted over several early high-priority target areas including Twin Peaks, and the Banks-Leichhardt prospect areas.

A total of 2,274 gravity station measurements were taken and 27,879 line km of magnetic surveying. NTGS co-funding of $\$ 80 \mathrm{k}$ supported a 12,618 line kilometres magnetic survey and 911 -station gravity survey, included in these totals. The co-funded geophysical surveys proved instrumental in the identification of drill targets, including at Twin Peaks.

Q4 of the 2021 calendar year saw the first two holes ever drilled at Georgina. The two holes targeted the two 'Twin Peaks' prominent magnetic-gravity anomalies. Both holes intersected a complex sequence of fine-grained alkali basaltic volcanics, autobreccias and hyaloclastites with lesser sandstone conglomerates. These rocks were variously altered, mainly with respect to hematite, chlorite, smectite and iron oxy-hydroxides.

Assay results from diamond drill-hole KNRDD002 returned a broad zone of anomalous geochemistry, variously including bismuth, silver, and uranium, from 758 m down-hole (approx. 650 m vertically) to the end-of-hole depth at 796.6 m , centring around an anomalous zone of gold from 774-790m down-hole. In addition, copper mineralisation was identified in the hole with three best one-metre intersections grading $0.19 \%, 0.16 \%$ and 0.20% Cu from $669 \mathrm{~m}, 709 \mathrm{~m}$ and 712 m , respectively. Hole KNRDD004 intersected a zone of low-level copper-bismuth-molybdenum anomalism from $843.17 \mathrm{~m}-862 \mathrm{~m}$ down-hole. A table of the anomalous metal results can be found at Appendix A of the original release - ASX:GRV 'Georgina Basin IOCG Project Update' 30 March 2022.

Figure 6. 3D section of the assayed portion of KNRDD002, downhole geochemistry and targeted modelled magnetic isosurfaces

Proposed forward strategy

The forward exploration strategy for Georgina is active, comprehensive and is designed to advance further prospects along the exploration pipeline for drill testing. Work planned for the current year includes exploration drilling, geophysical surveying, and progressing remaining tenement applications toward grant.

Drill-ready targets generated in the central tenement group include the Banks and Leichhardt prospects. Banks and Leichhardt are characterised by coincident magnetic and gravity anomalies, proximity to regional-scale faults, felsic intrusive rocks and near to observed copper mineralisation at the Middle Island Resources (ASX: MDI) Crosswinds copper prospect ${ }^{4}$.

Remnant magnetism, where a particular magnetic field direction is preserved by magnetic minerals, is a feature associated with copper-gold mineralised ironstones in the Tennant Creek field and has also been observed at the Banks and Leichhardt targets.

The Banks and Leichhardt targets will be tested by initial diamond drill holes in the current year.

Figure 7. Planned drilling at the Banks and Leichhardt prospects, inverted analytic signal magnetics (green) and $2.75 \mathrm{~g} / \mathrm{cc}$ gravity (cream)

Target	East (MGA)	North (MGA)	RL	Azimuth (MGA)	Dip	Depth
Banks	588116	7809650	225	135	-70	500
Leichhardt West	584975	7806808	225	325	-70	600
Leichhardt East	587285	7808045	225	325	-70	700

Table 2. Planned central tenement drill hole designs
The eastern Georgina 'Ranken' tenement group overlies interpreted South Nicholson basin (Crow formation) and Mount Isa (McNamara group) sedimentary rocks. These host-rocks are prospective for sediment-hosted base metals such as the world class Century and Mount Isa deposits.

To advance exploration at Ranken, geophysical gravity and passive seismic surveying is planned for the 2022 field season. Gravity surveying will aid in the identification of gravity (density) anomalies, which may represent base metal mineralisation, and passive seismic surveying will assist in constraining the depth of basement rocks - a key parameter in exploration under cover.

Figure 8. Interpreted Ranken Precambrian solid geology includes the South Nicholson basin and Mount Isa (McNamara) host rocks

Tenement applications EL 32280 and EL 32284 have a number of prospective conceptual targets, with those on the former a high-priority given the presence of outcropping to shallowly sub-cropping rocks on the tenement. Both of these applications are located on Aboriginal Freehold land and access is subject to execution of an agreement with the relevant Land Council and Aboriginal landholders.

With initial meetings tentatively scheduled for the current year, all efforts will be made to progress these highly prospective tenements through toward grant.

Figure 9. Interpreted cover thickness and proterozoic outcropon tenement application EL 32280

Board Appointments

As part of the proposed transaction, Greenvale will have the right to appoint two directors. Messrs Neil Biddle and Leibowitz will join the Board of Astro as non-executive Directors.

Mr Biddle is a highly experienced geologist and mining executive with a successful career spanning more than 30 years in the exploration and mining industry. He was the co-founder and a former Executive Director of successful mid-tier lithium producer Pilbara Minerals (ASX: PLS) and devised and implemented the strategy which saw that company grow from a junior micro-cap into a leading global battery materials producer, with a market capitalisation today of $\$ 8.6$ billion.

Earlier in his career, Mr Biddle was Managing Director of strategic metals group TNG (ASX: TNG) and gold miners and explorers Border Gold and Consolidated Victorian Gold. He is the Managing Director of Greenvale Mining and a non-executive Director of battery materials explorer Trek Metals (ASX: TKM). He was previously Executive Director of gold explorer Bardoc Gold (ASX: BDC) and led the strategic review which resulted in that company's successful acquisition by St Barbara (ASX: SBM).

Mr Leibowitz is a Chartered Accountant and highly successful business executive with more than 30 years of corporate finance, investment banking and broad commercial experience. He has a proven track record of providing skills and guidance to assist companies to grow and generate sustained shareholder value. He was formerly a global partner with PricewaterhouseCoopers,

Mr Leibowitz was the founding Chairman of Pilbara Minerals (ASX: PLS) and is currently non-executive Chairman of Greenvale Mining (ASX: GRV) and battery materials focused explorer Trek Metals (ASX: TKM).

Mr Biddle and Mr Leibowitz established Pilbara Minerals in 2013 and oversaw the strategy which saw the Company become a trail-blazer for the hard rock lithium mining sector in Australia through the discovery, drill-out, financing and subsequent development of the world-class Pilgangoora Lithium-Tantalum Project in WA.

Pilgangoora is now widely regarded as a Tier-1 global lithium asset which underpinned Pilbara Minerals' growth from micro-cap status to a leading $\$ 8.6$ billion lithium producer.

Messrs Biddle and Leibowitz also drove the acquisition, consolidation and exploration strategy which resulted in the establishment of Bardoc Gold (ASX: BDC) and oversaw the strategic review which resulted in that company's recent acquisition by leading mid-tier gold producer St Barbara (ASX: SBM).

Messrs Biddle and Leibowitz were the founding principals of Knox (including the Georgina Project), prior to the acquisition by Greenvale.

Performance shares

Neil Biddle and Tony Leibowitz will be entitled to the Company's Performance Share package. Subject to shareholder approval, 180 million Performance Shares will be issued to Messrs Biddle and Leibowitz (90 million Performance Shares each). 50% of the Performance Shares will have a hurdle price of $\$ 0.005$ per ordinary share and 50% will have a hurdle price of $\$ 0.01$ per ordinary share. In addition, qualitative milestones will also be included, with these milestones to be detailed in the Notice of Meeting.

Management

As part of the transaction, key Greenvale Mining operational staff will be transferred to ARO, including Chief Executive Officer Matthew Healy and Exploration Manager Paul Abbott. Mr Healy is an experienced geologist and resources sector executive, with a depth of experience in exploration and resource development across a range of commodities including base metals, precious metals, tungsten and metallurgical coal.

Mr Healy has a Master of Science with first-class honours (Geology) from the University of Auckland and over 16 years' experience working at senior levels within mining companies and a number of ASX-listed explorers. Prior to joining Greenvale, Mr Healy held the position of Exploration Manager at Round Oak Minerals, a wholly-owned subsidiary of Washington H. Soul Pattinson \& Co Ltd. As Exploration Manager, he was responsible for the management of a multidisciplinary team conducting exploration operations over a 104 -tenement holding, covering an area of $3,200 \mathrm{~km}^{2}$ across four Australian jurisdictions.

Mr Abbott is an experienced geologist who has led and managed the full exploration life cycle, both end-to-end and discrete elements. His experience has included greenfields, near mine and Resource definition settings in Australian and international locations. He has also held senior technical positions at major companies, including Anglo American.

Transaction terms

The key terms of the LOI with Greenvale Mining are:

- Acquisition of 80% of Knox Resources for consideration comprising 1,150,000,000 fully paid Astro ordinary shares (Share Consideration) representing approximately 19.7% of the existing share capital. The Share Consideration is to be subject to the following escrow provisions:

```
- 20% - no escrow;
- 30% - one year escrow; and
- 50% two years escrow.
```

- Greenvale will be required to contribute to the funding of Knox its share of future costs;
- A 2% net smelter royalty (Royalty) for all IOCG product exploited in the future from the existing tenements owned by Knox;
- Appointment of two Greenvale Directors to the Astro Board;
- Astro the right to acquire the remaining 20% for shares or cash (at the election of Astro) for a period of two years following the completion of the initial acquisition. The value of the acquisition is to be based on an independent valuation to be commissioned by Astro and Greenvale. Where the consideration is to be Astro shares, the number of shares to be issued is to be based Astro's volume weighted average share price (VWAP);
- In addition to the above, Greenvale will grant to Astro an option to purchase the Royalty within a period of five years from the date of acquisition at an independent valuation for either cash or shares (at Astro's election). Again, to the extent that Astro shares are issued to satisfy the acquisition, the number of shares is to be based on the volume weighted average trading price, without a discount.
- The approval of the acquisition of the remaining 20% and/or Royalty will be subject to future shareholder approval.

The transaction is conditional upon finalisation of due diligence, legal documentation and approvals by Astro and Greenvale shareholders. Further details are to be made available as and when they become available.

Proposed placement

To assist with ongoing funding, Astro proposes to undertake a $\$ 2.25$ million share placement at a proposed issue price of $\$ 0.003$ per share. Subject to shareholder approval, Neil Biddle and Tony Leibowitz will take up to $\$ 500,000$ each in the placement, with the remaining $\$ 1.25$ million to be completed under the Company's existing placement capacity under Listing Rule 7.1A. Astro's existing major shareholder Holdmark Property Group has confirmed its intention to participate in the capital raising to retain its approximately 19.9% shareholding in the Company.

References

Information contained in this announcement in relation this announcement relates to past exploration results is extracted from, or was set out in, the following ASX announcements and websites which are referred to in this announcement:

1-ASX:GRV 'Investor Webinar Presentation' 4 February 2022
2 - ASX:GRV 'Presentation at Mining the Territory Conference, Darwin' 28 October 2021
3 - ASX:GRV ‘Georgina Basin IOCG Project Update’ 30 March 2022
4 - ASX:MDI ‘Barkly Copper Discovery’ 23 December 2020
5 - TSX-V:BEA https://belmontresources.com/kibby-basin-new-claims/
6 - ASX:MQR 'Marquee commences drilling - Kibby Basin Lithium Project, Nevada’ 20 May 2022
7 - ASX:INR ‘loneer Delivers Definitive Feasibility Study..’ 30 April 2020
8 - TSX.V:LI https://americanlithiumcorp.com/tlc-lithium-project/\#mineralization

Authorisation

This announcement has been authorised for release by the Board of Astro.

More Information

Vince Fayad

Executive Director
Vince.fayad@vfassociates.com.au
+61 (0) 414652804

COMPETENT PERSON'S STATEMENT:

Kibby Basin

The information in this report that relates to Kibby Basin claims is based on information compiled by Mr Richard Newport, principal partner of Richard Newport \& Associates - Consultant Geoscientists. Mr Newport is a member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person under the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Newport consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Georgina Basin

The information in this report that relates to Exploration Results associated with the NT Georgina project is based on information compiled by Mr Matthew Healy, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM Member number 303597).

Mr Healy is a full-time employee of Greenvale Mining Ltd and is eligible to participate in a performance rights incentive plan of the Company. Astro Resources Ltd is seeking to acquire Knox Resources Pty Ltd, owner of the Georgina project, from Greenvale Mining Ltd.

Mr Healy has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Healy consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

APPENDIX 1: JORC Code, 2012 Edition - Table 1 Report Template

Section 1 Sampling Techniques and Data
(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	- NQ drill core cut in half lengthwise and sampled on nominal 1 m intervals or as determined by geological boundaries - Altitude for airborne magnetic surveying was determined using a Reninshaw ILM-500-R laser with a vertical accuracy of 0.1 m - Base station magnetic field monitoring was completed using GEM Overhauser and Scintrex ENVIMAG proton precession magnetometers with 1.0 and 0.5 Hz sampling rates respectively - Radiometric surveying was completed using an RSI RS-500 gammaray spectrometer with a sampling rate of 2 Hz - Magnetic surveying was completed using a Geometrics G-823A caesium vapour magnetometer at a 20 Hz sampling rate
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	- Mud-rotary methods employed to bit refusal, and HQ and ND diamond core drilling methods thereafter. - Drill core that has intersected basement (Proterozoic) rocks has been oriented where possible
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- Core blocks inserted between runs by drill crew record run length and recovered core - Core recovery logged by field staff/contractors at the point of core markup

Criteria	JORC Code explanation	Commentary
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.	- Drill core logged by field geologists to capture interpreted lithology, weathering, alteration and veining, and structure orientations where appropriate - Core logging is largely qualitative, with some quantitative estimates of notable minerals - Core tray photography undertaken of wet and dry drill core - All drill core logged
Sub-sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	- Half-core crushed and pulverized to 85% passing 75 micron particle size prior to assay - Half drill core considered representative of sample intervals

Criteria
Quality of assa data and

laboratory tests

JORC Code explanation

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

Commentary

- NATA-accredited ALS Laboratories conducted preparation and analysis of samples
- Laboratory analysis includes Fire Assay and AAS finish for Au (Method Au-AA23) and 4-acid digest and ICP-MS finish for a 48element suite (Method ME-MS61)
- Both techniques considered total for elements of interest
- Certified reference materials (CRMs) and blanks inserted in the sample stream to monitor accuracy and potential contamination as part of Company QAQC processes
- ALS in-house QAQC includes the use of CRMs, splits and duplicates to monitor accuracy and precision
- Results from QAQC review indicate no material issues, and that assay result quality is acceptable
- Magnetic susceptibility measurements taken using a KT-10 magnetic susceptibility meter
- Magnetic susceptibility measured from pulp packets in triplicate and readings averaged for reporting
- Sample intervals assigned a unique sample identification number prior to core cutting and analysis
- Significant intersections checked against drill core photography and QAQC results by a company geologist
- Tabulated data provided for each assayed interval for the announced elements
- Drill collar location determined using a Garmin hand-held GPS with location reported in GDA94 MGA Zone 53
- Downhole surveys determined using a Reflex north-seeking Gyro at 20 m depth intervals. Interpolated survey points between 820 and 880m in hole KNRDD004 due to unreliable downhole survey measurements at these locations
- Magnetic survey flight path recovery was established using a NovAtel OEM 719 DGPS Receiver with a 0.4 m RMS accuracy and a 2 Hz sampling rate

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	- Drill spacing is appropriate for early exploration purposes - A total of 27,879 line km of airborne survey data was collected in total - Gravity station measurements taken at varied station spacing as outlined in the body text of the announcement - Flight lines were spaced at 100 m with perpendicular tie-lines at 1000 m intervals.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- Insufficient information available due to early exploration status
Sample security	- The measures taken to ensure sample security.	- Samples delivered from the drill site to Freight agent by Company staff/contractors for delivery to external laboratory
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- Not applicable

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- Tenements held in 100% Greenvale subsidiary Knox Resources Pty Ltd - Detail regarding granted or application status tabulated in the body of the announcement
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- Not applicable
Geology	- Deposit type, geological setting and style of mineralisation.	- The principal target deposit style is iron-oxide-copper-gold (IOCG). IOCG

Criteria	JORC Code explanation	Commentary
		deposits are typically characterized by associated magnetic and gravity responses due the prevalence of dense and often magnetic iron oxide minerals as a substantial portion of the deposit footprint mineralogical constitution. IOCG deposits are known in the Tennant Creek region and recent Geoscience Australia prospectivity analysis indicates that basement rocks east of Tennant Creek, the location of the Company tenements, are prospective for IOCG deposits.
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	- Drillhole KNRDD002 collared at 506771 E 7825392 N and 250m RL - Drillhole KNRDD004 located at 509608 E, 7825960 N and 251m RL - Drillhole KNRDD002 setup at 170° azimuth and -61.5° dip - Drillhole KNRDD004 setup at 160° azimuth and -61.5° dip - Drillhole KNRDD002 drilled to a total depth of 796.6 m - Drillhole KNRDD004 drilled to a total depth of 900.9 m - Collar locations reported in GDA94 MGA Zone 53
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	- Not applicable

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	- Insufficient information available due to early exploration status
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- See in release - Below detection limit results replaced with a value half of the detection limit for the purposes of drafting diagrams
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- This release describes all relevant information
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- This release describes all relevant information
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	- Proposed work outlined in the body of the announcement

APPENDIX 2: Assay results for KNRDD002 and KNRDD004

SAMPLE	Hole ID	From	To	Au (ppm)	$\begin{aligned} & \mathrm{Ag} \\ & \text { (ppm) } \end{aligned}$	Bi (ppm)	Cu (ppm)	Mo (ppm)	U (ppm)
2001	KNRDD002	435	436	<0.005	0.09	0.1	2.5	0.59	0.9
2002	KNRDD002	436	437	<0.005	0.16	0.23	5	0.27	1.4
2003	KNRDD002	437	438	<0.005	0.16	0.13	3.6	0.57	1.2
2004	KNRDD002	438	439	<0.005	0.05	0.04	3.5	0.59	0.7
2005	KNRDD002	439	440	<0.005	0.35	0.08	3.6	0.2	0.9
2006	KNRDD002	440	441	<0.005	0.11	0.06	3	0.52	0.8
2007	KNRDD002	441	442	<0.005	0.19	0.19	6.6	0.72	2.7
2008	KNRDD002	442	443	<0.005	0.04	0.07	4.1	0.3	1.1
2009	KNRDD002	443	443.81	<0.005	0.1	1.08	4.4	0.45	4.6
2010	KNRDD002	443.81	445	<0.005	0.02	0.46	9.3	0.72	9.3
2011	KNRDD002	445	446	<0.005	<0.01	0.33	9.4	0.79	6
2012	KNRDD002	446	447	<0.005	<0.01	0.3	9.6	0.6	4.8
2013	KNRDD002	447	448	<0.005	0.01	0.33	9.1	0.64	4.5
2014	KNRDD002	448	449	<0.005	0.01	0.27	8.2	0.58	4
2015	KNRDD002	449	450	<0.005	0.01	0.3	8.7	0.59	4
2016	KNRDD002	450	451	<0.005	0.02	0.27	8.9	0.58	3.2
2017	KNRDD002	451	452	<0.005	0.02	0.25	9.8	0.64	3.7
2018	KNRDD002	452	453	<0.005	0.01	0.24	9.8	0.58	3.7
2019	KNRDD002	453	454	<0.005	0.02	0.25	10.8	0.63	3.9
2021	KNRDD002	454	455	<0.005	0.02	0.25	11	0.65	3.4
2022	KNRDD002	455	456	<0.005	0.04	0.19	9	0.6	3.1
2023	KNRDD002	456	457	<0.005	0.04	0.2	9.3	0.95	2.7
2024	KNRDD002	457	458	<0.005	0.03	0.16	9.2	0.66	2.7
2025	KNRDD002	458	459	<0.005	0.03	0.21	11.4	0.69	2.4
2026	KNRDD002	459	460	<0.005	0.01	0.19	8.5	0.69	3.1
2027	KNRDD002	460	461	<0.005	0.01	0.15	6.6	0.67	2.4
2028	KNRDD002	461	462	<0.005	<0.01	0.15	6.6	0.75	2.8
2029	KNRDD002	462	463	<0.005	<0.01	0.16	6	0.57	2.7
2030	KNRDD002	463	464	<0.005	<0.01	0.13	7.1	0.48	3
2031	KNRDD002	464	465	<0.005	<0.01	0.1	7.5	0.38	2.7
2032	KNRDD002	465	466	<0.005	<0.01	0.11	7.5	0.47	2.5
2033	KNRDD002	466	467	<0.005	<0.01	0.11	6.6	0.42	2.2
2034	KNRDD002	467	468	<0.005	0.01	0.1	7	0.51	2.3
2035	KNRDD002	468	469	<0.005	<0.01	0.07	8.6	0.48	2.5
2036	KNRDD002	469	470	<0.005	<0.01	0.06	9.5	0.36	2.5
2037	KNRDD002	470	471	<0.005	<0.01	0.06	9.7	0.37	2.3
2038	KNRDD002	471	472	<0.005	<0.01	0.06	10.7	0.31	2.5
2039	KNRDD002	472	473	<0.005	<0.01	0.05	9.9	0.27	2.1
2040	KNRDD002	473	474	<0.005	<0.01	0.05	11.4	0.3	2.4
2041	KNRDD002	474	475	<0.005	<0.01	0.09	13.4	0.36	2.8

astro resources nl

2042	KNRDD002	475	476	<0.005	<0.01	0.09	13.2	0.35	2.6
2043	KNRDD002	476	477	<0.005	<0.01	0.04	12.1	0.38	2.6
2044	KNRDD002	477	478	<0.005	<0.01	0.06	12.3	0.42	2.5
2045	KNRDD002	478	479	0.009	0.01	0.07	12.6	0.58	2.6
2046	KNRDD002	479	480	<0.005	<0.01	0.05	12.7	0.37	2.3
2047	KNRDD002	480	481	<0.005	<0.01	0.03	12.6	0.35	2.3
2048	KNRDD002	481	482	<0.005	<0.01	0.03	14.2	0.31	2.3
2049	KNRDD002	482	483	<0.005	0.02	0.04	14	0.39	2
2050	KNRDD002	483	484	<0.005	0.01	0.03	12.8	0.35	1.8
2051	KNRDD002	484	485	<0.005	0.02	0.03	13.9	0.4	2
2052	KNRDD002	485	486	<0.005	0.02	0.03	16.1	0.36	2.1
2053	KNRDD002	486	487	<0.005	0.04	0.03	12.6	0.43	2
2054	KNRDD002	487	488	<0.005	0.02	0.03	13.7	0.48	1.8
2055	KNRDD002	488	489	<0.005	0.01	0.02	15.1	0.36	1.9
2056	KNRDD002	489	490	<0.005	0.06	0.02	16.8	0.41	2
2057	KNRDD002	490	491	<0.005	0.01	0.04	15.5	0.44	2.1
2058	KNRDD002	491	492	<0.005	0.01	0.03	15.8	0.51	2
2059	KNRDD002	492	493	<0.005	0.01	0.03	21.3	0.63	2.4
2060	KNRDD002	493	494	<0.005	<0.01	0.02	17.2	0.56	2.1
2061	KNRDD002	494	495	<0.005	0.02	0.02	15.4	0.42	1.9
2062	KNRDD002	495	496	<0.005	0.01	0.02	14.2	0.43	1.7
2063	KNRDD002	496	497	<0.005	<0.01	0.02	14.2	0.46	1.8
2064	KNRDD002	497	498	<0.005	0.01	0.02	14.3	0.41	1.8
2065	KNRDD002	498	499	<0.005	0.02	0.1	16.8	1.26	2
2066	KNRDD002	499	500	<0.005	<0.01	0.02	13.6	0.47	1.7
2067	KNRDD002	500	501	<0.005	0.01	0.04	13.4	0.49	1.8
2068	KNRDD002	501	502	<0.005	<0.01	0.03	15	0.58	1.9
2069	KNRDD002	502	503	<0.005	0.01	0.04	14.9	0.64	1.8
2071	KNRDD002	503	504	<0.005	<0.01	0.03	18.7	0.65	2.3
2072	KNRDD002	504	505	<0.005	0.01	0.08	77.3	1.68	1.9
2073	KNRDD002	505	506	<0.005	<0.01	0.02	12.8	0.39	1.6
2074	KNRDD002	506	507	<0.005	0.01	0.05	23.3	0.85	2.8
2075	KNRDD002	507	508	<0.005	<0.01	0.03	15.3	0.54	1.7
2076	KNRDD002	508	508.9	<0.005	0.02	0.03	15.7	0.79	1.6
2077	KNRDD002	508.9	510	<0.005	<0.01	0.03	14.2	0.5	1.9
2078	KNRDD002	510	511	<0.005	0.01	0.03	14	0.44	1.6
2079	KNRDD002	511	512	<0.005	0.01	0.04	13.8	0.57	1.8
2080	KNRDD002	512	513	<0.005	<0.01	0.04	12	0.51	1.7
2083	KNRDD002	513	514	<0.005	<0.01	0.04	11.6	0.57	2.1
2084	KNRDD002	514	515	<0.005	<0.01	0.06	14.6	0.64	2
2085	KNRDD002	515	516	<0.005	<0.01	0.07	12.8	0.73	2.2
2086	KNRDD002	516	517	<0.005	0.01	0.07	9.6	0.67	2.6
2087	KNRDD002	517	517.89	<0.005	<0.01	0.06	8.3	0.58	2.3
2088	KNRDD002	517.89	519	<0.005	0.01	0.05	7	0.48	2.2
2089	KNRDD002	519	520	<0.005	<0.01	0.05	6.3	0.43	2
2090	KNRDD002	520	521	<0.005	<0.01	0.05	6.8	0.38	2.1

astro resources nl

2091	KNRDD002	521	522	<0.005	0.01	0.05	11.5	0.43	2.2
2092	KNRDD002	522	523	<0.005	0.01	0.04	6.4	0.36	1.8
2093	KNRDD002	523	524	<0.005	<0.01	0.06	4.5	0.45	1.6
2094	KNRDD002	524	525	<0.005	<0.01	0.05	4.9	0.38	1.7
2095	KNRDD002	525	526	<0.005	0.01	0.04	6.2	0.36	1.8
2096	KNRDD002	526	527	<0.005	0.01	0.04	5.2	0.44	1.5
2097	KNRDD002	527	528	<0.005	<0.01	0.09	6.6	0.72	1.5
2098	KNRDD002	528	529	<0.005	0.01	0.14	4	0.5	1.6
2099	KNRDD002	529	529.72	<0.005	0.01	0.1	7.5	0.62	1.7
2100	KNRDD002	529.72	531	<0.005	<0.01	0.04	9.1	0.4	1.7
2102	KNRDD002	531	532	<0.005	0.01	0.07	14.6	0.67	2.2
2103	KNRDD002	532	533	<0.005	<0.01	0.03	17.5	0.34	1.9
2104	KNRDD002	533	534	<0.005	<0.01	0.04	22.3	0.12	2
2105	KNRDD002	534	535	<0.005	0.01	0.04	16	0.2	2
2106	KNRDD002	535	536	<0.005	0.01	0.03	15.6	0.2	2
2107	KNRDD002	536	537	<0.005	0.04	0.03	18	0.43	1.8
2108	KNRDD002	537	538	<0.005	0.01	0.03	61.3	0.2	2
2109	KNRDD002	538	539	<0.005	0.01	0.04	32.5	0.23	2
2110	KNRDD002	539	540	<0.005	0.01	0.02	19.9	0.32	1.3
2111	KNRDD002	540	541	<0.005	0.01	0.03	24.2	0.27	1.6
2112	KNRDD002	541	542	<0.005	0.01	0.03	9.6	0.23	2.1
2113	KNRDD002	542	543	<0.005	<0.01	0.03	12.4	0.22	2
2114	KNRDD002	543	544	<0.005	<0.01	0.03	8	0.24	2
2115	KNRDD002	544	545	<0.005	<0.01	0.03	9.4	0.23	1.8
2116	KNRDD002	545	546	<0.005	0.01	0.04	10.2	0.24	2
2117	KNRDD002	546	547	<0.005	<0.01	0.06	8.4	0.34	1.8
2118	KNRDD002	547	548	<0.005	0.01	0.03	8.4	0.22	1.9
2119	KNRDD002	548	549.03	<0.005	<0.01	0.11	7.5	0.29	2
2121	KNRDD002	549.03	550	<0.005	0.01	0.12	11.3	2.85	2.2
2123	KNRDD002	550	551	<0.005	<0.01	0.07	31	0.36	2.4
2124	KNRDD002	551	552	<0.005	<0.01	0.07	24.1	0.47	2.3
2125	KNRDD002	552	553	<0.005	0.01	0.07	7.5	0.6	2
2126	KNRDD002	553	554	<0.005	0.01	0.05	11.9	1.79	1.9
2127	KNRDD002	554	555	<0.005	<0.01	0.03	13.2	1.54	1.9
2128	KNRDD002	555	556	<0.005	<0.01	0.02	24.3	0.9	2
2129	KNRDD002	556	557	<0.005	<0.01	0.03	64.6	0.95	1.9
2130	KNRDD002	557	558	<0.005	<0.01	0.04	28.7	1.34	1.9
2131	KNRDD002	558	559	<0.005	<0.01	0.07	19.6	1.33	2.1
2132	KNRDD002	559	560	<0.005	0.01	0.06	39.2	1.28	2
2133	KNRDD002	560	561	<0.005	0.04	0.07	388	0.78	1.8
2134	KNRDD002	561	562	<0.005	0.03	0.14	174	0.8	1.9
2135	KNRDD002	562	563	<0.005	0.01	0.1	171	0.49	1.8
2136	KNRDD002	563	564	<0.005	0.07	0.11	151	0.57	2.1
2137	KNRDD002	564	565	<0.005	0.02	0.09	24.4	0.42	2.2
2138	KNRDD002	565	565.42	<0.005	0.01	0.08	5.4	0.49	2.2
2139	KNRDD002	565.42	566	<0.005	0.01	0.12	10.3	0.79	1.4

2142	KNRDD002	566	567	<0.005	0.11	0.12	7.7	0.86	1.5
2143	KNRDD002	567	568	<0.005	0.05	0.11	9.9	1	1.6
2144	KNRDD002	568	568.76	<0.005	<0.01	0.07	1.4	0.4	2.2
2145	KNRDD002	568.76	570	<0.005	<0.01	0.13	5.7	0.78	1.9
2146	KNRDD002	570	571	<0.005	0.64	0.21	6.2	0.91	2.1
2147	KNRDD002	571	572	<0.005	<0.01	0.06	5.6	0.31	2
2148	KNRDD002	572	573	<0.005	<0.01	0.06	6.1	0.61	1.9
2149	KNRDD002	573	574	<0.005	<0.01	0.08	17.2	0.58	2.1
2150	KNRDD002	574	575	<0.005	<0.01	0.17	10.2	1.22	2.1
2151	KNRDD002	575	576	<0.005	0.01	0.06	10.8	0.44	1.9
2152	KNRDD002	576	577	<0.005	0.01	0.16	1.9	0.64	2.3
2153	KNRDD002	577	578	<0.005	0.01	0.1	6	0.87	2.1
2154	KNRDD002	578	579	<0.005	<0.01	0.09	9.1	1.34	1.6
2155	KNRDD002	579	579.82	<0.005	<0.01	0.11	13.2	0.53	2.2
2156	KNRDD002	579.82	580.44	<0.005	0.01	0.1	102.5	0.44	1.7
2157	KNRDD002	580.44	581	<0.005	0.01	0.12	18.5	0.51	1.9
2158	KNRDD002	581	582	<0.005	0.03	0.2	318	0.66	2.6
2159	KNRDD002	582	583	<0.005	0.05	0.23	701	0.86	2
2160	KNRDD002	583	584	<0.005	0.03	0.17	466	0.96	2
2161	KNRDD002	584	585	<0.005	0.02	0.11	355	0.88	1.7
2162	KNRDD002	585	586	<0.005	0.03	0.13	362	1.16	1.9
2163	KNRDD002	586	587	<0.005	0.01	0.3	187.5	1.98	2.1
2164	KNRDD002	587	588	<0.005	0.02	0.08	159.5	0.95	1.9
2165	KNRDD002	588	589	<0.005	<0.01	0.07	10.2	1.94	2
2166	KNRDD002	589	590	<0.005	<0.01	0.05	4.5	2.84	1.8
2167	KNRDD002	590	591	<0.005	0.03	0.02	260	1.84	1.9
2168	KNRDD002	591	592	<0.005	<0.01	0.02	9.5	2.33	1.8
2169	KNRDD002	592	593	<0.005	<0.01	0.01	8.4	1.9	1.8
2170	KNRDD002	593	594	<0.005	0.01	0.01	31.5	1.77	1.8
2171	KNRDD002	594	595	<0.005	<0.01	0.01	10.4	1.56	2.1
2172	KNRDD002	595	596	<0.005	0.01	0.01	38.9	1.84	1.8
2173	KNRDD002	596	597	<0.005	0.01	0.01	15.2	1.46	1.9
2174	KNRDD002	597	598	<0.005	<0.01	0.01	9.5	1.53	1.8
2175	KNRDD002	598	599	<0.005	0.02	0.01	26.6	1.23	2
2176	KNRDD002	599	599.8	<0.005	<0.01	0.01	71.2	1.22	1.9
2177	KNRDD002	599.8	601	<0.005	0.01	0.01	78.4	1.67	1.5
2178	KNRDD002	601	602	<0.005	0.03	0.01	17	2.35	1.6
2179	KNRDD002	602	602.95	<0.005	0.01	0.01	13	4.76	1.3
2180	KNRDD002	602.95	604	<0.005	0.01	0.01	67.9	1.21	2
2181	KNRDD002	604	605	<0.005	0.03	0.01	212	0.99	1.9
2182	KNRDD002	605	606	<0.005	0.01	0.01	58	1.48	1.9
2183	KNRDD002	606	607	<0.005	0.01	0.02	10.2	1.43	2.1
2184	KNRDD002	607	608	<0.005	0.01	0.01	13.7	4.41	1.8
2185	KNRDD002	608	609	<0.005	<0.01	0.02	17.1	4.81	1.7
2186	KNRDD002	609	610	<0.005	<0.01	0.02	13.8	1.52	2.1
2187	KNRDD002	610	611	<0.005	<0.01	0.01	13	1.02	1.9

2188	KNRDD002	611	612	<0.005	<0.01	0.02	8.4	0.92	1.9
2189	KNRDD002	612	613	<0.005	<0.01	0.02	9.1	2	1.6
2189-I	KNRDD002	613	614	<0.005	<0.01	0.03	5	2.02	1.8
2191	KNRDD002	614	615	<0.005	<0.01	0.04	8.2	0.96	2.1
2192	KNRDD002	615	616	<0.005	<0.01	0.03	51.2	1.11	1.9
2193	KNRDD002	616	617	<0.005	0.01	0.04	212	1	1.9
2194	KNRDD002	617	618	<0.005	0.05	0.09	434	1.34	2.1
2195	KNRDD002	618	619	<0.005	0.09	0.15	837	0.74	1.7
2196	KNRDD002	619	620.18	<0.005	<0.01	0.06	13.6	1.47	2
2197	KNRDD002	620.18	621.14	<0.005	<0.01	0.09	34	2.24	2.3
2198	KNRDD002	621.14	622	<0.005	0.03	0.11	240	0.75	2.2
2200	KNRDD002	622	623	<0.005	<0.01	0.1	12.5	1.04	2.2
2201	KNRDD002	623	624	<0.005	<0.01	0.12	65.4	1.1	2.4
2202	KNRDD002	624	625	<0.005	0.03	0.1	307	1.24	1.8
2203	KNRDD002	625	626	<0.005	0.03	0.12	321	1.26	2.2
2204	KNRDD002	626	627	<0.005	0.01	0.13	130	1.4	1.9
2205	KNRDD002	627	628	<0.005	0.02	0.1	285	0.88	2
2206	KNRDD002	628	629	<0.005	0.01	0.1	228	0.89	2.1
2207	KNRDD002	629	630	<0.005	<0.01	0.08	91.9	0.97	1.9
2208	KNRDD002	630	631	<0.005	<0.01	0.08	10.2	0.78	2.1
2209	KNRDD002	631	632	<0.005	<0.01	0.11	31.1	2.58	2
2210	KNRDD002	632	633	<0.005	<0.01	0.07	15.4	0.77	2.1
2211	KNRDD002	633	634	<0.005	0.01	0.1	61.6	1.31	2.1
2212	KNRDD002	634	635	<0.005	0.01	0.07	46.6	1.11	1.9
2213	KNRDD002	635	636	<0.005	<0.01	0.06	8.9	0.87	2
2214	KNRDD002	636	637	<0.005	<0.01	0.08	7.7	0.87	2.1
2215	KNRDD002	637	638	<0.005	<0.01	0.07	7.7	0.95	2.4
2216	KNRDD002	638	639	<0.005	<0.01	0.1	58.7	2.2	2.1
2217	KNRDD002	639	640	<0.005	0.01	0.2	227	2.25	2.2
2218	KNRDD002	640	641	<0.005	0.06	0.11	435	1.29	2.2
2219	KNRDD002	641	642	<0.005	0.02	0.12	168.5	0.98	2.5
2220	KNRDD002	642	643	<0.005	<0.01	0.13	17.2	1.16	2.2
2221	KNRDD002	643	644	<0.005	0.01	0.14	100.5	2.67	2
2223	KNRDD002	644	645	<0.005	<0.01	0.13	22.6	1.13	2.8
2224	KNRDD002	645	646	<0.005	0.04	0.22	164	2.42	2.1
2225	KNRDD002	646	647.18	<0.005	0.02	0.2	195	1.22	2.5
2226	KNRDD002	647.18	648	<0.005	0.06	0.42	331	4.19	2.1
2227	KNRDD002	648	649	<0.005	0.04	0.47	20.7	2.12	4.4
2228	KNRDD002	649	650	<0.005	0.05	0.44	36.6	1.88	2.6
2229	KNRDD002	650	651	<0.005	0.03	0.46	17.6	2.3	2.7
2230	KNRDD002	651	652	0.007	<0.01	0.62	22.9	1.98	10.1
2231	KNRDD002	652	653	<0.005	0.02	0.55	22	1.78	3.4
2232	KNRDD002	653	654	<0.005	0.02	0.28	36.3	1.3	2.6
2233	KNRDD002	654	655	<0.005	0.02	0.26	43	1.26	2.5
2234	KNRDD002	655	655.67	<0.005	0.01	0.26	37.7	2.31	3.1
2235	KNRDD002	655.67	657	<0.005	0.01	0.16	43.5	1.9	2.2

2236-1	KNRDD002	657	658	<0.005	0.02	0.17	111.5	1.94	2
2237	KNRDD002	658	659	<0.005	0.02	0.19	89.5	2.22	1.9
2238	KNRDD002	659	660	<0.005	0.04	0.22	180	1.8	2
2239	KNRDD002	660	661	<0.005	0.02	0.34	142.5	2.71	2.1
2241	KNRDD002	661	662	<0.005	0.02	0.17	35.1	1.22	2.4
2242	KNRDD002	662	663	<0.005	0.01	0.64	11.8	2.1	3.8
2243	KNRDD002	663	664	<0.005	0.02	0.76	6.2	2.08	2.7
2244	KNRDD002	664	665	<0.005	<0.01	0.88	20.3	2.17	5.4
2245	KNRDD002	665	666	0.005	0.02	0.62	63.8	1.28	13.8
2246	KNRDD002	666	667.09	<0.005	0.02	0.93	14	1.8	2.7
2247	KNRDD002	667.09	667.93	<0.005	0.06	0.88	204	2.11	2.3
2248	KNRDD002	667.93	669	<0.005	0.02	0.43	183.5	1.44	3.1
2249	KNRDD002	669	670	<0.005	0.18	0.45	1910	2.05	2.1
2250	KNRDD002	670	671	<0.005	0.09	0.59	849	3.25	1.9
2251	KNRDD002	671	672	<0.005	0.02	0.21	63.1	2.24	2
2252	KNRDD002	672	673	<0.005	0.01	0.21	46.4	1.96	2.2
2253	KNRDD002	673	674	<0.005	0.01	0.11	55.1	1.54	2.3
2254	KNRDD002	674	675	<0.005	0.03	0.11	236	1.88	1.6
2255	KNRDD002	675	676	<0.005	0.04	0.09	292	2.7	2.2
2256	KNRDD002	676	677	<0.005	0.01	0.08	28.5	3.86	2.1
2257	KNRDD002	677	678	<0.005	<0.01	0.1	26.4	3.05	2.2
2258	KNRDD002	678	679	<0.005	0.03	0.18	200	1.72	3.3
2259	KNRDD002	679	680	<0.005	0.02	0.39	182.5	1.78	3.4
2260	KNRDD002	680	681	<0.005	0.03	0.98	77.3	4.26	11.8
2261	KNRDD002	681	682	0.008	0.05	0.75	9.8	4.75	7.9
2262	KNRDD002	682	683	0.027	0.01	0.61	12.7	1.38	11.4
2263	KNRDD002	683	684	<0.005	0.02	0.68	85.3	1.86	10.4
2264	KNRDD002	684	685	<0.005	0.08	0.33	583	1.11	3.2
2265	KNRDD002	685	686	<0.005	0.05	0.36	263	1.94	3.1
2266	KNRDD002	686	687	<0.005	0.01	0.09	30.6	2.49	2.4
2267	KNRDD002	687	688	<0.005	0.03	0.02	256	2.59	2.2
2268	KNRDD002	688	689	<0.005	0.01	0.03	21.6	2.96	2.2
2269	KNRDD002	689	690	<0.005	0.05	0.06	361	1.36	2.3
2270-1	KNRDD002	690	691	<0.005	0.04	0.1	298	1.07	2.1
2271	KNRDD002	691	692	<0.005	<0.01	0.08	22.9	1.26	2.3
2272	KNRDD002	692	693	<0.005	<0.01	0.08	21.3	1.08	2.3
2273	KNRDD002	693	694	<0.005	<0.01	0.07	55	2.16	2.4
2274	KNRDD002	694	695	<0.005	0.07	0.05	365	1.04	2.1
2275	KNRDD002	695	696	<0.005	<0.01	0.02	46.9	2.49	2.1
2276	KNRDD002	696	697	<0.005	0.01	0.02	54.3	2.99	2
2277	KNRDD002	697	698	<0.005	<0.01	0.02	22.5	2.7	2.1
2278	KNRDD002	698	699	<0.005	0.08	0.02	520	1.54	2.1
2279	KNRDD002	699	700	<0.005	0.02	0.02	168	2.68	2
2280	KNRDD002	700	701	<0.005	0.01	0.01	105	1.16	2.3
2281	KNRDD002	701	702	<0.005	0.07	0.02	519	1.1	2.2
2282	KNRDD002	702	703	<0.005	0.03	0.01	225	1.25	2.7

2283	KNRDD002	703	704	<0.005	<0.01	0.01	65.4	1.92	2.3
2284	KNRDD002	704	705	<0.005	0.04	0.01	219	1.1	2.1
2285	KNRDD002	705	706	<0.005	0.03	0.02	154	2.24	2.2
2286	KNRDD002	706	707	<0.005	0.01	0.01	49.2	1.82	1.9
2287	KNRDD002	707	708	<0.005	0.04	0.01	207	3.88	1.9
2288	KNRDD002	708	709	<0.005	0.12	0.02	616	1.96	2
2289	KNRDD002	709	710	<0.005	0.28	0.03	1595	1.2	1.9
2291	KNRDD002	710	711	<0.005	0.07	0.02	435	0.84	3.3
2292	KNRDD002	711	712	<0.005	0.02	0.02	77.7	1.62	3.3
2293	KNRDD002	712	713	<0.005	0.29	0.12	1970	1.22	2.5
2294	KNRDD002	713	714	<0.005	<0.01	0.02	21.2	3.09	1.7
2295	KNRDD002	714	715	<0.005	<0.01	0.02	24.3	1.83	2.1
2296	KNRDD002	715	716	<0.005	0.01	0.04	47.4	1.87	2.2
2297	KNRDD002	716	717	<0.005	<0.01	0.04	18	2.36	2
2298	KNRDD002	717	718	<0.005	0.01	0.02	11.2	1.68	2
2299	KNRDD002	718	719	<0.005	0.02	0.02	161	1.4	2.1
2300	KNRDD002	719	720	<0.005	0.01	0.02	73.7	1.76	1.9
2301	KNRDD002	720	721	<0.005	0.13	0.05	767	1.56	1.9
2302	KNRDD002	721	722	<0.005	0.03	0.17	36.9	1.87	2.4
2303	KNRDD002	722	723	<0.005	0.01	0.15	30.4	1.16	2.8
2304	KNRDD002	723	724	<0.005	0.02	0.36	24	1.56	5
2305	KNRDD002	724	725	<0.005	0.01	0.14	33.9	1.76	2.4
2306	KNRDD002	725	726	<0.005	0.04	0.21	86.9	3.33	2.4
2307	KNRDD002	726	727	<0.005	0.05	0.22	21.8	1.95	2.7
2308	KNRDD002	727	728	<0.005	0.01	0.26	12.2	1.81	4.1
2309	KNRDD002	728	729	<0.005	0.01	0.18	17.4	1.42	3.3
2310	KNRDD002	729	729.8	<0.005	<0.01	0.18	8.5	0.96	2.9
2311	KNRDD002	729.8	730.63	<0.005	0.02	0.46	168	7.92	4.4
2312	KNRDD002	730.63	731.45	<0.005	0.04	0.42	298	1.92	5.2
2313	KNRDD002	731.45	731.82	<0.005	0.06	0.28	366	0.91	2.8
2314	KNRDD002	731.82	732.44	<0.005	0.03	0.47	221	2.28	2.3
2315	KNRDD002	732.44	733.2	<0.005	0.03	0.46	245	3.13	4.5
2316	KNRDD002	733.2	734	<0.005	0.03	0.41	173	1.87	6.7
2318	KNRDD002	734	735	<0.005	0.02	0.35	81.8	1.05	4.2
2319	KNRDD002	735	736	<0.005	0.01	0.29	118.5	1.24	3.4
2320	KNRDD002	736	737	<0.005	0.1	0.37	672	0.95	3
2321	KNRDD002	737	738	<0.005	0.05	0.31	330	0.89	3.5
2322	KNRDD002	738	739	<0.005	0.02	0.31	80.4	1.1	5
2323	KNRDD002	739	740	<0.005	0.03	0.34	150	2.06	2.6
2324	KNRDD002	740	741	<0.005	0.04	0.24	134	0.67	1.9
2325	KNRDD002	741	742	<0.005	0.01	0.17	25.9	0.68	2.3
2326	KNRDD002	742	743	<0.005	0.01	0.21	33.7	1.11	2.2
2327	KNRDD002	743	744	<0.005	0.01	0.17	5.5	1.02	2.4
2328	KNRDD002	744	745	<0.005	0.02	0.25	125.5	1.14	2.2
2329	KNRDD002	745	746	<0.005	0.03	0.13	83.2	2.35	1.8
2330	KNRDD002	746	747	<0.005	0.02	0.09	12.6	2.7	1.9

2331	KNRDD002	747	748	<0.005	0.03	0.1	41.6	1.96	2
2332	KNRDD002	748	749	<0.005	0.02	0.07	70.4	1.72	2
2333	KNRDD002	749	750	<0.005	0.04	0.05	183	1.2	2
2334	KNRDD002	750	751	<0.005	0.01	0.02	28.5	1.74	1.7
2335	KNRDD002	751	752	<0.005	0.01	0.01	12.5	2.72	2
2336	KNRDD002	752	753	<0.005	0.01	0.01	13.1	2.22	2
2337	KNRDD002	753	754	<0.005	<0.01	0.01	37.3	2.26	1.8
2338	KNRDD002	754	755	<0.005	0.03	0.02	176.5	1.34	1.9
2339	KNRDD002	755	756	<0.005	0.01	0.06	12.6	1.64	1.9
2341	KNRDD002	756	757	<0.005	0.01	0.06	28.1	1.3	1.8
2342	KNRDD002	757	758	<0.005	0.01	0.1	54.5	1.88	1.9
2343	KNRDD002	758	759	<0.005	0.07	0.26	330	1.98	2.1
2344	KNRDD002	759	760	<0.005	0.01	0.18	35.9	1.46	2.1
2345	KNRDD002	760	761	<0.005	0.03	0.24	105	1.02	2.1
2346	KNRDD002	761	762	0.008	0.02	0.69	38.4	1.48	9
2347	KNRDD002	762	763	<0.005	0.01	1.84	6.8	1.64	31
2348	KNRDD002	763	764	<0.005	0.01	0.77	2.3	2.68	9.7
2349	KNRDD002	764	765	<0.005	0.02	3.69	2.5	2.89	24.1
2350	KNRDD002	765	766	<0.005	<0.01	1.04	2.4	0.53	14.6
2351	KNRDD002	766	767	<0.005	0.01	0.55	4.2	0.79	11
2352	KNRDD002	767	768	<0.005	0.01	0.48	1.5	1.06	10.4
2353	KNRDD002	768	769	<0.005	<0.01	0.54	1.6	0.93	16.2
2354	KNRDD002	769	770	<0.005	0.05	0.72	3.7	0.98	11.5
2355	KNRDD002	770	771	<0.005	0.42	1.88	4.2	0.62	4.7
2356	KNRDD002	771	772	0.005	0.06	0.7	55.2	1.35	3.6
2357	KNRDD002	772	773	<0.005	0.2	1.16	40.6	1.64	3
2358	KNRDD002	773	774	<0.005	0.19	1.09	19.6	1.35	3
2359	KNRDD002	774	775	0.077	0.3	1.64	8.7	0.84	6.3
2360	KNRDD002	775	775.58	0.007	0.02	0.76	2.3	0.73	11.5
2361	KNRDD002	775.58	776.78	0.007	0.01	0.28	4	0.67	5.3
2362	KNRDD002	776.78	778	0.007	<0.01	0.34	2.6	0.63	6.7
2363	KNRDD002	778	779	0.008	<0.01	0.3	3.9	0.37	5.9
2364	KNRDD002	779	780	0.009	<0.01	0.34	4.4	0.46	6.3
2365	KNRDD002	780	781	<0.005	0.01	0.69	0.9	0.45	8.9
2366	KNRDD002	781	782	0.009	0.02	0.74	1	0.74	8.7
2367	KNRDD002	782	783	0.025	0.04	0.94	3.4	0.75	6.2
2368	KNRDD002	783	784	0.029	0.01	0.7	2.7	0.5	6.3
2369	KNRDD002	784	785	0.023	0.02	0.66	3.1	0.46	5.4
2371	KNRDD002	785	786	0.359	0.06	0.98	8.5	0.86	6
2372	KNRDD002	786	787	0.005	0.02	0.44	3.1	0.36	3
2373	KNRDD002	787	788	0.005	0.02	0.37	3.1	0.31	2.6
2374	KNRDD002	788	789	0.008	<0.01	0.25	1.1	0.47	3.8
2375	KNRDD002	789	790	0.006	<0.01	0.21	4.1	0.4	3.4
2376	KNRDD002	790	791	<0.005	0.01	0.19	3.7	0.51	2.3
2377	KNRDD002	791	792	<0.005	0.01	0.13	14.7	0.55	2.1
2378	KNRDD002	792	793	0.006	0.05	0.22	223	0.51	1.8

astro resources nl

2379	KNRDD002	793	794	<0.005	0.01	0.4	65.5	0.64	1.9
2380	KNRDD002	794	795	<0.005	0.02	0.44	20.1	1.12	2.6
2381	KNRDD002	795	796	<0.005	<0.01	0.47	5.1	1.41	3.1
2382	KNRDD002	796	796.6	0.005	0.03	0.53	46.2	1.66	2.6
4000	KNRDD004	667	668	<0.005	0.1	0.04	1.5	0.54	0.6
4001	KNRDD004	668	669	<0.005	0.16	0.04	1.9	4.15	0.7
4002	KNRDD004	669	670	<0.005	0.08	0.04	1.7	0.55	0.9
4003	KNRDD004	670	671	<0.005	0.13	0.05	1.4	0.56	0.7
4004	KNRDD004	671	672	0.005	0.15	0.03	1.4	0.34	0.7
4005	KNRDD004	672	673	<0.005	0.07	0.04	1.3	0.56	0.6
4006	KNRDD004	673	674	0.007	0.02	0.03	1.3	0.48	0.5
4007	KNRDD004	674	675	<0.005	0.09	0.04	1.4	0.52	0.6
4008	KNRDD004	675	676	<0.005	0.03	0.05	1.6	0.49	1.5
4009	KNRDD004	676	677	<0.005	0.02	0.05	1.7	0.54	0.8
4010	KNRDD004	677	678	<0.005	0.02	0.03	1.6	0.37	0.7
4011	KNRDD004	678	679	<0.005	0.04	0.03	1.5	0.53	0.7
4012	KNRDD004	679	680	<0.005	0.05	0.04	1.9	0.43	1.1
4013	KNRDD004	680	680.46	<0.005	0.03	0.05	2.3	0.66	1.9
4014	KNRDD004	680.46	681	<0.005	0.11	0.13	3.1	0.33	2.5
4015	KNRDD004	681	682	<0.005	0.11	0.28	4.2	0.38	3.2
4016	KNRDD004	682	683.14	<0.005	0.12	0.29	4.8	0.4	3.2
4017	KNRDD004	683.14	684	<0.005	0.38	0.03	3.3	0.55	0.9
4018	KNRDD004	684	685	<0.005	1.67	0.02	3.9	0.53	0.7
4019	KNRDD004	685	685.81	<0.005	0.86	0.02	4.8	0.63	1
4021	KNRDD004	685.81	687.11	<0.005	0.1	0.17	7.2	0.46	4.6
4022	KNRDD004	687.11	688	<0.005	0.56	0.22	21.5	0.59	4.1
4023	KNRDD004	688	689	<0.005	0.67	0.12	27	0.58	2.2
4024	KNRDD004	689	690	<0.005	0.13	0.15	38.8	0.38	2.4
4025	KNRDD004	690	691	<0.005	0.09	0.21	24	0.23	2
4026	KNRDD004	691	692	<0.005	0.02	0.23	12.6	0.28	1.7
4027	KNRDD004	692	693	<0.005	0.02	0.19	11.8	0.31	1.8
4028	KNRDD004	693	694.28	<0.005	0.06	0.11	28.6	0.32	1.4
4029	KNRDD004	694.28	695	<0.005	0.01	0.13	27.4	0.15	1.6
4030	KNRDD004	695	696	<0.005	0.01	0.07	17.2	0.18	1.6
4031	KNRDD004	696	697	<0.005	0.05	0.05	17.5	0.16	1.3
4032	KNRDD004	697	698	<0.005	<0.01	0.04	14	0.29	1.3
4033	KNRDD004	698	699	<0.005	0.23	0.05	14.8	0.25	1.4
4034	KNRDD004	699	700	<0.005	0.04	0.04	14.5	0.19	1.3
4035	KNRDD004	700	701	<0.005	0.04	0.13	14.4	0.23	1.3
4036	KNRDD004	701	702	0.005	0.02	0.04	11	0.13	1.4
4037	KNRDD004	702	703	<0.005	0.01	0.08	10.6	0.15	1.4
4038	KNRDD004	703	704	<0.005	0.04	0.04	13.2	0.16	1.5
4039	KNRDD004	704	704.65	<0.005	<0.01	0.06	12.6	0.14	1.7
4041	KNRDD004	704.65	705	<0.005	0.01	0.12	12.6	0.51	1.5
4042	KNRDD004	705	706	<0.005	0.01	0.06	17.4	0.34	1.1
4044	KNRDD004	706	706.42	<0.005	0.01	0.03	13.8	0.24	1.5

astro resources nl

4045	KNRDD004	706.42	707	<0.005	0.12	0.04	11.4	0.18	1.6
4046	KNRDD004	707	708	<0.005	0.01	0.05	13.8	0.12	1.6
4047	KNRDD004	708	709	<0.005	0.02	0.04	14.2	0.15	1.5
4048	KNRDD004	709	710	<0.005	<0.01	0.07	14.8	0.24	1.4
4049	KNRDD004	710	711	<0.005	0.55	0.03	12.8	0.14	1.4
4050	KNRDD004	711	711.43	<0.005	0.02	0.02	11.4	0.24	1.4
4051	KNRDD004	711.43	712	<0.005	<0.01	0.02	23.2	0.18	1.5
4052	KNRDD004	712	713	<0.005	0.06	0.01	15	0.15	1.6
4053	KNRDD004	713	714	<0.005	0.01	0.03	21.4	0.37	1.5
4054	KNRDD004	714	715	<0.005	0.03	0.02	16	0.26	1.3
4055	KNRDD004	715	716	<0.005	<0.01	0.03	22.2	0.33	1.4
4056	KNRDD004	716	717	<0.005	0.01	0.02	13	0.25	1.1
4057	KNRDD004	717	718	<0.005	0.04	0.03	11	0.19	1.3
4058	KNRDD004	718	718.45	<0.005	<0.01	0.02	22.8	0.23	1.3
4059	KNRDD004	718.45	719	<0.005	0.08	0.07	90.6	0.32	1
4060	KNRDD004	719	720	<0.005	0.17	0.11	271	0.25	1.4
4061	KNRDD004	720	721	<0.005	0.01	0.04	7.5	0.26	1.5
4062	KNRDD004	721	722	<0.005	0.01	0.03	7.5	0.22	2.1
4063	KNRDD004	722	723	<0.005	<0.01	0.04	4.8	0.29	1.8
4064	KNRDD004	723	724.04	<0.005	0.01	0.06	12.4	0.2	1.8
4065	KNRDD004	724.04	725	<0.005	0.05	0.05	3.1	0.22	1.8
4066	KNRDD004	725	725.49	0.034	0.16	0.06	3.1	0.25	1.6
4067	KNRDD004	725.49	726	0.005	0.01	0.07	6	0.25	1
4068	KNRDD004	726	727	<0.005	0.01	0.05	9.2	0.27	1.1
4069	KNRDD004	727	728	<0.005	0.01	0.05	12.6	0.32	1
4071	KNRDD004	728	729	0.059	0.02	0.12	9.7	0.29	1.5
4072	KNRDD004	729	730	0.03	0.02	0.07	4	0.27	1.5
4073	KNRDD004	730	731	<0.005	0.46	0.1	4.4	0.24	1.5
4074	KNRDD004	731	732	<0.005	0.01	0.07	4.5	0.21	1.4
4075	KNRDD004	732	733	<0.005	0.01	0.08	5.7	0.26	1.3
4076	KNRDD004	733	734	<0.005	<0.01	0.08	2.9	0.25	1.9
4077	KNRDD004	734	735	<0.005	0.01	0.32	4.8	0.25	1.5
4078	KNRDD004	735	736	<0.005	0.01	0.07	6.4	0.23	1.3
4079	KNRDD004	736	736.79	<0.005	0.01	0.05	8.2	0.31	1
4080	KNRDD004	736.79	738	<0.005	0.01	0.05	4.5	0.16	1.8
4081	KNRDD004	738	739	<0.005	<0.01	0.05	3.1	0.14	1.9
4082	KNRDD004	739	740	<0.005	0.01	0.06	4.7	0.25	1.6
4083	KNRDD004	740	741	<0.005	<0.01	0.03	4.2	0.22	1.3
4084	KNRDD004	741	742	<0.005	0.01	0.03	3.4	0.16	1.6
4085	KNRDD004	742	742.51	<0.005	0.01	0.05	3.4	0.2	1.6
4086	KNRDD004	742.51	742.88	<0.005	0.04	0.4	5	0.83	1.5
4088	KNRDD004	742.88	744	<0.005	0.03	0.08	4.1	0.23	1.5
4089	KNRDD004	744	745	<0.005	0.01	0.08	2.6	0.2	1.9
4091	KNRDD004	745	746	0.02	<0.01	0.09	6.3	0.21	1.4
4092	KNRDD004	746	747	0.012	0.01	0.09	4.4	0.22	1.7
4093	KNRDD004	747	748	0.007	<0.01	0.1	6.2	0.33	1.4

4094	KNRDD004	748	749	0.009	0.01	0.07	3.8	0.29	1.3
4095	KNRDD004	749	750	0.005	0.01	0.15	3.5	0.4	1.5
4096	KNRDD004	750	751	0.007	0.01	0.12	2.8	0.37	1.3
4097	KNRDD004	751	752	<0.005	0.01	0.12	4.3	0.36	1.4
4098	KNRDD004	752	753	<0.005	0.01	0.42	3.7	0.37	1.7
4099	KNRDD004	753	754	<0.005	0.01	0.11	3.1	0.34	2
4100	KNRDD004	754	755	<0.005	0.01	0.25	2.7	0.29	2.1
4101	KNRDD004	755	756	<0.005	0.01	0.08	3.3	0.39	2.2
4102	KNRDD004	756	757	<0.005	0.02	0.1	3.4	0.32	3.2
4103	KNRDD004	757	758	0.005	0.01	0.17	2.5	0.33	3.6
4104	KNRDD004	758	759	<0.005	0.02	0.19	1.9	0.38	6.6
4105	KNRDD004	759	760	<0.005	0.05	0.19	2.6	0.4	8.1
4106	KNRDD004	760	761	<0.005	0.03	0.32	2.4	0.63	11.4
4107	KNRDD004	761	761.31	<0.005	0.02	0.67	2.5	0.66	16
4108	KNRDD004	761.31	762	<0.005	0.02	0.13	3.3	0.64	2
4109	KNRDD004	762	763	<0.005	0.02	0.08	2.5	0.57	1
4255	KNRDD004	763	764	<0.005	0.02	0.08	2.2	0.55	1
4110	KNRDD004	764	765	<0.005	0.01	0.1	2.1	0.58	1.2
4111	KNRDD004	765	766	<0.005	0.02	0.09	2.6	0.54	1.3
4112	KNRDD004	766	767	<0.005	0.02	0.08	1.9	0.56	1.1
4113	KNRDD004	767	768	<0.005	0.02	0.09	1.8	0.57	1.3
4114	KNRDD004	768	769	<0.005	0.02	0.09	2	0.65	1.4
4115	KNRDD004	769	770	<0.005	0.02	0.09	1.9	0.6	1.6
4116	KNRDD004	770	771	<0.005	0.03	0.06	4.5	0.93	0.9
4117	KNRDD004	771	772	<0.005	0.02	0.08	1.8	0.54	1.3
4118	KNRDD004	772	773	<0.005	0.01	0.07	1.6	0.55	0.8
4119	KNRDD004	773	774	<0.005	0.01	0.08	2.1	0.57	1
4121	KNRDD004	774	775	<0.005	0.01	0.08	3.4	0.67	1
4122	KNRDD004	775	776	<0.005	0.01	0.08	1.9	0.57	0.9
4123	KNRDD004	776	777	<0.005	0.01	0.1	2.2	0.69	1
4124	KNRDD004	777	778	<0.005	0.02	0.12	2	0.68	1.3
4125	KNRDD004	778	779	<0.005	0.02	0.1	2.3	0.83	1.1
4126	KNRDD004	779	780	<0.005	0.02	0.07	1.6	0.66	0.8
4127	KNRDD004	780	781	<0.005	0.01	0.09	1.9	0.71	1
4128	KNRDD004	781	782	<0.005	0.01	0.08	1.8	0.86	1
4129	KNRDD004	782	783	<0.005	0.02	0.06	2.2	0.87	0.7
4130	KNRDD004	783	784	<0.005	0.01	0.1	1.5	0.59	0.7
4131	KNRDD004	784	785	<0.005	0.03	0.1	1.5	0.64	0.9
4132	KNRDD004	785	786	<0.005	0.01	0.09	1.3	0.61	0.7
4133	KNRDD004	786	787	<0.005	0.02	0.07	1.4	0.67	0.7
4134	KNRDD004	787	788	<0.005	0.01	0.06	1.4	0.66	0.8
4135	KNRDD004	788	789	<0.005	0.01	0.06	1.5	0.75	0.8
4136	KNRDD004	789	790	<0.005	0.02	0.09	1.7	0.65	1.1
4137	KNRDD004	790	791	<0.005	0.01	0.1	1.6	0.59	1.1
4138	KNRDD004	791	792	<0.005	0.02	0.06	1.4	0.75	0.8
4139	KNRDD004	792	793	<0.005	0.02	0.07	1.6	0.57	1

4141	KNRDD004	793	794	<0.005	0.02	0.07	1.8	0.65	1
4142	KNRDD004	794	795	<0.005	0.02	0.05	1.6	0.59	0.9
4143	KNRDD004	795	796	<0.005	0.02	0.07	1.8	0.58	0.9
4144	KNRDD004	796	797	<0.005	0.02	0.06	2	0.69	1.1
4145	KNRDD004	797	798	<0.005	0.03	0.07	1.8	0.49	1.3
4146	KNRDD004	798	799	<0.005	0.01	0.06	1.8	0.52	1
4147	KNRDD004	799	800.07	<0.005	0.02	0.07	2.2	0.68	1.4
4148	KNRDD004	800.07	801	<0.005	0.03	0.17	1.6	0.5	8.3
4149	KNRDD004	801	802	<0.005	0.02	0.15	2.1	0.46	4.3
4150	KNRDD004	802	803	<0.005	0.02	0.08	1.9	0.38	3.9
4151	KNRDD004	803	804	<0.005	0.02	0.32	2.4	0.4	3.5
4152	KNRDD004	804	805	<0.005	0.01	0.15	1.6	0.42	2.7
4153	KNRDD004	805	806	<0.005	0.02	0.25	1.3	0.38	3
4154	KNRDD004	806	807	0.005	0.02	0.54	1.9	0.54	2.6
4155	KNRDD004	807	808	<0.005	0.02	0.24	3.4	0.61	2.1
4156	KNRDD004	808	808.86	<0.005	0.01	0.27	1.8	0.43	2.7
4157	KNRDD004	808.86	810	<0.005	0.01	0.11	3.7	0.38	1.4
4158	KNRDD004	810	811	<0.005	<0.01	0.07	4.9	0.46	1.1
4159	KNRDD004	811	812	<0.005	<0.01	0.06	4.1	0.35	1.1
4160	KNRDD004	812	813	0.009	<0.01	0.1	5.1	0.34	1.1
4161	KNRDD004	813	814.08	<0.005	0.08	0.21	9.3	0.3	1.1
4162	KNRDD004	814.08	815	0.035	<0.01	0.11	2.8	0.48	1.7
4163	KNRDD004	815	816	0.009	<0.01	0.12	1.5	0.39	1.4
4164	KNRDD004	816	817	0.005	<0.01	0.09	2.5	0.5	1
4165	KNRDD004	817	817.51	<0.005	<0.01	0.1	2.4	0.43	1.1
4166	KNRDD004	817.51	818	<0.005	<0.01	0.05	1.8	0.24	1.4
4167	KNRDD004	818	819	<0.005	0.01	0.1	4.5	0.33	1.1
4168	KNRDD004	819	820	<0.005	0.01	0.07	9.9	0.24	1.2
4169	KNRDD004	820	821	<0.005	<0.01	0.08	21.1	0.3	0.8
4171	KNRDD004	821	822	<0.005	0.04	0.15	124	0.56	0.9
4172	KNRDD004	822	823	<0.005	0.19	0.24	350	0.71	1
4173	KNRDD004	823	824.08	<0.005	0.02	0.09	51.4	0.42	1
4174	KNRDD004	824.08	825.12	0.005	<0.01	0.05	6.2	0.48	1.1
4175	KNRDD004	825.12	825.69	<0.005	0.02	0.22	5.9	0.34	1.5
4176	KNRDD004	825.69	827	<0.005	0.08	0.22	3	0.47	1
4177	KNRDD004	827	828	<0.005	0.03	0.13	3.8	0.5	0.9
4178	KNRDD004	828	829.02	<0.005	<0.01	0.04	4.9	0.43	1
4179	KNRDD004	829.02	830	<0.005	<0.01	0.08	34.2	0.43	1
4180	KNRDD004	830	831	<0.005	0.06	0.1	132	0.43	1
4181	KNRDD004	831	832.12	<0.005	<0.01	0.08	69.5	0.36	0.9
4182	KNRDD004	832.12	833	<0.005	<0.01	0.04	6.7	0.45	1.4
4183	KNRDD004	833	834	<0.005	<0.01	0.02	5.7	0.41	1.4
4184	KNRDD004	834	835	<0.005	<0.01	0.03	7.4	0.45	1.6
4185	KNRDD004	835	835.76	<0.005	<0.01	0.12	13.9	0.6	2.8
4186	KNRDD004	835.76	837	<0.005	<0.01	0.08	2.5	1.05	3.9
4187	KNRDD004	837	838	<0.005	<0.01	0.09	3.3	0.53	3.2

4188	KNRDD004	838	839	<0.005	<0.01	0.08	2.5	0.5	2.5
4189	KNRDD004	839	840	<0.005	0.02	0.24	3.1	0.55	1.8
4191	KNRDD004	840	841	<0.005	<0.01	0.1	3.5	0.45	1.4
4192	KNRDD004	841	842	<0.005	0.11	0.33	4.5	0.49	1.4
4193	KNRDD004	842	843.17	<0.005	0.05	0.16	4.7	0.38	1.3
4194	KNRDD004	843.17	844	<0.005	0.09	0.7	331	0.38	1.3
4195	KNRDD004	844	845	<0.005	0.26	1.45	750	1.09	1.3
4196	KNRDD004	845	846	<0.005	0.18	1.3	680	2.1	1.4
4197	KNRDD004	846	847	<0.005	0.16	1.26	680	1.69	1.5
4198	KNRDD004	847	848	<0.005	0.12	1.22	592	1.43	1.8
4199	KNRDD004	848	849	<0.005	0.17	1.5	711	1.7	2.3
4200	KNRDD004	849	850	<0.005	0.15	1.36	617	1.3	2.8
4201	KNRDD004	850	851	<0.005	0.06	1.02	386	0.64	2.8
4202	KNRDD004	851	852	<0.005	0.1	0.87	386	0.58	2.4
4203	KNRDD004	852	853	<0.005	0.07	0.81	307	0.63	2.2
4204	KNRDD004	853	854	<0.005	0.06	0.74	301	0.62	2.1
4205	KNRDD004	854	855	<0.005	0.06	0.79	326	0.86	1.5
4206	KNRDD004	855	856	<0.005	0.06	0.69	268	0.72	1.2
4207	KNRDD004	856	857	<0.005	0.15	0.89	372	1.27	1.4
4208	KNRDD004	857	858	<0.005	0.26	1.39	818	1.31	1.7
4209	KNRDD004	858	859	<0.005	0.3	0.84	629	1.13	2.6
4210	KNRDD004	859	860	<0.005	0.12	1.2	135	10.75	2.4
4211	KNRDD004	860	861	<0.005	0.18	3.72	316	18.95	36.8
4212	KNRDD004	861	862	<0.005	0.04	0.67	477	2.1	240
4213	KNRDD004	862	863	<0.005	0.01	0.18	51.6	0.34	7.4
4214	KNRDD004	863	864	<0.005	0.01	0.17	56.5	0.37	3.6
4215	KNRDD004	864	865	<0.005	0.01	0.09	44.5	0.19	3.8
4216	KNRDD004	865	866	<0.005	<0.01	0.07	16.6	0.28	3.3
4217	KNRDD004	866	867	<0.005	0.01	0.05	35.4	0.32	2.2
4218	KNRDD004	867	868	0.007	0.02	0.17	200	0.23	2.8
4219	KNRDD004	868	869.32	<0.005	0.01	0.08	11	0.37	4.2
4221	KNRDD004	869.32	869.97	<0.005	0.02	0.13	7.6	0.46	4.1
4222	KNRDD004	869.97	871	<0.005	0.01	0.12	6.9	0.27	3.2
4223	KNRDD004	871	871.72	<0.005	0.04	0.18	5.2	0.29	3.1
4224	KNRDD004	871.72	872.5	<0.005	0.1	0.25	2.9	0.29	2.9
4225	KNRDD004	872.5	873.31	<0.005	0.07	0.2	4	0.26	3.1
4226	KNRDD004	873.31	874.11	<0.005	0.02	0.23	5.5	0.34	2.3
4227	KNRDD004	874.11	875	<0.005	0.09	0.2	3.4	0.3	2.5
4228	KNRDD004	875	876	<0.005	0.05	0.23	4.4	0.29	2.5
4229	KNRDD004	876	877	<0.005	0.28	0.63	3.7	0.33	2.7
4230	KNRDD004	877	878	<0.005	0.32	0.7	3	0.31	3
4231	KNRDD004	878	879	<0.005	0.15	0.39	3.1	0.31	3.4
4232	KNRDD004	879	880	<0.005	0.09	0.29	3.5	0.29	2.6
4233	KNRDD004	880	881	<0.005	0.05	0.19	2.6	0.27	2.7
4234	KNRDD004	881	882	<0.005	0.02	0.12	2.9	0.3	2.6
4235	KNRDD004	882	883	<0.005	0.02	0.12	2.8	0.32	2.6

4236	KNRDD004	883	884	<0.005	0.02	0.17	2.4	0.33	2.9
4237	KNRDD04	884	885	<0.005	0.02	0.12	3	0.34	3.2
4238	KNRDD004	885	886	<0.005	0.03	0.58	2.9	0.6	3.8
4239	KNRDD004	886	887	<0.005	0.01	0.14	2.9	0.37	3.1
4241	KNRDD004	887	888	0.024	0.03	0.15	3.1	0.25	3.1
4242	KNRDD004	888	889	<0.005	0.04	0.16	2.9	0.28	3.5
4243	KNRDD004	889	890	<0.005	0.05	0.18	2.7	0.32	2.9
4244	KNRDD004	890	891	<0.005	0.05	0.19	2.7	0.32	3
4245	KNRDD004	891	892	<0.005	0.05	0.21	2.2	0.32	3.3
4246	KNRDD004	892	893	<0.005	0.04	0.22	2.4	0.32	3
4247	KNRDD004	893	894	<0.005	0.06	0.25	2.1	0.26	3.2
4248	KNRDD004	894	895	<0.005	0.12	0.26	2.4	0.19	2.2
4249	KNRDD004	895	896	<0.005	0.27	0.53	2.9	0.28	1.2
4250	KNRDD004	896	897	<0.005	0.07	0.18	3.2	0.26	1.3
4251	KNRDD004	897	898	<0.005	0.09	0.22	2.9	0.23	1.3
4252	KNRDD004	898	899	0.005	0.09	0.22	3.5	0.37	1.2
4253	KNRDD004	899	900	<0.005	0.09	0.24	3.5	0.25	1.2
4254	KNRDD004	900	900.9	0.005	0.08	0.25	3.3	0.26	1.2

