ASX Announcement

SUCCESSFUL DRILLING CONTINUES AS STAGE 10 HOLES HIT TARGETS DELIVERING RESULTS AT UPPER END OF EXPECTATIONS

Podium Minerals Limited (ASX: POD, 'Podium' or 'the Company') is pleased to announce initial Stage 10 assay results from four reverse circulation (RC) drill holes. The holes confirm extension of the Parks Reef mineralisation into the Exploration Target (**70 to 75Mt at grade of 1.2 to 1.6g/t 3E PGM**)¹, with majority of intercepts at the upper end of the anticipated grade range.

HIGHLIGHTS

- Intersection highlights include:
 - 34m at 1.77g/t 3E PGM² (0.72g/t Pt, 0.72g/t Pd and 0.07g/t Au) from 76m (PRRC201); including:
 - 1m at 12.65g/t 3E PGM (9.88g/t Pt, 2.75g/t Pd and 0.02g/t Au) from 109m
- Initial assay results from 4 of 35 RC drill holes intercept PGM reef at 150m vertical, extending the resource to 250m vertical
- All four intercepts received to date hit the Reef target on plan with holes delivering grades within the expected range
- All Stage 10 intercepts will be tested for the presence of highly valuable rhodium, iridium and base metals (copper and nickel) that will inform our 5E³ PGM resource upgrade
- Additional results have been received for the Stage 9 drilling completed in March 2022. Significant intercepts include:
 - o 22m at 2.04g/t 3E PGM (1.39g/t Pt, 0.61g/t Pd and 0.04g/t Au) from 17m (PRRC198)

Podium's Managing Director and CEO - Sam Rodda commented:

"Stage 10 drilling continues to demonstrate why we are so excited by the Parks Reef Project.

"Initial holes informing the Exploration Target have all intersected the PGM reef, illustrating high grade zones and significant ore-body widths along a target that is shaping up to have sufficient size to be globally significant. These recent results indicate that mineralisation extends to 250m depth, and our previous deep drilling has shown the mineralisation presents at 500m and is open beyond. The consistent nature of the mineralisation across the 15km extent gives the Company confidence that Parks Reef is a massive 5E PGM opportunity.

"As Podium finalises the Stage 10 campaign, we have already begun working on the approach for the next phase of exploration to a depth of ~350m. This will be followed with the commencement of further tight-space infill drilling to build geological confidence in the identified higher-grade zones. This will all contribute to a scoping study that will support our trajectory towards becoming Australia's first PGM producer."

A / Level 1, 234 Churchill Avenue, Subiaco, Western Australia 6008 T / +61 (0) 8 9218 8878

¹ The potential quantity and grade of the Exploration Target is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate further Mineral Resources and it is uncertain if further exploration will result in the determination of additional Mineral Resources. Refer to ASX announcement 3 March 2022 for full details of the Exploration Target.

² 3E PGM refers to platinum (Pt) plus palladium (Pd) plus gold (Au) expressed in units of g/t.

³ 5E PGM refers to platinum (Pt) plus palladium (Pd) plus gold (Au) plus rhodium (Rh) plus iridium (Ir) expressed in units of g/t.

INITIAL STAGE 10 RESULTS CONTINUE TO BUILD OUT SIGNIFICANT RESOURCE

The Stage 10 RC drilling campaign of 9,015m (50 holes, including the extension of three previously drilled holes) aimed at proving the enlarged **Exploration Target of 70Mt to 75Mt at 1.2 g/t to 1.6 g/t 3E PGM for 2.7Moz to 3.8Moz 3E PGM**⁴ is now complete. This Exploration Target is in addition to the 2.8Moz 3E PGM Inferred Mineral Resource Estimate ("MRE") reported to the ASX on 10 February 2022.

For Stage 10, 35 RC holes (Appendix 1) were drilled to full intercept depth, with all collected samples transported to Perth for initial 3E PGM analysis.

15 RC holes stopped short of planned reef intercepts due to swelling clays and fibrous intercepts and will be extended with diamond core tails to achieve full reef intercepts. This will enable Podium to consider full conversion of the Exploration Target to an Inferred Resource.

A diamond core rig is scheduled to arrive on site this week to complete the remaining 650m of the drill program.

Assay results for four of the 35 Stage 10 RC holes have now been received, delivering strong results within – and at the higher end of – the anticipated range. See Figure 1 and Appendix 2.

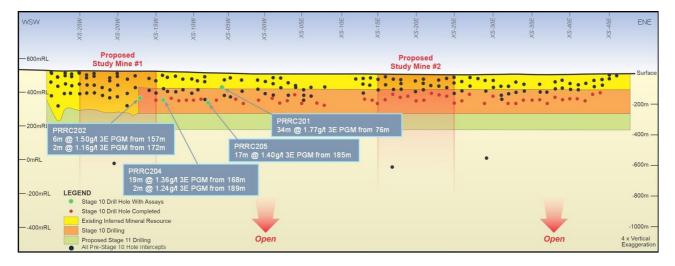


Figure 1: Longitudinal Projection of Parks Reef intersections with Stage 10 holes and results highlighted

Intercepts ≥1.0g/t 3E PGM and ≥2m intersection thickness (with a maximum of 3m internal waste if carried) include:

- 34m at 1.77g/t 3E PGM 0.96g/t Pt, 0.75g/t Pd and 0.06g/t Au) from 76m (PRRC201); including 1m at 12.65g/t 3E PGM (9.88g/t Pt, 2.75g/t Pd and 0.02g/t Au) from 109m;
- 6m at 1.50g/t 3E PGM (0.68g/t Pt, 0.69g/t Pd and 0.13g/t Au) from 157m; and 2m at 1.16g/t 3E PGM (0.58g/t Pt, 0.56g/t Pd and 0.01g/t Au) from 172m (PRRC202);
- 19m at 1.36g/t 3E PGM (0.65g/t Pt, 0.67g/t Pd and 0.05g/t Au) from 168m; and
 2m at 1.24g/t 3E PGM (0.68g/t Pt, 0.56g/t Pd and 0.08g/t Au) from 189m (PRRC204); and
- 17m at 1.40g/t 3E PGM (0.64g/t Pt, 0.67g/t Pd and 0.10g/t Au) from 185m (PRRC205); including 3m at 2.01g/t 3E PGM (1.09g/t Pt, 0.76g/t Pd and 0.16g/t Au) from 187m.

These intercepts confirm the continuity of Parks Reef to a vertical depth of 150m, providing confidence for the Inferred MRE to be extended to a vertical depth of 250m.

⁴ The potential quantity and grade of the Exploration Target is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate further Mineral Resources and it is uncertain if further exploration will result in the determination of additional Mineral Resources. Refer to ASX announcement 3 March 2022 for full details of the Exploration Target.

Further drill results are expected throughout June, July and August this year. All intersections are fresh (sulphide) and selected pulps are being re-assayed for 5E PGM and base metals.

STAGE 9 ASSAY RESULTS CONTINUE TO DELIVER STRONG RESULTS AND INFORM RESOURCE CLOSE TO SURFACE

Stage 9 assay results for a further 5 holes have been received, out of a total of 22 holes (see Appendix 2 and Figure 2). Intercepts \geq 1.0g/t 3E PGM and \geq 2m intersection thickness (with a maximum of 3m internal waste if carried) include:

- 8m at 1.84g/t 3E PGM (1.02g/t Pt, 0.76g/t Pd and 0.07g/t Au) from 53m; and 7m at 1.41g/t 3E PGM (0.62g/t Pt, 0.73g/t Pd and 0.06g/t Au) from 92m (PRRC179);
- 10m at 1.65g/t 3E PGM (0.85g/t Pt, 0.75g/t Pd and 0.06g/t Au) from 71m (PRRC180);
- 22m at 2.04g/t 3E PGM (1.39g/t Pt, 0.61g/t Pd and 0.04g/t Au) from 17m (PRRC198);
- 22m at 1.65g/t 3E PGM (0.94g/t Pt, 0.55g/t Pd and 0.16g/t Au) from 29m (PRRC199); and
- 2m at 1.36g/t 3E PGM (0.75g/t Pt, 0.60g/t Pd and 0.0g/t Au) from 106m (PRRC200).

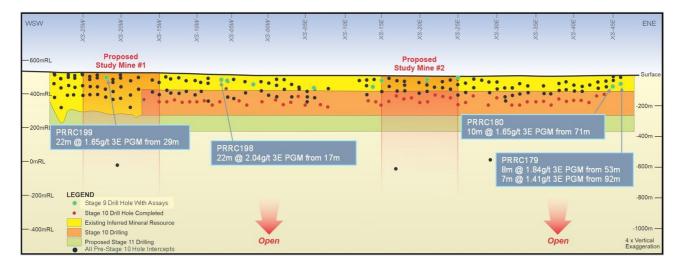


Figure 2: Longitudinal Projection of Parks Reef intersections with Stage 9 holes and recent results highlighted

DRILLING IN HERITAGE AREA AS PART OF STAGE 9 AND 10 HAS COMMENCED AS PLANNING FOR FURTHER OUNCES IN STAGE 11 KICKS OFF

Drilling in the Central region of the orebody as part of Stage 9 and 10 has commenced. Site preparation and RC collars for further growth drilling as part of the next Stage 11 drilling, targeting Reef intercept depths of 250m, has also commenced. All Stage 11 holes will require finishing with diamond core tails.

For further information, please contact:

Sam Rodda Managing Director & Chief Executive Officer samr@podiumminerals.com +61 8 9218 8878 Skye Gilligan Media & Investor Relations skye@gilligangroup.com.au +61 416 854 264

ABOUT PODIUM MINERALS LIMITED

Podium Minerals Limited is an ASX listed exploration and resources development company focused on platinum group metals, gold and base metals.

The Company's 100% owned extensive Parks Reef PGM Project comprises a 15km strike of near surface PGM-Au-base metal mineralisation which is located within our mining leases in the Mid-West Region of Western Australia.

Podium is targeting high value metals with strong market fundamentals and growth prospects with a strategy to rapidly develop an alternative supply of PGMs to the world market.

COMPETENT PERSONS STATEMENT

The information in this announcement that relates to the Parks Reef Project (other than the MRE) is based on and fairly represents information compiled by Mr. Mark Fleming (Head of Geology for Podium Minerals Limited).

Mr. Fleming is a member of the Australasian Institute of Mining and Metallurgy and a fellow of the Australia Institute of Geoscientists. Mr. Fleming has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Fleming consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this announcement that relates to the Parks Reef Mineral Resource was first released by the Company to ASX on 10 February 2022. The Company confirms that it is not aware of any new information or data that materially affects the information included in the 10 February 2022 release and that all material assumptions and technical parameters underpinning the Parks Reef Mineral Resource estimate continue to apply and have not materially changed.

APPENDIX 1

Hole ID	Easting GDA94 Z50	Northing GDA94 Z50	RL (m)	Azimuth	Dip	EOH Depth (m)
PRRC201	572638	7029907	511	325	-60	140
PRRC202	570988	7028428	522	325	-60	210
PRRC204	571485	7028764	520	325	-60	217
PRRC205	572356	7029608	513	325	-60	215
PRRC206	572498	7029760	512	325	-60	228
PRRC208	574232	7030594	507	350	-60	220
PRRC209	571766	7029061	518	325	-60	271
PRRC213	572137	7029228	515	325	-60	181
PRRC214	571964	7029128	517	325	-60	247
PRRC215	572299	7029379	514	325	-60	205
PRRC216	582265	7032274	508	350	-60	184
PRRC217	582068	7032223	508	350	-60	178
PRRC218	572961	7030145	509	325	-60	208
PRRC219	581874	7032162	507	350	-60	189
PRRC221	581106	7031928	505	350	-60	178
PRRC222	580717	7031833	506	350	-60	190
PRRC223	580327	7031735	508	350	-60	202
PRRC224	579938	7031635	506	350	-60	196
PRRC225	579558	7031492	504	350	-60	180
PRRC226	578972	7031353	505	350	-60	168
PRRC228	578214	7031046	505	350	-60	184
PRRC229	577817	7030993	506	350	-60	196
PRRC230	577424	7030925	506	350	-60	185
PRRC233	576235	7030757	506	350	-60	196
PRRC237	574429	7030629	507	350	-60	196
PRRC239	581684	7032102	506	350	-60	187
PRRC241	581300	7031973	505	350	-60	199
PRRC242	580913	7031862	505	350	-60	211
PRRC243	577623	7030948	506	350	-60	200
PRRC244	580521	7031783	507	350	-60	187
PRRC245	580133	7031689	508	350	-60	215
PRRC246	579362	7031452	504	350	-60	211
PRRC247	578776	7031301	505	350	-60	199
PRRC248	578402	7031135	505	350	-60	187
PRRC249	578016	7031016	505	350	-60	211

APPENDIX 2

Sample ID	Hole_ID	From m	To m	Au ppb	Pt ppb	Pd ppb	3E PGM g/t
114053	PRRC179	51	52	224	16	42	0.28
114054	PRRC179	52	53	489	75	49	0.61
114055	PRRC179	53	54	309	813	225	1.35
114057	PRRC179	54	55	116	2320	1460	3.90
114058	PRRC179	55	56	38	1070	1210	2.32
114059	PRRC179	56	57	28	580	673	1.28
114061	PRRC179	57	58	22	583	442	1.05
114062	PRRC179	58	59	11	701	502	1.21
114063	PRRC179	59	60	11	1010	782	1.80
114064	PRRC179	60	61	17	1040	756	1.81
114065	PRRC179	61	62	10	243	158	0.41
114066	PRRC179	62	63	2	12	13	0.03
114067	PRRC179	63	64	2	32	32	0.07
114068	PRRC179	64	65	1	6	6	0.01
114069	PRRC179	65	66	1	6	6	0.01
114070	PRRC179	66	67	3	87	108	0.01
114070	PRRC179	67	68	16	502	621	1.14
114072	PRRC179	68	69	8	295	168	0.47
114072	PRRC179	69	70	9	456	217	0.47
114074	PRRC179	70	70	5	390	303	0.00
114075	PRRC179	70	71	5	469	446	0.70
114075	PRRC179	71	72	5	409 612	440	1.05
114077	PRRC179 PRRC179	72	73	3	466	430 277	0.75
114078	PRRC179 PRRC179	73	74	4	346	141	0.75
114078	PRRC179 PRRC179	74	75	4	257	141	0.49
114079	PRRC179 PRRC179	75	70	4	35	119	0.38
114080	PRRC179 PRRC179	76	78	2	12	10	0.08
114082	PRRC179 PRRC179	78	78	1	26	12	0.03
114082	PRRC179	78	80	1	5	9	
							0.02
114084	PRRC179	80	81	1	3	6 5	0.01
114085 114086	PRRC179 PRRC179	81	82	1			0.01
114086		82	83	0.5	0.5	2	0.00
	PRRC179	83	84	1	0.5	3	0.00
114088	PRRC179	84	85	8	0.5	2	0.01
114089	PRRC179	85	86	2	4	6	0.01
114090	PRRC179	86	87	1	0.5	4	0.01
114091	PRRC179	87	88	0.5	0.5	2	0.00
114092	PRRC179	88	89	10	9	13	0.03
114093	PRRC179	89	90	36	14	14	0.06
114094	PRRC179	90	91	51	19	27	0.10
114095	PRRC179	91	92	95	38	33	0.17
114096	PRRC179	92	93	86	493	538	1.12
114097	PRRC179	93	94	121	711	877	1.71
114098	PRRC179	94	95	100	630	998	1.73
114099	PRRC179	95	96	50	764	988	1.80
114100	PRRC179	96	97	28	611	780	1.42
114101	PRRC179	97	98	16	528	476	1.02

Sample ID	Hole_ID	From	То	Au	Pt	Pd	3E PGM
114102	PRRC179	m 98	m 99	ррb 15	ppb 627	ррb 448	g/t 1.09
114102	PRRC179	90	100	13	461	440	0.94
114173	PRRC180	69	70	55	31	21	0.34
114174	PRRC180	70	70	75	224	60	0.36
114175	PRRC180	70	71	84	1770	694	2.55
114176	PRRC180	72	72	152	831	1000	1.98
114177	PRRC180	73	73	102	799	1100	2.01
114178	PRRC180	73	74	108	596	803	1.50
114179	PRRC180	74	75	45	590	672	1.30
114179	PRRC180	76	70	30	437	476	0.94
114182	PRRC180	70	78	10	618	470	1.12
114182	PRRC180	78	78	10	692	532	1.12
114185	PRRC180	78	80	20	1100	830	1.25
	PRRC180			15	1100	857	
114185 114186	PRRC180	80 81	81 82	20	441	521	1.97 0.98
	PRRC180		83	16	147	364	
114187	PRRCIOU	82	03	10	147	304	0.53
115498	PRRC198	15	16	61	239	111	0.41
115498	PRRC198 PRRC198	15		26	239	111	0.41
115499	PRRC198	10	17 18	63	1060	411	0.45 1.53
115502	PRRC198	18	19	29	946	330	1.31
115503	PRRC198	19	20	33	1440	339	1.81
115504	PRRC198	20	21	17	573	237	0.83
115505	PRRC198	21	22	19	1340	268	1.63
115506	PRRC198	22	23	15	1140	374	1.53
115507	PRRC198	23	24	18	897	344	1.26
115508	PRRC198	24	25	4	1630	499	2.13
115509	PRRC198	25	26	8	3630	749	4.39
115510	PRRC198	26	27	9	1150	371	1.53
115511	PRRC198	27	28	4	1160	354	1.52
115512	PRRC198	28	29	2	1610	413	2.03
115513	PRRC198	29	30	15	1740	511	2.27
115514	PRRC198	30	31	53	2310	761	3.12
115515	PRRC198	31	32	10	2360	993	3.36
115516	PRRC198	32	33	378	1440	992	2.81
115517	PRRC198	33	34	15	1240	678	1.93
115518	PRRC198	34	35	12	924	1170	2.11
115519	PRRC198	35	36	23	2450	2040	4.51
115520	PRRC198	36	37	4	470	390	0.86
115521	PRRC198	37	38	75	472	626	1.17
115522	PRRC198	38	39	4	577	640	1.22
115523	PRRC198	39	40	2	258	335	0.60
115524	PRRC198	40	41	0.5	292	314	0.61
				4.80		105	0.45
115581	PRRC199	27	28	179	51	195	0.43
115582	PRRC199	28	29	215	78	214	0.51
115583	PRRC199	29	30	720	143	371	1.23
115584	PRRC199	30	31	288	512	412	1.21
115585	PRRC199	31	32	797	2280	732	3.81

Sample ID	Hole_ID	From	То	Au	Pt	Pd	3E PGM
		m	m	ppb	ppb	ppb	g/t
115586	PRRC199	32	33	179	1660	596	2.44
115587			275	2030	1190	3.50	
115588	PRRC199	34	35	190	790	797	1.78
115589	PRRC199	35	36	97	799	609	1.51
115590	PRRC199	36	37	52	636	474	1.16
115592	PRRC199	37	38	104	608	268	0.98
115593	PRRC199	38	39	270	1940	959	3.17
115594	PRRC199	39	40	167	827	481	1.48
115596	PRRC199	40	41	89	592	396	1.08
115597	PRRC199	41	42	93	851	462	1.41
115598	PRRC199	42	43	95	860	532	1.49
115599	PRRC199	43	44	34	755	420	1.21
115600	PRRC199	44	45	54	723	426	1.20
115602	PRRC199	45	46	21	600	361	0.98
115603	PRRC199	46	47	11	488	276	0.78
115604	PRRC199	47	48	11	806	419	1.24
115605	PRRC199	48	49	11	974	684	1.67
115606	PRRC199	49	50	11	877	458	1.35
115607	PRRC199	50	51	18	913	724	1.66
115608	PRRC199	51	52	17	464	470	0.95
115609	PRRC199	52	53	14	292	336	0.64
115734	PRRC200	104	105	2	267	289	0.56
115735	PRRC200	105	106	0.5	341	196	0.54
115736	PRRC200	106	107	2	826	677	1.51
115737	PRRC200	107	108	1	678	529	1.21
115738	PRRC200	108	109	1	452	322	0.78
115739	PRRC200	109	110	0.5	183	119	0.30
115855	PRRC201	74	75	178	121	32	0.33
115857	PRRC201	75	76	233	297	74	0.60
115858	PRRC201	76	77	337	747	192	1.28
115859	PRRC201	77	78	290	1010	321	1.62
115860	PRRC201	78	79	267	1280	461	2.01
115861	PRRC201	79	80	118	965	598	1.68
115863	PRRC201	80	81	98	727	691	1.52
115864	PRRC201	81	82	75	508	706	1.29
115865	PRRC201	82	83	68	391	601	1.06
115866	PRRC201	83	84	47	347	605	1.00
115867	PRRC201	84	85	43	355	620	1.02
115868	PRRC201	85	86	85	741	958	1.78
115869	PRRC201	86	87	94	923	1160	2.18
115870	PRRC201	87	88	40	457	715	1.21
115871	PRRC201	88	89	32	418	674	1.12
115872	PRRC201	89	90	36	552	751	1.34
115873	PRRC201	90	91	28	611	698	1.34
115874	PRRC201	91	92	56	1110	1330	2.50
115875	PRRC201	92	93	40	1010	1220	2.27

Sample ID	Hole_ID	From	То	Au	Pt	Pd	3E PGM
115876	PRRC201	93	m 94	ррb 17	ppb 715	рр b 745	g/t 1.48
115876	PRRC201	93	94	36	1050	1270	2.36
115878	PRRC201	94	95	33	1030	1270	2.30
115879	PRRC201	95	90	16	730	793	1.54
115880	PRRC201	90	97	15	575	582	1.17
115881	PRRC201	97	90	15	575	564	1.17
115882	PRRC201	90		14		633	1.10
			100		667		
115883	PRRC201	100	101	11	645	610	1.27
115884	PRRC201	101	102	9	736	617	1.36
115885	PRRC201	102	103	9	685	591	1.29
115886	PRRC201	103	104	17	677	571	1.27
115887	PRRC201	104	105	7	659	572	1.24
115888	PRRC201	105	106	12	766	538	1.32
115889	PRRC201	106	107	5	517	423	0.95
115890	PRRC201	107	108	4	463	420	0.89
115891	PRRC201	108	109	4	211	186	0.40
115892	PRRC201	109	110	19	9880	2750	12.65
115893	PRRC201	110	111	6	411	262	0.68
115894	PRRC201	111	112	19	252	203	0.47
115974	PRRC202	155	156	209	15	12	0.24
115975	PRRC202	156	157	168	41	18	0.23
115976	PRRC202	157	158	348	924	342	1.61
115977	PRRC202	158	159	164	1140	792	2.10
115978	PRRC202	159	160	112	566	741	1.42
115979	PRRC202	160	161	56	454	763	1.27
115980	PRRC202	161	162	61	514	836	1.41
115981	PRRC202	162	163	45	459	683	1.19
115982	PRRC202	163	164	166	252	217	0.64
115983	PRRC202	164	165	174	181	175	0.53
115984	PRRC202	165	166	15	450	596	1.06
115985	PRRC202	166	167	13	396	511	0.92
115986	PRRC202	167	168	37	361	456	0.85
115987	PRRC202	168	169	12	444	452	0.91
115988	PRRC202	169	170	7	391	323	0.72
115990	PRRC202	170	171	5	344	262	0.61
115991	PRRC202	171	172	8	536	403	0.95
115992	PRRC202	172	173	9	667	614	1.29
115993	PRRC202	173	174	10	501	514	1.03
115995	PRRC202	174	175	7	303	352	0.66
115996	PRRC202	175	176	12	138	247	0.40
110330	1 1110202	115	170	12	100	271	0.70
116154	PRRC204	166	167	323	317	83	0.72
116155	PRRC204	166	167	183	450	140	0.72
116155	PRRC204 PRRC204	167	168	262	450 1380	571	0.77 2.21
116156							
	PRRC204	169	170	131	706	640 810	1.48
116158	PRRC204	170	171	92	619	819	1.53
116159	PRRC204	171	172	62	446	790	1.30
116160	PRRC204	172	173	63	456	820	1.34

Sample ID	Hole_ID	From	То	Au	Pt	Pd	3E PGM
		m	m	ppb	ppb	ppb	g/t
116161	PRRC204	173	174	55	505	848	1.41
116162	PRRC204	174	175	43	464	756	1.26
116164	PRRC204	175	176	37	563	834	1.43
116165	PRRC204	176	177	25	487	727	1.24
116166	PRRC204	177	178	17	413	588	1.02
116167	PRRC204	178	179	14	464	586	1.06
116168	PRRC204	179	180	9	510	566	1.09
116170	PRRC204	180	181	6	558	455	1.02
116171	PRRC204	181	182	4	512	398	0.91
116172	PRRC204	182	183	6	847	638	1.49
116173	PRRC204	183	184	7	987	717	1.71
116174	PRRC204	184	185	7	747	552	1.31
116176	PRRC204	185	186	10	942	673	1.63
116177	PRRC204	186	187	12	691	669	1.37
116178	PRRC204	187	188	3	208	234	0.45
116179	PRRC204	188	189	1	18	17	0.04
116180	PRRC204	189	190	9	677	521	1.21
116181	PRRC204	190	191	7	675	590	1.27
116182	PRRC204	191	192	5	498	496	1.00
116183	PRRC204	192	193	4	295	327	0.63
116289	PRRC205	183	184	187	152	53	0.39
116290	PRRC205	184	185	245	351	100	0.70
116291	PRRC205	185	186	289	809	236	1.33
116292	PRRC205	186	187	235	877	330	1.44
116293	PRRC205	187	188	181	964	546	1.69
116294	PRRC205	188	189	178	1140	904	2.22
116295	PRRC205	189	190	135	1170	820	2.13
116296	PRRC205	190	191	45	356	409	0.81
116297	PRRC205	191	192	82	496	687	1.27
116298	PRRC205	192	193	63	536	864	1.46
116299	PRRC205	193	194	40	346	605	0.99
116300	PRRC205	194	195	91	303	553	0.95
116301	PRRC205	195	196	43	366	653	1.06
116302	PRRC205	196	197	86	666	1010	1.76
116303	PRRC205	197	198	80	693	1030	1.80
116304	PRRC205	198	199	12	187	303	0.50
116305	PRRC205	199	200	25	567	694	1.29
116306	PRRC205	200	201	27	628	776	1.43
116307	PRRC205	201	202	33	747	945	1.73
116308	PRRC205	202	203	10	419	480	0.91
116309	PRRC205	203	204	10	73	100	0.18

JORC (2012) TABLE 1 – SECTION 1 SAMPLING TECHNIQUES AND DATA

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
SAMPLING TECHNIQUES	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Exploration results are based on 1 m samples from reverse circulation (RC) drilling, with 4 m to 6 m composite samples used outside the mineralisation. An average sample size of 2-4 kg was collected from RC drilling and sent for PGM analysis by lead collection fire assay with a 40 g charge. A certified blank, a certified reference material (standard) sample and a field duplicate sample were inserted into the sample sequence for each hole, within or close to the interpreted mineralised interval.
DRILLING TECHNIQUES	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling was completed using RC percussion of nominally 140 mm (5.5 inches) diameter utilising a face sampling hammer with button bit for the holes prefixed PRRC. Moderate ground water flows were encountered in the deeper holes in the central and eastern sectors but the majority of samples were collected dry.
DRILL SAMPLE RECOVERY	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample quality and recovery of RC samples was continuously monitored during drilling to ensure that samples were representative and recoveries maximised. For the 2018 drilling in the western and central sectors RC samples within the ultramafic wehrlite were weighed at the drill rig, including the 1 m calico sample along with the bulk reject which was collected in a green plastic sample bag. RC sample recovery was then estimated based on the combined sample weight and assumed values for the hole diameter, moisture and bulk density. Based on these assumptions the average sample recovery is considered acceptable. Poorer recoveries are noted in the oxidised zone; however, this may be due to incorrect bulk density and moisture assumptions. Samples were not weighed in the 2022 Stage 9 drilling programme. There is no known relationship between sample recovery and grade. Results of two diamond twin holes drilled pre-2022 indicate that there is no bias in the RC assays compared to the diamond core assays.
LOGGING	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Detailed geological logging of all RC holes captured various qualitative parameters such as rock type, mineralogy, colour, texture and oxidation. RC holes were logged at 1 m intervals. All intervals are logged.

SUB-SAMPLING TECHNIQUES AND	•	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether	•	RC drilling samples are collected in pre-labelled bags via a cone splitter mounted directly below the cyclone. A butterfly-style valve is used to dump the sample from the cyclone into the splitter.
SAMPLE PREPARATION	Ť	sampled wet or dry.	•	Almost all samples were collected from the rig as dry samples.
PREPARATION	•	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	•	At the laboratory the samples are sorted, dried at 105°C and weighed. They are crushed and a 2.5 kg split taken using a riffle splitter, then pulverised in either a LM2 or LM5 to P80 75 μ m.
	•	Quality control procedures adopted for all sub-sampling stages to	•	Typically, one field duplicate was collected per hole, within the mineralised interval.
	•	maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ	•	1 standard (commercial pulp CRMs sourced from Ore Research and Exploration Pty Ltd) is typically included in each hole, within the mineralised interval in most cases.
		material collected, including for instance results for field duplicate/second- half sampling.	•	1 blank (commercial pulp CRMs sourced from Ore Research and Exploration Pty Ltd) is typically included in each hole, within the mineralised interval in most cases.
	•	Whether sample sizes are appropriate to the grain size of the material being sampled.	•	Internal laboratory duplicates and standards were also used as quality control measures at different subsampling stages. No significant issues have been identified.
			•	No formal analysis of sample size vs. grain size has been undertaken; however, the sampling techniques employed are standard industry practice.
QUALITY OF ASSAY DATA AND LABORATORY	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	•	Samples from Podium's drilling were forwarded to the Bureau Veritas Minerals Pty Ltd laboratory in Perth, Western Australia for sample preparation and analysis. The Bureau Veritas laboratory is NATA accredited for ISO17025.	
TESTS	•	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation,	•	All samples were analysed via lead collection fire assay with a 40g charge. The Pt, Pd and Au grade was determined by ICP-MS with a detection limit of 1 ppb.
		etc.	•	All assay methods used are considered total assay techniques.
	•	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	•	No independent QAQC was completed.
		accuracy (i.e. lack of bias) and precision have been established.	•	For the Podium drilling, field duplicates were taken at a rate of between 1:26 and 1:30 samples The samples were collected in the same manner as the original sample, directly from the rig-mounted splitter.
			•	Standards were inserted by Podium into the RC sample batches at a nominal rate of 1:28 samples, typically within the mineralised interval. Commercial pulp standards were sourced from Ore Research and Exploration Pty Ltd (OREAS series standards), with a range of grades from approximately 0.20 g/t Pt up to 1.76 g/t Pt, 0.13 g/t Pd up to 0.85 g/t Pd, and 0.16 g/t Au up to 0.2 g/t Au.
			•	The assay results of the pulp standards show most of results fall within acceptable tolerance limits and no material bias is evident. Field duplicates show a high level of precision has been achieved for Pt, Pd and Au.
VERIFICATION OF SAMPLING AND	•	The verification of significant intersections by either independent or	•	Significant intersections have not been independently verified.
ASSAYING		alternative company personnel.	•	Prior to 2022, two diamond core holes were drilled within the western sector as twins of RC drillholes,
	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 		with the twinned holes estimated to be approximately 1.5 m apart at the mineralised intersections. Visual analysis of twinned holes (RC vs. DD) demonstrated a high degree of compatibility between the two sample types with no evidence of any grade bias due to drilling method. The geological logging of the RC holes was also verified by the diamond drillholes. The same assumptions are	
	•	Discuss any adjustment to assay data.		made for the central and eastern sectors.
			•	No adjustments were made to the data, other than converting ppb to ppm (g/t) by dividing by 1,000 and converting ppm to % by dividing by 10,000.

LOCATION OF DATA POINTS	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	
DATA SPACING AND DISTRIBUTION	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Miner Resource and Ore Reserve estimation procedure(s) and classification applied. Whether sample compositing has been applied. 	al approximately north-northwest to south-southeast.
ORIENTATION OF DATA IN RELATION TO GEOLOGICAL STRUCTURE	 Whether the orientation of sampling achieves unbiased sampling possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of keep mineralised structures is considered to have introduced a sampling bia this should be assessed and reported if material. 	 of the Parks Reef drilling is appropriate given the strike and morphology of the reef, which strikes between azimuth 050° and 080° and dips approximately 80° to the south. The central sector, and to a lesser extent the eastern sector, is structurally disturbed with faults
SAMPLE SECURITY	• The measures taken to ensure sample security.	 Samples to be submitted to the laboratory were bagged into white polyweave bags (five samples/bag) with sample number range clearly marked and the tops wire tied. These are then placed in a Bulka bag, closed and tied at the top and the lifting points wire tied together. These bulka bags are driven to the Toll lpec depot in Cue by a local landowner and loaded into for transport to Bureau Veritas lab in Perth. Photos of the dispatch sheet and consignment note are emailed to the laboratory and the original dispatch sheet included in the consignment. The samples are transported overnight to Perth. Podium has no reason to believe that sample security poses a material risk to the integrity of the assay data.
AUDITS OR REVIEWS	• The results of any audits or reviews of sampling techniques and data.	No formal audits or reviews have been undertaken.

JORC (2012) TABLE 1 – SECTION 2 REPORTING OF EXPLORATION RESULTS

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
MINERAL TENEMENT AND LAND TENURE STATUS	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All the tenements covering the Weld Range Complex (WRC) have been granted. Podium has an access agreement with Beebyn Station which covers the eastern portion of the Company's WRC Mining Leases and informal working arrangements with other pastoralists and landowners regarding the western portion of the WRC and other Exploration Licenses. In respect of Podium's Western Australian tenements, Podium has divested the Oxide Mining Rights pursuant to a Mining Rights Deed to EV Metals Australia Pty Ltd (EV Metals). The Oxide Mining Rights allows EV Metals to explore for and mine Oxide Minerals with Oxide Minerals summarised as minerals in the oxide zone (from surface to a depth of 50 m or the base of weathering or oxidation of fresh rock, whichever is the greater) and all minerals in an oxide form wherever occurring but which excludes all sulphide minerals and PGM where the definition of PGM includes all platinum group metals and all gold, silver and base metals contained in, associated with or within 10 m of minerals containing any PGMs but excludes chromium and all metals other than PGMs in the currently defined oxide Minerals and includes all sulphide Minerals are those minerals that are not Oxide Minerals and includes all sulphide minerals and all gold, silver and base metals other than PGMs irrespective of depth and oxidation state where the definition of PGM includes all platinum group metals and all gold, silver and base metals contained in associated with or within 10 m of minerals containing any PGMs but excludes chromium and all metals other than PGMs in the currently defined oxide metals and includes all sulphide minerals and all PGMs irrespective of depth and oxidation state where the definition of PGM includes all platinum group metals and all gold, silver and base metals contained in, associated with or within 10 m of minerals containing any PGMs but excludes chromium and all metals other than PGMs in the currently defined oxide resources. For further i
EXPLORATION DONE BY OTHER PARTIES	Acknowledgment and appraisal of exploration by other parties.	 The WRC was initially prospected by International Nickel Australia Ltd in 1969–1970. Australian Consolidated Minerals NL drilled in the area in 1970–1971 and subsequently entered a joint venture with Dampier Mining Company Ltd to investigate the area in 1972–1973. Approximately 4,500 m of rotary air blast (RAB) and percussion drilling was completed during this early phase, together with ground and airborne magnetics, line clearing, geological mapping and petrological studies. Conzinc Riotinto Australia Limited (CRA) briefly investigated the area during 1976–1977, taking an interest in elevated chromium values in the nickel laterite, but concluding at the time that it was not recoverable as chromite. In 1990, geologists recognised gabbroic rocks in the upper levels of the WRC, allowing for model comparisons with other ultramafic-mafic intrusive bodies. Weak copper mineralisation identified by BHP in the 1970s was revisited and vertical RAB drilling intersected significant supergene and primary PGM mineralisation. Little attention was given to primary sulphide mineralisation, with 25 holes testing the Parks Reef below 40 m depth, to a maximum depth of 200 m. Pilbara Nickel's (1999–2000) focus was the nickel laterite and it carried out a program of approximately 17,000 m of shallow RC drilling to infill previous drilling and to estimate nickel-cobalt resources. In 2009, Snowden completed an independent technical review of the WRC and updated estimates of laterite Mineral Resources. A compilation of historical metallurgical data was completed.

		Snowden's work involved a validation of 60,040 m of historical drilling and 23,779 assays with QAQC checks, where possible.
GEOLOGY	• Deposit type, geological setting and style of mineralisation.	The WRC corresponds to the basal part of the Gnanagooragoo Igneous Complex and forms a discordant, steeply dipping lopolith, up to 7 km thick, confined by an overlying succession of jaspilite and dolerite sills of the Madoonga Formation to the south. The WRC is divided into ultramafic and mafic endmembers.
	• Parks Reef is situated 5–15 m below the upper or southern contact with the upper mafic member. In the vicinity of the Parks Reef PGM mineralisation, the magmatic stratigraphy comprises a sequence of olivine–pyroxene bearing cumulates terminating very abruptly at the ultramafic-mafic contact with the cessation of olivine crystallisation and the first appearance of cumulus plagioclase in a leucocratic gabbronorite. The mafic-ultramafic contact in the western and central portions of Parks Reef dips consistently at approximately 80° to the south-southeast. This boundary effectively defines the upper limit of the hangingwall Cu-Au zone of Parks Reef.	
		• The Parks Reef mineralisation displays a generalised pattern that can be described from the mafic- ultramafic contact downwards as follows:
		 Hangingwall Cu-Au zone. An olivine dominant, high MgO wehrlite, with minimal clinopyroxene, 1– 3% disseminated chalcopyrite-pyrrhotite-pentlandite. Up to 14 m true thickness. Bounded at the top by very sharp contact to gabbronorite and lower boundary defined analytically as >1.0g/t 3E5. Cu content up to 0.5% and Au content increasing downward to maximum on or near the lower boundary.
		• <u>Upper-reef high-grade PGM-Au zone</u> . A 1-5m true thickness higher grade (typically >2g/t 3E) zone. The upper boundary commonly coincides with the highest Au grades in the reef, in places exceeding 1g/t, and may overlap with the lower limit of elevated Cu values from the Hanging wall Cu-Au Zone. Sulphide concentrations are low, except at the very top of the zone. Pt:Pd ratio is >1.
		 Lower-reef medium-grade PGM zone. A 3-14m true thickness zone of intermediate PGM concentrations, typically slightly greater than 1g/t 3E. Cu-Au grades are insignificant and Pt:Pd ratio is generally <1.
		• <u>Footwall high-grade PGM zone.</u> A 0-3m true thickness wehrlite hosted sub-layer at the base of the reef, with elevated PGM grades, including Rh, Ru, Os and Ir, and Pt:Pd ratio >1. No visible sulphides or Cu-Au mineralisation. The lower contact is defined by a 0.5g/t 3E threshold. This zone is relatively discontinuous and is not always present.
		 <u>Low-grade (~0.5g/t 3E) PGM mineralisation</u> occurs below the Parks Reef as described above but is only recognised in some drillholes. Pt+Pd mineralisation at grades of 0.2g/t to 0.6g/t frequently continues from the base of the footwall high-grade PGM zone for up to 20m or may occur as an isolated zone of weakly elevated Pt+Pd, located 10–15m below the footwall high-grade PGM zone.
		• The Lower-reef and footwall high-grade zones have not been delineated in the resource modelling.
		• Oxidation extends from the surface to a vertical depth of approximately 30m to 50m in the western sector and up to 70m in the central and eastern sectors. The ultramafic lithologies showing consistently deeper oxidation than the mafic hanging wall rocks.
DRILL HOLE INFORMATION	• A summary of all information material to the understanding of the explor results including a tabulation of the following information for all Materia holes:	
	easting and northing of the drill hole collar	

⁵ 3E = Pt (ppm) + Pd (ppm) + Au (ppm)

	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length.	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
DATA	• In reporting Exploration Results, weighting averaging techniques, maximum	• A simple arithmetic mean has been applied as all samples are 1m in length.
AGGREGATION METHODS	and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	 No metal equivalent values have been reported. The company typically reports 3E PGM concentrations. 3E PGM is calculated as the sum of Pt (g/t) + Pd (g/t) + Au (g/t) and expressed in
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	units of g/t.
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	
RELATIONSHIP BETWEEN	• These relationships are particularly important in the reporting of Exploration Results.	• The true width of mineralisation is estimated to be approximately 65% of the reported downhole intercept lengths, assuming the Reef dips 80° south-southeast and the drilling is inclined 60° north-
MINERALISATION WIDTHS AND INTERCEPT	• If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	northwest.
LENGTHS	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	
DIAGRAMS	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• Drillhole locations and diagrams are presented above in this announcement and are also detailed in the relevant previous ASX announcements related to the exploration results.
BALANCED REPORTING	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Reporting of the 1m assay results for the significant and anomalous intercepts for each hole are reported in Appendix 1 of this announcement.
OTHER SUBSTANTIVE EXPLORATION DATA	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Outcropping hanging wall gabbronorites, while limited, supports the geological interpretation in these areas. Aeromagnetic data strongly supports the interpreted location and geometry of Parks Reef.
FURTHER WORK	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Further infill drilling, including both along strike and at depth, across the defined Mineral Resource for Parks Reef will be required in future to improve confidence and for additional metallurgical test work.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The current Parks Reef Mineral Resource area comprises approximately 15km of strike length, which is interpreted to cover the full length of the reef, except for approximately 1.4km in a faulted fragment of the western flank of the intrusive complex.
	1	