

12 July 2022

Additional Pegmatites uncovered at Tambourah

Highlights

- Elevated Lithium and Rubidium at Tambourah
- New Pegmatites Identified at Tambourah

Tambourah Gold and Lithium Project

Tambourah Metals Limited (ASX:TMB) (**Tambourah** or the **Company**) is pleased to advise that following a field trip in April, further pegmatites were identified at three locations within the Tambourah project. Rock chip samples were assayed at Labwest for a full suite of pegmatite elements. Of the 17 samples, 12 reported elevated rubidium results in the range of 151-842 ppm. Four samples show elevated lithium grades in the range of 95-226 ppm. Figure 1 shows the location of the pegmatite samples with elevated lithium assay grades, while an example of the pegmatites is shown in Figure 2. The full assay sheet is shown in appendix 1.

Tambourah geologists have since completed a second field trip to the Tambourah Mineral Field. New pegmatites were identified, mapped and sampled with several of these pegmatites being in the preferred G2 orientation¹. 21 rock chip samples of pegmatites were delivered to the lab for analysis. The samples are located proximal to the granite-greenstone contact that is becoming a regionally significant pegmatite exploration target¹. The sample locations of these 21 samples are also shown in figure 1.

Executive Chairperson Rita Brooks commented "These first assay results for lithium at Tambourah are very encouraging. We are looking forward to the results of the second batch of samples collected during July and to further exploring the Tambourah Mineral field for more pegmatites.

¹ RGL Announcement 15 June 2022 - Up to 3.14% Li2O at Surface at Tambourah Lithium Project

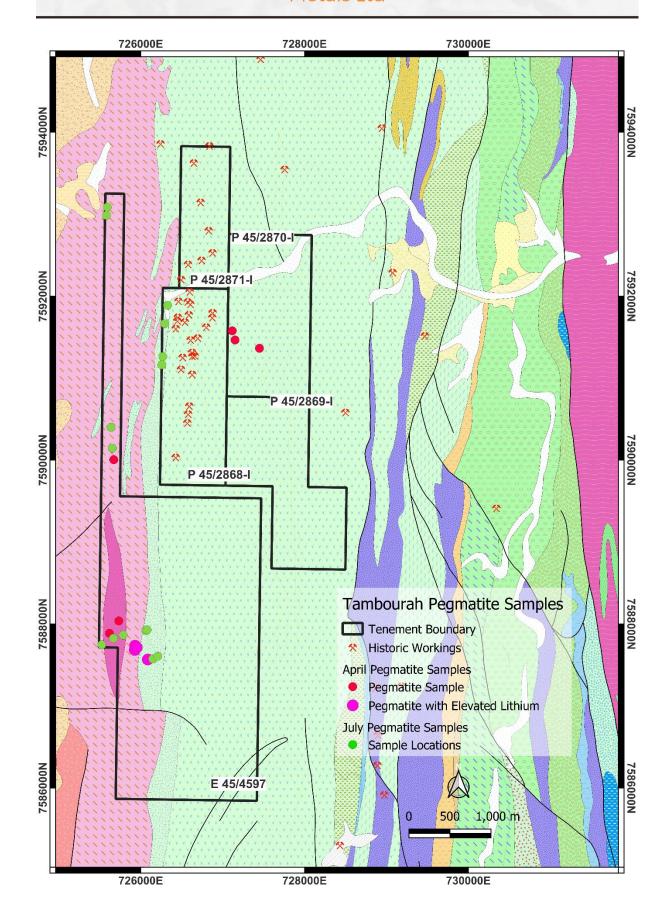


Figure 1: Tambourah Pegmatite Locations

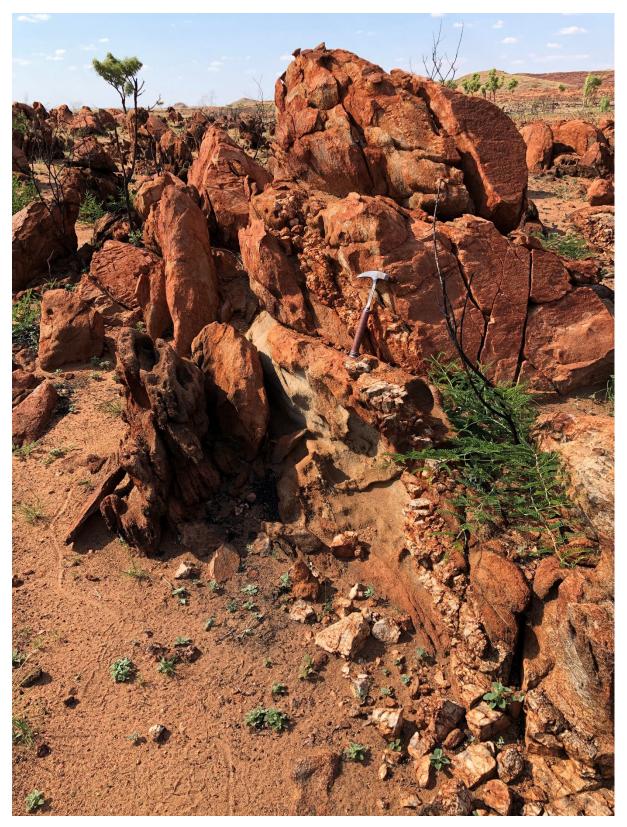


Figure 2: Tambourah Pegmatites 725916mE/7588001mN

About Tambourah Metals Ltd

Tambourah has a portfolio of advanced gold and critical minerals exploration projects in Western Australia. Tambourah is the second largest tenement holder in the Julimar Nth region). In the Pilbara, Tambourah Metals is exploring for Au-Li at Tambourah , Au at Cheela and Li and pegmatite at Russian Jack (see figure 3). In the NE Goldfields Tambourah is exploring for Ni-PGE-Cu at Achilles.

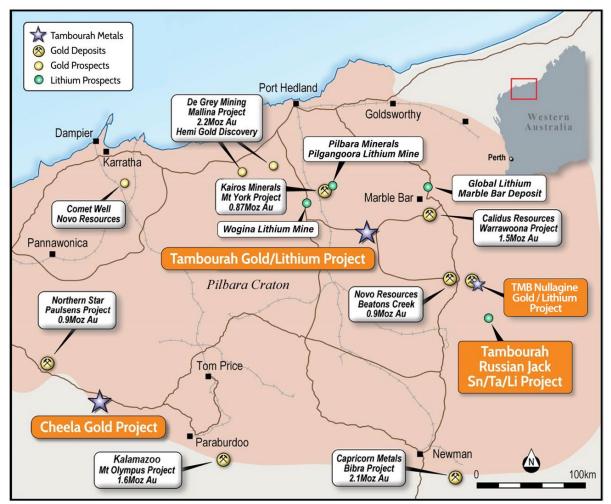


Figure 3: Tambourah Pilbara Projects - Location Map

Authorised by the Board of the Tambourah Metals Ltd.

Rita Brooks

Executive Chairperson

12 July 2022

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr. Kelvin Fox, a full-time employee of the company, who is a Member of The Australasian Institute of Mining and Metallurgy. Mr. Kelvin Fox has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Kelvin Fox consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Tambourah

Forward Looking Statements

Certain statements in this document are or may be "forward-looking statements" and represent Tambourahs intentions, projections, expectations, or beliefs concerning among other things, future exploration activities. The projections, estimates and beliefs contained in such forward-looking statements don't necessarily involve known and unknown risks, uncertainties, and other factors, many of which are beyond the control of Tambourah, and which may cause Tambourahs actual performance in future periods to differ materially from any express or implied estimates or projections.

Nothing in this document is a promise or representation as to the future. Statements or assumptions

in this document as to future matters may prove to be incorrect and differences may be material.

Tambourah does not make any representation or warranty as to the accuracy of such statements or

assumptions.

Sample ID	Easting	Northing	Orig_Grid_	Ag (g/t)	AI	As	Ва	Ве	Bi
TBRK001	727117	7591577	MGA94_50	0.05	3.28%	1	130	0.35	0.12
TBRK002	727151	7591465	MGA94_50	0.05	4.10%	1.4	62.8	0.21	0.1
TBRK003	727449	7591364	MGA94_50	0.04	3890	0.5	11.8	0.24	< 0.01
TBRK007	725652	7590146	MGA94_50	0.06	7.27%	0.9	385	1.59	0.36
TBRK008	725638	7590400	MGA94_50	0.01	7.08%	0.9	217	4.07	0.29
TBRK009	725670	7590005	MGA94_50	0.03	6.72%	2.1	233	3.82	0.18
TBRK012	726209	7587607	MGA94_50	0.85	7.30%	0.7	35.6	7.12	3.7
TBRK013	726147	7587574	MGA94_50	0.19	7.34%	< 0.5	114	6.05	1.85
TBRK014	726085	7587567	MGA94_50	0.21	4.15%	7.1	118	1.4	1.43
TBRK015	725952	7587714	MGA94_50	0.1	2.27%	2.2	34.6	20.6	1.99
TBRK016	725930	7587735	MGA94_50	0.42	4.69%	< 0.5	571	3.56	27.5
TBRK017	725524	7587747	MGA94_50	0.01	6.95%	0.9	214	3.02	1.36
TBRK018	725666	7587826	MGA94_50	0.05	7.34%	0.6	155	3.03	2.72
TBRK019	726063	7587920	MGA94_50	0.12	7.48%	0.6	73	11.4	21.9
TBRK020	725927	7587684	MGA94_50	0.34	5.87%	0.7	568	5.41	23.8
TBRK021	725618	7587887	MGA94_50	0.04	7.84%	< 0.5	205	0.88	0.73
TBRK022	725731	7588038	MGA94_50	0.12	4.07%	0.7	24.6	3.59	22

Appendix 1-Assay Results (ppm unless otherwise indicated)

Sample ID	Са	Cd	Се	Со	Cr	Cs	Cu	Dy	Er	Eu
TBRK001	24.80%	0.17	11.9	46.7	488	31.7	144.3	2.33	1.15	0.64
TBRK002	22.00%	0.21	12.2	76.6	1420	10	49.6	2.47	1.4	0.67
TBRK003	806	0.06	0.46	1.2	104	0.4	26.5	0.04	< 0.03	0.02
TBRK007	873	< 0.05	1.24	0.3	4	16.9	3.7	0.86	0.55	0.3
TBRK008	5240	< 0.05	13.8	0.5	6	10.6	6.6	2.2	0.95	0.27
TBRK009	2620	0.06	12.1	0.8	2	24.4	11.6	3.96	2.7	0.27
TBRK012	3.94%	0.06	31.5	1.6	0	0.9	18.7	1.3	0.49	0.24
TBRK013	1920	< 0.05	8.46	0.5	8	8.1	12.1	1.42	0.49	0.12
TBRK014	2.89%	0.12	5.95	23.5	160	24.5	26.9	1.27	0.78	0.35
TBRK015	15.30%	0.29	3.45	61.5	901	26	921.4	1	0.67	0.38
TBRK016	3020	0.12	24.5	1.4	9	15.3	20.3	1.96	1.42	0.31
TBRK017	1900	0.12	11.9	0.4	6	26.3	7.6	1.88	1.34	0.2
TBRK018	1880	0.15	9.63	0.5	3	20.1	10.2	1.52	1.04	0.18
TBRK019	5720	0.11	9.12	1.9	6	124	4.8	2.14	0.64	0.09
TBRK020	2010	0.08	41.9	1.3	11	18.4	22.5	2.52	1.42	0.42
TBRK021	1020	0.11	4.21	0.3	8	20.3	8.1	1.01	0.81	0.22
TBRK022	1660	0.25	2.13	0.7	16	26.3	7.1	0.82	0.23	0.05

Sample ID	Fe	Ga	Gd	Ge	Hf	Hg	Но	In	к	La
TBRK001	8.40%	7.77	2.48	1.07	1.33	< 0.05	0.45	0.07	3860	4.65
TBRK002	9.17%	9.25	2.66	1.57	1.33	< 0.05	0.48	0.074	2870	3.93
TBRK003	6430	1.37	0.08	0.32	0.06	< 0.05	< 0.02	0.058	553	0.23
TBRK007	3540	16	0.48	1.63	0.22	< 0.05	0.16	0.059	4.36%	1.64
TBRK008	5720	25.7	2.22	1.45	0.79	< 0.05	0.36	0.057	3.52%	10.2
TBRK009	6860	21.5	2.38	1.34	3.46	< 0.05	0.85	0.062	4.38%	5.8
TBRK012	4520	32.1	1.63	1.88	2.27	< 0.05	0.19	0.058	1600	14.9
TBRK013	3530	37.4	1.51	2.16	5.47	< 0.05	0.17	0.059	7030	3.53
TBRK014	2.53%	9.31	1.28	1.22	0.27	< 0.05	0.25	0.068	2.84%	2.81
TBRK015	5.21%	5.91	0.83	2.59	0.25	< 0.05	0.21	0.106	2630	1.65
TBRK016	9770	19.3	1.7	1.51	2.85	< 0.05	0.44	0.058	2.81%	13.4
TBRK017	4450	19.3	1.45	1.76	1.01	< 0.05	0.37	0.06	4.14%	7.15
TBRK018	3880	18.9	1.02	1.81	0.62	< 0.05	0.29	0.06	4.33%	5.01
TBRK019	6900	53.4	2.31	2.43	0.65	< 0.05	0.29	0.054	2.04%	3.7
TBRK020	1.13%	21.8	2.6	1.45	3.78	< 0.05	0.46	0.058	3.11%	22.2
TBRK021	3290	20.1	0.75	2.08	0.28	< 0.05	0.25	0.058	3.91%	4.76
TBRK022	9180	30.9	0.84	2.04	0.19	< 0.05	0.11	0.058	9000	1.16

Sample ID	Li	Lu	Mg	Mn	Мо	Na	Nb	Nd	Ni	Р
TBRK001	51.9	0.15	5.58%	1430	0.8	6680	3.6	8.36	139	399
TBRK002	43.2	0.15	8.64%	2580	0.4	3390	3.7	8.41	435	219
TBRK003	6.7	< 0.02	372	71	0.3	180	< 0.5	0.26	2.3	21
TBRK007	43.4	0.1	114	71	0.8	1.51%	7	0.69	0.7	8
TBRK008	31.1	0.13	216	133	0.2	3.08%	8.8	7.69	< 0.5	36
TBRK009	53.5	0.4	280	215	1.8	2.36%	26.3	4.74	1.3	37
TBRK012	8.3	0.07	651	622	0.4	5.88%	41.6	10.9	0.9	129
TBRK013	4.4	0.07	251	278	0	5.66%	84.7	4.21	0.9	82
TBRK014	95.6	0.09	9300	658	0.9	702	1.4	4.06	59.8	71
TBRK015	138	0.09	6.09%	993	0.4	2350	1.8	2.53	378	98
TBRK016	181	0.24	1150	295	0.9	9190	11.9	8.79	2.6	100
TBRK017	58.3	0.28	181	433	0.3	2.02%	23.6	5.29	0.7	6
TBRK018	36.8	0.2	198	141	1.3	2.03%	10.1	3.6	2.5	< 5
TBRK019	49.4	0.07	466	840	0.3	2.07%	112	4.36	4.1	20
TBRK020	226	0.23	1450	313	0.7	1.13%	15.7	14.8	2.4	44
TBRK021	27.6	0.13	78	51	0.5	1.21%	2.5	2.47	< 0.5	51
TBRK022	47.6	0.03	379	856	0.1	2.09%	48.8	1.16	4.6	7

Sample ID	Pb	Pr	Rb	Re	S	Sb	Sc	Se	Sm	Sn
TBRK001	2.1	1.8	22.9	< 0.0005	1080	0.2	27	2.77	2.24	0.5
TBRK002	1.3	1.7	3.3	< 0.0005	1310	0.3	32	1.74	2.5	0.5
TBRK003	0.3	0.06	1.4	< 0.0005	< 50	< 0.1	< 1	0.29	0.07	< 0.2
TBRK007	43.6	0.22	394	< 0.0005	< 50	< 0.1	< 1	1.54	0.24	0.6
TBRK008	31	2.11	259	< 0.0005	54	< 0.1	< 1	1.15	2.25	1.1
TBRK009	54.4	1.32	388	< 0.0005	< 50	0.1	1	3.6	1.71	2.6
TBRK012	21.5	3.2	15.2	< 0.0005	71	0.2	< 1	1.51	1.99	0.4
TBRK013	5	1.09	151	< 0.0005	< 50	0.1	< 1	1.75	1.48	3.2
TBRK014	3.8	0.89	472	< 0.0005	169	0.4	10	0.54	1.12	0.5
TBRK015	2.2	0.58	50.7	0.0013	1090	0.3	17	1.23	0.73	3.8
TBRK016	14.8	2.58	319	< 0.0005	110	< 0.1	< 1	1.48	1.86	7.7
TBRK017	29.1	1.4	406	< 0.0005	122	< 0.1	2	1.36	1.42	2.7
TBRK018	40.2	1.01	406	< 0.0005	< 50	< 0.1	< 1	1.97	0.87	0.6
TBRK019	12.7	1.05	842	< 0.0005	75	< 0.1	1	1.18	2.15	14.9
TBRK020	19.2	4.31	323	< 0.0005	52	< 0.1	1	0.79	2.97	8.2
TBRK021	38.9	0.7	394	< 0.0005	91	< 0.1	< 1	0.86	0.55	0.2
TBRK022	6.3	0.29	395	< 0.0005	< 50	0.1	< 1	0.99	0.69	9

Sample ID	Sr	Та	Tb	Те	Th	Ti	ті	Tm	U	v
TBRK001	151	0.37	0.39	< 0.05	0.89	5880	0.29	0.17	0.4	257
TBRK002	109	0.46	0.42	< 0.05	0.74	4450	0.06	0.18	0.28	291
TBRK003	8.7	< 0.01	< 0.02	< 0.05	0.05	150	< 0.02	< 0.01	0.03	4
TBRK007	39.8	2.12	0.12	< 0.05	1.27	97	4.92	0.1	1.97	2
TBRK008	48.8	1.71	0.37	< 0.05	7.88	115	2.22	0.13	2.12	2
TBRK009	32.1	3.9	0.56	< 0.05	22.2	216	3.59	0.42	13.6	2
TBRK012	53.1	44.2	0.28	0.13	6.67	77	0.1	0.07	2.41	7
TBRK013	40.8	96.6	0.32	0.05	6.51	45	0.74	0.06	4.08	0
TBRK014	170	0.05	0.2	< 0.05	0.29	1920	4.55	0.12	0.09	71
TBRK015	26.7	0.21	0.15	0.12	0.29	1190	0.72	0.09	0.23	205
TBRK016	30.4	1.56	0.31	< 0.05	14.2	658	2.41	0.22	2.54	12
TBRK017	37	8.98	0.28	< 0.05	5.62	99	3.9	0.22	2.63	3
TBRK018	32.9	3.62	0.22	< 0.05	5.41	85	3.98	0.17	3.71	0
TBRK019	27.8	30.2	0.44	< 0.05	9.96	138	5.54	0.1	4.48	0
TBRK020	35.4	2.13	0.45	< 0.05	20	803	2.63	0.23	3.54	15
TBRK021	30.6	0.64	0.15	< 0.05	1.22	46	5.01	0.13	1.77	2
TBRK022	13	13.4	0.19	< 0.05	2.52	88	2.69	0.03	1.34	2

Sample ID	w	Y	Yb	Zn	Zr
TBRK001	0.2	11.4	1.04	58.7	49
TBRK002	0.5	11.1	1.05	87.9	48
TBRK003	< 0.1	0.3	< 0.03	9.7	2
TBRK007	0.9	3.72	0.78	7.5	3
TBRK008	0.3	9.03	1.02	12.1	22
TBRK009	1	24	2.78	24.9	68
TBRK012	0.4	7.8	0.5	6.8	16
TBRK013	0.5	8.28	0.46	6.9	38
TBRK014	0.5	6.65	0.66	14.7	6
TBRK015	6.2	5.98	0.66	94.8	7
TBRK016	5.1	13.6	1.49	19.3	90
TBRK017	0.5	10.9	1.61	10.3	15
TBRK018	0.1	9.26	1.33	6.2	11
TBRK019	3.3	10.7	0.52	59.1	6
TBRK020	7	13.1	1.47	22.8	115
TBRK021	0.2	7.07	0.86	0.4	4
TBRK022	1.6	3.94	0.19	96	1

Chemical symbol	Name of Element	Chemical symbol	Name of Element	Chemical symbol	Name of Element
Ag	Silver	Hf	Hafnium	S	Sulphur
Al	Aluminium	Hg	Mercury	Sb	Antimony
As	Arsenic	Но	Holmium	Sc	Scandium
Ва	Barium	In	Indium	Se	Selenium
Ве	Beryllium	к	Potassium	Sm	Samarium
Ві	Bismuth	La	Lanthanum	Sn	Tin
Са	Calcium	Li	Lithium	Sr	Strontium
Cd	Cadmium	Lu	Lutetium	Та	Tantalum
Ce	Cerium	Mg	Magnesium	Tb	Terbium
Со	Cobalt	Mn	Manganese	Те	Tellurium
Cr	Chromium	Мо	Molybdenum	Th	Thorium
Cs	Caesium	Na	Sodium	Ті	Titanium
Cu	Copper	Nb	Niobium	ті	Thallium
Dy	Dysprosium	Nd	Neodymium	Tm	Thulium
Er	Erbium	Ni	Nickel	U	Uranium
Eu	Europium	Р	Phosphorus	v	Vanadium
Fe	Iron	Pb	Lead	w	Tungsten
Ga	Gallium	Pr	Praseodymium	Y	Yttrium
Gd	Gadolinium	Rb	Rubidium	Yb	Ytterbium
Ge	Germanium	Re	Rhenium	Zn	Zinc
				Zr	Zirconium

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniqu es	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	The rock chip samples were collected as 1-3 kg field samples from representative outcrops with the samples being collected from multiple sites from within a single outcrop to provide representivity of the samples.
Drilling techniqu es	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The samples were rock chip samples, no drill samples were collected.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 There were no drill samples collected during the rock chip sampling program.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All samples were described in the field by the field geologists.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniqu es and sample preparati on	 If core, whether cut or sawn and whether quarter half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grassize of the material being sampled. 	chip samples
Quality of assay data and laborator y tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accurate (ie lack of bias) and precision have been established. 	y la
Verificati on of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 There has been no independent verification of the presented assay results or logging methodology
Location of data points	 Accuracy and quality of surveys used to locate dr holes (collar and down-hole surveys), trenches, mine workings and other locations used in Miner Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	using a hand help GPS in MGA94Z51. al
Data spacing and distributi on	 Data spacing for reporting of Exploration Results Whether the data spacing and distribution is sufficient to establish the degree of geological an grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(and classifications applied. Whether sample compositing has been applied. 	first pass rock chip sample results

Criteria	JC	DRC Code explanation	Commentary
Orientati on of data in relation to geologic al structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The rock chip samples were collected from along the pegmatite samples.
Sample security	•	The measures taken to ensure sample security.	• The samples were delivered to Centurion Transport by TMB geologists and Centurion Transport delivered it to the laboratory.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	• There has not been any external audits of these first pass rock chip sample results.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenemen t and land tenure status	 Type, reference name/number, location and ownership including agreements or material issue with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The rock chip samples were collected from tenements P45/2868-2871 and E45/4597. There are no third-party arrangements or royalties etc to impede exploration on the tenure. There are no reserves or national parks to impede exploration on the tenure. The tenements are held by Baracus Pty Ltd but the tenements are currently 100% being transferred to TMB.
Explorati on done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 The gold exploration has been summarised in previous announcements by TMB. There has been no historic pegmatite exploration on the Tambourah tenure.
Geology	• Deposit type, geological setting and style of mineralisation.	 Quartz veins in sheared amphibolite and criss cutting pegmatites.
Drill hole Informati on	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	

Criteria	JORC Code explanation	Commentary
Data aggregat ion methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No data aggregation methods were applied to the rock chip sampling data
Relations hip between mineralis ation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The pegmatite samples are representative of the outcrops
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• See maps in the body of the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The reporting of these rock chip sample results are considered to be representative.
Other substanti ve explorati on data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 There are no other substantive exploration results associated with these rock chip samples.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Further rock chip samples and will be collected.

JORC Table 1-Rock chip Samples