STRONG MINERALISATION INTERCEPTS CONTINUE AT BENDIGO-OPHIR - New assays received since the 2022 Mineral Resource Estimate (MRE) confirm continuity of strong gold mineralisation with best composite intercepts (uncut, min 0.50g/t Au) at Rise and Shine (RAS) Deposit. - MDD051 (RAS EW section N5017180): - 42.9m @ 7.3 g/t Au from 152.1m including: - 20m @ 11.8g/t Au (1.5g/t lower cut-off) from 161m - MDD053 (RAS EW section N5018080): - 12.3m @ 2.9 g/t Au from 306.7m including: - 9m @ 3.8g/t Au (1.5g/t lower cut-off) from 308m - MDD055 (RAS EW section N5018080): - 28.4m @ 3.7g/t Au from 311.6m including: - 19.4m @ 4.6g/t Au (1.5g/t lower cut-off) from 311.6m - MDD051 assays are the strongest returned from the Project Area to date, eclipsing those reported in June from MDD044 (42.1m @ 5.1g/t Au). - Drilling continues with three diamond drill (DD) rigs testing the eastern margin of the RAS shoot and testing the down plunge extensions of RAS and Shreks (SHR). - The RAS shoot has now been defined over 1,500 metres down plunge with a width of 300 400 metres, increasing the potential of SHR and other well-defined targets along the Rise and Shine Shear Zone (RSSZ). **20 July 2022** Santana Minerals Limited (ASX: SMI) ("Santana" or "the Company") is pleased to announce further significant results from the 100% owned Bendigo-Ophir Project ("the Project"). Resource extension drilling since September 2021 has focused primarily on the Rise and Shine (RAS) deposit, resulting in a 6-fold increase in RAS inferred resources and consequently a 3-fold increase in overall Global Rise and Shine Shear Zone (RSSZ) resources (ASX announcement on 11 July 2022). The new Global MRE of 1.9Moz @ 1.8g/t Au (top-cut, 0.5g/t lower cut-off) includes mineral resources at RAS, Come-in-Time (CIT), Shreks (SHR) and Shreks East (SRE) deposits. Drilling is continuing to expand the resources beyond the new 1.9Moz platform. Commenting on the results Executive Director Dick Keevers said: "Some very good gold assays as well as new visible gold in drill core, particularly in the SE part of RAS, where a sweet spot occurs near the expected SE margin of the RAS deposit. An excellent result. Nearly a kilometre north of this sweet spot, where the RAS down plunge part of the deposit continues, we have achieved some substantial gold intersections, underpinning our continuing drive to keep pushing NE down the plunge of the deposit with our drilling. Drilling in these two areas at RAS has complemented our previous drilling at these two widely spaced parts of the deposit, which continues to show that an expected expansion of our most recent MRE will occur in the following months." Level 15, 344 Queen Street, Brisbane QLD 4000 · GPO Box 1305, Brisbane QLD 4000 Tel: +61 7 3221 7501 · Web: www.santanaminerals.com ## **RSSZ Deposits - Extension Drilling** Four RSSZ deposits, CIT, RAS, SHR and SRE extend 4 kilometres NW-SE along strike and contain the current 1,9Koz inferred gold resources (Figure 1). All deposits remain open at depth. Figure 1 RSSZ Deposits / Resource Halos / Gold Metal Units (MU) The new global MRE of 1.9Moz @ 1.8g/t Au at a lower cut-off grade of 0.5g/t Au (2.1Moz @ 1.4 g/t Au at a 0.25 g/t cut-off grade), (ASX announcement on 11 July 2022) forms a robust platform for additional resources and presently, drilling is primarily focusing on expanding the 1.7Moz resource at RAS and testing the down plunge extensions at the CIT and SHR deposits (Figures 1, 2, 3 & 5). Three DD rigs are now operating and a total of 12,457 metres have been completed since January 2022 (Table 1). ## **Latest Drill Assay Results from RAS** RAS drillhole MDD051 has delivered a significant result (Appendix 1 RAS) that was flagged when multiple intervals of visible gold (VG) were logged (ASX announcement on 2nd June 2022). MDD051 has a continuous intercept of 42.9 metres @ 7.3 g/t Au from 152.1 metres including: - 20m @ 11.8g/t Au (1.5g/t lower cut-off) from 161m with - 10.4, 12.9, 13.6, 13.9, 36.1, 63.0, 65.7 g/t Au over 1-metre intervals Drillhole MDD051 was drilled 100m east of MDD009 to test mineralisation that remained open on EW section N5017120 (Figure 2) and the results are the strongest from the Project area to date eclipsing those from MDD044 located 1 kilometre to the north. MDD044 returned an aggregate intercept of 42.1 metres @ 5.07 g/t Au between 356 and 404 metres (ASX announcement on 2nd June 2022). MDD051, and drillholes MDD009 and MDD010 to the west (EW section N5017120) in the southern sector of RAS appear to form the southern extent of a high-grade zone that is aligned oblique (NNW) to the overall 350-metre-wide NNE trending shallow plunging RAS shoot. Mineralisation remains open to the east. RAS drillholes MDD053 and MDD055 on EW section N5018080 at the northern extent of RAS also delivered significant results Appendix 1 RAS). MDD053 has a continuous intercept of 12.3 metres @ 2.9 g/t Au from 306.7 metres including: - 9m @ 3.8g/t Au (1.5g/t lower cut-off) from 308m with - 19.9 g/t Au over 1-metre interval MDD055 has a continuous intercept of 28.4 metres @ 3.7 g/t Au from 311.6 metres including: - 19.4m @ 4.6g/t Au (1.5g/t lower cut-off) from 311.6m with - 5.2, 5.4, 6.1, 8.1, 39.7g/t Au over 1-metre intervals Drillholes MDD053 and MDD055 are proximal to MDD044 and confirm continuity of strong mineralisation in this northern sector of RAS. Table 1: 2022 Drillhole co-ordinates, downhole survey detail and Status | Deposit | Hole_No | East_NZTM | North_NZTM | RL | Azimuth (T
Avg) | Dip
(Avg) | Length | Method | Status | Results | |----------|---------|-----------|------------|--------|--------------------|--------------|----------|--------|-------------|--------------------| | RAS | MDD023R | 1318320.6 | 5017574.0 | 658.47 | 266.6 | -68 | 359.2 | DD | Completed | Reported | | RAS | MDD024 | 1317854.8 | 5017118.0 | 756.71 | 268.5 | -61 | 176.9 | DD | Completed | Reported | | RAS | MDD025 | 1318195.1 | 5017716.5 | 632.55 | 256.4 | -68 | 265.7 | DD | Re-Drilled | Reported | | RAS | MDD025R | 1318196.5 | 5017715.5 | 632.65 | 255.8 | -72 | 360.7 | DD | Completed | Reported | | RAS | MDD026 | 1317853.4 | 5017125.5 | 756.82 | 211.5 | -56 | 221.7 | DD | Completed | Reported | | RAS | MDD027 | 1318262.2 | 5017842.0 | 582.64 | 271.5 | -69 | 365.6 | DD | Completed | Reported | | RAS | MDD028 | 1317998.5 | 5017062.0 | 773.89 | 270.4 | -62 | 250.0 | DD | Completed | Reported | | RAS | MDD029 | 1318460.9 | 5017957.5 | 537.69 | 259.8 | -75 | 398.2 | DD | Completed | Reported | | RAS | MDD030 | 1317997.9 | 5017066.5 | 773.85 | 210.0 | -55 | 115.3 | DD | Re-Drilled | No assays | | RAS | MDD030R | 1317997.0 | 5017067.0 | 773.95 | 217.0 | -58 | 242.6 | DD | Completed | Reported | | RAS | MDD031 | 1318348.9 | 5017957.5 | 536.72 | 292.0 | -73 | 380.1 | DD | Completed | Reported | | RAS | MDD033 | 1318167.1 | 5017835.5 | 581.95 | 277.6 | -71 | 336.5 | DD | Completed | Reported | | RAS | MDD034 | 1318071.8 | 5017712.0 | 597.71 | 269.0 | -66 | 233.7 | DD | Re-Drilled | Reported | | RAS | MDD034R | 1318071.6 | 5017712.5 | 597.79 | 268.1 | -67 | 300.5 | DD | Completed | Reported | | RAS | MDD036 | 1318426.5 | 5017720.0 | | 250.9 | -73 | 372.5 | | Completed | - | | RAS | MDD037 | 1318379.9 | 5017826.5 | 607.16 | 267.1 | -73 | 425.2 | | Completed | Reported | | RAS | MDD039 | 1317973.9 | 5017719.0 | 626.20 | 260.9 | -69 | 256.1 | DD | Completed | Reported | | RAS | MDD041 | 1318243.5 | 5017969.5 | | 232.5 | -68 | 323.5 | | Completed | - | | RAS | MDD042 | 1318068.0 | 5017845.0 | | 279.3 | -69 | 293.0 | | Completed | - | | RAS | MDD044 | 1318291.8 | | | 351.1 | -68 | 469.8 | | - | Partial reported | | RAS | MDD045 | 1317891.6 | 5017477.5 | | 259.0 | -66 | 251.9 | | · · | Partial reported | | RAS | MDD047 | 1318406.6 | 5017959.0 | | 360.9 | -69 | 446.3 | | · · | Partial reported | | RAS | MDD048 | 1317816.2 | 5017478.5 | | 87.7 | -64 | 101.9 | | Re-Drilled | No assays | | RAS | MDD048R | 1317817.2 | 5017479.5 | 702.19 | 100.6 | -74 | 285.0 | | | Partial reported | | RAS | MDD050 | 1318276.1 | 5017476.5 | | 251.3 | -72 | 368.4 | | | Partial reported | | RAS | MDD051 | 1318032.2 | | | 265.0 | -70 | 257.9 | | | Partial reported | | RAS | MDD053 | 1318292.0 | | | 291.0 | -62 | 395.3 | | - | Partial reported | | RAS | MDD054 | 1318091.6 | 5017233.5 | | 279.6 | -67 | 332.4 | | | Assays pending | | RAS | MDD055 | 1318333.8 | 5017972.0 | | 331.5 | -71 | 431.0 | | | Partial reported | | RAS | MDD056 | 1317948.1 | 5017110.5 | | 266.5 | -64 | 270.2 | | | Assays pending | | RAS | MDD060 | 1318325.2 | 5018296.5 | | 256.4 | -77 | 558.4 | | <u> </u> | Assays pending | | SubTotal | WIDDOOD | 1310323.2 | 3010230.3 | 050.12 | 230.1 | ,,, | 9,845.5 | | completed | 7 ISSU YS PETIGING | | CIT | MDD032 | 1317089.5 | 5018499.5 | 503 38 | 279.7 | -64 | 197.9 | חח | Completed | Reported | | CIT | MDD035 | 1317089.3 | 5018500.0 | | 265.3 | -66 | 236.5 | | Completed | <u> </u> | | CIT | MDD033 | 1317192.1 | 5018300.0 | | 274.6 | -67 | 213.0 | | Completed | | | CIT | MDD038 | 1317160.4 | | | 274.0 | -66 | 194.0 | | Completed | | | CIT | MDD043 | 1317160.0 | | | 276.9 | | 184.3 | | Completed | • | | CIT | MDD043 | 1317151.9 | | | 270.9 | | 178.4 | | | Partial reported | | | MDD048 | | | | 257.8 | | 232.0 | | - | Partial reported | | CIT | | 1317177.2 | | | | -65 | | | | | | CIT | MDD052 | 1317277.0 | | | 251.9 | -69 | 223.4 | | - | Assays pending | | CIT | MDD057 | 1317066.4 | | | 271.9 | -62 | 179.0 | | | Partial reported | | CIT | MDD058 | 1317053.6 | 5018346.5 | 536.66 | 270.1 | -61 | 159.3 | | completed | Assays pending | | SubTotal | MADDATA | 4246222 | 5045000 5 | 054.45 | 222 | | 1,997.8 | | 6 | | | SHR | MDD059 | 1319320.0 | | | 229.3 | -75 | 347.9 | | | Assays pending | | SHR | MDD062 | 1319100.0 | 5016214.0 | 859.51 | 243.0 | -72 | 266.2 | סט | Re-Drilled | Assays pending | | SubTotal | | | | | | | 614.1 | | | | | TOTAL | | | | | | | 12,457.4 | | | | Figure 2 RAS Resource Extension Drilling
- New Results / Gold Distribution Figure 3 RAS Deposit - Dunstan Range (View south) Partial results have been received from a further three RAS drillholes (Table 1, Appendix 1 RAS) with the following intercepts: - MDD047 (Section N5018080, eastern fringe) 11 metres @ 0.89 g/t Au from 359 metres - MDD048R (Section N5017480, western fringe) 3 metres @ 1.20 g/t Au from 206 metres - MDD050 (Section N5017480, eastern fringe) 1 metre @ 0.59 g/t Au from 267 metres These latter results effectively close off shoot mineralisation to the east and west outside these localities. Results are pending from the lower sector of these holes together with MDD060 in the north and MDD054 near the eastern fringe in the central sector of RAS. Significant coarse visible gold (VG) was logged in MDD054 (Figure 4) with the intercept deserving the title "jewellery box". Figure 4 RAS Drillhole MDD054 coarse visible gold (VG) @ 180 m ## **Latest Drill Assay Results from CIT** Ten drillholes (Table 1) have been completed at CIT Deposit located along the RSSZ one kilometre NW of RAS (Figure 1). Further assays have been received for three CIT drillholes, MDD046, MDD049 and MDD057 (Figure 5, Table 1, Appendix 1 CIT). - MDD046 (CIT EW section N5018200): - o no intercepts > 0.5q/t Au - MDD049 (CIT EW section N5018640): - o 7.7m @ 0.93 g/t Au from 164.3m - MDD057 (CIT EW section N5018440): - o 10.3m @ 0.69 g/t Au from 123.7m MDD049 was drilled in Shepherds Creek 700 metres NNE of outcrop, illustrating that the CIT tenor of mineralisation remains intact. Assay results are pending for the lower section of these drillholes and also for drillholes MDD052 (Shepherds Creek) and MDD058. Assay reporting from the laboratory has been impacted by Covid staff absences with receipt of results slow. Figure 5 CIT Resource Extension Drilling - New Results / Gold Distribution ## **Key Conclusions & Forward Programme** Significant mineralisation in MDD051 opens-up eastern extension possibilities in the south-east sector of RAS whilst results from MDD053 and MDD055 bolster the strong mineralisation encountered in MDD044 in the north which now extends 1,500m down-plunge from outcrop and remains open north. Extension diamond drilling is continuing at RAS deposit with reconnaissance holes also in progress to test the down plunge extensions of SHR deposit (the largest surface footprint of the 3 main deposits). Drilling is anticipated to add to the RSSZ multi-million-ounce system. This announcement has been authorised for release to the ASX by the Board. For further information, please contact: Richard Keevers Executive Director +61 408 873 353 rkeevers@westnet.com.au Cameron Peacock Investor Relations & Business Development +61 439 908 732 cpeacock@santanaminerals.com ## **About Santana Minerals Limited Bendigo-Ophir Project** The Bendigo-Ophir Project is located on the South Island of New Zealand within the Central Otago Goldfields. The 292km2 project area comprises Minerals Exploration Permit (MEP) 60311 (252km2) and Minerals Prospecting Permit Application (MPPA) 60882 (40km2) issued to 100% owned subsidiary Matakanui Gold Ltd. The Project is located ~90 kilometres northwest of Oceana Gold Ltd (OGC) Macraes Gold Mine (Figure 6). The Company embarked on diamond drilling (DD) and reverse circulation (RC) drilling programmes in November 2020 with the immediate objective to fast-track an increase to the existing Resources by drill testing the down plunge extensions of known mineralisation. The Project contains new Inferred Global Mineral Resource Estimates (MRE) to 1.5, 0.5 and 0.25g/t Au lower cut-offs: - 11.9 Mt for 1,320,000 ounces of gold @ 3.5g/t Au (top-cut, and 1.50g/t Au lower cut-off). - 33.4 Mt for 1,920,000 ounces of gold @ 1.8q/t Au (top-cut, and 0.50g/t Au lower cut-off). - 46.7 Mt for 2,090,000 ounces of gold @ 1.4g/t Au (top-cut, and 0.25g/t Au lower cut-off). These estimates are based on drill results to May 2022 and reported in July 2022 which the Company interprets has the potential to be further expanded and developed into a low cost per ounce heap leach or gravity-leach operation, with ore from bulk tonnage open pits or underground sources. Figure 6 Bendigo-Ophir Project in the Otago Goldfield, ~90km NW of Macraes The Bendigo-Ophir Resources occur in 4 deposits (Figure 1) that are inferred to extend in a northerly direction within the RSSZ which hosts gold mineralisation over a recognised strike length of >20km (Figure 6). The RSSZ occurs at the contact with TZ3 and TZ4 schist units separated by a regional fault (Thomsons Gorge Fault-TGF) and dips at a low angle (25°) to the north-east. The RSSZ is currently interpreted to have upper shear-hosted gold mineralisation (HWS) 10-40 metres in width above quartz vein and stockwork related gold mineralisation extending >120 metres below the HWS. The Company is focusing on advanced precious metals opportunities in New Zealand and Mexico. #### Previous Disclosure - 2012 JORC Code Information relating to Mineral Resources, Exploration Targets and Exploration Data associated with the Company's projects in this announcement is extracted from the following ASX Announcements: - ASX announcement titled "Drill Assays, Modelling & Metallurgy—Building Bendigo-Ophir Gold Assets" dated 1 July 2021. - ASX announcement titled "More High-Grade Gold Intercepts at Rise and Shine Deposit" dated 15 July 2021. - ASX announcement titled "Further Drilling Lifts Rise and Shine Deposit Profile" dated 25 August 2021. - ASX announcement titled "Gold Resources Increased 155% to 643Koz" dated 28 September 2021 - ASX announcement titled "Bonanza gold grades continue beyond new Rise & Shine Resources" dated 23 December 2021 - ASX announcement titled "Impressive Drill Assays and Metallurgical Testwork Results" dated 3 March 2022 - ASX announcement titled "Rise & Shine Drilling continues to deliver high gold grades" dated 20 April 2022 - ASX announcement titled "Rise & Shine Mineralisation extends North, Metallurgy Updates" dated 11 May 2022 - ASX announcement titled "Rise & Shine and Come-in-Time Extension Drilling Results" dated 25 May 2022 - ASX announcement titled "Rise and Shine (RAS) mineralisation expands North" dated 2 June 2022. - ASX announcement titled "A new 2 Million Ounce Global Inferred Gold Resource Platform" dated 11 July 2022. A copy of such announcement is available to view on the Santana Minerals Limited website www.santanaminerals.com. The reports were issued in accordance with the 2012 Edition of the JORC Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements. ## **Current Disclosure - Competent Persons Statement** The information in this report that relates to Exploration Results is based on information compiled by Mr Richard Keevers, a Competent Person who is a Fellow of The Australasian Institute of Mining and Metallurgy. Mr Keevers is a Director of Santana Minerals Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Keevers consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified. #### **Forward Looking Statements** Forward-looking statements in this announcement include, but are not limited to, statements with respect to Santana's plans, strategy, activities, events or developments the Company believes, expects or anticipates will or may occur. By their very nature, forward-looking statements require Santana to make assumptions that may not materialize or that may not be accurate. Although Santana believes that the expectations reflected in the forward-looking statements in this announcement are reasonable, no assurance can be given that these expectations will prove to have been correct, as actual results and future events could differ materially from those anticipated in the forward-looking statements. Accordingly, viewers are cautioned not to place undue reliance on forward-looking statements. Santana does not undertake to update publicly or to revise any of the included forward-looking statements, except as may be required under applicable securities laws. # Appendix 1 RAS Mineralised Intercepts – Assay results MDD047, MDD048R | | | | interval | | | | | | | interval | | | | |---------|-------------|--------|----------|----------|----------|-----------|---------|-------------|--------|----------|----------|----------|-----------| | Hole_No | from (m) | to (m) | (m) | Au (g/t) | As (ppm) | Geol Unit | Hole_No | from (m) | to (m) | (m) | Au (g/t) | As (ppm) | Geol Unit | | MDD047 | 357.0 | 358.0 | 1.0 | -0.01 | 8 | TZ3 | MDD048R | 205.0 | 206.0 | 1.0 | 0.27 | * | | | MDD047 | 358.0 | 358.6 | 0.6 | -0.01 | 25 | .23 | MDD048R | 206.0 | 207.0 | 1.0 | 2.34 | * | | | MDD047 | 358.6 | 359.0 | 0.4 | 0.40 | 473 | TGF | MDD048R | 207.0 | 208.0 | 1.0 | 0.41 | * | | | MDD047 | 359.0 | 360.0 | 1.0 | 0.71 | 1,700 | | MDD048R | 208.0 | 209.0 | 1.0 | 0.86 | * | | | MDD047 | 360.0 | 361.0 | 1.0 | 0.46 | 322 | | MDD048R | 209.0 | 210.0 | 1.0 | 0.09 | * | | | MDD047 | 361.0 | 362.0 | 1.0 | 1.06 | 2,062 | | MDD048R | 210.0 | 211.0 | 1.0 | 0.15 | * | RSSZ | | MDD047 | 362.0 | 363.0 | 1.0 | 3.24 | 4,282 | | MDD048R | 211.0 | 212.0 | 1.0 | 0.13 |
* | 11352 | | MDD047 | 363.0 | 364.0 | 1.0 | 0.98 | 1,807 | | MDD048R | 212.0 | 213.0 | 1.0 | 0.07 | * | | | MDD047 | 364.0 | 365.0 | 1.0 | 0.70 | 6,436 | | MDD048R | 213.0 | 214.0 | 1.0 | 0.31 | * | | | MDD047 | 365.0 | 366.0 | 1.0 | 0.40 | 5,344 | | MDD048R | 214.0 | 215.0 | 1.0 | 0.10 | * | | | MDD047 | 366.0 | 367.0 | 1.0 | 0.62 | 3,094 | | MDD048R | 215.0 | 216.0 | 1.0 | 0.02 | * | | | MDD047 | 367.0 | 368.0 | 1.0 | 0.38 | 6,543 | | MDD048R | 216.0 | 217.0 | 1.0 | 0.02 | * | | | MDD047 | 368.0 | 369.0 | 1.0 | 0.41 | 9,153 | | MDD048R | 217.0 | 218.0 | 1.0 | 0.02 | * | TZ4 | | MDD047 | 369.0 | 370.0 | 1.0 | 0.87 | 10,866 | | MDD048R | 218.0 | 219.0 | 1.0 | 0.96 | * | RSSZ | | MDD047 | 370.0 | 371.0 | 1.0 | 0.23 | 5,835 | | MDD048R | 219.0 | 220.0 | 1.0 | 0.18 | * | TZ4 | | MDD047 | 371.0 | 372.0 | 1.0 | 0.11 | 1,931 | RSSZ | MDD048R | 220.0 | 221.0 | 1.0 | 0.07 | * | | | MDD047 | 372.0 | 373.0 | 1.0 | 0.09 | 400 | KSSZ | MDD048R | 221.0 | 222.0 | 1.0 | 0.02 | * | RSSZ | | MDD047 | 373.0 | 374.0 | 1.0 | 0.66 | 14,115 | | MDD048R | 222.0 | 223.0 | 1.0 | 0.02 | * | | | MDD047 | 374.0 | 375.0 | 1.0 | 0.19 | 3,519 | | MDD048R | 223.0 | 224.0 | 1.0 | 0.03 | * | -74 | | MDD047 | 375.0 | 376.0 | 1.0 | 0.09 | 1,998 | | MDD048R | 224.0 | 225.0 | 1.0 | -0.01 | * | TZ4 | | MDD047 | 376.0 | 377.0 | 1.0 | 0.60 | 12,184 | | MDD048R | 225.0 | 226.0 | 1.0 | 0.03 | * | | | MDD047 | 377.0 | 378.0 | 1.0 | 0.10 | 1,192 | | MDD048R | 226.0 | 227.0 | 1.0 | -0.01 | * | | | MDD047 | 378.0 | 379.0 | 1.0 | 0.09 | 1,353 | | MDD048R | 227.0 | 228.0 | 1.0 | 0.07 | * | RSSZ | | MDD047 | 379.0 | 380.0 | 1.0 | 0.02 | 758 | | MDD048R | 228.0 | 229.0 | 1.0 | 0.02 | * | | | MDD047 | 380.0 | 381.0 | 1.0 | 0.05 | 1,167 | | MDD048R | 229.0 | 230.0 | 1.0 | 0.02 | * | | | MDD047 | 381.0 | 382.0 | 1.0 | 0.03 | 437 | | MDD048R | 230.0 | 231.0 | 1.0 | 0.01 | * | TZ4 | | MDD047 | 382.0 | 383.0 | 1.0 | 0.22 | 1,432 | | MDD048R | 231.0 | 232.0 | 1.0 | 0.03 | * | RSSZ | | MDD047 | 383.0 | 384.0 | 1.0 | 0.05 | 399 | | MDD048R | 232.0 | 233.0 | 1.0 | -0.01 | * | | | MDD047 | 384.0 | 385.0 | 1.0 | 0.02 | 194 | | MDD048R | 233.0 | 234.0 | 1.0 | 0.04 | * | TZ4 | | MDD047 | 385.0 | 386.0 | 1.0 | -0.01 | 22 | TZ4 | MDD048R | 234.0 | 235.0 | 1.0 | 0.29 | * | | | MDD047 | 386.0 | 387.0 | 1.0 | 0.03 | 193 | DCC7 | MDD048R | 235.0 | 236.0 | 1.0 | 0.06 | * | | | MDD047 | 387.0 | 388.0 | 1.0 | -0.01 | 9 | RSSZ | MDD048R | 236.0 | 237.0 | 1.0 | 0.06 | * | RSSZ | | MDD047 | 388.0 | 389.0 | 1.0 | -0.01 | 13 | TZ4 | MDD048R | 237.0 | 238.0 | 1.0 | 0.02 | * | | | MDD047 | 389.0 | 390.0 | 1.0 | -0.01 | 13 | | MDD048R | 238.0 | 239.0 | 1.0 | -0.01 | * | | | MDD047 | 390.0 | 391.0 | 1.0 | -0.01 | 11 | RSSZ | MDD048R | 239.0 | 240.0 | 1.0 | -0.01 | * | TZ4 | | MDD047 | 391.0 | 392.0 | 1.0 | -0.01 | 14 | | MDD048R | 240.0 | 241.0 | 1.0 | 0.02 | * | RSSZ | | MDD047 | 392.0 | 393.0 | 1.0 | -0.01 | 14 | | MDD048R | 241.0 | 242.0 | 1.0 | -0.01 | * | | | MDD047 | 393.0 | 394.0 | 1.0 | -0.01 | 18 | | MDD048R | 242.0 | 243.0 | 1.0 | 0.02 | * | | | MDD047 | 394.0 | 395.0 | 1.0 | 0.03 | * | TZ4 | MDD048R | 243.0 | 244.0 | 1.0 | -0.01 | * | TZ4 | | MDD047 | 395.0 | 396.0 | 1.0 | -0.01 | * | | MDD048R | 244.0 | 245.0 | 1.0 | -0.01 | * | | | | analyses pe | | | | | | | analyses pe | | | | | | Appendix 1 RAS Mineralised Intercepts – Assay results MDD050, MDD051 | Hole_No from (m) to (m) minterval (m) Au (g/t) As (ppm) Geol Unit Hole_No from (m) to (m) minterval (m) Au (g/t) (| 01 0
01 6
02 27,116
02 5,440
00 4,622
60 5,629 | 7 TGF | |---|---|----------| | MDD050 261.0 262.0 1.0 -0.01 12 MDD050 TZ3 MDD051 150.0 151.0 1.0 -0.0 MDD050 262.0 262.6 0.6 -0.01 11 MDD051 151.0 151.9 0.9 -0.0 MDD050 262.6 263.2 0.6 -0.01 28 TGF MDD051 151.9 152.1 0.2 0.0 MDD050 263.2 264.0 0.8 0.48 1,605 MDD051 151.9 152.1 0.2 0.0 MDD050 264.0 265.0 1.0 0.19 684 MDD051 153.0 154.0 1.0 0.9 1.3 MDD050 265.0 266.0 1.0 0.03 103 MDD051 153.0 154.0 1.0 8.0 MDD050 266.0 267.0 1.0 0.14 691 MDD051 155.0 156.0 1.0 0.3 MDD050 268.0 269.0 1.0 0.1 | 01 6
02 27
12 7,116
02 5,440
00 4,622
60 5,629 | 7 TGF | | MDD050 262.0 262.6 0.6 -0.01 11 MDD051 151.0 151.9 0.9 -0.0 MDD050 262.6 263.2 0.6 -0.01 28 TGF MDD051 151.9 152.1 0.2 0.0 MDD050 263.2 264.0 0.8 0.48 1,605 MDD051 152.1 153.0 0.9 1 MDD050 264.0 265.0 1.0 0.19 684 MDD051 153.0 154.0 1.0 8.0 MDD050 266.0 266.0 1.0 0.03 103 MDD051 153.0 154.0 1.0 8.0 MDD050 266.0 267.0 1.0 0.14 691 MDD051 155.0 156.0 1.0 0.1 MDD050 268.0 269.0 1.0 0.14 828 MDD051 156.0 157.0 158.0 1.0 0.4 MDD050 269.0 270.0 1.0 0.04 32 | 27
12 7,116
12 5,440
10 4,622
10 5,629 | TGF | | MDD050 263.2 264.0 0.8 0.48 1,605 MDD050 264.0 265.0 1.0 0.19 684 MDD050 265.0 266.0 1.0 0.03 103 MDD050 266.0 267.0 1.0 0.14 691 MDD050 267.0 268.0 1.0 0.59 117 MDD050 268.0 269.0 1.0 0.14 828 MDD050 269.0 270.0 1.0 0.04 32 MDD050 270.0 271.0 1.0 0.04 62 MDD050 272.0 272.0 1.0 0.04 62 MDD050 272.0 273.0 1.0 0.04 62 MDD050 273.0 274.0 1.0 -0.01 49 MD0051 152.1 153.0 154.0 153.0 154.0 155.0 156.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 7,116
5,440
4,622
5,629 |) | | MDD050 264.0 265.0 1.0 0.19 684 MDD050 265.0 266.0 1.0 0.03 103 MDD050 266.0 267.0 1.0 0.14 691 MDD050 267.0 268.0 1.0 0.59 117 MDD050 268.0 269.0 1.0 0.14 828 MDD050 269.0 270.0 1.0 0.04 32 MDD050 270.0 271.0 1.0 0.07 223 MDD050 271.0 272.0 1.0 0.04 62 MDD050 272.0 273.0 1.0 -0.01 27 MDD050 273.0 274.0 1.0 -0.01 49 MD051 153.0 154.0 155.0 156.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 5,440
00 4,622
50 5,629 |) | | MDD050 265.0 266.0 1.0 0.03 103 MDD050 266.0 267.0 1.0 0.14 691 MDD050 267.0 268.0 1.0 0.59 117 MDD050 268.0 269.0 1.0 0.14 828 MDD050 269.0 270.0 1.0 0.04 32 MDD050 270.0 271.0 1.0 0.07 223 MDD050 271.0 272.0 1.0 0.04 62 MDD050 272.0 273.0 1.0 -0.01 27 MDD050 273.0 274.0 1.0 -0.01 49 MD051 154.0 155.0 156.0 157.0 158.0 1.0 0.1 MD051 158.0 159.0 1.0 0.1 0.1 MD051 158.0 159.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 | 4,622
5,629 | ⊣ | | MDD050 266.0 267.0 1.0 0.14 691 MDD050 267.0 268.0 1.0 0.59 117 MDD050 268.0 269.0 1.0 0.14 828 MDD050 269.0 270.0 1.0 0.04 32 MDD050 270.0 271.0 1.0 0.07 223 MDD050 271.0 272.0 1.0 0.04 62 MDD050 272.0 273.0 1.0 -0.01 27 MDD050 273.0 274.0 1.0 -0.01 49 MD0051 155.0 156.0 1.0 156.0 1.0 157.0 158.0 1.0 0.4 MD0051 158.0 159.0 1.0 0.4 MD0051 159.0 1.0 0.4 MD0051 159.0 160.0 1.0 0.4 MD0051 160.0 1.0 0.4 MD0051 161.0 162.0 1.0 10.4 10 | 5,629 | | | MDD050 267.0 268.0 1.0 0.59 117 MDD050 268.0 269.0 1.0 0.14 828 MDD050 269.0 270.0 1.0 0.04 32 MDD050 270.0 271.0 1.0 0.07 223 MDD050 271.0 272.0 1.0 0.04 62 MDD050 272.0 273.0 1.0 -0.01 27 MDD050 273.0 274.0 1.0 -0.01 49 MDD051 156.0 157.0 1.0 158.0 1.0 0.3 MDD051 158.0 159.0 1.0 0.3 1.0 0.3 MDD051 159.0 160.0 1.0 1.0 0.3 MDD051 160.0 161.0 1.0 0.3 MDD051 161.0 162.0 163.0 1.0 MDD051 162.0 163.0 1.0 10.4 | | !] | | MDD050 268.0 269.0 1.0 0.14 828 MDD050 269.0 270.0 1.0 0.04 32 MDD050 270.0 271.0 1.0 0.07 223 MDD050 271.0 272.0 1.0 0.04 62 MDD050 272.0 273.0 1.0 -0.01 27 MDD050 273.0 274.0 1.0 -0.01 49 MDD051 157.0 158.0 1.0 0.4 MDD051 159.0 160.0 1.0 1.0 MDD051 160.0 161.0 1.0 0.4 MDD051 161.0 162.0 1.0 36. MDD051 162.0 163.0 1.0 10.4 | 0 7598 |) | | MDD050 269.0 270.0 1.0 0.04 32 MDD050 270.0 271.0 1.0 0.07 223 MDD050 271.0 272.0 1.0 0.04 62 MDD050 272.0 273.0 1.0 -0.01 27 MDD050 273.0 274.0 1.0 -0.01 49 MDD051 158.0 159.0 1.0 0.4 MDD051 160.0 161.0 1.0 0.4 MDD051 161.0 162.0 1.0 36. MDD051 162.0
163.0 1.0 10.4 | 7,550 | 3 | | MDD050 270.0 271.0 1.0 0.07 223 MDD050 271.0 272.0 1.0 0.04 62 MDD050 272.0 273.0 1.0 -0.01 27 MDD050 273.0 274.0 1.0 -0.01 49 MDD051 159.0 160.0 1.0 1.0 0.4 MDD051 161.0 162.0 1.0 36. MDD051 162.0 163.0 1.0 10.4 | 86 8,443 | 3 | | MDD050 271.0 272.0 1.0 0.04 62 RSSZ MDD051 160.0 161.0 1.0 0.4 MDD050 272.0 273.0 1.0 -0.01 27 MDD051 161.0 162.0 1.0 36.3 MDD050 273.0 274.0 1.0 -0.01 49 MDD051 162.0 163.0 1.0 10.4 | 10,023 | 3 | | MDD050 272.0 273.0 1.0 -0.01 27 MDD051 161.0 162.0 1.0 36.3 MDD050 273.0 274.0 1.0 -0.01 49 MDD051 162.0 163.0 1.0 10.4 | 4,091 | .] | | MDD050 273.0 274.0 1.0 -0.01 49 MDD051 162.0 163.0 1.0 10.4 | 6,696 | 5 | | MDD050 273.0 274.0 1.0 -0.01 49 MDD051 162.0 163.0 1.0 10.4 | | - | | | | -1 | | | | 7 | | MDD050 275.0 276.0 1.0 -0.01 342 MDD051 164.0 165.0 1.0 63.0 | | ⊣ | | MDD050 276.0 277.0 1.0 -0.01 137 MDD051 165.0 166.0 1.0 3.4 | | ⊣ | | MDD050 277.0 278.0 1.0 0.02 52 MDD051 166.0 167.0 1.0 12.9 | | - | | MDD050 278.0 279.0 1.0 -0.01 20 MDD051 167.0 168.0 1.0 1.4 | | ⊣ | | MDD050 279.0 280.0 1.0 0.02 89 MDD051 168.0 169.0 1.0 1.0 | | ⊢ | | | | - | | 174 | | ⊣ | | MDD050 281.0 282.0 1.0 0.02 18 MDD051 170.0 171.0 1.0 2.4 | | ⊢ | | MDD050 282.0 283.0 1.0 -0.01 22 MDD051 171.0 172.0 1.0 0.4 | | - | | MDD050 283.0 284.0 1.0 0.03 24 MDD051 172.0 173.0 1.0 1. | | ⊣ | | MDD050 284.0 285.0 1.0 -0.01 21 RSSZ MDD051 173.0 174.0 1.0 1.0 | | | | MDD050 285.0 286.0 1.0 -0.01 29 MDD051 174.0 175.0 1.0 1.0 | | ⊣ | | MDD050 286.0 287.0 1.0 -0.01 27 MDD051 175.0 176.0 1.0 13.9 | | ⊣ | | MDD050 287.0 288.0 1.0 0.04 1,053 MDD051 176.0 177.0 1.0 0. 3 | | ⊣ | | MDD050 288.0 289.0 1.0 0.01 82 TZ4 MDD051 177.0 178.0 1.0 65. 1 | | - | | MDD050 289.0 290.0 1.0 -0.01 124 MDD051 178.0 179.0 1.0 13.0 | 4,036 | 5 | | MDD050 290.0 291.0 1.0 0.05 981 MDD051 179.0 180.0 1.0 1. 3 | | - | | MDD050 291.0 292.0 1.0 0.04 197 RSSZ MDD051 180.0 181.0 1.0 2. 9 | 4,649 |) | | MDD050 292.0 293.0 1.0 0.03 192 MDD051 181.0 182.0 1.0 0. 3 | 6,707 | <u>'</u> | | MDD050 293.0 294.0 1.0 0.03 18 MDD051 182.0 183.0 1.0 0. 5 | 6,772 | 2 | | MDD050 294.0 295.0 1.0 -0.01 9 MDD051 183.0 184.0 1.0 0.0 | 24 3,745 | 5 | | MDD050 295.0 296.0 1.0 0.14 26 TZ4 MDD051 184.0 185.0 1.0 3.6 | 2,509 |) | | MDD050 296.0 297.0 1.0 0.01 42 MDD051 185.0 186.0 1.0 9. | 75 3,845 | 5 | | MDD050 297.0 298.0 1.0 -0.01 31 MDD051 186.0 187.0 1.0 1.: | 2,259 |) | | MDD050 298.0 299.0 1.0 -0.01 85 MDD051 187.0 188.0 1.0 0.3 | 2,728 | 3 | | MDD050 299.0 300.0 1.0 0.05 29 RSSZ MDD051 188.0 189.0 1.0 5. 4 | 3,346 | 5 | | MDD051 189.0 190.0 1.0 0. : | 972 | | | MDD051 190.0 191.0 1.0 0. 0 | 06 881 | | | MDD051 191.0 192.0 1.0 0 .0 | . 9 677 | , | | MDD051 192.0 193.0 1.0 7. 4 | _ | ┥ | | MDD051 193.0 194.0 1.0 0. 3 | | - | | MDD051 194.0 195.0 1.0 3.1 | | 4 | | MDD051 195.0 196.0 1.0 0. 0 | _ | ⊣ | | MDD051 196.0 197.0 1.0 0. 0 | | | | MDD051 197.0 198.0 1.0 -0. 0 | _ | + | | MDD051 197.0 198.0 1.0 -0.0 MDD051 198.0 1.0 -0.0 | _ | 4 | | MDD051 198.0 199.0 1.0 -0.1 MDD051 199.0 200.0 1.0 0.0 | | | | | | | | MDD051 200.0 201.0 1.0 -0.0 | _ | | | MDD051 201.0 202.0 1.0 0. | | 4 | | MDD051 202.0 203.0 1.0 -0.0 | | + | | MDD051 203.0 204.0 1.0 0.0 | _ | | | MDD051 204.0 205.0 1.0 -0.0 | | 174 | | MDD051 205.0 206.0 1.0 -0. 0 | _ | 7 | | | 463 | - | | MDD051 206.0 207.0 1.0 4.3 | | | | MDD051 206.0 207.0 1.0 4.3 MDD051 207.0 208.0 1.0 0.1 MDD051 208.0 209.0 1.0 2.4 209.0 1.0 2.4 MDD051 208.0 209.0 209.0 1.0 2.4 MD051 208.0 209.0 | | ⊣ | # Appendix 1 RAS Mineralised Intercepts – Assay results MDD053, MDD055 | Hole_No | from (m) | to (m) | interval
(m) | Au (g/t) | As (ppm) | Geol Unit | Hole_No | from (m) | to (m) | interval
(m) | Au (g/t) | As (ppm) | Geol Unit | |------------------|--|----------------|-----------------|----------|----------|-----------|------------------|----------------|----------------|-----------------|--------------|----------|-----------| | MDD053 | 305.0 | 306.0 | 0.9 | -0.01 | 16 | TZ3 | MDD055 | 310.0 | 311.2 | 1.2 | 0.01 | * | TZ3 | | MDD053 | 306.0 | 306.7 | 0.7 | 0.12 | 526 | TGF | MDD055 | 311.2 | 311.6 | 0.4 | 0.07 | * | TGF | | MDD053 | 306.7 | 308.0 | 1.3 | 0.67 | 4,492 | | MDD055 | 311.6 | 313.0 | 1.4 | 2.72 | * | | | MDD053 | 308.0 | 309.0 | 1.0 | 4.24 | 1,314 | | MDD055 | 313.0 | 314.0 | 1.0 | 2.20 | * | | | MDD053 | 309.0 | 310.0 | 1.0 | 0.07 | 962 | | MDD055 | 314.0 | 315.0 | 1.0 | 1.69 | * | | | MDD053 | 310.0 | 311.0 | 1.0 | 2.92 | 2,549 | | MDD055 | 315.0 | 316.0 | 1.0 | 6.10 | * | | | MDD053 | 311.0 | 312.0 | 1.0 | 0.09 | 597 | | MDD055 | 316.0 | 317.0 | 1.0 | 2.08 | * | | | MDD053 | 312.0 | 313.0 | 1.0 | 19.90 | 3,759 | | MDD055 | 317.0 | 318.0 | 1.0 | 3.42 | * | | | MDD053 | 313.0 | 314.0 | 1.0 | 0.05 | 590 | | MDD055 | 318.0 | 319.0 | 1.0 | 1.51 | * | | | MDD053 | 314.0 | 315.0 | 1.0 | 0.67 | 2,258 | | MDD055 | 319.0 | 320.0 | 1.0 | 3.28 | * | | | MDD053 | 315.0 | 316.0 | 1.0 | 3.85 | 495 | | MDD055 | 320.0 | 321.0 | 1.0 | 1.78 | * | | | MDD053 | 316.0 | 317.0 | 1.0 | 2.81 | 600 | | MDD055 | 321.0 | 322.0 | 1.0 | 8.11 | * | | | MDD053 | 317.0 | 318.0 | 1.0 | 0.02 | 101 | | MDD055 | 322.0 | 323.0 | 1.0 | 4.72 | * | | | MDD053 | 318.0 | 319.0 | 1.0 | 0.57 | 243 | | MDD055 | 323.0 | 324.0 | 1.0 | 0.63 | * | RSSZ | | MDD053 | 319.0 | 320.0 | 1.0 | 0.11 | 797 | | MDD055 | 324.0 | 325.0 | 1.0 | 3.20 | * | | | MDD053 | 320.0 | 321.0 | 1.0 | 0.08 | 753 | | MDD055 | 325.0 | 326.0 | 1.0 | 1.77 | | | | MDD053 | 321.0 | 322.0 | 1.0 | 0.01 | 105 | | MDD055 | 326.0 | 327.0 | 1.0 | 0.89 | * | | | MDD053 | 322.0 | 323.0 | 1.0 | 0.01 | 138 | | MDD055 | 327.0 | 328.0 | 1.0 | 1.04 | * | | | MDD053 | 323.0 | 324.0 | 1.0 | 0.02 | 62 | | MDD055 | 328.0 | 329.0 | 1.0 | 39.70 | * | | | MDD053 | 324.0
325.0 | 325.0 | 1.0 | 0.02 | 717 | | MDD055 | 329.0 | 330.0 | 1.0 | 0.13 | * | | | MDD053 | | 326.0 | 1.0 | | 78
39 | RSSZ | MDD055 | 330.0 | 331.0 | 1.0 | 2.91 | * | | | MDD053 | 326.0
327.0 | 327.0
328.0 | 1.0 | 0.01 | 164 | | MDD055 | 331.0
332.0 | 332.0
333.0 | 1.0 | 0.61
5.18 | * | | | MDD053
MDD053 | 327.0 | 329.0 | 1.0 | -0.01 | 136 | | MDD055
MDD055 | 333.0 | 334.0 | 1.0 | 0.06 | * | | | MDD053 | 329.0 | 330.0 | 1.0 | -0.01 | 117 | | MDD055 | 334.0 | 335.0 | 1.0 | 0.36 | * | | | MDD053 | 330.0 | 331.0 | 1.0 | -0.01 | 63 | | MDD055 | 335.0 | 336.0 | 1.0 | 5.40 | * | | | MDD053 | 331.0 | 332.0 | 1.0 | 0.03 | 726 | | MDD055 | 336.0 | | 1.0 | 0.05 | * | TZ4 | | MDD053 | 332.0 | 333.0 | 1.0 | -0.01 | 148 | | MDD055 | 337.0 | 338.0 | 1.0 | 1.88 | * | 124 | | MDD053 | 333.0 | 334.0 | 1.0 | 0.15 | 69 | | MDD055 | 338.0 | 339.0 | 1.0 | 1.60 | * | RSSZ | | MDD053 | 334.0 | 335.0 | 1.0 | -0.01 | 113 | | MDD055 | 339.0 | 340.0 | 1.0 | 0.70 | * | 11352 | | MDD053 | 335.0 | 336.0 | 1.0 | 0.03 | 1,054 | | MDD055 | 340.0 | 341.0 | 1.0 | 0.03 | * | TZ4 | | MDD053 | 336.0 | 337.0 | 1.0 | 0.01 | 124 | | MDD055 | 341.0 | 342.0 | 1.0 | 0.13 | * | | | MDD053 | 337.0 | 338.0 | 1.0 | 0.01 | 432 | | MDD055 | 342.0 | 343.0 | 1.0 | 2.89 | * | | | MDD053 | 338.0 | 339.0 | 1.0 | 0.02 | 656 | | MDD055 | 343.0 | 344.0 | 1.0 | 0.09 | * | RSSZ | | MDD053 | 339.0 | 340.0 | 1.0 | 0.04 | 241 | | MDD055 | 344.0 | 345.0 | 1.0 | 0.70 | * | | | MDD053 | 340.0 | 341.0 | 1.0 | 0.03 | 29 | | MDD055 | 345.0 | 346.0 | 1.0 | -0.01 | * | TZ4 | | MDD053 | 341.0 | 342.0 | 1.0 | 0.02 | 449 | | MDD055 | 346.0 | 347.0 | 1.0 | -0.01 | * | | | MDD053 | 342.0 | 343.0 | 1.0 | 0.02 | 145 | | MDD055 | 347.0 | 348.0 | 1.0 | 0.04 | * | | | MDD053 | 343.0 | 344.0 | 1.0 | 0.01 | 124 | | MDD055 | 348.0 | 349.0 | 1.0 | -0.01 | * | | | MDD053 | 344.0 | 345.0 | 1.0 | 0.01 | 45 | | MDD055 | 349.0 | 350.0 | 1.0 | 0.01 | * | | | | | | | | | | MDD055 | 350.0 | 351.0 | 1.0 | -0.01 | * | | | | | | | | | | MDD055 | 351.0 | 352.0 | 1.0 | -0.01 | * | | | | | | | | | | MDD055 | 352.0 | 353.0 | 1.0 | 0.04 | * | | | | | | | | | | MDD055 | 353.0 | 354.0 | 1.0 | -0.01 | * | | | | | | | | | | MDD055 | 354.0 | 355.0 | 1.0 | -0.01 | * | | | | | | | | | | MDD055 | 355.0 | 356.0 | 1.0 | 0.02 | * | | | | | | | | | | MDD055 | 356.0 | | 1.0 | -0.01 | * | | | | | | | | | | MDD055 | 357.0 | | 1.0 | -0.01 | * | RSSZ | | | | | | | | | MDD055 | 358.0 | | | 0.27 | * | | | | | | | | | | MDD055 | 359.0 | | 1.0 | -0.01 | * | | | | | | | | | | MDD055 | 360.0 | | 1.0 | 0.41 | * | | | | | | | | | | MDD055 | 361.0 | | 1.0 | 0.37 | * | | | | | | | | | | MDD055 | 362.0 | | | 0.03 | * | | | | | | | | | | MDD055 | 363.0 | | 1.0 | 0.01 | * | | | | | | | | | | MDD055 | 364.0 | | 1.0 | -0.01 | * | | | | | | | | | | MDD055 | 365.0 | | 1.0 | 0.02 | * | | | | | | | | | | MDD055 | 366.0 | | 1.0 | 0.04 | * | | | | | | | | | | MDD055 | 367.0 | | 1.0 | -0.01 | * | | | | | | | | | | MDD055 | 368.0 | | | 0.07 | * | | | | | | | | | | MDD055 | 369.0 | | 1.0 | 0.09 | * | | | | | | | | | | | * analyses p | enaing | | | | | # Appendix 1 CIT Mineralised Intercepts – Assay results MDD046, MDD049, MDD057 | App | from | to | interval | | As | | , | | D040, IVI | , | interval | | As | | |------------------|----------|----------------|----------|--------------|-----------|------------|---|---------|-----------
--------|----------|----------|--------|-----------| | Hole_No | (m) | (m) | (m) | Au (g/t) | (ppm) | Geol Unit | | Hole_No | from (m) | to (m) | (m) | Au (g/t) | (ppm) | Geol Unit | | MDD046 | | 114.0 | 1.0 | -0.01 | (PP)
* | | | MDD049 | 162.0 | 163.0 | 1.0 | 0.03 | 0 | | | MDD046 | | 115.4 | 1.4 | -0.01 | * | TZ3 | | MDD049 | 163.0 | 163.7 | 0.7 | -0.01 | 10 | TZ3 | | MDD046 | | 116.4 | 1.0 | -0.01 | * | TGF | | MDD049 | 163.7 | 164.3 | 0.6 | 0.02 | 142 | TGF | | MDD046 | | 117.0 | 0.6 | 0.07 | * | 101 | | MDD049 | 164.3 | 165.0 | 0.7 | 1.06 | 12,657 | 101 | | MDD046 | | 118.0 | 1.0 | -0.01 | * | | | MDD049 | 165.0 | 166.0 | 1.0 | 0.36 | 1,774 | | | MDD046 | | 119.0 | 1.0 | -0.01 | * | | | MDD049 | 166.0 | 167.0 | 1.0 | 1.73 | 3,872 | | | MDD046 | | 120.0 | 1.0 | -0.01 | * | TZ4 | | MDD049 | 167.0 | 168.0 | 1.0 | 0.68 | 2,069 | | | MDD046 | | 121.0 | 1.0 | -0.01 | * | | | MDD049 | 168.0 | 169.0 | 1.0 | 0.38 | 228 | | | MDD046 | | 122.0 | 1.0 | -0.01 | * | | | MDD049 | 169.0 | 170.0 | 1.0 | 0.17 | 1,522 | | | MDD046 | | 123.0 | 1.0 | 0.01 | * | | | MDD049 | 170.0 | 171.0 | 1.0 | 0.32 | 857 | | | MDD046 | | 124.0 | 1.0 | 0.30 | * | | | MDD049 | 171.0 | 172.0 | 1.0 | 2.77 | 1,713 | RSSZ | | MDD046 | 124.0 | 125.0 | 1.0 | 0.25 | * | | | MDD049 | 172.0 | 173.0 | 1.0 | 0.12 | 444 | | | MDD046 | 125.0 | 126.0 | 1.0 | -0.01 | * | | | MDD049 | 173.0 | 174.0 | 1.0 | 0.21 | 1,681 | | | MDD046 | 126.0 | 127.0 | 1.0 | -0.01 | * | 1 | | MDD049 | 174.0 | 175.0 | 1.0 | 0.11 | 51 | | | MDD046 | 127.0 | 128.0 | 1.0 | 0.12 | * | | | MDD049 | 175.0 | 176.0 | 1.0 | 0.03 | 25 | | | MDD046 | 128.0 | 129.0 | 1.0 | -0.01 | * | | | MDD049 | 176.0 | 177.0 | 1.0 | 0.16 | 74 | | | MDD046 | 129.0 | 130.0 | 1.0 | -0.01 | * | | | MDD049 | 177.0 | 178.0 | 1.0 | 0.07 | 129 | | | MDD046 | 130.0 | 131.0 | 1.0 | 0.02 | * | DCC7 | | MDD049 | 178.0 | 179.0 | 1.0 | 0.14 | 1,322 | | | MDD046 | 131.0 | 132.0 | 1.0 | 0.06 | * | RSSZ | | MDD049 | 179.0 | 180.0 | 1.0 | 0.07 | 29 | T74 | | MDD046 | 132.0 | 133.0 | 1.0 | 0.05 | * | | | MDD049 | 180.0 | 181.0 | 1.0 | 0.44 | 267 | TZ4 | | MDD046 | 133.0 | 134.0 | 1.0 | 0.09 | * | | | | | | | | | | | MDD046 | 134.0 | 135.0 | 1.0 | 0.04 | * | | | | | | | | | | | MDD046 | 135.0 | 136.0 | 1.0 | -0.01 | * | | | | | | | | | | | MDD046 | 136.0 | 137.0 | 1.0 | 0.02 | * | | | | | | | | | | | MDD046 | 137.0 | 138.0 | 1.0 | -0.01 | * | | | | | | | | | | | MDD046 | 138.0 | 139.0 | 1.0 | 0.27 | * | | | | | | | | | | | * | analyses | pendin | g | | | | | | | | | | | | | Hole_No | from | to | interval | Au (g/t) | As | Geol Unit | | | | | | | | | | | (m) | (m) | (m) | | (ppm) | OCOI OTIIC | | | | | | | | | | MDD057 | 121.0 | | 1.4 | -0.01 | * | TZ3 | | | | | | | | | | MDD057 | 122.4 | | 1.3 | 0.06 | * | TGF | | | | | | | | | | MDD057 | 123.7 | | 1.3 | 1.40 | * | | | | | | | | | | | MDD057 | 125.0 | | 1.0 | 0.45 | * | | | | | | | | | | | MDD057 | 126.0 | | 1.0 | 0.47 | * | | | | | | | | | | | MDD057 | | 128.0 | 1.0 | 1.01 | * | | | | | | | | | | | MDD057 | | 129.0 | 1.0 | 0.71 | * | | | | | | | | | | | MDD057 | 129.0 | | 1.0 | 0.30 | * | | | | | | | | | | | MDD057
MDD057 | | 131.0 | 1.0 | 0.80
0.55 | * | | | | | | | | | | | | | 132.0 | 1.0 | 0.55 | * | | | | | | | | | | | MDD057
MDD057 | | 133.0
134.0 | 1.0 | 0.42 | * | | | | | | | | | | | MDD057 | | 135.0 | 1.0 | 0.36 | * | RSSZ | | | | | | | | | | MDD057 | | 136.0 | 1.0 | 0.14 | * | KSSZ | | | | | | | | | | MDD057 | | 137.0 | 1.0 | 0.86 | * | | | | | | | | | | | MDD057 | | 138.0 | 1.0 | 0.47 | * | | | | | | | | | | | MDD057 | | 139.0 | 1.0 | 1.04 | * | | | | | | | | | | | MDD057 | | 140.0 | 1.0 | 0.11 | * | | | | | | | | | | | MDD057 | | 141.0 | 1.0 | 0.48 | * | | | | | | | | | | | MDD057 | | 142.0 | 1.0 | 0.12 | * | | | | | | | | | | | MDD057 | | 143.0 | 1.0 | 0.19 | * | | | | | | | | | | | MDD057 | | 144.0 | 1.0 | 0.29 | * | | | | | | | | | | | MDD057 | | 145.0 | 1.0 | 0.36 | * | 1 | | | | | | | | | | MDD057 | | 146.0 | 1.0 | 0.27 | * | TZ4 | | | | | | | | | | MDD057 | 146.0 | 147.0 | 1.0 | 0.04 | * | RSSZ | | | | | | | | | | MDD057 | 147.0 | 148.0 | 1.0 | 0.13 | * | TZ4 | | | | | | | | | | MDD057 | | 149.0 | 1.0 | 0.29 | * | 124 | | | | | | | | | | MDD057 | 149.0 | 150.0 | 1.0 | 0.24 | * | | | | | | | | | | | MDD057 | 150.0 | 151.0 | 1.0 | 0.28 | * | | | | | | | | | | | MDD057 | 151.0 | 152.0 | 1.0 | 0.09 | * | RSSZ | | | | | | | | | | MDD057 | 152.0 | 153.0 | 1.0 | 0.25 | * | ROOL | | | | | | | | | | MDD057 | | 154.0 | 1.0 | 0.03 | * | | | | | | | | | | | MDD057 | | 155.0 | 1.0 | 0.08 | * | | | | | | | | | | | * | analyses | pendin | g | | | | | | | | | | | | # **JORC Code, 2012 Edition – Table 1** # **Section 1 Sampling Techniques and Data** | Criteria | JORC Code explanation | Commentary | |---------------------|--|---| | Sampling techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where | Diamond drill (DD) core samples for laboratory assay are typically 1 metre samples of diamond saw cut ½ diameter core. Where distinct mineralisation boundaries are logged, sample lengths are adjusted to the respective geological contact. Samples are crushed at the receiving laboratory to minus 2mm (80% passing) and split to provide 1kg for pulverising to -75um. Pulps are fire assayed using a 50g charge. | | | there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | | | Criteria | JORC Code explanation | Commentary | |-----------------------|--|--| | Drilling techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Current drilling techniques are diamond coring (DD) PQ3 and HQ3 size triple tube. Where PQ3 core size (83mm diameter) is commenced this is maintained throughout the DD hole until drilling conditions dictate reduction in size to HQ3 core (61mm diameter). | | | | Drillholes are oriented to intersect known mineralised features in a nominally perpendicular orientation as much as is practicable. | | | | All drill core is oriented to assist with interpretation of mineralisation and structure using a Trucore orientation tool. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | DD core sample recoveries are recorded by the drillers at the time of drilling by measuring the actual distance of the drill run against the actual core recovered. The measurements are checked by the site geologist. When poor core recoveries are recorded the site
geologist and driller endeavour to immediately rectify any problems to maintain maximum core recoveries. DD core logging to date indicate >97% recoveries. The drilling contract used states for any given run, a level of recovery is required otherwise financial penalties are applied to the drill contractor to ensure sample recovery priority along with production performance. | | Criteria | JORC Code explanation | Commentary | | | | |--|---|--|--|--|--| | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. | All DD holes have been logged for their entire sampled length below upper open hole drilling (nominally 0-320 metres below collar). Data is recorded directly into digital spreadsheets and then uploaded into an Access cloud database with sufficient detail that supports Mineral Resource estimations (MRE). | | | | | | The total length and percentage of the relevant intersections logged. | Logging is mostly qualitative but there are estimations of quartz and sulphide content and quantitative records of geological / structural unit, oxidation state and water table boundaries. | | | | | | | Oriented DD core allows alpha / beta measurements to determine structural element detail (dip / dip direction) to supplement routine recording of lithologies / alteration / mineralisation / structure / oxidation / colour and other features for MRE reporting. | | | | | | | All core is photographed wet and dry before cutting. | | | | | Sub-sampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | Industry standard laboratory sample preparation methods are suitable for the mineralisation style and involve, oven drying, crushing and splitting of samples to 1kg for pulverising to -75um. Pulps are fire assayed using a 50g charge. | | | | | | For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. | 50g charge is considered minimum requirement for the coarse nature of the gold. Larger screen fire assays and 1kg Leachwell determinations are conducted periodically as a QAQC check. | | | | | | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. | Large diameter (83mm) PQ3 core was maintained (where conditions allow) for DD holes to MDD016 and subsequently HQ3 (61mm) for drillholes MDD017 to MDD051. | | | | | | Whether sample sizes are appropriate to the grain size of the material being sampled. | DD core drill samples are sawn in ½ along the length of the core on cut lines marked by geologists' perpendicular to structure / foliation or to bisect vein mineralisation for representative samples whilst preserving the orientation line. Intervals required for QAQC checks are ¼ core from ½ sections of core to be sent for assay. | | | | | | | QAQC procedures include field replicates, standards, and blanks at a frequency of ~4% and also cross-lab assay checks at an umpire laboratory. | | | | | Criteria | JORC Code explanation | Commentary | |--|---|--| | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | DD core for gold assays undergo sample preparation by SGS laboratory Westport and 50g fire assay with an AAS finish (SGS method FAA505, DDL 0.01ppm Au) by SGS laboratory Waihi. Portable XRF (pXRF) instrumentation is used onsite (Olympus Innov-X Delta Professional Series model DPO-4000 equipped with a 4 W 40kV X-Ray tube) primarily to identify arsenical samples (arsenic correlates well with gold grade in these orogenic deposits). The pXRF analyses a 31-element suite (Ag, As, Bi, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Mn, Mo, Nb, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Th, Ti, V, W, Y, Zn, Zr) utilising 3 beam Soil mode, each beam set for 30 secs (90 secs total). pXRF QAQC checks involve 2x daily calibration and QAQC analyses of SiO2 blank and NIST standards (NIST 2710a & NIST 2711a). For laboratory QAQC, samples (3*certified standards, blanks and field replicates) are inserted into laboratory batches at a frequency of ~4% and ~5% respectively. Once 1,000 samples have been assayed a ~6% selection of retained lab pulps across a range of grades are sent for reassay and to an umpire laboratory for cross-lab check assays. | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Significant gold assays and pXRF arsenic analyses are checked by alternative senior company personnel. Original lab assays are initially reported and where replicate assays and other QAQC work require reassay or screen fire assays, the results from the larger samples are adopted. To date results are accurate and fit well with the mineralisation model. Some DD core holes have been sited adjacent to previous RC drillholes to provide twinned data. pXRF multi-element analyses are directly downloaded from the pXRF analyser as csv electronic files. These and laboratory assay csv files are imported into the database, appended and merged with previous data. The database master is stored off-site and periodically updated and verified by an independent qualified person. There have been no adjustments to analytical data presented. | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Location of data points | Accuracy and quality of surveys used to locate drill holes
(collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | DD drillhole collar locations are accurate (+/- 50mm) xyz coordinates when captured by a licensed surveyor using RTK-GPS equipment. All drillholes to MDD062 have been surveyed by RTK-GPS equipment with subsequent and planned collar locations based on hand-held GPS coordinates with xy accuracy of +/-3 metres and RL accuracy to 0.5 metres from detailed LiDAR DTM. All drill holes reference the NZTM map projection and collar RLs the NZVD2016 vertical datum. DD down hole surveys are recorded at 12m intervals using a Reflex multi-shot camera. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Drillhole collar spacing is variable and considered appropriate for determination of geological and grade continuity during this phase of the drilling programme. Site locations in steep terrain are dictated by best access allowed by contour tracks with gentle gradients to allow safe working drill pad excavations. No compositing of samples is being undertaken for analysis. Sampling and assaying are in one metre intervals or truncated to logged features. | | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | The majority of drillholes in this campaign are inclined (-60° or -75°) to 270°T to intercept mineralisation at a reasonable angle and facilitate core orientation measurements. Drillholes MDD044, MDD047, MDD053 and MDD055 at RAS were, oriented north (-60° dip) due to topographical constraints to facilitate testing of northern mineralisation extents. True mineralisation widths in these two drillholes will be less than downhole intervals. As the deposits are tabular and lie at low angles, there is not anticipated to be any introduced bias for resource estimates. | | Criteria | JORC Code explanation | Commentary | |-------------------|---|--| | Sample security | The measures taken to ensure sample security. | Company personnel manage the chain of custody from sampling site to laboratory. DD drill core samples are transported daily from DD rig by the drilling contractor in numbered core boxes to the Company secure storage facility for logging and sample preparation. After core cutting, the core for assay is bagged, securely tied, and weighed before being placed in polyweave bags which are securely tied. Retained core is stored on racks in secure locked containers. Polyweave bags with the calico bagged samples for assay are placed in steel cage pallets, sealed with a wire-tied tarpaulin cover, photographed, and transported to local freight distributer for delivery to the laboratory. On arrival at the laboratory photographs taken of the consignment are checked against despatch condition to ensure no tampering has occurred. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | An independent competent Person (CP) conducted a site audit in January 2021 of all sampling techniques and data management. No major issues were identified, and recommendations have been followed. Further CP site audits will be undertaken in 2022. | # **Section 2 Reporting of Exploration Results** | Criteria | JORC Code explanation | Commentary | |--|--|--| | Mineral tenement and
land tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | Exploration is being currently conducted within Mineral Exploration Permit (MEP) 60311 (252km²) registered to Matakanui Gold Ltd (MGL) issued on 13 th April 2018 for 5 years with renewal date on 12 th April 2023. MGL has the gold rights for this tenement. There are no material issues with third parties. | | | • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | MGL applied for a Minerals Prospecting Permit (MPPA) in March 2022, and this is in process with the Government Ministerial Authority (NZPAM) for issue under MPP 60882. | | | | The tenure of the Permits is secure and there are no known impediments to obtaining a licence to operate. | | | | The Project is subject to a 1.5% Net Smelter Royalty (NSR) on all production from MEP 60311 (successor permits) payable to an incorporated, private company (Rise and Shine Holdings Limited) which is owned by the prior shareholders of MGL (NSRW Agreement) before acquisition of 100% of MGL shares by Santana Minerals Limited. | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Early exploration in the late 1800's and early 1900's included small pits, adits and cross-cuts and alluvial mining. | | | | Exploration has included soil and rock chip sampling by numerous companies since 1983 with drilling starting in 1986. Exploration in the 1990's commenced with a search for Macraes style gold deposits along the RSSZ. Drilling included 13 RC holes by Homestake NZ Exploration Ltd in 1986, 20 RC holes by BHP Gold Mines NZ Ltd in 1988 (10 of these holes were in the Bendigo Reefs area which is not part of the MRE area), 5 RC holes by Macraes Mining Company Ltd in 1991, 22 shallow (probably blasthole) holes by Aurum Reef Resources (NZ) Ltd in 1996, 30 RC holes by CanAlaska Ventures Ltd from 2005-2007, 35 RC holes by MGL in 2018 and a further 18 RC holes by MGL in 2019. | | Criteria | JORC Code explanation | Commentary | |------------------------|---
---| | Geology | Deposit type, geological setting and style of mineralisation. | The RSSZ is a low-angle late-metamorphic shear-zone, presently known to be up to 120m thick. It is sub-parallel to the metamorphic foliation and dips gently to the north- east. It occurs within psammitic, pelitic and meta-volcanic rocks. Gold mineralisation is concentrated in multiple deposits along the RSSZ. In the Project area there are 4 deposits with Mineral Resource Estimates (MRE) – Come-in-Time (CIT), Rise and Shine (RAS), Shreks (SHR) and Shreks-East (SRE). The gold and associated pyrite/arsenopyrite mineralisation at all deposits occur along micro-shears, and in brecciated / laminar quartz veinlets within the highly- sheared schist. There are several controls on mineralisation with apparent NNW, N and NNE trending structures all influencing gold distribution. Shear dominated mineralisation within the top 20-40m of the shear zone is in a unit termed the "Hanging Wall Shear" (HWS) which lies immediately below the Thomsons Gorge Fault (TGF). The TGF is a regional low-angle fault that separates upper barren chlorite (TZ3) schist from underlying mineralised biotite (TZ4) schists. Stacked stockwork vein swarms (SVS) occur deeper in the RSSZ. Unlike Macraes, the gold mineralisation in the oxide, transition and fresh zones is characterised by coarse free gold and silica- poor but extensive ankerite alteration. | | Drill hole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Refer to the body of text. No material information has been excluded. | | Criteria | JORC Code explanation | Commentary | |--|---|---| | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Significant gold intercepts are reported using 0.25g/t Au and 0.50g/t Au lower grade cut-offs with 4m of internal dilution included. Broad zonation is: 0.10g/t Au cut-off defines the wider low-grade halo of mineralisation, 0.25g/t Au cut-off represents possible economic mineralisation, with 0.50g/t Au defining high-grade axes / envelopes. Metal unit (MU) distribution, where shown on maps and in tables are calculated from total drill hole Au * associated drill hole interval metres. pXRF analytical results reported for laboratory pulp returns are considered accurate for the suite of elements analysed. Where gold assays are pending, minimum 1,000 ppm composited arsenic values provide a preliminary representation of potential mineralised zones and include 4m <1,000 ppm internal dilution. | | Relationship between
mineralisation widths and
intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | All intercepts quoted are downhole widths. Intercepts are associated with a major 20-120m thick low-angle mineralised shear that is largely perpendicular to the drillhole traces. Aggregate widths of mineralisation reported are drillhole intervals >0.50g/t Au occurring in apparent low angle stacked zones. There are steeply dipping narrow (1-5m) structures deeper in the footwall and the appropriateness of the current drillhole orientation will become evident and modified as additional drill results dictate. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of
intercepts should be included for any significant discovery being
reported These should include, but not be limited to a plan view
of drill hole collar locations and appropriate sectional views. | Refer to figures in the body of the text. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | All significant intercepts have been reported. | | Criteria | JORC Code explanation | Commentary | |------------------------------------|---|---| | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main
geological interpretations and future drilling areas, provided this information is not commercially sensitive. | DD drilling down dip / down plunge to the north and east of existing resources is continuing at RAS on ~120 metre step-out east-west drill sections. Further work is following at RAS, CIT and SHR deposits as results dictate, which may include infill RC, further DD core drilling, and metallurgical test-work. A 2021 MRE update (to JORC Code 2012) completed in September 2021 increased Inferred Resources 155% to 643Koz from the 252Koz 2019 MRE (uncut & 0.25g/t lower cut-off). A 2022 MRE upgrade of RAS was completed in early July 2022 which increased the Global Inferred resources to 2.1Moz (top-cut & 0.25g/t lower cut-off). Potential extensions to mineralisation and resources currently being drill tested are shown in figures in the body of the text. |