ASX Announcement 25th July 2022 # Significant Shallow PGEs above Rosie Ni-Cu-PGE Resource ### **HIGHLIGHTS - Rosie Project (100% DKM)** Results have been received for RC holes drilled within the oxide zone above the Rosie Ni-Cu-PGE resource and include: - o 17m @ 1.02g/t Pt + Pd, 0.18% Ni & 0.27% Cu from 15m - o 7m @ 2.13g/t Pt + Pd, 0.82% Ni & 0.29% Cu from 68m - o 10m @ 1.29g/t Pt + Pd, 0.68% Ni & 0.30% Cu from 45m - o 9m @ 1.12g/t Pt + Pd, 0.67% Ni & 0.27% Cu from 82m - o 4m @ 2.95g/t Pt + Pd, 1.25% Ni & 0.99% Cu from 72m All drillholes lie outside of the resource Individual samples up to 6.38g/t Pt + Pd Holes to be **submitted for remaining suite of PGE's** (Rhodium, Ruthenium, Iridium, Osmium). Mineralisation starts 12m from surface Strike length of mineralisation greater than 350m at +2g/t Drilling will continue in the area with the intention of moving towards modelling a Ni-Cu-PGE resource Stuart Fogarty, DKM Managing Director said: "Drilling into the transitional and oxide zone above Rosie continues to be a success - with every completed hole over a 900m length intersecting mineralisation. Within that 900m strike there is a higher-grade 350m long zone with greater than 2g/t of platinum and palladium starting at less than 12m from the surface. These results reinforce the continuity of PGE grades above the fresh sulphide zone at Rosie, which is very encouraging for future development options of the project. I am confident Duketon remains well funded with circa \$18 million cash to pursue this and all other opportunities in its portfolio." Duketon Mining Ltd (**ASX: DKM**, "**Duketon**" or "the **Company**") is pleased to announce assay results have been received for RC holes drilled within the oxide zone above the Rosie Ni-Cu-PGE Deposit. Four drill traverses were completed across the top of the Rosie Deposit to determine the grade and distribution of PGE's within the oxide zone. The drilling highlights a high-grade core of Platinum and Palladium above the centre of Rosie, 350m wide (see Figure 1 and 2). This is situated within a broader 900m wide zone of greater than 0.5g/t Platinum and Palladium. Nickel and copper mineralisation occurs in the same area and is typified by partial to complete oxidation of the sulphides. Significantly, mineralisation occurs only 12m from surface. Drill holes will be submitted for the full suite of PGE's (Rhodium, Ruthenium, Iridium, Osmium). Duketon will continue to drill this zone with the intention of modelling a resource and then subsequently assessing it for mining and processing options. This could have positive implications for any development options at the Rosie Ni-Cu-PGE Resource. - 17m @ 1.02g/t Pt + Pd, 0.18% Ni & 0.27% Cu from 15m - o inc. 6m @ 1.42g/t Pt + Pd, 0.34% Ni & 0.45% Cu - 7m @ 2.13g/t Pt + Pd, 0.82% Ni & 0.29% Cu from 68m - 10m @ 1.29g/t Pt + Pd, 0.68% Ni & 0.30% Cu from 45m - o inc. 6m @ 1.79g/t Pt + Pd, 0.74% Ni & 0.36% Cu - 9m @ 1.12g/t Pt + Pd, 0.67% Ni & 0.27% Cu from 82m - 4m @ 2.95g/t Pt + Pd, 1.25% Ni & 0.99% Cu from 72m Figure 1: Long Section of Rosie Figure 2: Oblique Cross Section. **Table 1: Significant Intercept Table of PGEs** (Significant intercepts are 0.5m >500 ppb Pt + Pd, maximum internal dilution of 2 metres, intersections are downhole widths) | Hole ID | Depth
From
(m) | Depth
To (m) | Comments | |----------|----------------------|-----------------|--| | DKRC0206 | 75 | 78 | 3m @ 0.83g/t Pt + Pd, 0.79% Ni & 0.13% Cu | | inc | 76 | 77 | 1m @ 1.02g/t Pt + Pd, 0.91% Ni & 0.13% Cu | | and | 81 | 85 | 4m @ 0.76g/t Pt + Pd, 0.58% Ni & 0.09% Cu | | DKRC0207 | 57 | 67 | 10m @ 0.68g/t Pt + Pd, 0.43% Ni & 0.16% Cu | | DKRC0208 | 37 | 47 | 10m @ 0.55g/t Pt + Pd, 0.35% Ni & 0.18% Cu | | DKRC0210 | 82 | 91 | 9m @ 1.12g/t Pt + Pd, 0.67% Ni & 0.27% Cu | | inc | 85 | 91 | 6m @ 1.35g/t Pt + Pd, 0.83% Ni & 0.35% Cu | | DKRC0211 | 67 | 75 | 8m @ 1.92g/t Pt + Pd, 0.77% Ni & 0.27% Cu | | inc | 68 | 75 | 7m @ 2.13g/t Pt + Pd, 0.82% Ni & 0.29% Cu | | DKRC0212 | 45 | 55 | 10m @ 1.29g/t Pt + Pd, 0.68% Ni & 0.30% Cu | | inc | 48 | 54 | 6m @ 1.79g/t Pt + Pd, 0.74% Ni & 0.36% Cu | | DKRC0213 | 15 | 32 | 17m @ 1.02g/t Pt + Pd, 0.18% Ni & 0.27% Cu | | inc | 21 | 27 | 6m @ 1.42g/t Pt + Pd, 0.34% Ni & 0.45% Cu | | DKRC0215 | 72 | 76 | 4m @ 2.95g/t Pt + Pd, 1.25% Ni & 0.99% Cu | | inc | 72 | 75 | 3m @ 3.75g/t Pt + Pd, 1.22% Ni & 1.25% Cu | | DKRC0216 | 34 | 40 | 6m @ 1.87g/t Pt + Pd, 0.44% Ni & 0.32% Cu | | inc | 34 | 38 | 4m @ 2.47g/t Pt + Pd, 0.20% Ni & 0.38% Cu | | DKRC0218 | 74 | 77 | 3m @ 1.96g/t Pt + Pd, 1.23% Ni & 0.71% Cu | | DKRC0219 | 39 | 46 | 7m @ 0.92g/t Pt + Pd, 0.69% Ni & 0.25% Cu | | inc | 39 | 44 | 5m @ 1.03g/t Pt + Pd, 0.80% Ni & 0.26% Cu | | inc | 45 | 46 | 1m @ 1.09g/t Pt + Pd, 0.33% Ni & 0.25% Cu | | DKRC0222 | 109 | 111 | 2m @ 1.84g/t Pt + Pd, 0.57% Ni & 0.22% Cu | | DKRC0223 | 79 | 83 | 4m @ 1.03g/t Pt + Pd, 0.69% Ni & 0.47% Cu | | inc | 80 | 82 | 2m @ 1.38g/t Pt + Pd, 0.82% Ni & 0.69% Cu | | DKRC0224 | 42 | 44 | 2m @ 0.93g/t Pt + Pd, 0.64% Ni & 0.34% Cu | | and | 53 | 58 | 5m @ 0.85g/t Pt + Pd, 0.48% Ni & 0.36% Cu | | inc | 56 | 58 | 2m @ 1.15g/t Pt + Pd, 0.65% Ni & 0.33% Cu | | DKRC0225 | 17 | 23 | 6m @ 0.88g/t Pt + Pd, 0.13% Ni & 0.20% Cu | | inc | 17 | 20 | 3m @ 1.15g/t Pt + Pd, 0.12% Ni & 0.27% Cu | Figure 3: Plan of DKM Tenements showing Nickel Resources and Prospects Table 2: Drillhole collar details | Hole ID | Easting
(MGA 94
Z51) | Northing
(MGA 94
Z51) | Nominal
RL (m) | Dip (°) | Azimuth
(mag °) | Total
Depth
(m) | |----------|----------------------------|-----------------------------|-------------------|---------|---------------------|-----------------------| | DKRC0206 | 402700 | 6943936 | 541 | -60 | 45 | 95 | | DKRC0207 | 402697 | 6943951 | 541 | -60 | 45 | 71 | | DKRC0208 | 402702 | 6943964 | 541 | -60 | 45 | 53 | | DKRC0209 | 402698 | 6943981 | 540 | -60 | 45 | 47 | | DKRC0210 | 402505 | 6943994 | 541 | -60 | 45 | 95 | | DKRC0211 | 402516 | 6944004 | 541 | -60 | 45 | 77 | | DKRC0212 | 402525 | 6944015 | 540 | -60 | 45 | 59 | | DKRC0213 | 402533 | 6944026 | 540 | -60 | 45 | 50 | | DKRC0214 | 402389 | 6944074 | 541 | -60 | 45 | 82 | | DKRC0215 | 402401 | 6944084 | 540 | -60 | 45 | 78 | | DKRC0216 | 402413 | 6944096 | 540 | -60 | 45 | 65 | | DKRC0217 | 402419 | 6944105 | 540 | -60 | 45 | 55 | | DKRC0218 | 402308 | 6944163 | 540 | -60 | 45 | 83 | | DKRC0219 | 402318 | 6944178 | 540 | -60 | 45 | 59 | | DKRC0220 | 402328 | 6944186 | 540 | -60 | 45 | 47 | | DKRC0221 | 402338 | 6944199 | 540 | -60 | 45 | 47 | | DKRC0222 | 402228 | 6944254 | 540 | -60 | 45 | 113 | | DKRC0223 | 402237 | 6944265 | 540 | -60 | 45 | 89 | | DKRC0224 | 402241 | 6944268 | 540 | -60 | 45 | 70 | | DKRC0225 | 402248 | 6944278 | 540 | -60 | 45 | 50 | Authorised for release by: Stuart Fogarty Duketon Mining Limited - Managing Director +61 8 6315 1490 ### **Competent Person Statement:** The information in this report that relates to exploration results is based on information compiled by Ms Kirsty Culver, Member of the Australian Institute of Geoscientists (AIG) and an employee of Duketon Mining Limited. Ms Culver has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being undertaken to qualify as a competent person as defined in the JORC Code 2012. Ms Culver consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. This announcement includes information extracted from the Company's previous ASX announcements, which are available to view on the Company's website (www.duketonmining.com.au) as follows: - Rosie Resource Increases in Tonnes, Grade and Metal ASX announcement dated 10 March 2022. - Rosie Scoping Study ASX announcement dated 28 April 2021. In the case of the ASX announcement dated 4th March (referring to the Rosie Resource), the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the announcement continue to apply and have not materially changed. In the case of the Rosie Scoping Study, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions underpinning the production target, or the financial information derived from the production target in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context that the Competent Person's findings are represented have not been materially modified from the original market announcement. JORC Table 1 # JORC Code, 2012 Edition – Table 1 report – Duketon Project ## **Section 1 Sampling Techniques and Data - Rosie RC Drilling** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |------------------------|---|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | RC drill chips were collected as 1 metre samples from the rig cyclone and cone splitter to provide a 1 metre sample. Composite samples were collected using a spear. Sample size is approximately 2kg. Certified samples and blanks and field duplicates are routinely added to every batch of samples. Mineralisation determined qualitatively by geological logging and quantitatively through assaying. | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air
blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple
or standard tube, depth of diamond tails, face-sampling bit or other
type, whether core is oriented and if so, by what method, etc). | RC drilling using a face sampling hammer with a nominal diameter of
140mm. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries
and results assessed. | Recoveries qualitatively noted at the time of drilling and recorded in
the DKM database. | **Duketon Mining Limited** ACN 159 084 107 Level 2 25 Richardson Street West Perth WA 6005 T: +61 8 6315 1490 | Criteria | JORC Code explanation | Commentary | |---|--|--| | | Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | The cyclone of the drill rig is cleaned at the end of each rod to ensure sample is not "hung-up" and samples are as clean as possible with as little cross contamination as possible. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | All samples were logged to a level of detail to support future use in a mineral resource calculation should it be required. Qualitative: Lithology, alteration, mineralisation. Quantitative: Vein percentage, sulphide precentage. All holes for their entire length are logged. | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | RC drill chips were collected as 1 metre samples from the rig cyclone and cone splitter to provide a 1 metre sample. Composite samples were collected using a spear. Sample condition with respect to moisture content is noted on the geological log. The entire composite sample (approx. 2kg) has been dried, pulverised to 85% passing 75µm. Field duplicates are collected at a rate of 1 in 50 for RC. Pulp duplicates have been taken at the pulverising stage and selective repeats conducted at the laboratories discretion. Sample sizes are considered appropriate for the grainsize of the material sampled. | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their | Samples are analysed using a Fire Assay 40g charge with MS finish for Au, Pt & Pd and a multi-acid digest with ICP-AES finish for 17 elements. This technique is industry standard for nickel and considered appropriate. Samples are analysed for the following elements: Al, As, Au, Ca, Co, | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Cr, Cu, Fe, K, Mg, Na, Ni, Pd, Pt, S, Sc, Ti, V, Zn, Zr Selected samples are also analysed using a Fire Assay 25g charge with MS finish for Au, Pt, Pd, Rh, Ru, Os, Ir to a 1ppb detection limit. Certified Reference Material (Standards) and blanks were submitted with batches. | | Verification
of sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | All data is checked internally for correctness by senior DKM geological and corporate staff. All data is collected via Ocris software and uploaded into the DKM Datashed Database following validation. No adjustments are made to assay data. No twinned holes have been drilled to date. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | All location points are collected using a handheld GPS in MGA 94 – Zone 51 Downhole surveying (azimuth and dip of the drillhole) of diamond drillholes was measured by the drilling contractors using an Axis Champ Gyro tool. A topographic surface has been created from airborne geophysical data. Drillholes are corrected to this surface. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Current drillhole spacing ranges from 30m x 30m up to 100m x 100m in parts. Holes drilled in this program aim to close the spacing down to approximately 50m x 50m in the Upper North area. Sample compositing has been applied. | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | The orientation of the geology and mineralization at Rosie is steeply dipping to the south to south-west and striking NNW to W. | | Criteria | JORC Code explanation | Commentary | |--------------------|---|--| | Sample
security | The measures taken to ensure sample security. | Chain of custody is managed by company representatives and is
considered appropriate. All samples are bagged in a tied numbered
calico bag, grouped into larger polyweave bags and cable tied.
Polyweave bags are placed into larger bulky bags with a sample
submission sheet and tied shut. Consignment note and delivery
address details are written on the side of the bag and delivered to Toll
in Laverton. The bags are delivered directly to Bureau Veritas in
Canning Vale, WA who are NATA accredited for compliance with
ISO/IEC17025:2005. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No external audits or reviews have been conducted apart from
internal company review. | ## **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|--|---| | Mineral
tenement
and land
tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The tenement (M38/1252) is 100% owned by Duketon Mining Limited
and is in good standing and there are no known impediments to
obtaining a licence to operate in the area. | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Previous drilling at The Bulge Complex was completed by
Independence Group (IGO) and South Boulder Mines Ltd. This work
has been checked for quality as far as possible and formed the basis
of the follow-up conducted as part of the drilling programme | | Criteria | JORC Code explanation | Commentary | |--|---|--| | Geology | Deposit type, geological setting and style of mineralisation. | The Rosie Nickel Deposit is a komatiite-hosted nickel sulphide deposit. The mineralisation is characterised by accumulations of massive, matrix, breccia and disseminated sulphides at the basal contact overlying a basalt footwall. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. | Significant intercepts are provided in a table within the text of this announcement. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | No top-cuts have been applied when reporting results. First assay from the interval in question is reported (i.e. Ni1). Aggregate sample assays calculated using a length weighted average. Significant grade intervals based on intercepts > 500ppb Pt + Pd. No metal equivalent values have been used for reporting of results. | | Relationship
between
mineralisatio
n widths and
intercept
lengths | If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | Downhole length is reported for the drillholes. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of | Refer to figures in document. | | Criteria | JORC Code explanation | Commentary | |---|--|--| | | intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | | | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not
practicable, representative reporting of both low and high grades
and/or widths should be practiced to avoid misleading reporting of
Exploration Results. | All drillhole locations are reported and a table of significant intervals is
provided in the release text. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be report including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size an method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling area provided this information is not commercially sensitive. | A discussion of further work underway is contained within the body to
this ASX release. |