

ASX Announcement

25 July 2022

EXTENSIVE GOLD MINERALISATION CONFIRMED FROM REGIONAL PROGRAMS AT DIDIEVI PROJECT

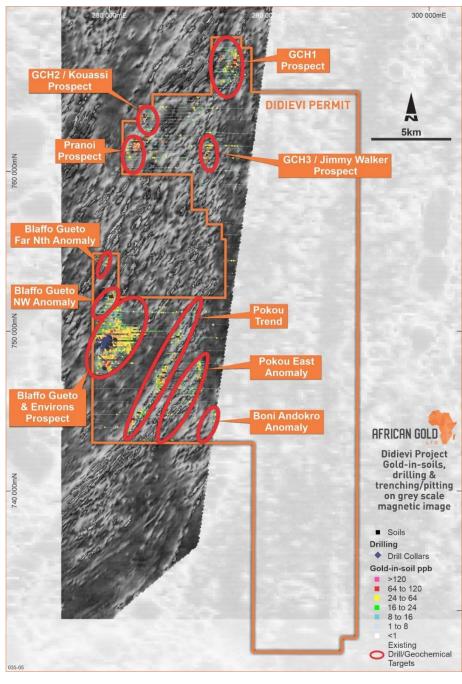
HIGHLIGHTS

- Trenching at Kouassi Prospect (formerly GCH2), 2 kms north of Pranoi (previous limited drilling returned 12m at 4.5g/t gold ASX: 7 Dec 2021), and 12 kms north of Blaffo Gueto, has extended gold mineralization with best result of 40m at 1.72g/t gold including 20m at 3.13g/t gold
- A single hole short diamond drill hole at Kouassi Prospect (DDD045) intersected altered and mineralised porphyry, but did not intersect the mineralised contact indicated in the trenching, and returned results of
 - o 7m at 1.42g/t gold;
 - **11m at 1.85g/t gold; and**
 - o 12m at 0.28g/t gold
- Trenching at Yakpabo Prospect (formerly GCH1), 19km north north-east of Blaffo Gueto Main, returned numerous anomalous zones over 67m including 16m at 3.07g/t gold
- Trenching and pitting on 5 of the 6 transects over 6 km of the 9 km long Pokou gold-in-soil anomaly, 5 km east of Blaffo Gueto, returned broad anomalous intercepts including 39m at 0.24g/t gold within a sheared mafic intrusive
- Soil sampling and trenching programs have extended and further defined regional prospects and anomalies with targets identified for drilling
- Reverse circulation (RC) drill program planned for post wet season

African Gold Ltd (African Gold or the Company) (ASX: A1G) is pleased to provide results from the recent trenching, soil sampling and diamond drilling programs as it expands its regional exploration program at the Didievi Gold Project in Central Cote d'Ivoire.

African Gold's CEO, Glen Edwards, commented: "The trenching/pitting program has been a great success. As reported previously, trenching of gold-in-soil anomaly Kouassi in 2021 discovered a new high priority prospect. The recent program has now confirmed and extended the mineralised zone westward and a single diamond hole drilled under the trench has intersected a deformed and altered porphyry with sheared metasediments including multiple broad zones of mineralisation.

"At Pokou, results over a 6km strike of the 9km long gold-in-soil anomaly are considered very positive suggesting broad anomalous intervals associated with shearing, veining and alteration within and on the contacts of a mafic intrusive.


"Our regional exploration program has successfully confirmed gold mineralisation and increased our understanding of the northern section of the Didievi Project with detailed mapping, infill and extensional regional soil geochemical sampling

programs and trenching/pitting programs designed to test priority gold-in-soil anomalies. We have also received the results from our two exploratory diamond drill holes, one into the newly discovered Kouassi Prospect and one into the Pranoi Prospect.

"The soil program has confirmed and further defined prospects at Blaffo Gueto Far North, Blaffo Gueto North, Blaffo Gueto North-West, Bon Andokro and at Pokou.

"We look forward to the end of the wet season when we can get back out into the field with an RC drill program that has been designed using the data and insights from these recent programs."

Figure 1: Didievi Project showing drill collars on thematically mapped gold-in-soils on analytical signal magnetic image with major anomalies and prospects.

DIDIEVI GOLD PROJECT (OUME – FETEKRO GREENSTONE BELT), CÔTE D'IVOIRE

The Didievi Gold Project (391km²) is located within the underexplored and emerging Oumé-Fetekro Birimian greenstone belt. The **belt hosts ~6.5 MOz of gold discovered to date**, including Allied Gold's Bonikro/Hire (+3Moz)¹ and Endeavor's Agbaou (+1Moz)² gold mines to the south and the recent +2.5Moz Fetekro³ discovery announced by Endeavour Mining to the north.

2022 TRENCHING/PITTING PROGRAM

The Company has recently completed a program of 16 trenches and pitting over 974m on priority regional targets at Didievi designed to provide preliminary evaluation of new and historical gold-in-soil anomalies. Geology and assays from 5 of the 8 prospects tested are very encouraging and have exceeded expectations and presented new drill targets.

Kouassi Prospect (formerly GCH2)

The 2021 trenching program identified a significant new discovery (see ASX: 7 Dec 2021) at the Kouassi Prospect, located ~14 km to the north of Blaffo Gueto and ~2km north of Pranoi Prospects respectively. This initial trench demonstrated the potential of the gold in soil anomaly and a multitude of similar untested anomalies returning a significant result of 20.0m at 1.02g/t gold including 9.0m at 2.06g/t gold.

The 2022 program extended the trenching westward and intersected more mineralised porphyry, which is coincident with a large 300+m strike length airborne magnetic high. The new mineralised intercept has been extended to 40.0m at 1.72g/t gold including 20.0m at 3.13g/t gold. A second short trench located ~200m to the north intersected altered veined porphyry but only anomalous assay results, but needs to be extended to the east to cover the same feature of interest.

Based on these trenching results, a **single short diamond hole** was drilled to evaluate the orientation and structure of this mineralisation. Located some 60m south-west of the mineralised portion of the first trench, the hole intersected a mineralised porphyry within sheared metasediment. The hole ended in the porphyry at 149.7m but, unfortunately, **did not test the western contact from which the trench is known to be mineralised**. The hole returned:

- o 7.0m @ 1.42g/t gold from 89m;
- o 12m @ 0.28g/t gold from 102m; and
- **11m @ 1.85g/t gold from 128m.**

Figure 2: Kouassi Prospect - TR01/22-TR04 trench excavated to provide preliminary assessment of the gold-in-soil anomaly returned very encouraging results of 40m at 1.72g/t gold including 20m at 3.17g/t gold. DDD045 returned 7m at 1.42g/t gold; 12m at 0.28g/t gold and 11m at 1.85 gold.

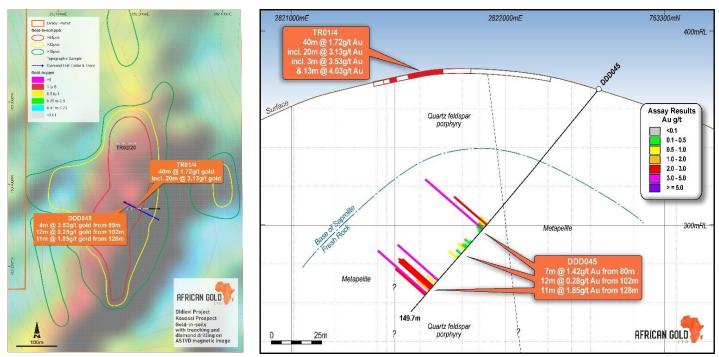
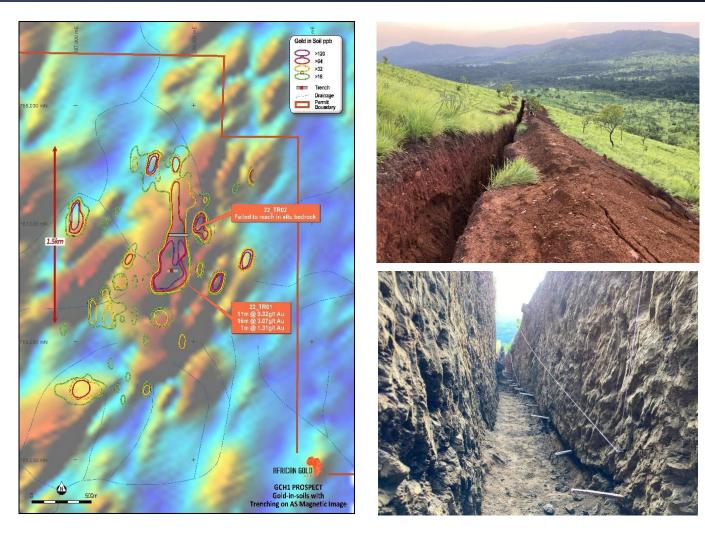


Figure 3: Kouassi Prospect plan and section showing location of gold-in-soil anomaly, collars and significant results on image of the Analytical Signal (AS) of the airborne magnetics


Yakpabo Prospect (formerly GCH1)

The Yakpabo Prospect is located approximately 19km north north-east of Blaffo Gueto Main and 8km north-east of Pranoi Prospects. In 2021, a short trench was excavated at the anomaly and, while returning interesting geology and a few anomalous intercepts, did not resolve the source of the gold-in-soil anomaly.

In the 2022 program, a series of east-west pits 10m apart (22-TR02) bottomed out in ferruginous lateritic gravels which were anomalous intermittently over 75m. A second series of east-west pits (22-TR01), also 10m apart and located 300m to the south of 22-TR02, returned a number of very interesting results within a sheared mafic intrusive intermittently over 58m. These included numerous >1g/t gold samples and results up to 6.26g/t gold. These pits were subsequently joined and have returned a number of anomalous zones over 67m; including 11m at 0.32g/t gold, 16m at 3.07g/t gold and 1m at 1.31g/t gold.

Figure 4: Yakpabo Prospect plan showing location of gold-in-soil anomaly, trench 22-TR01 and significant results on AS magnetic image. Photos of trenches 22-TR01 and 22-TR02.

Pokou Anomalous Trend

Historical and recent soil sampling has defined an approximate **9km long coherent, robust north north-east striking goldin-soil anomaly** located 4km east of Blaffo Gueto Main. Originally thought to be three discrete anomalies, infill sampling has suggested continuity with a maximum of **1,680ppb gold in soils** (equivalent to 1.7g/t gold). The anomaly is coincident with a prominent curvilinear magnetic feature.

A series of 5 transects were excavated over a strike extent of 6km of the 9km anomaly to provide a preliminary assessment of the Pokou trend which has returned some very interesting results:

- 22-TR08 returned three anomalous zones over 55m including 11m at 0.29g/t gold and 4m at 0.7g/t gold;
- 22-TR09 returned anomalous zones over 51m including 39m at 0.24g/t gold;
- 22-TR10 returned anomalous zones over 51m including 11m at 0.26g/t gold;

- 22-TR11 returned only sporadic anomalism; and
- 22-TR12 returned anomalous zones over 72m including 4m at 0.29g/t gold.

Note: these results come from a series of trenches and pit on transects and "over" does not mean consecutive or continuous.

Jimmy Walker Anomaly

The Jimmy Walker Anomaly was initially defined by soils and two trenches and then drilled with 7 RC holes by Equigold Resources who recorded best intercepts of 2m at 1.51g/t gold from 44m, 1m at 0.58g/t gold from 54m and 1m at 6.7g/t gold from 6m. The anomaly was trenched with a series of 4 additional transects (trenches/pits) in an attempt to define orientation and controls to mineralised quartz veins. While returning a number of anomalous intervals, more work is required to understand the system.

Blaffo Gueto NW Prospect

The Blaffo Gueto NW Prospect lies approximately 1.2km north-west of Blaffo Gueto Main Prospect. A single transect was excavated across a chert ridge and, while returning a number of anomalous results, more work is required to locate the source of the gold-in-soil anomaly.

Blaffo Gueto North Anomaly

Located 2.5km north of the Blaffo Gueto Main Prospect, Blaffo Gueto North is characterised by strong gold-in-soil and arsenic-in-soil anomalism. Two trenches were excavated with trench 22-TR014 returning two anomalous zones with a best result of 5m at 0.37g/t gold. The second trench located 100m to the north failed to return any significant intercepts.

2022 DIAMOND DRILLING PROGRAM

Pranoi Prospect

Pranoi is located approximately 12km to the north of Blaffo Gueto Main. Previous wide spaced AC and RC drilling of a robust coherent **1.2km x 0.8km gold-in-soil anomaly** with extensive artisanal workings returned significant intercepts over a strike of length of over 800m with best historical results including:

- 12.0m at 5.60g/t gold from 24.0m
- 32.0m at 2.14g/t gold from 68.0m
- 1.0m at 35.38g/t gold from 56.0m
- 8.0m at 4.35g/t gold from surface

In 2021, a single 100m diamond hole was drilled by African Gold to obtain thickness and grade continuity and structural data up dip which returned a number of significant intercepts including 3.0m at 3.01g/t gold from 5.0m, 3.0m at 1.35g/t gold from 27.0m and 12.0m at 4.48g/t gold from 38.0m.*

*Note: There has been some core loss between 40.6-41m and 44.45m.

In 2022, a **single diamond hole (DDD046)** located 60m west of hole DDD031 (see Figure 5) was drilled to test down dip potential at this location. The hole intersected a very deeply weathered sequence of strongly foliated meta-sediments intruded by a sheared quartz feldspar porphyry (56.7m - 115m) and a felsic intrusive (135m - 139m). The best result from this hole was 11.0m at 0.91g/t gold from 48.0m including **3.0m at 2.67g/t gold** from 56.0m.

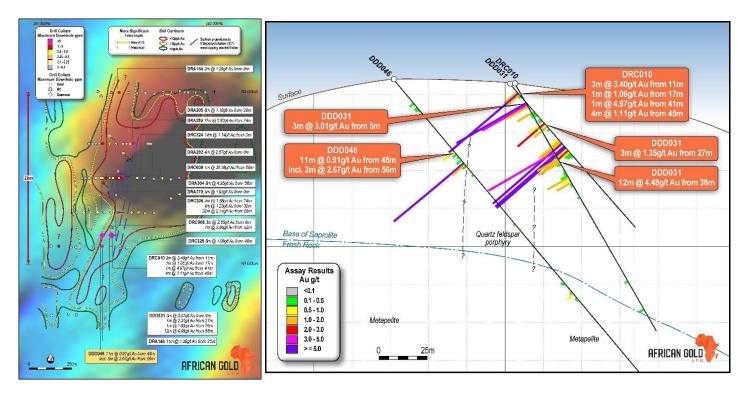


Figure 5: Pranoi Prospect plan and section showing location of gold-in-soil anomaly, collars and significant results on AS1VD magnetic image.

2022 SOIL SAMPLING PROGRAM

A 1,400 sample, infill soil sampling program has provided results which have confirmed and further defined anomalies across the northern region of the Didievi Project as follows:

- Blaffo Gueto and Environs infill (200m x 50m) sampling to the north, west and east of Blaffo Gueto Main area has confirmed and further defined anomalies.
- **Blaffo Gueto Far North Anomaly** located approximately 5km north of Blaffo Gueto Main Prospect with results confirming a strike over at least 600m (maximum of 274ppb gold) with the anomaly remaining open.
- Blaffo Gueto North Anomaly located approximately 2km north of Blaffo Gueto Main, but essentially the northern limit of the Blaffo Gueto soil anomaly which has a strike over 4km, returned anomalous Au and As values maximum of 154ppb gold.
- Blaffo Gueto North-West Anomaly located approximately 1km to the north-west of Blaffo Gueto Main, this is a discrete high tenor anomaly on a parallel structure NNE orientated structure to Blaffo Gueto Main maximum of 14,470ppb gold.

- Blaffo Gueto East Anomaly located approximately 1.5km east of Blaffo Gueto Main and 1km east of the eastern
 most drill holes, results have indicated a significant anomaly that requires further investigation maximum of
 243ppb gold.
- Pokou Trend 10 infill soil lines (over 9km) designed to further extend and demonstrate continuity and strike potential of gold-in-soil anomalies, Pokou is located 4km east of Blaffo Gueto Main and results have confirmed the Pokou Trend as robust, largely continuous and extending over a strike of at least 9km maximum of 743ppb gold.
- Boni Andokro 4 infill regional soil lines (over 2km) confirmed the anomaly discovered by soil sampling in 2021; more infill sampling is required to define the anomaly maximum of 221ppb gold.
- Pranoi East Anomaly results for soil sampling of a sparsely sampled area to the east of Pranoi and Kouassi project area were enigmatic. While the sampling defined two large anomalous areas 2.3km x 0.6km (maximum 153ppb gold) and 2km x 1km (maximum 472ppb gold), no higher grade continuity could be seen at this level of sampling and more work will be require to define targets.

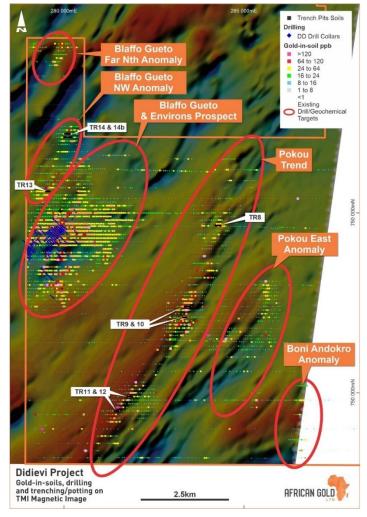
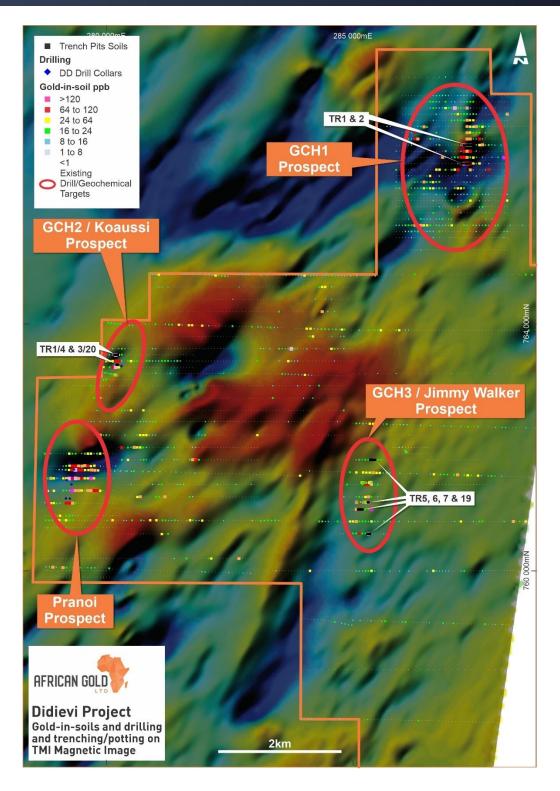



Figure 6: Didievi Project, Southern Sector --showing trenching/pitting drill collars on thematically mapped gold-in-soils sampling points on a TMI magnetic image.

Figure 7: Didievi Project, Northern Sector – showing trenching/pitting drill collars on thematically mapped gold-in-soils sampling points on a TMI magnetic image.

NEXT STEPS

RC drilling is being planned to evaluate trench results and to test targets following the conclusion of the wet season around October/November 2022.

This announcement has been authorised for release by the Board of African Gold Limited.

Mr. Glen Edwards Chief Executive Officer and Exploration Manager T: +61 447 880 198 E: admin@african-gold.com

Competent Person's Statement

Information in this announcement that relates to the current drilling and results is based on and fairly represents information and supporting documentation prepared by Mr Glen Edwards. Mr Edwards is a full-time employee of African Gold Limited and is a member of the Australian Institute of Geoscientists and Society of Economic Geologists. Mr Edwards has sufficient experience relevant to the styles of mineralisation and types of deposits under consideration and to the activity which they are undertaking to qualify as a Competent Person, as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration results, Mineral Resources and Ore Reserves". Mr Edwards has provided his prior written consent as to the form and context in which the Exploration Results and the supporting information are presented in this announcement. Mr Edwards holds securities in the Company.

The information in this report that relates to historical exploration results were initially reported by the Company in accordance with Listing Rule 5.7 on 27 November 2020 and 11 August 2021. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements.

Notes:

- 1. Bonikro, Newcrest https://www.asx.com.au/asxpdf/20170213/pdf/43fyl8fjz7sjg4.pdf
- 2. Agbaou, Endeavour Mining https://s21.q4cdn.com/954147562/files/doc_downloads/technical_report/lan-Hamilton-technical-report-agbaou.pdf
- Fetekro, Endeavour Mining https://www.endeavourmining.com/newsreleases (news-release-details (2019/Endeavour-Increases-Indicated-Res)
- releases/press-release-details/2019/Endeavour-Increases-Indicated-Resources-at-Fetekro-by-141-to-12Moz/default.aspx . African Gold LTD – ASX announcements https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02405806-6A1045235?access_token=83ff96335c2d45a094df02a206a39ff4
- 5. African Gold LTD ASX announcements https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02419002-6A1049339?access_token=83ff96335c2d45a094df02a206a39ff4
- 6. African Gold LTD ASX announcements https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02463345-6A1067354?access_token=83ff96335c2d45a094df02a206a39ff4

APPENDIX 1

TABLE 1: Drill Collar Details

Hole ID	Prospect	UTMZ30N East (m)	UTMZ30N North (m)	RL (m)	Dip (Deg)	Mag. Azi. (Deg)	Depth (m)	Drilling Type
DDD045	Kouassi	282244	763315	370	-50	295	149.7	Diamond
DDD046	Pranoi	281342	761172	287	-50	93	203.45	Diamond

TABLE 2: Transect (Trench/Pit) Collar Details

Transect	Prospect	UTMZ40N East (m)	UTMZ30N North (m)	Start RL (m)	Excavated Linear (m)
22_TR01	GCH1-Yakpabo	287800	766900	209	35
22_TR01	GCH1-Yakpabo	287949	766900	214	
22_TR02	GCH1-Yakpabo	287749	766600	280	28
22_TR02	GCH1-Yakpabo	287898	766600	324	
22_TR03	GCH2-Kouassi	282150	763500	360	40
22_TR03	GCH2-Kouassi	282189	763500	358	
22_TR04	GCH2-Kouassi	282166	763340	344	20
22_TR04	GCH2-Kouassi	282185	763340	351	
22_TR05	GCH3-Jimmy Walker	286275	761801	145	56
22_TR05	GCH3-Jimmy Walker	286358	761801	141	
22_TR06	GCH3-Jimmy Walker	286079	760996	147	28
22_TR06	GCH3-Jimmy Walker	286153	760996	149	
22_TR07	GCH3-Jimmy Walker	286228	760600	158	17
22_TR07	GCH3-Jimmy Walker	286277	760600	156	
22_TR08	GCH4-Agnere	284200	749650	126	130
22_TR08	GCH4-Agnere	284349	749650	123	
22_TR09	GCH5-Pokou	283350	747400	145	100
22_TR09	GCH5-Pokou	283435	747408	138	
22_TR10	GCH5-Pokou	283300	747100	152	70
22_TR10	GCH5-Pokou	283399	747100	145	
22_TR11	GCH6-Gbofia	281750	744900	146	79
22_TR11	GCH6-Gbofia	281899	744900	141	
22_TR12	GCH6-Gbofia	281404	744500	203	59
22_TR12	GCH6-Gbofia	281503	744500	187	
22_TR13	Blaffo Gueto North	279498	750600	225	73
22_TR13	Blaffo Gueto North	279600	750600	216	
22_TR14	Blaffo Gueto North	280000	752100	409	71
22_TR14	Blaffo Gueto North	280219	752100	414	
22_TR14b	Blaffo Gueto North	280026	752200	393	94
22_TR14b	Blaffo Gueto North	280165	752200	384	
22_TR19	GCH3-Jimmy Walker	286238	761112	148	12

Transect	Prospect	UTMZ40N East (m)	UTMZ30N North (m)	Start RL (m)	Excavated Linear (m)
22_TR19	GCH3-Jimmy Walker	286249	761112	148	
22_TR20	GCH2-Kouassi	282140	763500	148	11
22_TR20	GCH2-Kouassi	282149	763500	148	
22_YAKTR001	GCH1 Yakpabo	287779	766600	86	86
				Total	974

TABLE 3: Diamond Drilling Significant Intercepts

Hole ID	Including Interval (m) ¹	Grade g/t Au	From (m)	Including interval (m) ²	Grade g/t Au	From (m)
DDD045				7	1.42	89
				11	1.85	128
DDD046						
	11	0.91	48	3	2.67	56

Notes:

Intervals calculated:

1) >0.5g/t Au intercept, lower cutoff >0.1g/t Au with < 2m internal dilution per 10m.

2) >1g/t Au intercepts, lower cutoff >0.25g/t Au with <2m internal dilution. No top cut. All assays FA detection limit <0.01ppm.

TABLE 4: Drillholes Significant Anomalous Intercepts (>0.1g/t gold)

Prospect	Hole ID	From (m)	To (m)	Interval (m)	Gold ppm
Kouassi	DDD045	89	90	1	0.7
		90	91	1	2.76
		91	92	1	0.54
		92	93	1	0.48
		93	94	1	4.89
		94	95	1	0.41
		95	96	1	0.16
		102	103	1	0.14
		103	104	1	0.47
		105	106	1	0.27
		106	107	1	0.38
		107	108	1	0.63
		110	111	1	0.42
		112	113	1	0.1
		113	114	1	0.74
		128	129	1	3.48

Prospect	Hole ID	From (m)	To (m)	Interval (m)	Gold ppm
		130	131	1	0.78
		132	133	1	2.66
		133	134	1	2.84
		134	135	1	2.71
		135	136	1	1.09
		137	138	1	4.19
		138	139	1	2.57
Pranoi	DDD046	15	16	1	0.38
		18	19	1	0.28
		19	20	1	0.26
		20	21	1	0.11
		48	49	1	0.94
		50	51	1	0.33
		52	53	1	0.17
		54	55	1	0.42
		56	57	1	6.54
		57	58	1	1.12
		58	59	1	0.33
		64	65	1	0.17
		98	99	1	0.1
		138	139	1	0.2
		139	140	1	0.11
		145	146	1	0.15
		146	147	1	0.5
		149	150	1	0.12
		150	151	1	0.1

Notes: these are results from Fire Assay on individual samples of 1m in length. All assays FA detection limit < 0.01 ppm.

TABLE 5: Trench/Pit Significant Anomalous Intercepts (>0.1g/t gold)

Trench	Prospect	UTMZ30N East m	UTMZ30N North m	RL (m)	From (m)	To (m)	Interval (m)	Comments	Gold (ppm)
22_TR01	GCH1- Yakpabo	287824	766900	213	24	25	1.00	Lateritic gravels	0.14
22_TR01		287825	766900	213	25	26	1.00	Lateritic gravels	0.17
22_TR01		287836			36	37	1.00	Lateritic gravels	0.13
22_TR01		287837			37	38	1.00	Lateritic gravels	0.1
22_TR01		287848			48	49	1.00	Lateritic gravels	0.1
22_TR01		287849			49	50	1.00	Lateritic gravels	0.17
22_TR01		287859			59	60	1.00	Lateritic gravels	0.1
22_TR01		287885			85	86	1.00	Lateritic gravels	0.19
22_TR01		287897			97	98	1.00	Lateritic gravels	0.1
22_TR01		287899			98	99	1.00	Lateritic gravels	0.11
22_TR02	GCH1- Yakpabo	287795	766600	299	46	47	1.00	Saprock	0.55
22_TR02		287805			56	57	1.00	Saprock	0.16
22_TR02		287806			57	58	1.00	Saprock	0.11
22_TR02		287817			68	69	1.00	Saprock	6.26
		287818			69	70	1.00	Saprock	0.66
		287841			92	93	1.00	Saprock	2.11
22_TR02		287842			93	94	1.00	Saprock	1.33
22_TR02		287853			104	105	1.00	Saprock	1.04
22_TR02		287898			149	150	1.00	Saprock	0.46
22_TR03	GCH2- Kouassi	282150	763500	360	0	1	1.00	Saprock	0.26
22 TR03		282151			1	2	1.00	Saprock	0.11
22_TR03		282166			16	17	1.00	Saprock	0.35
22 TR03		282172			22	23	1.00	Saprock	0.11
22_TR03		282175			25	26	1.00	Saprock	0.1
 22_TR04	GCH2- Kouassi	282168	763340	344	2	3	1.00	Saprock	0.12
22_TR04		282170			4	5	1.00	Saprock	0.16
		282171			5	6	1.00	Saprock	0.29
 22 TR04		282172			6	7	1.00	Saprock	1.05
22 TR04		282173			7	8	1.00	Saprock	2.09
22_TR04		282174			8	9	1.00	Saprock	7.45
22 TR04		282175			9	10	1.00	Saprock	0.23
22_TR04		282177			11	10	1.00	Saprock	0.24
22_TR01 22_TR04		282181			15	16	1.00	Saprock	1.67
22_TR04 22_TR04		282182			16	10	1.00	Saprock	0.51
22_TR04 22_TR04		282182			10	17	1.00	Saprock	25.46
22_TR04 22_TR04		282183			18	10	1.00	Saprock	6.61
22_1104	1	202104			1 10	15	1.00	Jupi Ock	0.01

22 TD04		20210E			10	20	1 00	Saprock	0.15
22_TR04	CCCUD	282185			19	20	1.00	Saprock	0.15
22 7005	GGCH3-	206207	761901	145	10	10	1.00	Saproald	0.1
22_TR05	Jimmy Walker	286287	761801	145	12	13	1.00	Saprock	0.1
							-		
22 7006	GGCH3-	296105	760006	151	26	27	1.00	Conrock	0.22
22_TR06	Jimmy	286105	760996	151	26	27	1.00	Saprock	0.33
	Walker								
22_TR08	GCH4-	284262			62	63	1.00	Saprock	0.12
22_TR08	Agnere	284263			63	64	1.00	Saprock	0.27
22_TR08		284264			64	65	1.00	Saprock	1
22_TR08		284265			65	66	1.00	Saprock	0.19
22_TR08		284266			66	67	1.00	Saprock	0.23
22_TR08		284267			67	68	1.00	Saprock	0.1
22_TR08		284268			68	69	1.00	Saprock	0.54
22_TR08		284269			69	70	1.00	Saprock	0.11
22_TR08		284270			70	71	1.00	Saprock	0.13
22_TR08		284271			71	72	1.00	Saprock	0.12
22_TR08		284272			72	73	1.00	Saprock	0.1
22_TR08		284292			92	93	1.00	Saprock	1.33
22_TR08		284293			93	94	1.00	Saprock	0.62
22_TR08		284294			94	95	1.00	Saprock	0.53
22_TR08		284295			95	96	1.00	Saprock	0.3
		284306			106	107	1.00	Saprock	0.21
22 TR08		284307			107	108	1.00	Saprock	0.18
22_TR08		284310			110	111	1.00	Saprock	0.4
22_TR08		284315			115	116	1.00	Saprock	0.36
22_TR08		284316			116	110	1.00	Saprock	0.2
22_TR08		284317			110	118	1.00	Saprock	0.12
22_1100	GCH5-	204317				110	1.00	Suprock	0.12
22_TR09	Pokou	283426	747400	143	76	77	1.00	Saprock	0.16
22_TR09	1 OKOU	283439			89	90	1.00	Saprock	0.22
22_TR09		283440			90	91	1.00	Saprock	0.14
22_TR09 22_TR09		283440			91	92	1.00	Saprock	0.14
22_TR09 22_TR09					91	92			
22_1R09 22 TR09		283442			92	93	1.00	Saprock	0.26
_		283443					1.00	Saprock	0.16
22_TR09		283444			94	95	1.00	Saprock	0.34
22_TR09		283445			95	96	1.00	Saprock	0.55
22_TR09		283446			96	97	1.00	Saprock	0.52
22_TR09		283447			97	98	1.00	Saprock	0.37
22_TR09		283448			98	99	1.00	Saprock	0.42
22_TR09		283449			99	100	1.00	Saprock	0.18
22_TR09		283450			100	101	1.00	Saprock	0.43
22_TR09		283451			101	102	1.00	Saprock	0.2
22_TR09		283452			102	103	1.00	Saprock	0.36
22_TR09		283453			103	104	1.00	Saprock	0.65
22_TR09		283454			104	105	1.00	Saprock	0.33
22_TR09		283455			105	106	1.00	Saprock	0.15
		283456			106	107	1.00	Saprock	0.14
22 TR09		283457			107	108	1.00	Saprock	0.4
22 TR09		283458			108	109	1.00	Saprock	0.48
22_TR09		283459			100	110	1.00	Saprock	0.18
22_TR09		283463			103	110	1.00	Saprock	0.21
22_1105	L	203403			1 115		1.00	Suprock	0.21

22 7000		202464			114	115	1.00	Conrock	0.62
22_TR09		283464			114	115	1.00	Saprock	0.62
22_TR09		283465			115	116	1.00	Saprock	0.3
22_TR09		283466			116	117	1.00	Saprock	0.2
22_TR09		283467			117	118	1.00	Saprock	0.16
22_TR09		283468			118	119	1.00	Saprock	0.12
22_TR09		283471			121	122	1.00	Saprock	0.13
22_TR09		283472			122	123	1.00	Saprock	0.24
22_TR09		283473			123	124	1.00	Saprock	0.14
22_TR09		283475			125	126	1.00	Saprock	0.13
22_TR09		283477			127	128	1.00	Saprock	0.11
22_TR10	GCH5- Pokou	283307	747100	152	7	8	1.00	Saprock	0.1
22_TR10		283308			8	9	1.00	Saprock	0.1
22_TR10		283309			9	10	1.00	Saprock	0.1
22_TR10		283315			15	16	1.00	Saprock	0.12
22_TR10		283319			19	20	1.00	Saprock	0.12
22_TR10		283320			20	21	1.00	Saprock	0.11
22_TR10		283321			21	22	1.00	Saprock	0.21
22_TR10		283327			27	28	1.00	Saprock	0.37
 22 TR10		283328			28	29	1.00	Saprock	0.9
 22 TR10		283329			29	30	1.00	Saprock	0.36
22 TR10		283330			30	31	1.00	Saprock	0.12
22 TR10		283333			33	34	1.00	Saprock	0.21
22 TR10		283334			34	35	1.00	Saprock	0.24
22 TR10		283335			35	36	1.00	Saprock	0.19
22_TR10		283336			36	37	1.00	Saprock	0.14
22_TR10		283337			37	38	1.00	Saprock	0.17
22_TR10		283358			58	59	1.00	Saprock	0.12
22_TR10	GCH6- Gbofia	281862	744900	142	112	113	1.00	Saprock	0.12
22_TR12		281404			0	1	1.00	Saprock	0.42
22 TR12		281453			49	50	1.00	Saprock	0.11
22_TR12		281454			50	51	1.00	Saprock	0.1
22_TR12		281458			54	55	1.00	Saprock	0.21
22_TR12		281459			55	56	1.00	Saprock	0.5
22_TR12 22_TR12		281460			56	57	1.00	Saprock	0.3
22_TR12		281461			57	58	1.00	Saprock	0.13
22_TR12		281464			60	61	1.00	Saprock	0.15
22_TR12 22 TR12		281469			65	66	1.00	Saprock	0.10
22_TR12 22_TR12		281409			72	73	1.00	Saprock	0.1
22_TR12 22_TR13	Blaffo Gueto NW	279498	750600	225	0	1	1.00	Saprock	0.15
22_TR13	JUCIONW	279499			1	2	1.00	Saprock	0.28
22_TR13 22_TR13		279499			10	11	1.00	Saprock	0.28
22_TR13 22 TR13		279508				11	1.00	Saprock	
					11			·	0.1
22_TR13		279521			23	24	1.00	Saprock	0.1
22_TR13		279527			29	30	1.00	Saprock	0.11
22_TR13		279532			34	35	1.00	Saprock	0.11
22_TR13		279537			39	40	1.00	Saprock	0.22
22_TR14	Blaffo Gueto North	280049	752100	429	49	50	1.00	Lateritic gravels	0.1

22_TR14		280050			50	51	1.00	Lateritic	0.21
								gravels	
22_TR14		280061			61	62	1.00	Duricrust	0.22
22_TR14		280062			62	63	1.00	Duricrust	0.28
22_TR14		280109			109	110	1.00	Duricrust	0.12
22_TR14		280110			110	111	1.00	Duricrust	0.12
22_TR14		280122			122	123	1.00	Saprock	0.14
22_TR14		280133			133	134	1.00	Saprock	0.12
22_TR14		280187			187	188	1.00	Saprock	0.11
22_TR14		280188			188	189	1.00	Saprock	0.51
22_TR14		280189			189	190	1.00	Saprock	0.62
22_TR14		280190			190	191	1.00	Saprock	0.23
22_TR14		280191			191	192	1.00	Saprock	0.23
22_TR14		280192			192	193	1.00	Saprock	0.27
22_TR14b	Blaffo Gueto North	280039	752200	396	13	14	1.00	Lateritic gravels	0.1
22_TR14b		280070			44	45	1.00	Saprock	0.1
22_TR14b		280071			45	46	1.00	Saprock	0.17
22_TR14b		280082			56	57	1.00	Saprock	0.11
22_TR14b		280094			68	69	1.00	Saprock	0.12
 22_TR19	GCH3- Jimmy Walker	286238	761112	148	0	1	1.00	Saprock	0.78
22_TR19					1	2	1.00	Saprock	0.14
22_TR20	Kouassi	282149	763500	148	9	10	1.00	Saprock	0.15

Notes: these are results from Fire Assay on individual samples of 1m in length. Due to nature of imtermitant pitting and trenching along transects samples are not always consequative. All assays FA detection limit <0.01ppm.

TABLE 6: Trench – joining and resampling Pit on transect 22_TR022 Yakpabo. Significant Anomalous Intercepts
(>0.1g/t gold)

Trench	Prospect	UTMZ30N East (m)	UTMZ30N North (m)	RL (m)	From (m)	To (m)	Interval (m)	Comments	Gold (ppm)
22_YAKTR 001	Yakpabo	287782	766600	214	3	4	1.00	Saprolite	0.13
22_YAKTR 001		287792			13	14	1.00	Saprolite	0.6
22_YAKTR 001		287793			14	15	1.00	Saprolite	0.54
22_YAKTR 001		287794			15	16	1.00	Saprolite	0.54
22_YAKTR 001		287795			16	17	1.00	Saprolite	0.14
22_YAKTR 001		287797			18	19	1.00	Saprolite	0.97
22_YAKTR 001		287799			20	21	1.00	Saprolite	0.17
22_YAKTR 001		287800			21	22	1.00	Saprolite	0.18
22_YAKTR 001		287802			23	24	1.00	Saprolite	0.19

22_YAKTR 001	287811	32	33	1.00	Saprolite	0.83
22_YAKTR	287813	34	35	1.00	Saprolite	9.05
001 22_YAKTR	287814	35	36	1.00	Saprolite	0.14
001 22_YAKTR	287815	36	37	1.00	Saprolite	3.38
001 22_YAKTR	287816	37	38	1.00	Saprolite	0.56
001 22_YAKTR	+				-	
	287817	38	39	1.00	Saprolite	0.58
001	287818	 39	40	1.00	Saprolite	3.09
22_YAKTR 001	287819	 40	41	1.00	Saprolite	3.88
22_YAKTR 001	287820	41	42	1.00	Saprolite	5.35
22_YAKTR 001	287821	42	43	1.00	Saprolite	1.43
22_YAKTR 001	287822	43	44	1.00	Saprolite	9.81
22_YAKTR 001	287823	44	45	1.00	Saprolite	4.46
22_YAKTR 001	287825	46	47	1.00	Saprolite	6.08
22_YAKTR 001	287835	56	57	1.00	Saprolite	0.17
22_YAKTR 001	287837	58	59	1.00	Saprolite	1.31
22_YAKTR 001	287839	60	61	1.00	Saprolite	0.23
22_YAKTR 001	287844	65	66	1.00	Saprolite	0.47
22_YAKTR 001	287846	67	68	1.00	Saprolite	0.1
22_YAKTR 001	287849	70	71	1.00	Saprolite	0.31
22_YAKTR 001	287856	77	78	1.00	Saprolite	0.64
22_YAKTR 001	287857	78	79	1.00	Saprolite	0.15
22_YAKTR 001	287858	 79	80	1.00	Saprolite	0.43

Notes: these are results from Fire Assay on individual samples of 1m in length. Due to nature of imtermitant pitting and trenching along transects samples are not always consequative. All assays FA detection limit <0.01ppm.

APPENDIX 2 – JORC Code 2012 Tables

Section 1 Sampling Techniques and data – Table 1

(Criteria listed in the preceding section also applies to the section)

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques Drilling techniques Pitting/Trenching	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Soil samples are collected on a pre-arranged grid, from a depth of 40-60cm below surface. The original sample is sieved to -2mm, typically 2—2.5kg for BLEG Au. A 250 g subsample is split for multielement analysis by portable XRF. Trench samples are taken from a channel on the wall of the trench ~10cm above the base. Samples are typically 2m in length and 1.5-3kg in weight. Rock chip samples as typically grab samples from outcrop. Diamond core was orientated, marked, logged, and split in half using a diamond core saw before being sampled. Sample intervals typically 1m, in rare cases e.g. at end of hole <1m. QAQC - certified reference standards, blanks and field duplicates have been inserted into sample runs. Soil samples have been submitted either to Bigs Laboratories in Burkina Faso for Au determination by BLEG. In Cote d'Ivoire, trench samples are transported to MSA Laboratories in Yamoussoukro for analysis by 50g FA. Diamond drilling was carried out by FORACO Cote d'Ivoire SARL using standard recognized techniques and procedures. No significant sampling issue were noted, recovery issue or bias was picked up and it is therefore considered that both sample recovery and quality is adequate for the drilling technique employed. Transect – trenching /pitting. The methodology is to start in the centre of the designated transect and pit 10m apart along the transect. If geology and or assays return interesting results, the individual pits (typically 2m in width) are joined together by
		 excavating areas between pits and then sampling them. Pits are typically 2m long x 1m wode x 3m deep and trenches are typically Xm long x 1m wide x 3m deep. Pits and trenches were either excavated by mechanical backhoe / excavator or by hand
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 DD core losses were recorded. No significant sampling issue were noted, recovery issue or bias was picked up and it is therefore considered that both sample recovery and quality is adequate for the drilling technique employed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean/trench, channel, etc.) photography. 	 All drill and trench samples were geologically logged by experienced qualified geologists. Geological logging used a standardized logging system. Geological logging is qualitative and descriptive in nature.

Criteria	JORC Code explanation	Commentary
	 The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximize representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Trench and pit samples take as 1 meter intervals but interesting features also sampled separately and these could be from 0.1-0.5m length. Further sample preparation was undertaken at the Bigs and MSA laboratories by trained laboratory staff. Sample sizes and laboratory preparation techniques are considered to be appropriate for this early-stage exploration and the commodity being targeted. Diamond core was marked, orientated, logged and split. ½ core was sampled on a meter basis. In rare cases samples were less than 1m length e.g. end of hole. Company QAQC include about 5% duplicates, standards and blanks.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Soil and trench/rock chip assaying is done by Bigs Laboratory in Ouagadougou and by MSA Laboratory in Yamoussoukro is in accordance with standard procedures. Diamond drill sampling was done by Bureau Veritas laboratory in Abidjan in accordance with standard procedures. In laboratory soil samples are being assayed by BLEG. In laboratories trench and rock chip samples are assayed by Fire Assay. In addition to the Company QAQC, Laboratories run internal QAQC (CRM's, blanks, pulp and solution duplicates).
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Laboratory QAQC acceptable. Companies standards, blanks and duplicates acceptable.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All auger and trench chip samples are located with hand held GPS. These positions are considered to be within 1 metre accuracy in the horizontal plane and less so in the vertical. All sample location data is in UTM WGS84 Zone30N in Côte d'Ivoire Hole DDD45&46 have been surveyed by DGPS.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Soil programs were typically on a grid or traverse spacing depending on the nature of the program e.g. orientation, regional or infill. Trenches/pits are orientated along east west transects. In this instance they are reconnaissance so do not have a fixed distance between them. Diamond drillholes are reconnaissance and not on a gird spacing.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Soils lines and trench/pit transects are typically orientated east west in order to be as close to perpendicular to interpreted mineralized structure being targeted as practically possible for these reconnaissance methods. Diamond drilli holes azimuth and dip are orientated as far as possible to be orthogonal to the mineralised structure.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 All samples guarded all the time. Samples removed from site and stored in secure facilities, Samples are transported and delivered, by A1G staff and contractors, to Bigs and MSA laboratories.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews have yet been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also applies to the section)

Criteria	Commentary								
Mineral tenement and land tenure	Tenement details are provided below:								
status	Permit	Permit type	Date	Area	Duration				
			Granted	(km ²)					
	Mali								
	Sitakili	Permis de recherché	21 Feb 2018	45	3 + 2 + 2 years				
	Yatia Sud	(Or)	20 Dec 2019	45	3 + 2 + 2 years				
	Walia		7 Dec 2018	90	3 + 2 + 2 years				
	Samanafoulou		6 Nov 2018	53	3 + 2 + 2 years				
	Kofi Ouest		24 May 2018	20	3 + 2 + 2 years				
	Bourdala	-	28 Dec 2018	16	3 + 2 + 2 years				
	BouBou		28 Feb 2017	25	3 + 2 + 2 years				
	N'Golankasso		Application TBA	80	3 + 2 +2 years				
	Cote d'Ivoire								
	Didievi	-	18 Nov 2019	391	4 + 3+ 3 years				
	Agboville		25 Oct 2017						
	Sikensi	Permis de rescherche	19 Oct 2016	397	4 + 3+ 3 years				
	Konahiri Nord	(Or)	12 Dec 2021	391	4 + 3+ 3 years				
	Konahiri Sud	1	Application TBA	255	4 + 3+ 3 years				
	Koyekro		Application TBA	290	4 + 3+ 3 years				
	Azaguire		Application TBA	397	4 + 3+ 3 years				
	Gomon		Application TBA	212	4 + 3+ 3 years				
	African Gold Mali SARL has entered into a number of agreements with Companies – details are provi								
	releases dated 04 July 2019; 5 September 2019 and 27 November 2021.								
	There are no known issues a	ffecting the security of title	e or impediments to	operating in	the area.				
Exploration done by other parties	 Exploration has been carried out by previous groups. Details of this work has been reported to the ASX previously. Details are provided in ASX releases dated 04 July 2019; 5 September 2019 and 27 November 2021. Walia Permit Mali: previous exploration on the Walia permit has been undertaken by Syndicat Or, Cogema, Centre de Liaison of International Business SARL (CLIB), Etruscan Resources and Randgold. Randgold undertook detailed outcrop and regolith mapping, Airborne electromagnetic surveying, RAB drilling and RC drilling. During the period 1962 – 2006 investigations of the broader Kenieba region and areas now covered by the Walia permit were undertaken by various government supported agencies, including SONAREM - Société Nationale de Recherche et d'Exploitation Minières (1962-1968), the Bureau de Recherches Géologiques et Minières (BRGM) 1979-1984, Direction Nationale de la Géologie et des Mines (DNGM) together with Klöckner (1987-1993), and SYSMIN (2006). A compilation of this data is presented in the table below. Reconnaissance soil sampling by government agencies - Klockner regional geochemical survey (1000m x 250m – 208 samples). Airborne magnetic survey and regional geological mapping (1;200,000) BRGM SYSMIN. 								

Criteria	Commentary											
	WALIA					Au	aer	R	AB	RC]
		Period	Soil	Rock	AEM	#	(m)	#	(m)	#	(m)	
	Government Agencies	1962-2006			oil sampling.			I		ics.		-
	CLIB	1999 - 2003	x									
	Etruscan	2004 - 2006	2206			540						
	Randgold	2007 - 2010		331	x			128	2993	17	882	1
			2206	331		540		128	2993	17	882	
	permits as possible. geochemical sampli Glencore and Equiga 2012.Work by Glencor resolution airborne r infill sampling on 9 c Equigold made two discovery at Blaffo G 350m respectively (k drilled for 26,850m DAS005 and DSA003 A portion of the cur dipole and gradient and airborne magne	ng, airbor old and th core and Ec magnetic a discrete are discoverie Gueto. At th cost interco and 4,275 10 and 15 rent Didiev array indu	ne magr en held quigold f nd radio eas, limit es, name ne Prano ept 13.0 m respe is RAB hol <i>v</i> i permit ced pola	netic and by Lihir ocused c metric d ed trenci ly Blafo i a total at 2.65g/ ctively. A es resep was cov rization	I radiom and New on the we ata, broa hing, roc Gueto (E of 73 RAI 't Au). At t Jonny ' ctively. ered by surveys h	etric da crest. Tl estern pa d (800m k chip sa 3G) and B, 7 RC a Blafo Gu Walker 7 high reso nave bee	ta and in he propa- art of the x 50m & mpling, Pranoi, nd 1 dia ieto a to 7 RC hole blution a n under	remote serty was e current & 200m) RAB, RC from 200 mond ho tal of 31 es were hirborne taken at	sensing actively t permit spaced s and diar 08 focus ole were 2 RC hole drilled a magneti the Blaf	data. Pr explore consiste coll samp nond dri ed almo drilled f es and 2: nd at ge c data. F fo Gueto	eviously d betweed d acquisi lling follo lling. Dur ist exclus or 2,368r 8 diamon- ochemica Pole-dipolo p prospec	explored t en 2006 an tion of hig wed up wit ing this tim ively on th n, 940m an d holes wer al anomalie le, dipole- t. Ground
Geology	regolith classification In Mali – the area u lower Proterozoic (2 Proterozic sandstone material, outcrop is SMSZ it is predomine predominantly under Daléma Series. In Côté d'Ivoire – th greenstone belt. The domain of the West. width extends from in two parts. Didievi made of schist and injections of metaba	Inder cons .1Ga) Birin e towards sparse. Th antly unde rlain by in he area ur e belt NE- African Cra south of D is situated quartzite	ideration hian met the east e Walia/ rlain by trusive b trusive b der con SW to N aton (WA abakala d in the s and als	n is locat asedimen and to t Kofi perr sedimen odies, lin sideratio NE-SSW. (C) forme (north of outhern o sandst	ed within ntary-vol he south nit is stra ts, volcar mestone n is situa These b d betwee the belt Oumé-H	n the Ke canic sec . The ar addles th nics and s, sedime ated with elts belo en 2.2 ar) to Divo iré porti	dougou- quences ea is ext he Seneg tourmali ents and hin the o ong to the d 1.9 Ga (south o on. The	Kenieba . The inli ensively gal Mali S ine brecc I volcanc central p ne Prote a. The be of the be supracru	erosion er is unc lateretis Shear Zo cias of th o-clastic portion c rozoic b It is almo It). Arou ustal geo	al inlier onforma sed and ne (SMS e Kofi So inits of t f the Ou asement ost 300 k nd the p logy of t	which is is bly overla covered v Z). To the eries. To the ries. To the Falém umé-Fete in the B m long ar arallel 7°, his green	ain by Upp with regolit e east of th the west it té and Dial kro Birimia aoulé-Mos nd 40 to 5k , it is divide istone belt
Drill hole Information	Exploration has beer Details are provided drilling are included	in ASX rele	eases da	ted 04 Ju	ly 2019;	5 Septer	nber 201					
Data aggregation methods	Intervals are typicall Intercepts are repor minerlaised system. a cut off of 0.1g/t Au 0.25g/t Au, no top cu	, ted in table Composite I, no top ci	es where Signific ut, interr	egrade is ant Inter al dilutic	>0.1g/t cepts are on <2m p	Au as thi calculat	s is cons ed and i	idered a reported	nomalou here 1)	is in the when >1	context c m @ 0.5	, of this g/t Au usin
Relationship between mineralisation	RC and diamond dip interpretation.	s and azim	uths opt	imized to	o drill ort	hogonal	to mine	ralized st	tructures	based o	on geolog	ical
widths and intercept lengths												
widths and intercept lengths	See body of report											
-	See body of report All new drill holes ar	e set out ii	n Table ii	n body th	ie report							
widths and intercept lengths Diagrams		drill holes ł	nave bee	n reporte	ed to the		eleases.	Details a	are provi	ded in A	SX releas	es dated 0

Criteria	Commentary
Further work	Further collection, collation and interpretation of historical data. Followed by mapping, soil and rock chip sampling, pitting, trenching, geophysics, auger, RAB/AC, RC and diamond drilling.