

Diamond drilling results continue to expand gold mineralisation at Kokoseb

Highlights

- Results received from a further four diamond drill holes at the Kokoseb Gold Discovery returned large zones of significant gold mineralisation, including:
 - 14.1m at 1.91 g/t Au from 45.1m, incl. 5.7m at 3.53 g/t Au and
 - o 16.7m at 1.58 g/t Au from 62.4m in hole KDD006
 - 12.0m at 1.36 g/t Au from surface and
 - 8.0m at 1.26 g/t Au from 15m and
 - o 8.0m at 1.47 g/t Au from 33m in hole KDD005
 - o 7.0m at 1.36 g/t Au from 157m depth in hole KDD004
 - 11.5m at 2.50 g/t Au from 58.5m, incl. 5.3m at 4.11 g/t Au in hole KDD003
- Results confirm consistent mineralisation across a cumulative strike length of over 1km and fully open along strike and at depth.
- Large Reverse Circulation drilling program under way.

Wia Gold Limited (ASX: WIA) (**Wia** or the **Company**) is pleased to report further results of diamond drilling at the Kokoseb Gold Discovery (**Kokoseb**), situated on the Company's Damaran Gold Project located in Namibia. Four diamond drill holes, located on two drill sections have returned a series of significant gold intercepts that confirm mineralisation across a cumulative strike length of over 1km (Figure 1). Best results include 14.1m at 1.91 g/t Au, 16.7m at 1.58 g/t Au, 12.0m at 1.36 g/t Au and **11.5m at 2.50 g/t Au**.

The diamond drilling program consisted of 12 holes, with results of the remaining five holes expected in August. A systematic reverse circulation (**RC**) drilling program recently commenced at Kokoseb and is progressing well.

Wia's Chairman, Andrew Pardey, commented:

"Results from the drilling at our Kokoseb Gold Discovery continue to impress, with consistent gold mineralisation intersected from near surface to depths of 150m. The widths and gold grades returned further reinforce the scale of the discovery at Kokoseb."

"These results are complementary to previously reported high-grade gold intercepts from diamond drilling at Kokoseb and come as a result of systematic exploration that involved extensive soil sampling and trenching to confirm the Kokoseb discovery."

"On the back of these results, we have commenced a reverse circulation drilling program which is expected to feed into a maiden mineral resource estimate in due course. We look forward to the final diamond drilling results and then a steady flow of news with the first RC samples already despatched to the laboratory for analysis."

Figure 1 – Diamond holes and planned RC holes located on Kokoseb geology; significant intercepts on drillholes (in red, reported in this release and in black, previously reported); all intercepts >0.5 g/t Au¹

Significant new gold intercepts along strike from previously reported results

Assay results have been received from a further four diamond drillholes – KDD003 and KDD004, both on the same drill section which is spaced at 350m from the next drill section with KDD005 and KDD006. Together with the trench results and previously released diamond results, these holes confirm mineralisation over a cumulative strike length of 1km.

¹ Intercept calculated using 0.5 g/t cut-off grade and 2m max consecutive internal low grade. See ASX announcement 7 June 2022 for further information on previously reported results of diamond drilling.

The drill section KDD005 and KDD006 (figure 2), is located in the middle of one of the widest zones of the Kokoseb gold in soil anomaly. This section includes the following intercepts:

 KDD006 6.5m at 1.14 g/t Au from 20.2m 14.1m at 1.91 g/t Au from 45.1m, including 5.7m at 3.53 g/t Au and 16.7m at 1.58 g/t Au from 62.4m. These two intercepts are included in a wider, unconstrained intercept of 34.4m at 1.56 g/t Au from 44.7m.
 KDD005 12.0m at 1.36 g/t Au from surface and 8.0m at 1.26 g/t Au from 15m and 4.4m at 1.81 g/t Au from 26m and 8.0m at 1.47 g/t Au from 33m.

These four intercepts are included in a wider, unconstrained intercept of 43m at 1.14 g/t Au from surface.

This drill section is located 90m east from Trench 9 (OT009) which previously returned a significant intercept of 27m at $1.19 \text{ g/t } \text{Au}^2$, which is included in a wider unconstrained intercept of 37m at 0.99 g/t Au.

Figure 2 – Drill section KDD005 and KD006

² ASX announcement 7 June 2022.

The main mineralised zone intersected on the drill section KDD005 and KDD006 has a true width of approximately 32m. Several sub-parallel smaller zones are also intersected in the sediment package, generally near to a granitic dyke such as the intercepts of 6.5m at 1.14 g/t Au (KDD006) and 3.0m at 0.96 g/t Au (KDD005).

The drill section KDD003 and KDD004 (figure 3), which is located between the drill sections KDD001 and KDD002 and KDD005 and KDD006, intersected both mineralised zones, which include the following significant intercepts:

- KDD004 8.7m at 0.85 g/t Au from 143.5m
- 7.0m at 1.36 g/t Au from 157m
- KDD003 7.0m at 0.53 g/t Au from 18.7m
 - 4.3m at 0.79 g/t Au from 29.4m

11.5m at 2.50 g/t Au from 58.5m, including 5.3m at 4.11 g/t Au

The western mineralised zone intersected on the drill section, of overall low-grade gold, is interpreted to be the northern side of the zone intersected in the drill section KDD001 and KDD002, 400m along strike.

The eastern mineralised zone intersected in the drill section is sub-vertical and hosted in a sediment unit that is pinched between two granitic bodies. This includes higher grade gold intercepts that are interpreted to be the south-west side of the mineralised zone intersected in the drill section reported above KDD005 and KDD006, 350m along strike.

Figure 3 – Drill section KDD003 and KDD004

These results follow previously reported significant intercepts returned from the first three diamond drillholes that included:³

- KDD001 17.4m at 2.70 g/t Au from 49m, incl. 5.2m at 5.91 g/t Au
- KDD002 4.8m at 4.38 g/t Au from 110.9m
- KDD008 27.0m at 1.67 g/t Au from 36.5m, incl. 8.5m at 2.44 g/t Au 19.9m at 1.47 g/t Au from 131m, incl. 4.8m at 2.79 g/t Au

Reverse circulation drilling program

A maiden 20,000 metre RC drilling program recently commenced at Kokoseb and includes:

- 5,000 metres planned along strike at close spacing (50m apart) and under the existing diamond holes;
- 10,000 metres extensional and first stage infill drilling; and
- a further 5,000 metres contingent upon the results of drilling outlined above.

The drill sections are planned every 50 to 300 metres spacing along the gold anomaly, the spacing dependent on the understanding of the zones. The drillholes are planned on a 50 metres spacing along the sections. Nine RC drillholes have been completed to date, with samples being consistently dispatched to the laboratory.

Figure 4 – RC drill rig at Kokoseb

³ ASX announcement 7 June 2022.

Figure 5 – The Damaran Project – regional gold in soils over SRTM imagery⁴

This announcement has been authorised for release by the Board of Wia Gold Limited.

Contact details

Andrew Pardey Chairman +61 8 9381 5686

Competent Person's Statement

The information in this announcement that relates to exploration results at the Kokoseb Gold Anomaly located on the Company's Damaran Gold Project is based on information compiled by Company geologists and reviewed by Mr Pierrick Couderc, in his capacity as Exploration Manager of WiaGold Limited. Mr. Couderc is a member of both the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australiasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Couderc consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

⁴ ASX announcements 1 November 2021 and 10 February 2022.

Reference to previous ASX Announcements

In relation to previously reported exploration results included in this announcement, the dates of which are referenced, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements.

About Wia's Namibia Projects

Since 2018 the Company has successfully consolidated a very large land position on the Damaran belt in central Namibia (the **Damaran Project**), which is strategically located along key regional structures. The Damaran Project consists of 12 tenements with a total area of over 2,700km² held under joint venture with the state-owned mining company, Epangelo and a local Namibian group.

The location of the Company's Namibian Projects is shown in Figure 5.

Figure 6 – Location of Wia's Namibia Projects

Appendix 1. Kokoseb – Location of diamond drillholes

Hole ID	Easting	Northing	RL	Length (m)	Dip (°)	Azi (°)
KDD001	525579	7659845	1069	99	-55	120
KDD002	525536	7659867	1068	161	-55	120
KDD003	525793	7660170	1071	96	-55	120
KDD004	525752	7660195	1070	174	-55	120
KDD005	526136	7660316	1077	102	-55	150
KDD006	526109	7660359	1078	149	-55	150
KDD007	526694	7660828	1081	108	-55	179
KDD008	526394	7660885	1081	192	-55	217
KDD009	525747	7658408	1060	168	-55	89
KDD010	526439	7660861	1082	225	-55	218
KDD011	528240	7660030	1075	141	-55	210
KDD012	526366	7660852	1082	134	-55	218

Appendix 2. Diamond holes gold assays for all intercepts, using a cut-off grade of 0.2 g/t gold; includes previously reported drill holes

Hole ID	From	To (m)	Gold g/t
	(m)		
KDD001	30.1	30.8	0.01
KDD001	30.8	31.8	0.01
KDD001	31.8	32.3	0.271
KDD001	32.3	32.5	0.058
KDD001	33.3	34.3	0.11
KDD001	34.3	35.3	0.319
KDD001	35.3	36.3	0.212
KDD001	36.3	37	2
KDD001	37	37.8	0.407
KDD001	37.8	38.8	0.01
KDD001	38.8	39.3	0.229
KDD001	39.3	40.3	0.0025
KDD001	40.3	41.3	0.0025
KDD001	43.3	44.3	0.0025
KDD001	44.3	45.3	0.0025
KDD001	45.3	46.05	0.299
KDD001	46.05	46.8	0.128
KDD001	46.8	47.8	0.41
KDD001	47.8	48.5	0.188
KDD001	48.5	49	0.126
KDD001	49	50	1.215
KDD001	50	50.9	0.075
KDD001	50.9	51.75	0.464
KDD001	51.75	52.35	1.63
KDD001	52.35	53.3	2.33
KDD001	53.3	54.3	4.86
KDD001	54.3	55.3	1.27
KDD001	55.3	56.3	0.699
KDD001	56.3	57	0.27
KDD001	57	57.5	3.14
KDD001	57.5	58.5	7.65
KDD001	58.5	59.5	2.77
KDD001	59.5	60.5	2.23
KDD001	60.5	61.5	13.8
KDD001	61.5	62.15	3./1
KDD001	62.15	63.15	0.216
	63.15	63.75	2.51
	64.4	65.4	0.212
KDD001	65.4	66.4	0.212
KDD001	66.4	67.4	0.070
KDD001	67.4	68.15	0.056
KDD001	74.85	75.85	0.021
KDD001	75.85	76.35	0.018
KDD001	76.35	77.2	0.48
KDD001	77.2	78.2	0.141
KDD001	78.2	78.8	0.608
KDD001	78.8	79.5	1.07
KDD001	79.5	80	0.022
KDD001	80	80.55	0.072
KDD002	85.25	86	0.047
KDD002	86	87	0.191
KDD002	87	87.55	0.31
KDD002	87.55	88.55	0.058
KDD002	88.55	89.1	0.242
KDD002	89.1	90.1	0.899
KDD002	90.1	91.1	0.948
KDD002	91.1	92.1	0.985
KDD002	92.1	92.8	0.983
KDD002	92.8	93.4	1.275
KDD002	93.4	94.1	0.6

Hole ID	From (m)	To (m)	Gold g/t
KDD002	94.1	94.75	0.399
KDD002	94.75	95.5	0.766
KDD002	95.5	96.5	0.203
KDD002	96.5	97.5	0.178
KDD002	97.5	98.4	1.555
KDD002	98.4	99.4	3.79
KDD002	99.4	100.35	0.456
KDD002	100.35	101.3	1.88
KDD002	101.3	102.3	0.374
KDD002	102.3	102.85	0.488
KDD002	102.85	103.8	0.0025
KDD002	103.8	104.55	0.012
KDD002	104.55	105.5	0.768
KDD002	105.5	106.5	2.02
KDD002	106.5	107.2	6.66
KDD002	107.2	107.7	0.881
KDD002	107.7	108.5	0.061
KDD002	108.5	109	0.051
KDD002	109	109.9	0.303
KDD002	109.9	110.85	0.303
KDD002	110.85	111.85	4.25
KDD002	111.85	112.85	6.92
KDD002	112.85	113.8	1.01
KDD002	113.8	114.55	0.637
KDD002	114.55	115.05	5.68
KDD002	115.05	115.6	9.75
KDD002	115.6	116.6	0.017
KDD002	116.6	117.6	0.043
KDD002	117.6	118.6	0.019
KDD002	118.6	119.2	0.04
KDD002	119.2	119.8	0.73
KDD002	119.8	120.5	2.7
KDD002	120.5	121.5	0.019
KDD002	121.5	122.35	0.016
KDD002	122.35	122.9	0.022
KDD002	122.9	123.45	1.935
KDD002	123.45	124.2	0.483
KDD002	124.2	124.7	0.069
KDD002	124.7	125.55	5.67
KDD002	125.55	126.55	0.05
KDD002	126.55	127.55	0.03
	127.55	128.25	0.081
	128.25	129.25	0.008
	129.25	130.25	0.18/
	130.25	131.25	0.075
	122.22	132.23	0.109
	122.25	122.9	
KDD002	132.9	127.0	1.455 0.010
KDD002	12/ 0	134.9	0.010
KDD002	134.9	1	0.009 0.861
KDD003	1	1 9	0.801
KDD003	1 9	2.6	0.208
KDD003	1.0	2.0	0.237
KDD003	2.0	л 12 Л 12	0.034
KDD003	<u> </u>	5 12	0.307
KDD003	5 12	6.06	0.0025
KDD003	e 0e	7	0.0023
KDD003	7	8	0.227
KDD003	8	9	0.077
KDD003	9	10	0.264
1			

Hole ID	From (m)	To (m)	Gold g/t
KDD003	10	11	0.185
KDD003	11	11.73	0.977
KDD003	11.73	12.7	0.009
KDD003	12.7	13.62	0.008
KDD003	13.62	14.43	0.532
KDD003	14.43	15.18	0.017
KDD003	15.18	16.04	0.007
KDD003	17.04	18	0.025
KDD003	18	18.73	0.045
KDD003	18.73	19.74	1.08
KDD003	19.74	20.73	0.103
KDD003	20.73	21.73	0.74
KDD003	21.73	22.73	0.133
KDD003	22.73	23./3	0.591
	23./3	24.73	0.149
	24./3 25 72	25.73	0.92
	25.73	20.73	0.15
KDD003	20.73	27.01	0.412
KDD003	27.01	20.55	0.25
KDD003	29.41	30.16	1.23
KDD003	30.16	31	0.191
KDD003	31	31.9	1.4
KDD003	31.9	32.73	0.442
KDD003	32.73	33.66	0.707
KDD003	33.66	34.33	0.211
KDD003	34.33	35.27	0.169
KDD003	35.27	36.26	0.191
KDD003	52.85	53.45	0.0025
KDD003	53.45	54	0.01
KDD003	54	54.77	0.596
KDD003	54.77	55.52	0.011
KDD003	55.52	56.21	0.537
KDD003	56.21	56.73	0.015
KDD003	56.73	57.74	0.058
KDD003	57.74	58.46	0.273
KDD003	58.46	59.33	2.22
	59.33	59.89	0.102
	59.89	61.81	2.02
KDD003	61.81	62 73	0.674
KDD003	62 73	63 63	0.417
KDD003	63.63	64.63	0.04
KDD003	64.63	65.3	1.04
KDD003	65.3	66.31	1.46
KDD003	66.31	67.14	0.063
KDD003	67.14	68.23	0.725
KDD003	68.23	69.18	17.6
KDD003	69.18	69.97	2.8
KDD003	69.97	70.97	0.025
KDD003	70.97	71.97	0.032
KDD004	57.23	57.78	0.076
KDD004	57.78	58.51	0.006
KDD004	58.51	59.51	0.422
KDD004	59.51	60.51	0.386
	60.51	61.43	0.25
	b1.43	62.23	0.053
	62.23	63.U5	0.3/5
	62.60	03.09 64 65	0.012
	6/ 65	65 A2	0.207
KDD004	65.43	65 Q2	0.077

Hole ID	From	To (m)	Gold g/t
	(m)		
KDD004	68.54	69.44	0.014
KDD004	69.44	70.44	0.14
KDD004	70.44	71.44	0.704
KDD004	71.44	72.44	0.379
KDD004	72.44	73.4	0.235
KDD004	73.4	74.3	0.235
KDD004	74.3	75.4	0.176
KDD004	75.4	76.4	0.515
KDD004	76.4	77.06	0.067
KDD004	77.06	78.02	0.081
KDD004	86.6	87.58	0.007
KDD004	87.58	88.58	0.063
KDD004	88.58	89.56	0.362
KDD004	89.56	90.24	0.049
KDD004	90.24	91	0.078
KDD004	91	92	0.212
KDD004	92	92.87	0.613
	92.87	93./7	0.3/3
	93.//	94.//	0.031
	94.// 1/1 E/	55.// 147 E4	0.083
	141.54	142.54	0.129
KDD004	142.54	143.34	0.108
KDD004	144 54	145.54	0 484
KDD004	145.54	146.54	0.251
KDD004	146.54	147.54	1.265
KDD004	147.54	148.54	0.932
KDD004	148.54	149.54	1.175
KDD004	149.54	150.28	1.2
KDD004	150.28	151.28	1.095
KDD004	151.28	152.28	0.691
KDD004	152.28	152.98	0.083
KDD004	152.98	153.9	0.005
KDD004	154.4	155	0.031
KDD004	155	156	0.148
KDD004	156	157	0.246
KDD004	157	158	1.355
KDD004	158	158.6	0.461
KDD004	158.0	159.15	0.456
	159.15	159.9	0.20
	159.9	161 73	0.005
KDD004	161 73	162.37	0.727
KDD004	162.37	163.13	0.386
KDD004	163.13	164.02	0.785
KDD004	164.02	165	0.01
KDD004	165	166	0.005
KDD005	0	1.22	1.4
KDD005	1.22	2.2	0.85
KDD005	2.2	3.14	1.43
KDD005	3.14	4	0.163
KDD005	4	5	0.183
KDD005	5	6	0.552
KDD005	6	6.78	0.973
KDD005	6.78	7.38	4.13
KDD005	7.38	8	0.342
KDD005	8	9	0.274
KDD005	9	10	0.633
	10	11	6.64
	11	12	0.560
KDD005	12	13	0.108
NDD003	12	14	0.074

Hole ID	From (m)	To (m)	Gold g/t
KDD005		45	0.4.54
KDD005	14	15	0.161
KDD005	15	10	2.01
KDD005	10	17	0.07
KDD005	17	10	1.08
KDD005	10	19 73	0.473
KDD005	19 73	20.38	0.473
KDD005	20.38	20.00	4.14
KDD005	21.19	22	1.53
KDD005	22	23	1.035
KDD005	23	24	0.295
KDD005	24	25	0.448
KDD005	25	26	0.163
KDD005	26	27	1.2
KDD005	27	27.92	0.79
KDD005	27.92	28.52	0.563
KDD005	28.52	29.23	3.27
KDD005	29.23	29.82	4.55
KDD005	29.82	30.36	1.12
KDD005	30.36	31.35	0.22
KDD005	31.35	31.95	0.206
KDD005	31.95	32.96	0.301
KDD005	32.96	33.67	1.195
KDD005	33.67	34.49	0.892
KDD005	34.49	35.28	0.556
KDD005	35.28	36.05	1.25
KDD005	36.05	36.99	0.811
KDD005	36.99	38	2.18
KDD005	38	39	2.40
	39	40	2 21
KDD005	40	41	0.443
KDD005	41	42	0.399
KDD005	43	44	0.101
KDD005	44	44.79	0.086
KDD005	55	56	0.012
KDD005	56	57	0.01
KDD005	57	58	0.284
KDD005	58	59	0.216
KDD005	59	60	0.065
KDD005	60	61	0.652
KDD005	61	62	0.086
KDD005	62	63	0.042
KDD005	63	64	0.386
KDD005	64	64.86	0.027
KDD005	64.86	65.86	0.01
	66.66	67.8	0.009
	b/.8 دو وې	60.0	0.000
	50.60 ۵ ۵	05.80 70 01	0.929
KDD005	70 21	70.01	1 29
KDD005	70.81	71.01	0 296
KDD005	72 81	73.81	0 144
KDD005	73.81	74.81	0.051
KDD006	17.6	18.13	0.104
KDD006	18.13	19.18	0.034
KDD006	19.18	20.18	0.325
KDD006	20.18	20.73	0.796
KDD006	20.73	21.35	0.314
KDD006	21.35	21.98	0.159
KDD006	21.98	22.67	1.56
KDD006	22.67	23.66	0.678

Hole ID	From	To (m)	Gold g/t
	(m)		
KDD006	23.66	24.47	0.515
KDD006	24.47	25.18	1.185
KDD006	25.18	25.81	0.332
KDD006	25.81	26.65	4.06
KDD006	26.65	27.64	0.196
KDD006	27.64	28.64	0.117
KDD006	43	44	0.005
KDD006	44	44.73	0.009
KDD006	44.73	45.64	0.32
KDD006	45.64	40.00	0.714
KDD006	40.00	47.00	0.307
KDD006	48.5	49.1	3.5
KDD006	49.1	50	0.173
KDD006	50	50.86	0.161
KDD006	50.86	51.55	1.79
KDD006	51.55	52.24	1.99
KDD006	52.24	53	0.325
KDD006	53	54	0.22
KDD006	54	55	1.115
KDD006	55	56	0.959
KDD006	56	57	0.955
KDD006	57	57.73	1.725
KDD006	57.73	58./3	11.35
	50.73	59.73	4.50
KDD006	60.73	61.46	0.023
KDD006	61.46	62.44	0.166
KDD006	62.44	63.44	1.32
KDD006	63.44	64.44	1.42
KDD006	64.44	65	2.66
KDD006	65	66	1.41
KDD006	66	67	2.58
KDD006	67	68	1.58
KDD006	68	69	1.315
	69 70	70	0.813
KDD006	70	71	1.695
KDD006	72	73	1.565
KDD006	73	74	1.335
KDD006	74	75	1.08
KDD006	75	76	0.631
KDD006	76	76.51	0.531
KDD006	76.51	77.17	0.141
KDD006	77.17	78.17	1.14
KDD006	/8.1/	/9.1/	6.31
KDD006	79.17	80	0.048
KDD006	103 73	104 73	0.028
KDD006	104.73	105.73	0.023
KDD006	105.73	106.73	4.96
KDD006	106.73	107.25	0.957
KDD006	107.25	108	0.053
KDD006	108	109	0.377
KDD006	109	110	0.096
KDD006	110	110.82	0.112
KDD006	110.82	111.75	0.288
	111./5 112.75	112./5	0.928
KDD006	112.73	112.73	0.259
KDD006	114.89	115.76	0.031
KDD008	13	14	0.083

Hole ID	From	To (m)	Gold g/t
	(m)		
KDD008	14	15	0.039
KDD008	15	16	0.239
KDD008	16	17	0.094
KDD008	17	17.65	0.443
KDD008	17.65	18.66	0.445
KDD008	18.66	19.58	0.215
KDD008	19.58	20.73	0.653
KDD008	20.73	21.35	1.015
	21.35	22.35	0.791
	22.35	23.35	0.818
KDD008	23.35	25.35	0.121
KDD008	25.35	26.12	0.024
KDD008	26.12	27	0.472
KDD008	27	28	0.37
KDD008	28	29	0.059
KDD008	29	30	0.071
KDD008	30	31	0.586
KDD008	31	32	0.228
KDD008	32	33	3.1
KDD008	33	34	0.251
KDD008	34	34.54	0.188
KDD008	34.54	35.54	0.258
KDD008	35.54	36.54	0.455
KDD008	36.54	37.54	0.621
KDD008	37.54	38.54	0.948
	38.54 20 54	39.54	0.474
	39.54 40.54	40.34	1 405
KDD008	41.06	41.00	2.68
KDD008	42	43	0.163
KDD008	43	44	1.36
KDD008	44	45	2.1
KDD008	45	46	2.22
KDD008	46	46.54	0.784
KDD008	46.54	47.44	2.08
KDD008	47.44	48.23	1.17
KDD008	48.23	49.04	1.005
KDD008	49.04	49.88	0.626
KDD008	49.88	50.73	1.395
KDD008	50.73	51./3	2.25
	51.73	52./3	0.260
KDD008	53.73	54.38	2 33
KDD008	54.38	55.05	0.512
KDD008	55.05	55.9	1.82
KDD008	55.9	56.73	1.78
KDD008	56.73	57.81	3.05
KDD008	57.81	58.8	4.19
KDD008	58.8	59.73	5.14
KDD008	59.73	60.69	1.35
KDD008	60.69	61.53	1.71
KDD008	61.53	62.53	1.005
	62.53	63.53	1.685
	03.53 64 E2	64.53	0.078
KDD008	04.53 67 52	60.53 60.52	0.05
KDD008	68 52	69 <i>4</i> 7	0.074
KDD008	69.47	70	0.342
KDD008	70	71	0.906
KDD008	71	71.84	0.949
KDD008	71.84	72.82	0.637

Hole ID	From	To (m)	Gold g/t
	(m)		
KDD008	72.82	73.33	0.129
KDD008	73.33	74.32	0.394
KDD008	74.32	75.31	0.459
KDD008	75.31	76.32	1.315
KDD008	76.32	77.31	2.48
KDD008	77.31	78.3	0.439
KDD008	78.3	79.29	1.175
KDD008	79.29	80.28	0.508
KDD008	80.28	81.31	0.634
KDD008	81.31	82.43	2.76
KDD008	82.43	83.41	0.013
KDD008	83.41	84.37	0.109
KDD008	84.37	85.33	0.208
KDD008	85.33	86.14	0.426
KDD008	86.14	86.73	0.346
KDD008	86.73	87.61	1.04
KDD008	87.61	88.29	0.336
KDD008	88.29	89.26	2.23
KDD008	89.26	90.36	1.325
KDD008	90.36	91.35	2.18
KDD008	91.35	92	0.244
KDD008	92	93	0.007
KDD008	93	94	0.027
KDD008	94	94.95	0.055
KDD008	94.95	95.96	0.25
KDD008	95.96	96.92	0.851
KDD008	96.92	97.6	0.0025
KDD008	97.6	98.4	0.779
KDD008	98.4	98.92	0.017
	96.92	100 52	0.64
	99.91 100 52	100.52	2.01
	100.32	101.24	0.388
KDD008	101.24	102.2	0.043
KDD008	102.2	103	0.491
KDD008	103	105	0.158
KDD008	105	105.5	0.638
KDD008	105.5	106	0.066
KDD008	106	107	0.474
KDD008	107	108	0.441
KDD008	108	108.54	0.046
KDD008	108.54	109.53	0.187
KDD008	116.11	117.11	0.04
KDD008	117.11	118.11	0.097
KDD008	118.11	118.97	0.659
KDD008	118.97	119.67	0.406
KDD008	119.67	120.56	0.013
KDD008	120.56	121.56	0.274
KDD008	121.56	122.56	0.116
KDD008	122.56	123.56	0.028
KDD008	123.56	124.56	0.148
KDD008	124.56	125.56	0.104
KDD008	125.56	126.43	0.331
KDD008	126.43	127.23	0.026
KDD008	127.23	128.23	0.324
KDD008	128.23	129.23	0.064
KDD008	129.23	130.06	0.077
KDD008	130.06	131	0.178
	131	131./3	0.758
	131./3	132./3	0.41
	132./3	133./3	U.38/
KDD008	133./3	134.47	1.45

Hole ID	From (m)	To (m)	Gold g/t
KDD008	134.47	135.09	1.445
KDD008	135.09	136.09	0.093
KDD008	136.09	137.09	0.452
KDD008	137.09	138.09	3.57
KDD008	138.09	139.09	0.994
KDD008	139.09	140.09	1.065
KDD008	140.09	141.09	1.2
KDD008	141.09	142.09	3.01
KDD008	142.09	143.09	2.49
KDD008	143.09	144.09	4.16
KDD008	144.09	144.98	2.51
KDD008	144.98	145.9	1.65
KDD008	145.9	146.9	0.157
KDD008	146.9	147.9	0.338
KDD008	147.9	148.9	0.986
KDD008	148.9	149.9	0.306
KDD008	149.9	150.9	3.41
KDD008	150.9	151.9	0.302

Hole ID	From (m)	To (m)	Gold g/t
KDD008	151.9	152.9	0.418
KDD008	152.9	153.9	0.147
KDD008	153.9	154.9	0.223
KDD008	154.9	155.66	0.007
KDD008	155.66	156.66	0.505
KDD008	156.66	157.66	0.37
KDD008	157.66	158.66	1.635
KDD008	158.66	159.66	1.855
KDD008	159.66	160.66	0.022
KDD008	160.66	161.66	0.538
KDD008	161.66	162.66	4.28
KDD008	162.66	163.31	0.803
KDD008	163.31	164.35	0.011
KDD008	164.35	165.46	0.05
KDD008	165.46	166.08	0.517
KDD008	166.08	166.8	0.032
KDD008	166.8	167.8	0.022

Appendix 5. JORC Table 1 Reporting

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling was completed using a dedicated diamond rig. Drillholes were angled at -55° from surface. Diamond core was cut in half using a core saw. Sampling intervals are decided by a Company Geologist, based on the lithological contacts and on any change in alteration or mineralisation style. Core sample length vary between 0.5m and 1.4m. The half core sampling is done by a Company Geologist.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Coring was completed using HQ size from surface. All core is oriented using Reflex digital system.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill core recoveries were recorded at the drill rig. Core recoveries were excellent for all the drill program. Sample bias is not expected with the cut core.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	 All diamond holes were logged in the field by Company Geologists. Lithologies, alteration, minerals, geotechnical measurements and structural data were recorded and uploaded into the Company database. Photography was taken on dry and wet core and on plain and cut core for further

Criteria	JORC Code explanation	Commentary
	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	references.Drill holes were logged in full. Logging was qualitative and quantitative in nature.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The diamond core was cut longitudinally using a core saw. Half core samples were collected by a Company Geologist and sent off to the laboratory for assay. Half core samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay. Drilling samples were assayed using methods Au-AA24 for gold and ME-MS61 for the multi element suite. The sample preparation procedures carried out are considered acceptable. Blanks and standards (CRM) are used to monitor Quality Control and representativeness of samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Half core and trenches samples were assayed by 50g Lead collection fire assay in new pots and analysed by Atomic Absorption Spectroscopy (AAS) for gold. Multielement were assayed using a 4-acid digest followed by ICPMS-AES Industry best practice procedures were followed and included submitting blanks, field duplicates (for trench samples only) and Certified Reference Material. Acceptable levels of accuracy and precision have been confirmed.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 At this stage, the intersections have been verified by the Company Geologists. All field data is manually collected, entered into excel spreadsheets, validated and loaded into a database. Electronic data is stored on a cloud server and routinely backed up. Data is exported from the database for processing in a number of software packages.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes collar locations were recorded at the completion of each hole by hand-held GPS. Coordinates collected are in the WGS84 Zone 33S grid system

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes reported here were planned and completed under previous trenches as part of a reconnaissance program. They are not on a regular type grid and should be considered as early-stage exploration holes.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• Drill holes were positioned using geological information collected from the trenches and from the detailed mapping completed over the prospect. They are positioned perpendicular to the main schistosity and so to the inferred mineralisation main controls.
Sample security	• The measures taken to ensure sample security.	 Sampling is supervised by a Company Geologist and all samples are delivered to the laboratory in Okahandja by company staff.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• No reviews or audits have been conducted.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Damaran Project comprises 12 exclusive prospecting licenses (EPLs 6226, 4833, 8039, 7246, 4818, 4953, 6534, 6535, 6536, 8249,7327,7980) and located in central Namibia. EPL6226 is 100% held by WiaGold in the name of Aloe Investments One Hundred and Ninety Two (Pty) Ltd. EPL4833, 4818, 7246, 8039 and 8249 are held under an 80% earn-in and join venture agreement with Epangelo Mining Limited, a private mining investment company with the Government of the Republic of Namibia as the sole shareholder. EPL6534, 6535, 6536, and 4953 are held under a company called Gazina Investments which is owned 90% by Wia and 10% by the vendor. EPL7980 is 100% held by WiaGold in the name of Damaran Exploration Namibia (PTY) Ltd. EPL7327 is under an agreement with an exclusive option to acquire the permit under a NewCo at Wia election. All granted tenements are in good standing and there are no material issues affecting the

Criteria	JORC Code explanation	Commentary
		tenements.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Work completed prior to WiaGold includes stream sediment sampling, mapping, soil and rock chip sampling by Teck Cominco Namibia but data is unavailable. This work did not cover the Okombahe permit, host of the Kokoseb gold discovery.
Geology	 Deposit type, geological setting and style of mineralisation. 	• Kokoseb mineralisation is hosted by sediments (biotite-schists) which have been intruded by several granitic phases. The gold anomaly appears as a contact like aureole of the central granitic pluton, with a diameter of approximately 3km in each direction
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 see tables in the appendix.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported intercepts are calculated using weighted average at a cut-off grade of 0.5 g/t Au and allowing internal dilution of maximum 2m consecutive low-grade material.
Relationshi p between mineralisati on widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole 	 Results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known so intercepts are reported as they appear from the sampling.

Criteria	JORC Code explanation	Commentary
intercept lengths	lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Plan view maps of all drillhole are included.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All samples with assays have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other exploration data is being reported at this time.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Refer to the text in the announcement for information on follow-up and/or next work programs.