

QUARTERLY REPORT FOR THE PERIOD ENDED 30 JUNE 2022

Highlights

Corporate

Cash at bank of \$10.4 million at the end of the quarter

Hualilan Gold Project - San Juan, Argentina

- Maiden Mineral Resource Estimate (MRE) of 2.1 million ounces (AuEq)¹ at CEL's flagship Hualilan Gold Project containing a high grade core of 6.3 Mt at 5.6 g/t AuEq¹ for 1.1 Moz AuEq
- MRE is based on 125,700 metres of CEL's current 204,000 metre drill program and mineralisation remains open in all directions
- Approximately 201,500 of the 204,000 metre drill program now completed with assays pending for 53,000 drill metres. Accordingly the rig count has been reduced from 9 to 3 rigs
- Drilling post CEL's MRE significantly expands mineralisation, particularly the high-grade core
 of 1.1 Moz at 5.6 g/t AuEq¹, in multiple directions with results Including;
 - 28.5 metres at 5.3 g/t AuEq (5.0 g/t Au, 23.9 g/t Ag, 0.02 % Pb, 0.03 % Zn) (GNDD-530)
 - 6.6 metres at 6.4 g/t AuEq (4.2 g/t Au, 50.0 g/t Ag, 0.01 % Pb, 3.4 % Zn) (GNDD-536)
 - 34.4m at 0.7 g/t AuEq (0.5 g/t Au, 2.0 g/t Ag, 0.2 % Pb, 0.5 % Zn) from 59.0m including
 6.3 metres at 2.4 g/t AuEq (1.1 g/t Au, 7.7 g/t Ag, 1.1 % Pb, 2.2 % Zn (GNDD-563)
 - 1.4 metres at 75.1 g/t AuEq (67.0 g/t Au, 101 g/t Ag, 0.04 % Pb, 15.0 % Zn) (GNDD-533)
- Outstanding metallurgical testing with average gold recovery increased to 95% across all ore types and a clear route to recover silver, zinc and lead credits via standard sequential flotation

• El Guayabo/Colorado V Gold/Copper Projects - El Oro, Ecuador

- Two new Au-Cu-Ag-Mo discoveries of significant scale in the first two regionally significant Au-soil anomalies drilled in Colorado V with results including (refer Table 8):
 - 528.7m at 0.5 g/t AuEq²
 397.1m at 0.6 g/t AuEq²
 108.0m at 0.7 g/t AuEq²
 130.2m at 0.7 g/t AuEq²
- 0.3 g/t Au, 2.0 g/t Ag, 0.1 % Cu from 4.5m to eoh, including;
- 0.3 g/t Au, 2.8 g/t Ag, 0.1% Cu from 4.5m including;
- 0.4 g/t Au, 2.8 g/t Ag, 0.1 Cu from 6.0m and;
 - 0.4 g/t Au, 3.3 g/t Ag, 0.1 Cu from 166.6m (CVDD-22-001)
 - 0.2 g/t Au, 2.0 g/t Ag, 0.1% Cu from 5.0m to eoh including;
- 0.2 g/t Au, 2.3 g/t Ag, 0.1% Cu from 14.0m (CVDD-22-002)
- 564.1 m at 0.4 g/t AuEq² 278.0 m at 0.6 g/t AuEq² 146.5 m at 0.7 g/t AuEq²

570.0m at 0.4 g/t AuEq²

306.0m at 0.5 g/t AuEq²

- 0.2 g/t Au, 2.3 g/t Ag, 0.1 % Cu, from 8.1m including;
 0.3 g/t Au, 3.2 g/t Ag, 0.1% Cu, from 8.1m including;
- 0.4 g/t Au, 3.2 g/t Ag, 0.1 % Cu, from 8.1m (CVDD-22-005)
- 509.9 m at 0.4 g/t AuEq²
 242.5 m at 0.6 g/t AuEq²
- 0.2 g/t Au, 1.4 g/t Ag, 0.1% Cu, from 2.5m including;
- 0.4 g/t Au, 1.8 g/t Ag, 0.1% Cu, from 2.5m (CVDD-22-003)
 ian Registered Office Directors Contact

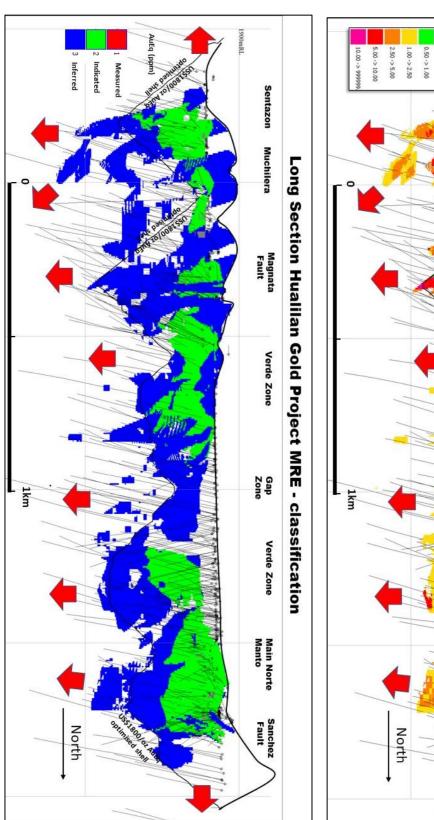
Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Challenger Exploration (ASX: CEL) ("CEL" or the "Company") is pleased to provide its Quarterly Activities Report for its Gold and Copper projects in Argentina and Ecuador for the period ended 30 June 2022 ("Quarterly", "Reporting Period").

CORPORATE

Net spend during the quarter was \$10.0m which included net exploration expenditure of \$9.2 million, including approximately \$1.7m Argentinian VAT which will be recouped, and administration and corporate costs of approximately \$0.8 million. The exploration expenditure was primarily drilling and assay expenditure which accounted for 80% of the total exploration spend. Director associated fees of \$100,000 was paid to related parties. During the quarter the Company had 9-rigs at Hualilan for 37,036 metres drilled and 2 rigs completing 6,440 metres in Ecuador for total drill metres of 43,476 metres.

Challenger had cash at the end of the quarter of \$10.4m. With 201,500 metres of the 204,000 metre drill program at Hualilan now completed, the rig count has been decreased to from 9 -rigs to 3-rigs in Argentina with the 2-rigs maintained in Ecuador. Quarterly budgeted drill metres are approximately one third of the June quarter. Accordingly net spend for the next two quarters will reduce significantly.


Assay results for 53,000 metres of drilling at Hualilan that remain pending are anticipated to be received progressively over the next 4 months. The lesser rig count at Hualilan will allow the company the resources to undertake an extensive program of surface channel sampling, as several roads installed for drill rig access at Hualilan have uncovered surface mineralisation. Additionally, the Company will begin economic studies once the updated Hualilan MRE, that will be based on the entire 204,000 metre drill program, has been completed.

The drill program in Ecuador will remain unchanged with both rigs focussed on the main discovery zone at the GY-A anomaly, El Guayabo, from August. This additional 25,000 metres is designed to produce a maiden MRE in accordance with the JORC Code from the 100% owned GY-A anomaly.

Cerro Sur Looking north showing drill rig access roads both into the Hualilan Hills and on the plains

Sentazon Muchilera Long Section Hualilan Gold Project MRE Magnata Fault Verde Zone Gap Zone **Grade Distribution** Verde Zone Main Norte Manto Sanchez Fault Figure 2 - Long Section (MRE block model)

Figure 1 - Long section (MRE classification)

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

HUALILAN GOLD PROJECT - ARGENTINA

2.1 MILLION OUNCE (AUEQ)¹ MAIDEN MRE FOR HUALILAN GOLD PROJECT

During the Quarter the Company released a maiden Mineral Resource Estimate (MRE) which was reported according to JORC (2012) for the Company's flagship Hualilan Gold Project, in San Juan Argentina. This MRE was based on 125,700 metres of the Company's 204,000 metre diamond core drill program and accordingly it should be regarded as an interim resource estimate that will be updated at the completion of the drill program. CEL has completed 201,500 of 204,000m of drilling with the final 2,500m on track for completion in August.

Mineralisation remains open in all directions and there is clear potential for the MRE to grow significantly via extension and infill drilling. Sixty-three significant intersections did not impact the MRE which compares to the 499 CEL drill holes used in the MRE. Of these intersections several are located 500 to 600 metres outside the resource limits, requiring additional infill drilling, and several define new zones of mineralisation which are currently being followed up.

The MRE comprises two styles of mineralisation, higher-grade limestone skarn (manto) mineralisation, and lower grade mineralisation predominantly hosted in intrusives and sediments. These two components of the Interim MRE of 2.13Moz AuEq (at a 0.25 g/t AuEq cut-off near surface and 1.0 g/t AuEq at depth) are reported in Table 1. Approximately 0.8Moz AuEq of the MRE is classified as Indicated with the balance, including all mineralisation outside the US\$1800 AuEq optimised pit shell, classified as Inferred (Table 3).

Mineralisation Style	Mt (0.25 g/t AuEq cut-off)	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	Au Eq (g.t)
Manto skarn (limestone hosted)	6.3	4.4	19.4	2.0	0.2	5.6
intrusion/sediment hosted	41.4	0.6	4.0	0.2	0.04	0.8
Mineralisation Style	Contained Metal	Au (Moz)	Ag (Moz)	Zn (kt)	Pb (kt)	Au Eq (kOz)
Manto skarn (limestone hosted)		0.9	3.9	123	11	1.13
intrusion/sediment hosted		0.8	5.3	95	19	1.00
Total Contained metal		1.7	9.2	218	29	2.13

Table 1 - Interim MRE reported as Skarn and Intrusion/sediment hosted components of mineralisation

Table 2 (Hualilan MRE at various cut-off grades) shows the robust nature of the interim Hualilan MRE at higher cut off grades. Importantly, there is a high retention of contained gold equivalent ounces as the cut-off grade is lifted. This reflects the substantial volumes of low-grade intrusion and sediment-hosted mineralisation surrounding the higher-grade skarn mineralisation in the 2.1Moz Interim MRE.

The Interim Hualian MRE contains a high grade core of skarn mineralisation comprising:

- 1.2 Moz at 5.2 g/t AuEq 7.2Mt at 4.1 g/t Au, 18.0 g/t Ag, 1.8% Zn, 0.16% Pb (2.2 g/t AuEq cut-off)
- 1.0 Moz at 6.4 g/t AuEq 4.9Mt at 5.1 g/t Au, 21.9 g/t Ag, 2.3% Zn, 0.19% Pb (3.1 g/t AuEq cut-off)

Cut-off (g/t AuEq)	Mt	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	Au Eq (g/t)	Moz (AuEq)
0.25	47.7	1.1	6	0.46	0.06	1.4	2.13
0.30	42.7	1.2	6.5	0.50	0.07	1.5	2.09
0.40	35.1	1.4	7.5	0.58	0.07	1.8	2.00
0.50	29.6	1.6	8.3	0.66	0.08	2.0	1.93
0.60	25.3	1.8	9.2	0.75	0.09	2.3	1.85
0.70	22.2	2.0	10.0	0.82	0.10	2.5	1.79
0.80	19.8	2.2	10.7	0.89	0.10	2.7	1.73
0.90	18.0	2.3	11.3	0.96	0.11	2.9	1.68
1.00	16.5	2.4	11.8	1.02	0.11	3.1	1.63
1.10	15.0	2.6	12.4	1.09	0.12	3.3	1.58
1.20	13.6	2.8	13.3	1.18	0.12	3.5	1.53
1.30	12.4	3.0	13.9	1.26	0.13	3.7	1.48
1.40	11.6	3.1	14.4	1.31	0.13	3.9	1.45
1.50	10.8	3.2	14.9	1.37	0.14	4.1	1.41
1.60	10.2	3.3	15.3	1.44	0.14	4.2	1.38
1.70	9.5	3.5	15.8	1.50	0.15	4.4	1.34
1.80	8.9	3.6	16.3	1.57	0.15	4.6	1.31
1.90	8.5	3.7	16.7	1.62	0.15	4.7	1.28
2.00	8.0	3.9	17.2	1.68	0.16	4.9	1.25
2.10	7.6	4.0	17.6	1.73	0.16	5.0	1.23
2.20	7.2	4.1	18	1.79	0.16	5.2	1.20
2.30	6.9	4.2	18.5	1.85	0.17	5.3	1.18
2.40	6.5	4.3	19.0	1.90	0.17	5.5	1.15
2.50	6.3	4.4	19.4	1.95	0.17	5.6	1.13
2.60	5.9	4.6	20.2	2.05	0.18	5.8	1.10
2.70	5.6	4.7	20.6	2.10	0.18	6.0	1.08
2.80	5.4	4.8	21.0	2.16	0.19	6.1	1.06
2.90	5.2	4.9	21.4	2.21	0.19	6.3	1.03
3.00	4.9	5.1	21.9	2.27	0.19	6.4	1.01

 Table 2 - Total MRE at various cut off grades - Note: Some rounding errors may be present

The high retention of metal as the cut-off grade is lifted is demonstrated by combined skarn/intrusion-hosted Resource Estimate at cut-off grades above the 0.25 g/t cut-off grade. Within the same resource model taking a cut-off grade of 0.40 produces a MRE containing 2.0 million ounces AuEq at a grade of 1.8 g/t AuEq while at a 0.50 g/t AuEq cut-off the MRE containing 1.9 million ounces at a grade of 2.0 g/t AuEq.

- 2.0 Moz at 1.8 g/t AuEq 35.1Mt at 1.4 g/t Au, 7.5 g/t Ag, 0.6% Zn, 0.07% Pb (0.40 g/t AuEq cut-off)
- 1.9 Moz at 2.0 g/t AuEq 29.6Mt at 1.6 g/t Au, 8.3 g/t Ag, 2.3% Zn, 0.08%Pb (0.50 g/t AuEq cut-off)
- 1.6 Moz at 3.1 g/t AuEq 16.5Mt at 2.4 g/t Au, 12 g/t Ag, 1.0% Zn, 0.11%Pb (1.0 g/t AuEq cut-off)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

This grade-tonnage distribution provides the Hualilan Gold project with significant flexibility in response to a changing gold price or costs. It provides the opportunity to evaluate a staged startup using a higher grade starter pit. As can be seen in Figure 2 (MRE block model in Long Section) there are distinct near surface higher-grade zones of mineralisation at Sentazon, Muchilera, the Magnata Fault Zone and the main Norte Manto. Additionally, Figure 1, the Long Section showing the MRE by resource classification shows these zones of high-grade near surface mineralisation are predominantly in the Indicated Resource component of the MRE.

Table 3 shows the classification of the Interim MRE comprising approximately 0.80 million ounces AuEq in the Indicated category with the balance classified as Inferred Resource. This is in line with the Company's expectations at this early stage. Given the mineralisation remains open in all directions, the focus has been on expanding the mineralisation and scoping the potential size of the deposit rather than close spaced drilling to generate a large component of MRE classified as measured. This focus on resource expansion is reflected in the world class discovery cost of US\$8.20 per ounce.

Domain	Category	Mt	Au g/t	Ag g/t	Zn %	Pb %	AuEq g/t	AuEq (mozs)
US\$1800 optimised shell	Indicated	18.7	1.1	5.4	0.41	0.07	1.3	0.80
> 0.25ppm AuEq	Inferred	25.0	1.0	5.6	0.39	0.06	1.2	1.00
Below US\$1800 shell >1.0ppm AuEq	Inferred	4.0	1.9	11.5	1.04	0.07	2.6	0.33
	Total	47.7	1.1	6.0	0.45	0.06	1.4	2.13

Note: Some rounding errors may be present

Table 3 Total MRE (Combined skarn and Intrusion hosted domains)

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1900 Oz, Ag US\$24 Oz, Zn US\$4,000/t, Pb US\$2000/t
- Metallurgical recoveries are estimated to be Au (95%), Ag (91%), Zn (67%) Pb (58%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: $AuEq (g/t) = Au (g/t) + [Ag (g/t) \times 0.012106] + [Zn (%) \times 0.46204] + [Pb (%) \times 0.19961]$
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.
- For additional information on the maiden MRE including Pit Optimisation Parameters, the Mineral Resource Estimate Model, Compositing and Top Cuts refer to ASX Release dated 1 June 2022

<u>Growth Potential from Drill intercepts that have not impacted the MRE</u>

The MRE includes significant intersections from 499 of the Company's drill holes however there remains many significant intercepts that have not impacted the MRE. Of these intersections several are located 500 to 600 metres outside the resource limits, many require additional infill drilling, several define new zones of mineralisation which are currently being followed up with drilling with the majority located below the US\$1800 (0.25 g.t AuEq) optimised pit shell. Some of these intercepts are listed in Table 4.

Table 4 - Selected drill intercepts that were not impacted the Resource Estimate

	rable 4 - Selected drill intercepts that were not impacted the Resource Estimate						
Drillhole	Intercept (AuEq)	Comment	Gram Metres				
GNDD-113	104.0m at 1.7 g/t AuEq from 262.0m 30.0m at 0.4 g/t AuEq from 390.0m	top 30 metres only falls within the optimised pit shell below the optimised pit shell	176.8 12.0				
GNDD-394	5.0m at 8.7 g/t AuEq from 224.0m inc 3.0m at 14.3 g/t AuEq	hole located approximately 400 metres north-west of the current resource limit	43.5				
FHNV10-1B	9.2m at 5.1 g/t AuEq (channel) inc 4.6 m at 9.5 g/t AuEq	located 600 metres south of the resource boundary	47.2				
FHNV10-02	13.0m at 15.5 g/t AuEq (channel) inc 8.5m at 21.9 g/t AuEq	located 600 metres south of the resource boundary	201.3				
FHNV10-03	12.7m at 4.4 g/t AuEq (channel)	located 600 metres south of the resource boundary	56.0				
FHNV10-04	4.2m at 8.1 g/t AuEq (channel)	located 600 metres south of the resource boundary	34.6				
FHNV10-05	1.7m at 16.4 g/t AuEq (channel)	located 600 metres south of the resource boundary	27.4				
FHNV10-06	3.8m at 14.6 g/t AuEq (channel)	located 600 metres south of the resource boundary	55.8				
GNDD-256	8.0m at 1.0 g/t AuEq from 104.0m inc 2.0m at 2.0 g/t AuEq	100 metres south of resource boundary	8.0				
GNDD-434	67.6m at 2.6 g/t AuEq from 24.4m	Only top 20 metre of this intersection within the optimised pit shell requires down dip drilling	175.8				
GNDD-336	2.9m at 17.7 g/t AuEq from 312.0m Below optimised pit shell requires follow up		51.3				
GNDD-254	26.8m at 1.9 g/t AuEq from 363.0m inc 6.0m at 4.7 g/t AuEq	Below optimised pit shell new zone below Verde needs follow up drilling	49.4				
GNDD-106	4.0m at 2.6 g/t AuEq from 121.0m 8.0m at 0.5 g/t AuEq from 205.0m	Below the optimised pit shell Below the optimised \$1800 pit shell	10.4 4.0				
GNDD-088a	39.0m at 5.6 g/t AuEq from 224.0m	Below optimised pit shell and requires infill drilling	218.4				
GNDD-515	19.6m at 0.8 g/t AuEq from 298.4m inc 6.0m at 1.5 g/t AuEq	Below optimised pit shell	15.7				
	6.0m at 4.2 g/t AuEq from 376.0m	Below optimised pit shell and needs follow up drilling	25.2				
GNDD-250	30.0m at 0.4 g/t AuEq from 80.0m inc 5m at 1.3 g/t AuEq	Below optimised pit shell	12.0				
GNDD-306	25.0m at 0.6 g/t AuEq from 78.0m inc 8m at 1.2 g/t AuEq	Below optimised pit shell	15.0				
GNDD-532	14.5m at 2.1 g/t AuEq from 93.0m inc 9.0m at 2.9 g/t AuEq	Below optimised pit shell	29.4				
	10.9m at 2.6 g/t AuEq from 416.5m	Below optimised pit shell new Zone requires follow up drilling	28.4				
GNDD-512	37.0m at 0.6 g/t AuEq from 196.0m inc 4.0m at 1.6 g/t AuEq	Below optimised pit shell	22.2				
GNDD-432	37.4m at 0.8 g/t AuEq from 246.0m inc 1.3m at 7.0 g/t AuEq	Below optimised pit shell	29.9				
GNDD-500	67.5m at 0.3 g/t AuEq from 81.5m 40.0m at 0.8 g/t AuEq from 267.9m	Below optimised pit shell Below optimised pit shell	20.3 32.0				
GNDD-343	55.0m at 0.7 g/t AuEq from 190.0m	Below optimised pit shell	38.5				
GNDD-348e	53.0m at 0.5 g/t AuEq from 227.0m	Below optimised pit shell	26.5				
GNDD-326	2.0m at 7.5 g/t AuEq from 288.0m	400m east of resource new zone needs follow up	15.0				
GNDD-471	7.0m at 1.3 g/t AuEq from 372.0m	Extension of Verde Zone below optimised pit shell. Requires infill drilling as the hole was a 160m step out	9.1				

1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

	inc 2.0m at 3.9 g/t AuEq		
CNDD 124	20.0m at 1.5 g/t AuEq from 519.0m	New zone which required follow up drilling below optimised	30.0
GNDD-134	inc 2.9m at 9.8 g/t AuEq	pit shell	
	4.4m at 17.1 g/t AuEq from 240.0m	New zone below optimised pit shell follow up drilling required	75.2
GNDD-416	1.1m at 44.9 g/t AuEq from 530.7m	New zone below optimised pit shell follow up drilling required	49.4
	1.3m at 4.0 g/t AuEq from 424.6m	New zone below optimised pit shell follow up drilling required	5.2
GNDD-207	25.6m at 0.4 g/t AuEq from 217.4m	Below optimised pit shell	10.3
GNDD-437	26.6m at 2.2 g/t AuEq from 348.5m	new zone below Verde requires follow up drilling (below	58.5
	inc 4.2m at 12.7 g/t AuEq	optimised pit shell)	
GNDD-329e	14.0m at 1.2 g/t AuEq from 104.0m	Within optimised pit requires infill drilling	16.8
	68.0m at 0.5 g/t AuEq from 282.0m	below optimised pit shell	34.0
	36.8m at 0.6 g/t AuEq from 258.3m	Below optimised pit shell	22.1
GNDD-308e	45.0m at 0.4 g/t AuEq from 640.0m inc 27.0m at 0.6 g/t AuEq	Below optimised pit shell new zone requires follow up drilling	18
	4.0m at 5.8 g/t AuEq* from 1009m	Below optimised pit shell new zone requires follow up drilling	23.2
GNDD-547	3.7m at 7.3 g/t AuEq from 157.0,m	Below optimised pit shell new zone requires follow up drilling	27.1
GNDD-373	50.7m at 0.5 g/t AuEq from 376.9m	Below optimised pit shell	25.4
GNDD-285	2.0m at 6.9 g.t AuEq from 393.0m	Below optimised pit shell new zone requires follow up drilling	13.8
	32.5m at 0.8 g/t AuEq from 301.1m	Below optimised pit shell	26.0
GNDD-325	inc 15.5m at 1.4 g.t AuEq		
GNDD-200	66.8m at 0.7 g/t AuEq from 168.3m	Below optimised pit shell	46.8
GNDD-082	34.1m at 1.6 g/t AuEq from 193.4m	Below optimised pit shell	54.6
GNDD-345	70.5m at 0.5 g/t AuEq from 227.0m	Below optimised pit shell	35.3
GNRC-104	4.0m at 12.0 g/t AuEq from104.0m	Below optimised pit shell	48.0
GNDD-504	15.4m at 1.1 g/t AuEq from 448.0m	Below optimised pit shell	16.9
GNDD-115	34.5m at 0.3 g/t AuEq from 176.5m	Below optimised pit shell and requires follow up drilling	10.4
GNDD-356	27.0m at 0.5 g/t AuEq from 263.0m	Below optimised pit shell	13.5
GNDD-484	21.0m at 0.6 g/t AuEq from 343.0m	Below optimised pit shell	12.6
GNDD-298	21.0m at 0.8 g/t AuEq from 148.0m	Below optimised pit shell	16.8
GNDD-406	24.0m at 0.5 g/t AuEq from 242.0m	Below optimised pit shell	12.0
GNDD-400	0.5m at 90.3 g/t AuEq from 349.5m	Below optimised pit shell needs follow up drilling	45.2
GNDD-237	2.0m at 17.5 g/t AuEq from 349.7m	Below optimised pit shell	35.0
GNDD-409	22.0m at 1.3 g/t AuEq from 83.0m	Below optimised pit shell new zone needs follow up drilling	28.6
	inc 10.0m at 2.5 g/t AuEq	below optimised pit sitell new zone needs follow up drining	
GNDD-459	43.0m at 0.5 g/t AuEq from 339.0m	Below optimised pit shell needs infill drilling	21.5
GNDD-433	22.0 at 0.7 g/t AuEq from178.0m	Below optimised pit shell extreme northern extension of Verde Zone limited drilling requires follow up drilling	15.4
GNRDC-084	21.0m at 0.9 g/t AuEq from 78.0m	Below optimised pit shell requires follow up drilling	18.9
GNDD-138	54.0m at 0.4 g/t AuEq from 43.0m	within optimised pit required infill drilling	21.4
GNDD-527	5.0m at 1.9 g/t AuEq from 410.0m inc 3.1m at 2.9 g/t AuEq	Below pit shell new zone discovery requires follow up drilling	9.5

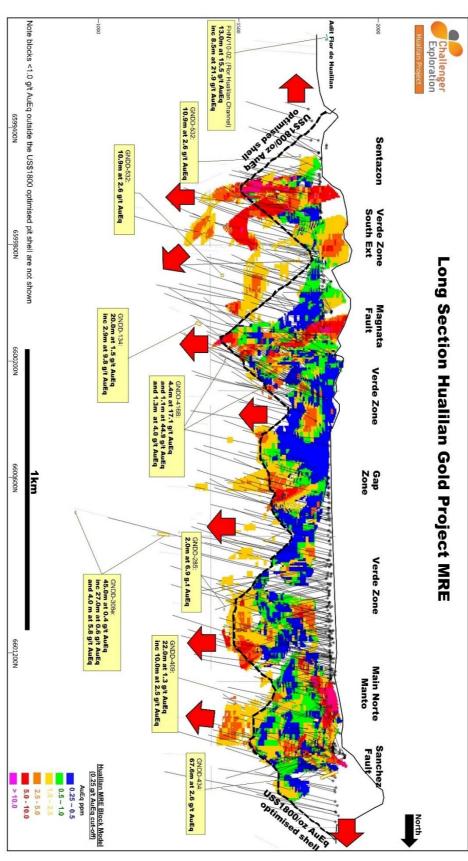
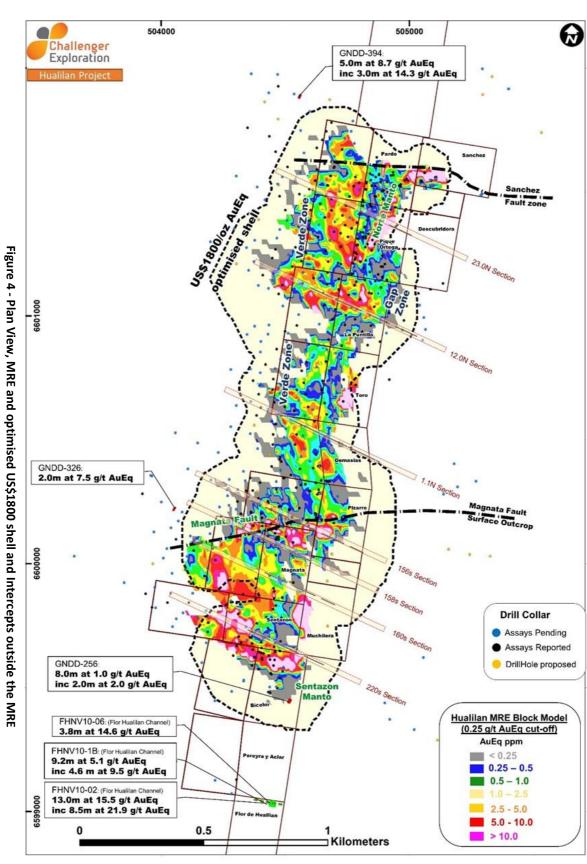


Figure 3 – Long Section of Interim MRE showing block model and significant intercepts outside the MRE

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights


Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Lower metal price surface shell optimisations

To evaluate the robustness of the MRE at lower metal prices the Company undertook a series of surface optimisations using the same Lerch-Grossman routine, at lower metal prices than the US\$1800 gold price used in the optimised shell for reporting the MRE. The results are shown in Table 5. The optimisation was done using the existing constrained MRE Model with a block cut-off of 1 g/t AuEq.

These lower price pit shells demonstrate the robustness of the MRE at lower gold prices and confirm a near surface higher grade core of the mineralisation. The US\$600 and \$800 optimisations highlight this robust high-grade near surface core of mineralisation that has the potential to provide a high-grade starter operation with the grades of 5.3 g/t AuEq in the US\$600 optimised shell and 4.4 g/t AuEq in the \$800 optimised shell.

Au Price	> 1.0 g/t	Mt	Au	Ag	Zn	Pb	AuEq	moz
(US\$Oz)	AuEq		(g/t)	(g/t)	(%)	(%)	(g/t)	(AuEq)
	Indicated	1.52	4.4	22.8	1.7	0.22	5.5	0.27
	Inferred	0.45	3.8	19.6	1.2	0.31	4.7	0.07
\$600	Total	1.97	4.3	22.1	1.6	0.24	5.3	0.34
	Indicated	2.93	3.7	16.1	1.4	0.16	4.6	0.43
	Inferred	0.93	3.0	21.9	0.88	0.21	3.7	0.11
\$800	Total	3.86	3.6	17.5	1.2	0.17	4.4	0.54
	Indicated	3.97	3.3	14.1	1.2	0.15	4.0	0.52
	Inferred	1.99	2.5	16.0	0.94	0.14	3.2	0.20
\$1000	Total	5.96	3.0	14.7	1.1	0.14	3.7	0.72

Table 5 - Surface optimisation scenarios (using a 1 g/t AuEq block cut-off) at various gold prices

DRILLING SOLIDIFIES OUTLOOK FOR A SIGNIFICANT UPLIFT TO THE MAIDEN MRE

During the quarter the Company released results from drilling targeting extensions to the mineralisation at the Company's flagship Hualilan Gold Project, in San Juan Argentina. The results include the first drill holes that were not included in the Company's recent maiden 2.1 million ounce AuEq¹ Mineral Resource Estimate (MRE) which includes a high-grade core of 1.1 Moz at 5.6 g/t AuEq¹.

The results continue to exceed the Company's expectations and confirms that mineralisation remains open in all directions, the majority of the new mineralisation is high-grade, and there is clear potential for the MRE to grow significantly via extension and infill drilling. Several recently completed holes (assays pending) have opened new high-grade targets for extension drilling and the Company believes that Hualilan will remain open in all directions at the completion of the current 204,000 metres.

In addition to the strong results from drilling designed to extend the mineralisation outside the interim MRE boundary several infill holes, often between holes with minimal grade, have returned significant high grade results which is enormously encouraging.

Significant intersections received after the MRE cut-off date

GNDD-530 - Verde Zone (South of the Magnata Fault)

GNDD-530 was a test for extensions of the Verde style mineralisation, south of the Magnata Fault, at depth. The hole was collared to test 80 metres below GNDD-500 which intersected 67.6 metres at 0.3 g/t AuEq from 81.5m and 40.0 metres at 0.8 g/t AuEq from 267.0m. GNDD-530 intersected three zones of mineralisation - 28.5 metres at 5.3 g/t AuEq (5.0 g/t Au, 23.9 g/t Ag, 0.02 % Pb, 0.03 % Zn) from 357.5m, 23.0 metres at 0.3 g/t AuEq (0.3 g/t Au, 1.2 g/t Ag, 0.01 % Pb, 0.02 % Zn) from 107.0m, and 54.0 metres at 0.4 g/t AuEq (0.3 g/t Au, 2.0 g/t Ag, 0.01 % Pb, 0.06 % Zn) from 159.0m.

All three intersections extended the mineralisation 80 metres down dip of the current MRE boundary with the deepest intersection (28.5m at 5.3 g/t AuEq) demonstrating significantly improved grades at depth which is becoming common in the Verde Style mineralisation at depth. The second intersection (54.0m at 0.4 g/t AuEq) significantly expanded the width of the mineralisation.

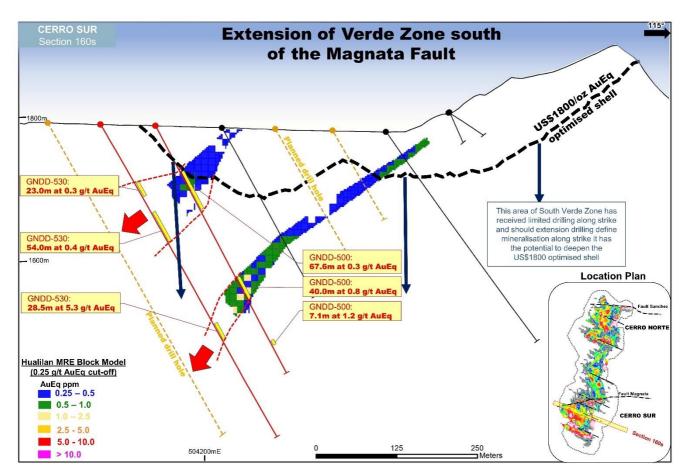


Figure 5 - Cross Section GNDD-530

Figure 5 shows the MRE block model in section and GNDD-530. On this section the mineralisation below the US\$1800 optimised pit shell was not included in the MRE as it has a grade of less than the 1.0 g/t AuEq cut off used for reporting the underground component of the MRE. This area of the MRE is relatively lightly drilled with additional drilling planned along strike and both up and down-dip. The

higher grade mineralisation intersected at depth in GNDD-530, and any additional high-grades in infill and extensional drilling, has the potential to significantly deepen the US\$1800 optimised pit shell which would provide a material increase to the current MRE.

GNDD-563 - Northern Verde Zone

The results of GNDD-563 are significant as the hole is on the northern most section of the Verde Zone and only a minor amount of mineralisation was included in the maiden MRE from this section (Figure 6). GNDD-563 intersected a broad zone of consistent mineralisation 75 metres up-dip of the maiden MRE boundary and several follow-up holes (assays pending) indicate extensive mineralisation.

The upper intercept in GNDD-563 of **34.4m** at **0.8** g/t AuEq (**0.5** g/t Au, **2.0** g/t Ag, **0.2** % Pb, **0.5** % Zn) from 59.0m including **6.3** metres at **2.4** g/t AuEq (**1.1** g/t Au, **7.7** g/t Ag, **1.1** % Pb, **2.2** % Zn) and **2.0** metres at **3.1** g/t AuEq (**3.0** g/t Au, **0.4** g/t Ag, **0.04** % Pb, **0.05** % Zn) in GNDD-563 lies within the current US\$1800 optimised pit. Additionally, the results of GNDD-563 and the significant sulphide zones logged in adjacent drill holes GNDD-657, GNDD-686 and GNDD-697 (all assays pending) demonstrate that the Verde Zone mineralisation at its northern limit appears be up to 50 metres true width, strong, consistent between drill holes, open at depth and within the existing US\$1800 optimised pit shell.

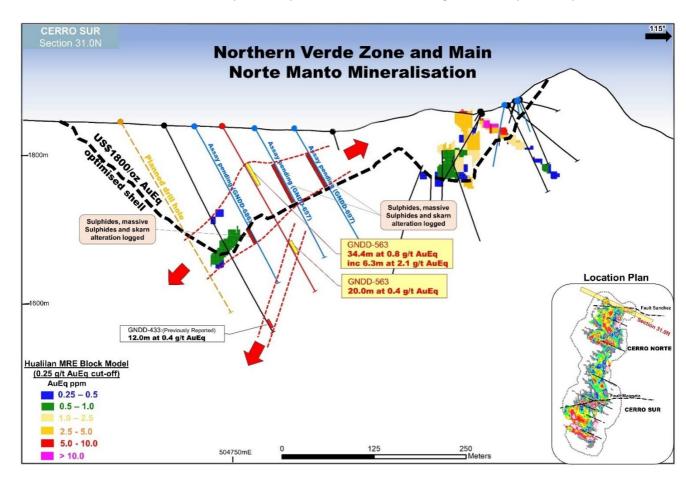


Figure 6 - Cross Section GNDD-563 and northern most Verde Zone drilling

GNDD-563 intersected several deeper zones of mineralisation including **3.1 metres at 0.5 g/t AuEq** (0.4 g/t Au, 0.6 g/t Ag, 0.02 % Pb, 0.1 % Zn) from 125.0m and **20.0 metres at 0.4 g/t AuEq** (0.3 g/t Au, 1.7 g/t Ag, 0.04 % Pb, 0.1 % Zn) from 182.0m. These intersections correlate with a deeper intersection in GNDD-433 and appear to form a new deeper zone of mineralisation that will require follow up.

GNDD-533 - Verde Zone

GNDD-533 was drilled as an infill hole between GNDD-187e and GNDD-406. The hole intersected significantly higher grades that the two surrounding holes included in the MRE intersecting **1.4 metres** at **75.1** g/t AuEq (67.0 g/t Au, 101 g/t Ag, 0.04 % Pb, 15.0 % Zn) from 362.0m and **0.7 metres** at **17.0** g/t AuEq (16.6 g/t Au, 5.7 g/t Ag, 0.7 % Zn) from 378.2m. The high grades correlate with an intersection of 0.5 metres at 90.3 g/t AuEq in GNDD-406 downdip and demonstrate the high-grade zones are continuous between drill holes.

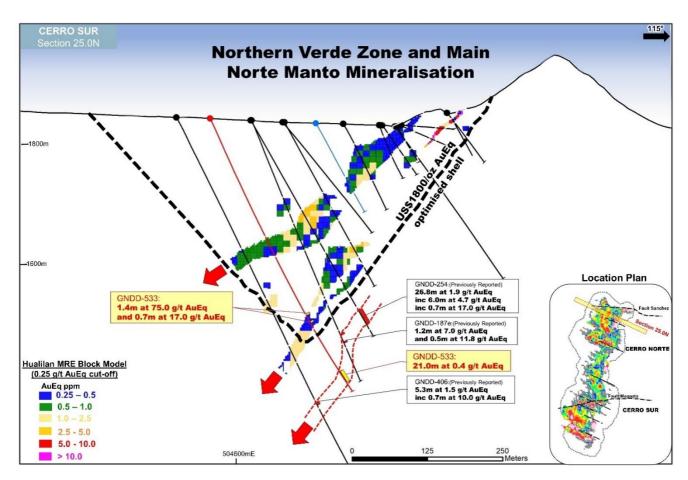


Figure 7 - Cross Section GNDD-533

Additionally, GNDD-333 intersected a deeper zone of mineralisation intersecting **21.0 metres at 0.4** g/t AuEq (0.4 g/t Au, 0.9 g/t Ag, 0.01 % Zn) from 473.0m including **2.0 metres at 1.2** g/t AuEq (0.3 g/t Au, 32.6 g/t Ag, 0.04 % Pb, 1.4 % Zn). As Figure 7 shows this deeper intersection correlates with intersections of 26.8 metres at 1.9 g/t AuEq including 6.0m at 4.7 g/t AuEq and 4.8 metres at 2.9 g/t

AuEq (GNDD0254); 5.3 metres at 1.5 g/t AuEq including 0.7 metres at 10.0 g/t AuEq (GNDD-406); and 0.5 metres at 11.8 g/t AuEq and 0.5 metres at 3.0 g/t AuEq (GNDD-187e).

None of these intersections were included in the maiden MRE as potential wireframes could not be extended across three adjacent drill holes however, they now form a new discrete and continuous zone of mineralisation that will be captured in an updated MRE.

GNDD-550 - Verde Zone

GNDD-550 was collared as a down dip test of the central Verde Zone below GNDD-438 which had intersected five zones of mineralisation including 17.0 metres at 1.2 g/t AuEq from 218.2m. GNDD-550 intersected three zones on mineralisation including 4.4 metres at 3.3 g/t AuEq (1.0 g/t Au, 16.0 g/t Ag, 0.03 % Pb, 4.5 % Zn) from 373.3m, 2.1 metres at 4.8 g/t AuEq (3.7 g/t Au, 27.0 g/t Ag, 0.01 % Pb, 1.7 % Zn) from 425.0m, and 5.5 metres at 2.2 g/t AuEq (0.5 g/t Au, 15.3 g/t Ag, 0.02 % Pb, 3.3 % Zn) from 437.5m.

The intersections extend the mineralisation 100 metres below the MRE boundary with mineralisation remaining open at depth. Consistent with what is being seen elsewhere in the Verde Zone grades are increasing at depth with a skarn component of mineralisation developing. Deeper drilling will resume most likely after the upgraded MRE.

GNDD-552 - Cerro Norte

GNDD-552 was an infill hole between GNDD-409 (22.0m at 1.3 g/t AuEq) and GNDD-411 (14.0m at 0.3 g/t AuEq). GNDD-522 intersected **33.8 metres at 1.0 g/t AuEq (0.7 g/t Au, 12.1 g/t Ag, 0.1 % Pb, 0.2 % Zn)** from surface including **3.4 metres at 7.4 g/t AuEq (6.0 g/t Au, 82.4 g/t Ag, 0.8 % Pb, 0.6 % Zn)**. The intersection in GYDD-552 is significantly wider and higher-grade than expected based on the current MRE block model and surrounding drill holes.

GNDD-508 - Southern Verde Zone

GNDD-508 was collared in the Verde Zone north of the Magnata Fault. The hole intersected 1.4 metres at 1.0 g/t AuEq (0.9 g/t Au, 2.0 g/t Ag, 0.1 % Pb, 0.3 % Zn) from 89.8m and 3.4 metres at 0.4 g/t AuEq (0.2 g/t Au, 8.6 g/t Ag, 0.2 % Zn) from 125.0 metres, both of which lie within the optimised \$1800 pit shell and are new zones of mineralisation. A third intersection 24.0 metres at 0.4 g/t AuEq (0.3 g/t Au, 0.5 g/t Ag, 0.04 % Pb, 0.06 % Zn) from 167.0m is also a new zone of mineralisation and is located just below the current optimised pit shell. A fourth deeper intersection 2.0 metres at 1.2 g/t AuEq (1.1 g/t Au, 7.0 g/t Ag, 0.02 % Pb, 0.09 % Zn) extends the Verde Zone mineralisation 40 metres below the MRE boundary in this location.

GNDD-506, GNDD-536, GNDD-537 - Central Gap Zone

As Figure 8 shows, the Central Gap and Verde Zone remain relatively lightly drilled. Assays have now been received for drill holes GNDD-506, GNDD-536, GNDD-537, part of the resource drill out in the Central Gap and Verde Zones which are expected to materially increase the MRE.

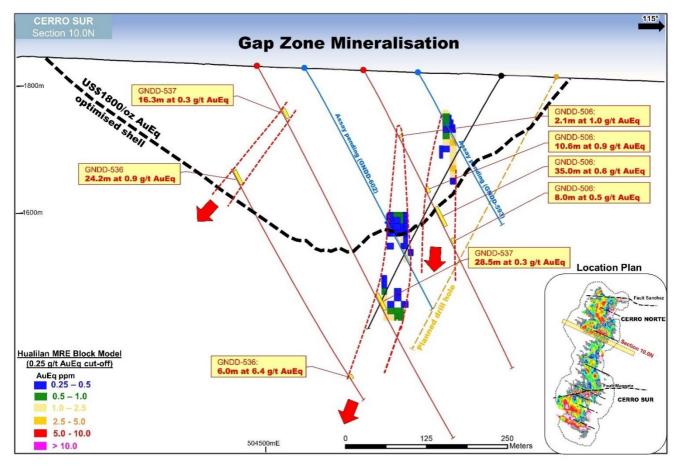


Figure 8 - Gap Zone Cross Section GNDD-506, GNDD-536, GNDD-537 and holes assays pending

The near surface intercept in GNDD 506 of **2.1 meres at 1.0 g/t AuEq (0.02 g/t Au, 4.5 g/t Ag, 0.1 % Pb, 1.9 % Zn)** from 116.1m and **10.6 metres at 0.9 g/t AuEq (0.9 g/t Au, 1.1 g/t Ag, 0.1 % Zn)** extended the mineralisation 125 metres above the current MRE boundary with this extension within the \$1800 Au optimised pit shell used to define the MRE. The deeper intercepts including **8.6 metres at 1.0 g/t AuEq (0.9 g/t Au, 1.3 g/t Ag, 0.1 % Zn)** from 205.4m, **35.2 metres at 0.6 g/t AuEq (0.3 g/t Au, 1.4 g/t Ag, 0.5 % Zn)** from 238.4m and **8.0 metres at 0.5 g/t AuEq (0.4 g/t Au, 0.5 g/t Ag, 0.1 % Zn)** from 294.0m extend the second eastern zone of Gap Zone mineralisation 80 metres below the current MRE boundary, with much of this extension Inside the US\$1800 optimised pit shell.

In GNDD-536, the intercept of 6.6 metres at 6.4 g/t AuEq (4.2 g/t Au, 50.0 g/t Ag, 3.4 % Zn) from 552.0m including 1.8 metres at 22.1 g/t AuEq (14.2 g/t Au, 183 g/t Ag, 0.04 % Pb, 12.5 % Zn) extends the Gap Zone mineralisation 100 metres below the current MRE boundary. The intersection of 24.2 metres at 0.9 g/t AuEq (0.7 g/t Au, 1.7 g/t Ag, 0.2 % Zn) from 188.8m including 1.8 metres at 4.1 g/t AuEq (2.9 g/t Au, 13.4 g/t Ag, 2.2 % Zn) and 2.0 metres at 4.4 g/t AuEq (4.4 g/t Au, 0.1 g/t Ag) correlates with the intersection in GNDD-537 of 16.3 metres at 0.3 g/t AuEq (0.3 g/t Au, 1.2 g/t Ag) from 78.0 m. The intersection of 12.2 metres at 0.4 g/t AuEq (0.4 g/t Au, 0.4 g/t Ag) in GNDD-536, the from 240.5m is also a new zone at Verde which correlates with an intersection of 6.0 metres at 0.3 g/6t AuEq (0.2

g/t Au, 0.6 g/t Ag, 0.03 % Pb, 0.03 % Zn) from 144.0m in GNDD-537. Both of these new zones of mineralisation lie Inside the optimised US\$1800 pit shell.

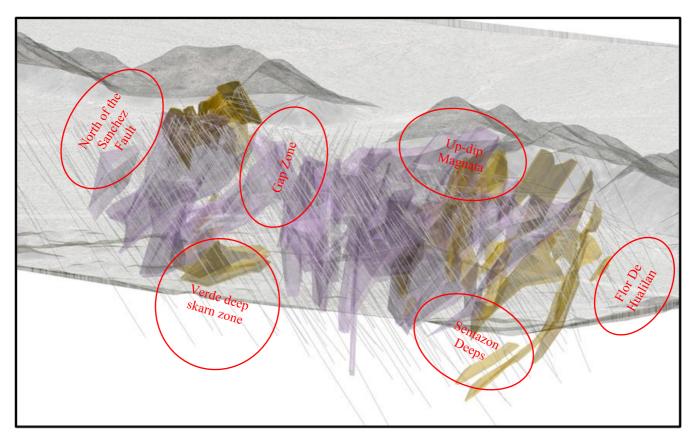


Figure 9 - 3D Model current MRE showing main areas of Focus for current Resource Extension drilling

GNDD-514 - Gap Zone

GNDD-514 was designed as a deep test of the Gap Zone Mineralisation. The hole intersected 1.4 metres at 4.6 g/t AuEq (0.6 g/t Au, 268 g/t Ag, 0.6 % Pb, 1.5 % Zn) from 294.0m and 8.1 metres at 1.6 g/t AuEq (1.0 g/t Au, 12.7 g/t Ag, 0.1 % Pb, 1.0 % Zn) from 307.8 m and 2.4 metres at 11.6 g/t AuEq (8.5 g/t Au, 59.1 g/t Ag, 0.1 % Pb, 5.2 % Zn) from 324.1 metres. These intersections are new zones of higher grade contact skarn mineralisation which occur at the contact between the limestone-intrusion. These intersections are 100 metres east of the current MRE boundary and have been followed up by deeper hole GNDD-566 (assays pending).

GNDD-521 and GNDD-535 - Gap Zone

GNDD-521 is located in the gap zone and was designed to test for mineralisation east of the Gap Zone. The hole intersected **40.0 metres at 0.3 g/t AuEq (0.2 g/t Au, 2.0 g/t Ag)** from 267.0m including **5.0 metres at 1.0 g/t AuEq (0.8 g/t Au, 3.4 g/t Ag, 0.1 % Pb, 0.3 % Zn)**. GNDD-535 was collared 80 metres north along strike from GNDD-521 and was also designed to test for mineralisation east of the Gap Zone. Like GNDD-521, GNDD535 intersected lower grade mineralisation intersecting **22.3 metres at**

0.3 g/t AuEq (0.2 g/t Au, 0.4 g/t Ag, 0.1 % Zn) from 392.0m and 12.0 metres at 0.4 g/t AuEq (0.4 g/t Au, 0.1 g/t Ag) from 428.0m. These intersections are interpreted as a new zone of mineralisation located east of the current MRE boundary. Their orientation is not yet understood and the new zones will require follow up drilling.

Other significant intersections reported during the quarter

GNDD-520: 2.4 metres at 64.7 g/t AuEq (60.8 g/t Au, 53.4 g/t Ag, 0.04 % Pb, 7.1 % Zn) from

445.6m and;

3.8 metres at 1.0 g/t AuEq (1.0 g/t Au, 0.7 g/t Ag, 0.03 % Zn) from 461.2m and;

1.7 metres at 1.8 g/t AuEq (1.8 g/t Au, 1.1 g/t Ag, 0.1 % Zn) from 462.3m

GNDD-520 confirmed a high-grade zone at depth in the Verde Zone that remains open at depth and along strike, that, based on recent drilling (assays pending) has significant upside potential.

GNDD-527: 14.0 metres at 0.4 g/t AuEq (0.4 g/t Au, 3.7 g/t Ag) from 280.0m and;

> **3.0 metres at 12.9 g/t AuEq (5.4 g/t Au, 136 g/t Ag, 0.4 % Pb, 12.5 % Zn)** and; **5.0 metres at 1.9 g/t AuEq (1.0 g/t Au, 13.5 g/t Ag, 1.6 % Zn)** from 410.0m and;

6.3 metres at 0.9 g/t AuEq (0.8 g/t Au, 3.4 g/t Ag) from 427.8m and; 2.0 metres at 1.0 g/t AuEq (0.9 g/t Au, 10.7 g/t Ag) from 465.0m and; 5.3 metres at 3.1 g/t AuEq (2.0 g/t Au, 26.4 g/t Ag, 1.6 % Zn) from 491.6m

GNDD-527 was the first of the holes targeting the Sentazon Deeps mineralisation and confirmed that the Sentazon Deeps target contains multiple stacked zones of high-grade skarn mineralisation. This target remains open at depth and along strike with several drill holes (assays pending) expected to significantly expand this zone of mineralisation.

GNDD-532: 14.4 metres at 2.1 g/t AuEq (1.2 g/t Au, 69.4 g/t Ag, 0.1 % Pb, 0.1 % Zn) from

93.8m including;

9.2 metres at 2.9 g/t AuEq (1.5 g/t Au, 107 g/t Ag, 0.1 % Pb, 0.2 % Zn) and;

37.0 metres at 1.4 g/t AuEq (1.3 g/t Au, 8.6 g/t Ag, 0.1 % Zn) from 274.0m

including;

9.7 metres at 4.0 g/t AuEq (3.6 g/t Au, 25.8 g/t Ag, 0.3 % Zn) and;

1.3 metres at 10.3 g/t AuEq (8.9 g/t Au, 72.9 g/t Ag, 0.2 % Pb, 1.2 % Zn) and;

1.2 metres at 13.5 g/t AuEq (12.5 g/t Au, 59.3 g/t Ag, 0.5 % Zn) and ;

10.9 metres at 2.6 g/t AuEq (2.0 g/t Au, 14.8 g/t Ag, 0.2 % Pb, 0.9 % Zn) from

416.5m including;

0.8 metres at 14.1 g/t AuEq (13.1 g/t Au, 79.0 g/t Ag, 0.1 % Pb)

GNDD-532 was an infill hole targeting the Verde style mineralisation south of the Magnata fault. It returned significantly higher grades than surrounding holes and intersected a new zone of highergrade Verde mineralisation 125 metres below the current MRE boundary.

GNDD-540

52.5 metres at **0.4** g/t AuEq (**0.3** g/t Au, **5.1** g/t Ag, **0.1** % Zn) from 134.0m and; **30.2** metres at **0.6** g/t AuEq (**0.4** g/t Au, **4.5** g/t Ag, **0.1** % Pb, **0.3** % Zn) from 224.0m including;

2.0 metres at 5.5 g/t AuEq (3.8 g/t Au, 41.8 g/t Ag, 0.2 % Pb, 2.4 % Zn) and; 2.5 metres at 8.3 g/t AuEq (4.0 g/t Au, 67.5 g/t Ag, 0.1 % Pb, 0.1 % Zn) from 309.2m

GNDD-540 was drilled on the extreme western end of the Magnata Fault 40 metres west of GNDD-491 (27.0m at 8.9 g/t AuEq) the previous most westerly hole to intersect high-grade skarn mineralisation on the Magnata Fault. It extended the high-grade mineralisation 40 metres west and this high-grade zone remains open to the west and at depth on the Magnata fault.

GNDD-545

5.5 metres at **10.2** g/t AuEq **(6.9** g/t Au, **66.7** g/t Ag, **0.4** % Pb, **5.5** % Zn) from 343.2m including;

2.0 metres at 13.9 g/t AuEq (12.5 g/t Au, 75.4 g/t Ag, 0.1 % Pb, 1.0 % Zn) and 2.9 metres at 3.0 g/t AuEq (1.4 g/t Au, 17.8 g/t Ag, 0.3 % Pb, 2.9 % Zn) from 352.9m and

7.9 metres at 3.4 g/t AuEq (1.5 g/t Au, 22.6 g/t Ag, 0.6 % Pb, 3.2 % Zn) from 380.0m

GND-545 was an infill hole targeting the Magnata Fault mineralisation and intersected higher-grades than the surrounding earlier drilling which is occurring regularly at Hualilan.

GNDD-547

15.0 metres at 4.1 g/t AuEq (3.9 g/t Au, 3.7 g/t Ag, 0.2% Zn) from 54.0m including;

2.2 metres at 11.8 g/t AuEq (11.6 g/t Au, 9.5 g/t Ag, .1 % Pb, 0.3 % Zn) and 2.1 metres at 3.1 g/t AuEq (2.8 g/t Au, 7.0 g/t Ag, 0.4 % Pb, 0.4 % Zn) from 83.0m

3.7 metres at **8.5** g/t AuEq (2.6 g/t Au, 50.5 g/t Ag, 4.9 % Pb, 9.3 % Zn) from 157.0m including

1.8 metres at 15.2 g/t AuEq (4.1 g/t Au, 92.7 g/t Ag, 8.8 % Pb, 17.8 % Zn)

GNDD-547 extended the Gap Zone mineralisation to near surface and returned significantly higher-grade mineralisation that surrounding drilling. Additionally, it intersected a new zone of high grade mineralisation (3.7m at $7.3 \, \text{g/t AuEq}$) 50 metres east of the current MRE boundary that will require follow-up drilling.

GNDD-549

15.5 metres at **0.4** g/t AuEq **(0.3** g/t Au, **5.9** g/t Ag, **0.1** % Zn) from 15.0m and; **10.9** metres at **5.3** g/t AuEq **(4.0** g/t Au, **71.5** g/t Ag, **0.5** % Pb, **0.8** % Zn) from 28.1m including;

2.6 metres at 19.6 g/t AuEq (15.4 g/t Au, 245 g/t Ag, 1.7 % Pb, 2.1 % Zn)

GNDD-549 extended the Magnata Fault mineralisation up-dip of early CEL drill holes GNDD-006 to surface. Additionally the hole validated the high-grade mineralisation intersected in the underground rock saw channel sampling program.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

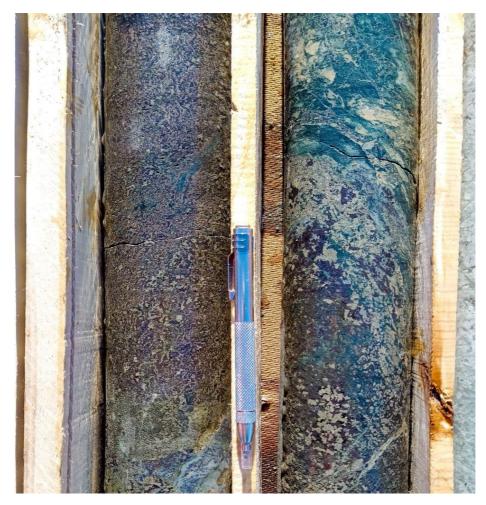


Photo showing GNDD-685 core (assays pending - deep eastern Magnata Fault) logged as intersecting several zones of massive sulphides with skarn alteration from 522 to 656 metres downhole

RESULTS FROM METALLURGICAL TESTING SIGNIFICANTLY UPGRADE HUALILAN

During the quarter the Company reported the results from its balance of its Stage 1 metallurgical testing at the Company's flagship Hualilan Gold Project, in San Juan Argentina. This program involved significantly more detailed flotation, gravity recoverable gold (GRG) tests and leach testing of the various flotation tails components. It has been designed to lock in the flow sheet to support a Scoping Study. Additional Stage 2 work involving comminution and variability testing, blended test work, and pilot plant testing is ongoing.

The metallurgical testwork program has been conducted using SGS Lakefield. Testwork completed to date involved a sequence of 28 flotation tests (including gravity), gravity recoverable gold tests (GRG), and leach testing of the various flotation tail components. This testing was conducted on composites representative of the higher-grade skarn material, the intrusion-hosted mineralisation, and sediment-hosted mineralisation.

This testing has demonstrated:

- Average gold recovery increased to 95% across all ore types at the Hualilan Gold project
- Clear route to recover zinc and lead credits via standard sequential flotation with recoveries
 of:
 - 89% for zinc (Zn): (high-grade skarn mineralisation); and
 - 77% for lead (Pb): (high-grade skarn mineralisation)
- The confirmation of both of Pb and Zn as payable metals will significantly boost project economics with zinc comprising 11% of the historical foreign resource estimate by value1
- Production of attractive lead (>65% Pb) and zinc (>50% Zn) concentrates and discussions with off-takers confirming excellent payabilities for both concentrates.
- Sequential Flotation has the added advantage of generating extremely high-grade Au-Ag concentrates (120 g/t Au, 300 g/t Ag) which will significantly reduce transport costs
- the outstanding high-grade nature of the concentrates produced with the average gold and silver grades in the Company's concentrates more than double than indicated by earlier testing
- Strong recoveries of gold and silver into an Au-Ag concentrate from the low grade (0.7 g/t Au, 7.6 g/t Ag) sediment-hosted material confirming excellent recoveries for all three components of the Hualilan mineralisation.
- All Au-Ag concentrates have no deleterious elements and are exceptionally low in arsenic which, coupled with their high-grade nature, will result in outstanding payability
- Recoveries of 70-80% of any residual gold and silver not recovered into the concentrate via a simple cyanide leach of the floatation tails increasing total recoveries to 95% (Au) and 91% (Ag)

Ongoing discussions with potential off-takers as the Stage 1 testing has progressed, refining the grades and compositions of the concentrates likely to be produced, has indicated that payabilities for all metals will be excellent. Expected payability for gold in the Au-Ag concentrates is >95%, with payability for Au-Ag in the Pb concentrate also expected to be >95% with lead payability >90%. Zinc payability is also expected to be at the upper range of what was expected with payability expected to be in the mid to high 80 percent range.

High-grade Skarn Mineralisation

The balance of the Stage 1 metallurgical testing on the high grade skarn material was primarily aimed at evaluating:

a. various grind sizes, additional Cleaner Flotation stages, Scavenger Flotation stages and Flash Flotation on the production of a single stage bulk Au-Ag concentrate bulk;

- b. sequential flotation to allow recovery of Zn and possibly Cu/Pb credits in addition to the Au-Ag payable in a bulk single stage concentrate, and if successful;
- c. additional Cleaner Flotation and Cleaner Variability testing to investigate the effect of flowsheet and variables such as reagent scheme and regrind size on upgrading rougher concentrate into cleaner zinc and copper/lead concentrates.

While a single Stage bulk sulphide Flotation produced an exceptionally clean and high grade Au-Ag concentrate at excellent recoveries the concentrate contains 11-14% Zn, 2% Pb and 0.5-1.0% Cu that the Company will receive no credits for. Additionally, the Zn and Pb have the potential to attract minor penalties depending on off-take destination. Thus Sequential Flotation tests were designed to determine if there is potential to economically recover the base metal credits..

The results of the Sequential Flotation testing on the high-grade skarn mineralisation were outstanding. Not only did it produce high-quality payable Zn and Pb concentrate streams it significantly increased the grade of the associated Au-Ag concentrate. Additionally the testing demonstrated the ability to increase the grade of the Zn and Pb concentrates via additional cleaner stages with minimal recovery loss. This effectively provides the Company with the ability to the tailor the concentrate grade to match the specifications required by the off-taker and thus maximise the payability.

The sequential flotation tests followed the flowsheet used in earlier CEL testing involving gravity separation followed by two stage flotation process to produce a Cu-Pb and then a Zn rougher concentrate. A secondary grind of the Zn rougher concentrate was added with several combinations of cleaning stages, additional gravity stages, different reagent mixes and grind sizes trialed to optimise performance. This has allowed the Company to get to a near final flow sheet which will support a Scoping Study.

This flow sheet was used in the most recently conducted Flotation Test F28. This was a 10kg test, rather than the 2kg and 4kg tests generally used, to provide more reliable data and also to produce sufficient material to allow a full analysis of the composition of the various concentrate. The F28 test flow sheet lends itself to relatively low capital-intensive steady state production with the flow sheet (Figure 1) involving:

- 1. a primary P_{80} = 51 micron primary grind, which was finer than the targeted P_{80} = 60-70 micron grind as the material ground considerably more easily than expected
- 2. Gravity recovery
- 3. Pb-Cu followed by Zn Rougher Flotation
- 4. a P_{80} = 29 micron regrind of the Zn rougher concentrate, which importantly only comprises 15% the feed hence this re-grinding is not overly costly.
- 5. two Re-cleaning Stages were undertaken on the Pb/Cu Rougher concentrate
- 6. four re-cleaning Sages on the Zn Rougher concentrate, which can likely be reduced to three cleaner stages increasing Zn recovery from 89% to 93% while still maintaining a saleable Zn concentrate

7. additional gravity recovery stages added to the Zn Rougher Concentrate

The saleable products produced from Sequential Flotation comprise the following:

- 1. Au-Ag concentrate containing 118 g/t Au, 286 g/t Ag
- 2. Pb concentrate containing 65% Pb, 178 g/t Au, 765 g/t Ag
- 3. **Zn concentrate** containing 51% Zn, 10 g/t Au, 178 g/t Ag

It should be noted that 12% of the lead reported to the gravity circuit and in steady state operation at least some of this lead would be displaced by additional gravity recovered gold into the Pb-Cu concentrate. Thus lead recoveries are likely to be better than the current reported recovery of 77%.

Detailed analysis of the composition of all of the components from the sequential flotation testing demonstrated that the concentrates have significant advantages over most concentrates. This includes exceptionally low arsenic contents which has become a key driver of payability for Au-Ag concentrates given the move by the Chinese Government to impose tighter restrictions on the arsenic content of imported concentrates. Key points from this detailed analysis are:

- Au-Ag concentrate (118 g/t Au, 286 g/t Ag) Exceedingly low in all deleterious elements including arsenic which, at 0.01% is a factor of 1000 below the level where arsenic penalties begin, low mercury content of 1 ppm, and Cu/Pb/Zn levels unlikely attract penalties
- Pb concentrate (65% Pb, 178 g/t Au, 765 g/t Ag) Particularly clean concentrate with extremely low arsenic, mercury and fluorine content and no penalties
- Zn concentrate (51% Zn, 10 g/t Au, 178 g/t Ag) Exceptionally low arsenic, mercury and fluorine. Below the detection level of other deleterious elements with the exception of cadmium which is below the 3000 ppm import limit imposed into China

Intrusion Hosted Mineralisation

The balance of the Stage 1 metallurgical testing on the intrusion-hosted material was primarily aimed a evaluating:

- a. various grind sizes, additional Cleaner Flotation and Re-cleaner stages on the production of a single stage bulk Au-Ag concentrate bulk; and
- additional Cleaner Flotation and Cleaner Variability testing to investigate the effect of flowsheet and variables such as reagent scheme and regrind size on upgrading Au-Ag concentrate.

This testing has allowed the Company to get to a near final flow sheet which will support a Scoping Study. This involves relatively simple flow sheet involves:

- 1. a relatively course primary P_{80} = 120-80 micron primary grind
- 2. gravity recovery

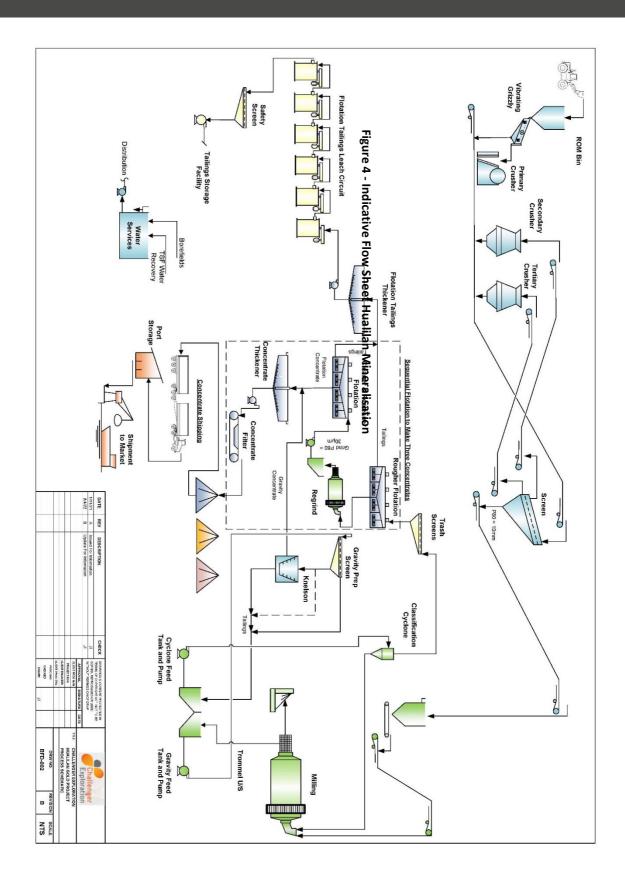
- 3. single stage rougher sulphide flotation
- 4. $P_{80} = 20-30$ micron regrind of the rougher concentrate, which importantly only comprises 5-10% mass pull of the rougher concentrate hence re-grinding is not overly costly.
- 5. One single or two Re-cleaning stages of the Au-Ag Rougher concentrate

Best results were achieved in Flotation test F8 which was conducted at a course primary grind of P_{80} = 76 microns and a regrind of P_{80} = 17 micron regrind of the rougher concentrate which comprises 8% mass pull , with two re-cleaner flotation stages. This produced an exceptional result producing an Au-Ag concentrate grading 54 g/t Au and 284 g/t Ag at total recoveries of 97% (Au) and 85% (Ag).

Results from detailed analysis of the concentrate produced from the intrusion hosted material are pending however the Company does not anticipate results to differ substantially from the compositions of the high-grade skarn material.

Sediment Hosted Mineralisation

Only one Flotation Test has been done on the sediment-hosted mineralisation to date as a proof of recovery test given the sediment hosted mineralisation comprises 5-10% of the mineralisation at Hualilan. This test was a repeat of Test F8 conducted on the intrusion-hosted mineralisation conducted at a course primary grind of P_{80} = 83 microns and a P_{80} = 20 micron regrind of the rougher concentrate which comprises 8% mass pull , with two re-cleaner flotation stages.


This produced an Au-Ag concentrate grading 23.6 g/t Au and 234 g/t Ag at total recoveries of 85% (Au) and 87% (Ag). The Company believes that additional testing as part of a PFS will improve recoveries and concentrate grade however given the small volume of concentrate that will be produced from the sediment-hosted mineralisation the concentrate will be blended with the Au-Ag concentrate from the skarn and intrusion-hosted material hence payability will be >95% (Au) and >90% (Ag).

Detailed analysis of the composition of the sediment-hosted mineralisation will not be undertaken until additional testing to optimise flotation of the sediment hosted material has been completed.

Cyanide leach Testing

The Company has now completed an initial series of cyanide leach test for various concentrate tailing produced in the flotation testing as well as a representative sample of the oxide ore. The cyanide leach testing produced excellent results with recoveries of in 70-80% range for both Au and Ag. This excellent recovery of any Au or Ag that is lost into the floatation tails provides the flexibility, should it be required in the event concentrate markets change, to allow the Company to target the production of extremely high-grade concentrates with minimal incremental loss in recovery.

Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

In the most recent leach test a much lower amount sodium cyanide reagent was trialed (0.6 kg/t compared to more than 3 kg/t In earlier testing) to determine if the recovery was affected by lower reagent usage. The recovery of 70% (Au) and 64% (Ag) was encouraging as it indicates that recovery is still strong at much lower cyanide usage. During the Stage 2 metallurgical testing cyanide leach testing will be further optimised.

Additionally, a leach test was conducted on the oxide ore generating recoveries of 78% (Au) and 64% (Ag). While the oxide component of the mineralisation comprises only a small percentage of the Hualilan mineralisation its lies in the top 30-40 metres and would be mined first in an open pit operation. Additionally, this oxide mineralisation can be high-grade in nature this material so the ability to recover the Au and Ag from the oxide materials further enhances the project economics.

Applying recoveries of 70% for both gold and silver to the various concentrate tailings components where leaching is likely to be undertaken during production generates recoveries of:

- 95% (Au) and 93% (Ag) from the high-grade skarn component of the mineralisation;
- 96% (Au) and 88% (Ag) from the intrusion-hosted component of the mineralisation;
- 85% (Au) and 87% (Ag) from the sediment-hosted component of the mineralisation;
- 95% (Au) and 91% (Ag) average recoveries across at Hualilan.

Rail option for concentrate export

The company has confirmed a viable option to export concentrate via rail from San Juan City direct to the Rosario Port near Buenos Aries. This is the same option that will be used for the export of concentrate from the Jose Maria copper-gold Project recently acquired by Lundin Mining.

Transport of Hualilan concentrate to Port for export will involve a road haul of 130km from Hualilan to San Juan City via a double lane sealed highway which passes within 400 metres of Hualilan. This will be followed by a 850 kilometre rail transport direct to Rosario Port where bulk materials handling facilities are currently in place. Indicative pricing provided by the rail operator is US\$35-40 per ton of concentrate inclusive of rail loading costs at San Juan.

The rail option is approximately half the cost of earlier options evaluated by the Company for concentrate transport to port on a per ton basis. Namely a 950 kilometre road haul to Rosario Port or a 750 kilometre road haul via the all-weather road from Mendoza City to Santiago for export from a Chilean port. This will represent a significant saving from the earlier options on a per ounce basis.

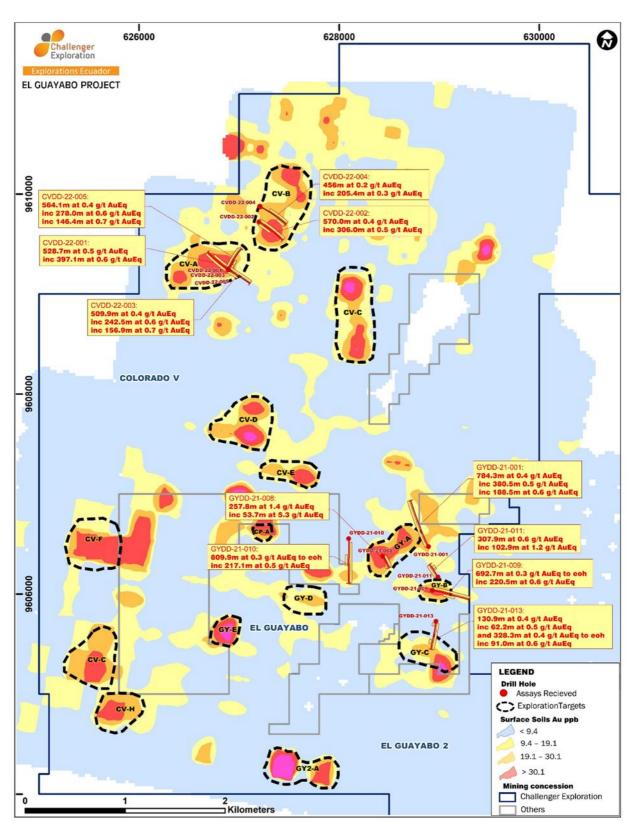


Figure 10 - Regional Au-soil anomalies and drilling results at El Guayabo and Colorado V

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

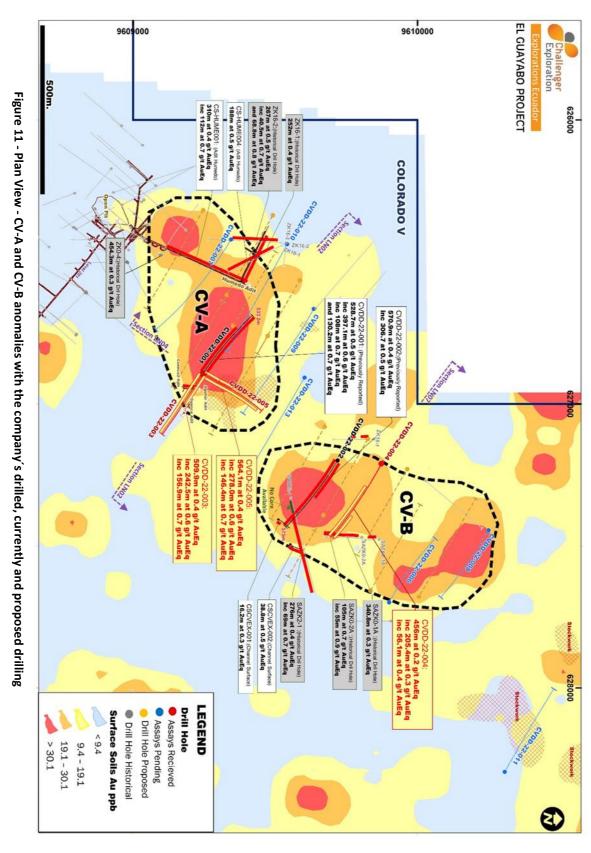
EL GUAYABO GOLD AND COLORADO V GOLD/COPPER PROJECT - ECUADOR

MAIDEN DRILL PROGRAM

The Company released the results from its next eight drillholes in maiden drill program in Ecuador during the quarter. The results confirmed two additional Au-Cu-Ag-Mo discoveries in the first drilling at the Colorado V concession.

The Company is farming in to earn an initial 50% interest in the Colorado V concession which adjoins CEL's 100% owned El Guayabo concession to the south and the Cangrejos concession which hosts the 17 million ounce Cangrejos Gold Project¹, to the north. The new discoveries have significant scale with both Au-soil anomalies 1 kilometre long and 500 metres wide and lying within a structural corridor with over 3 kilometre strike distance.

Additionally, the next three drill holes in the 100% owned El Guayabo concession all recorded significant intercepts. Drill holes GYDD-22-015 (305.7m at 0.5 g/t AuEq) and GYDD-22-016 (265.4m at 0.5 g/t AuEq including 107.6 metres at 0.9 g/t AuEq) have confirmed that the mineralisation on the main discovery zone is continuous over 1 kilometre strike and remains open at depth and along strike.


CVDD-22-001 - First test CV-A anomaly

CVDD-22-001 was the Company's first drill hole targeting the CV-A soil anomaly at Colorado V. The CV-A anomaly is a gold, silver, and copper soil anomaly some 1 kilometre long and 500 metres wide which forms part of a greater 3 kilometre linear trending gold in soil feature at Colorado V. The CV-A anomaly, like the other fifteen regionally significant Au-Ag-Cu-soil anomalies across the Company's 35.7 km² tenement package has a peak gold value some 50 times above background. Additionally, it is coincident with significant underlying magnetic anomalies indicative of porphyry systems.

Limited historical drilling had been undertaken outside the CV-A soil anomaly targeting vein and breccia mineralisation which is currently being exploited by small scale mining. Results included 248 metres at 0.5 g/t AuEq including 114 metres at 0.7 g/t AuEq, in drillhole ZK16-2 located on the northwest flank of the CV-A anomaly and 112 metres at 0.5 g/t AuEq within a zone of 454m at 0.3 g/t AuEq over the entire length of drillhole ZK0-4 located outside the southern boundary of the CV-A soil Anomaly. These historic results had not been followed up with drilling which directly targeted the CV-A anomaly prior to the Company's current program of which CVDD-22-001 was the first hole.

The intersection of **528.7m** at **0.5** g/t AuEq **(0.3** g/t gold, **2.0** g/t silver, **0.1** % copper, **13.2** ppm molybdenum) from surface until the end of the hole in the first hole to test the CV-A anomaly confirms a significant gold discovery. The mineralisation is consistent and pervasive throughout the hole and appears to have a similar paragenetic relation to mineralisation intersected in the companies' discovery holes 3 kilometres to the south at El Guayabo, as well as Lumina Gold's Cangrejos Project 3 kilometres to the north.

Importantly, from an open pit mining perspective, hole CVDD-22-001 includes a higher-grade section near surface, with an intersection of 397.1m at 0.6 g/t AuEq (0.3 g/t gold, 2.8 g/t silver, 0.1 % copper, 14.3 ppm molybdenum) from surface including 108.0m at 0.7 g/t AuEq (0.4 g/t gold, 2.8 g/t silver, 0.1 % copper, 15.6 ppm molybdenum) from 6.0 metres.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Contact

CVDD-22-003: CV-A anomaly

CVDD-22-003 was the Company's second drill hole targeting the CV-A soil anomaly at Colorado V. The hole was drilled as a follow up to CVDD-22-001 which intersected 528.7m at 0.5 g/t AuEq from surface to the end of the hole including 397.1m at 0.6 g/t AuEq from surface. CVDD-22-003 was drilled from the same pad as CVDD-22-001 in the opposite direction outwards from the CV-A soil anomaly to test the entire 500 metre width.

As can be seen from Figure 11 (Plan view), CVDD-22-003 drilled outside the projected CV-A soil anomaly at approximately 200 metres down hole. This makes the intercept of **509.9m at 0.4 g/t AuEq (0.2 g/t gold, 1.4 g/t silver, 0.1 % copper, 31.3 ppm molybdenum)** from surface until the end of the hole more impressive as it confirms that the mineralisation extends significantly beyond the boundary of the CV-A soil anomaly.

The hole intersected a higher-grade zone of 242.5 metres at 0.6 g/t AuEq (0.4 g/t gold, 1.8 g/t silver, 0.1% copper, 44.8 ppm molybdenum) including 156.9 metres at 0.7 g/t AuEq (0.4 g/t gold, 1.8 g/t silver, 0.1% copper, 54.7 ppm molybdenum) and 75.8 metres at 0.8 g/t AuEq (0.6 g/t gold, 1.8g/t silver, 0.1% copper, 59.1 ppm molybdenum), all from surface. This higher-grade zone correlates with the area below the CV-A soil anomaly, which is an extension of mineralisation intersected in CVDD-22-001 (397.1m at 0.6 g/t AuEq from surface), confirming mineralisation at the CV-A anomaly begins at surface and has higher-grades at surface.

The intersection confirms that the CV-A soil anomaly which is a gold, silver, and copper soil anomaly some 1 kilometre long and 500 metres wide is mineralised across its entire 500 metre width and beyond. The mineralisation is consistent and pervasive throughout the hole and appears to have similar paragenetic relationships to mineralisation intersected in the discovery holes 3 kilometres to the south at El Guayabo, as well as Lumina Gold's Cangrejos Project 6 kilometres to the northeast.

CVDD-22-005: CV-A anomaly

CVDD-22-005 was the Company's third drill hole targeting the CV-A soil anomaly. It was drilled from the same pad at CVDD-22-001 and CVDD-22-003 at an azimuth of 030, perpendicular to holes CVDD-22-001 and 003, to test mapped stockwork veining at surface in the north of the CV-A anomaly (Figure 13). The hole intersected **564.1 metres at 0.4 g/t AuEq (0.2 g/t gold, 2.3 g/t silver, 0.1% copper, 44.0 ppm molybdenum)** from 8.1m. This included a higher-grade near surface zone of **278.0 metres at 0.6 g/t AuEq (0.3 g/t gold, 3.2 g/t silver, 0.1% copper, 68.2 ppm molybdenum)** from 8.1m including **146.5 meters at 0.7 g/t AuEq (0.4 g/t gold, 3.2 g/t silver, 0.1% copper, 101.0 ppm molybdenum)** also from 8.1m.

The results extend the mineralisation intersected in CVDD-22-001 and CVDD-22-003 some 300 metres to the northern extent of the CV-A soil anomaly. They confirm a continuous zone of mineralisation from surface which is 600 metres wide extending over 400 metres of strike that remains open at depth

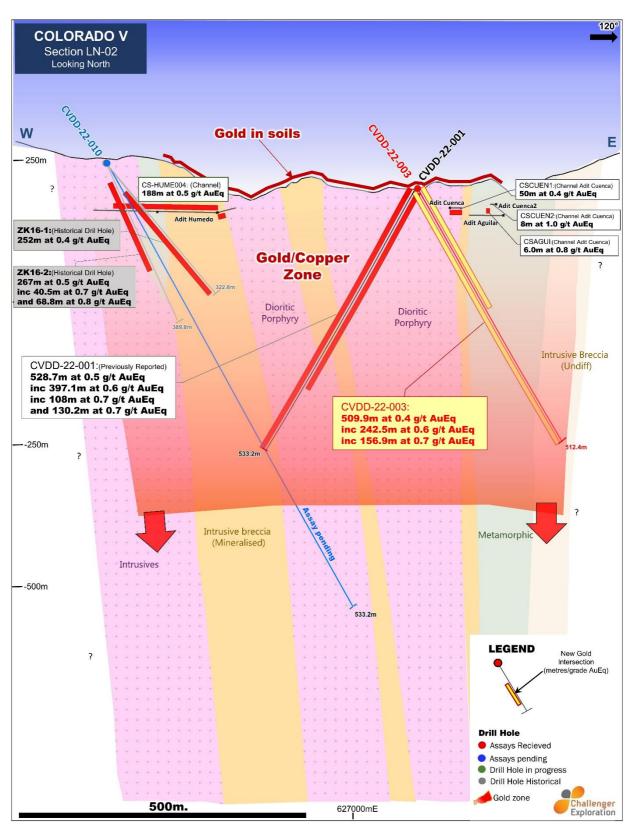


Figure 12 - Cross Section showing CV-A drilling

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

and to the south along the 600 additional metres of strike of the CV-A soil anomaly. This 600 metres strike extent to the south-west has been tested by drill holes CVDD-22-007 and CVDD-22-010 (both assays pending).

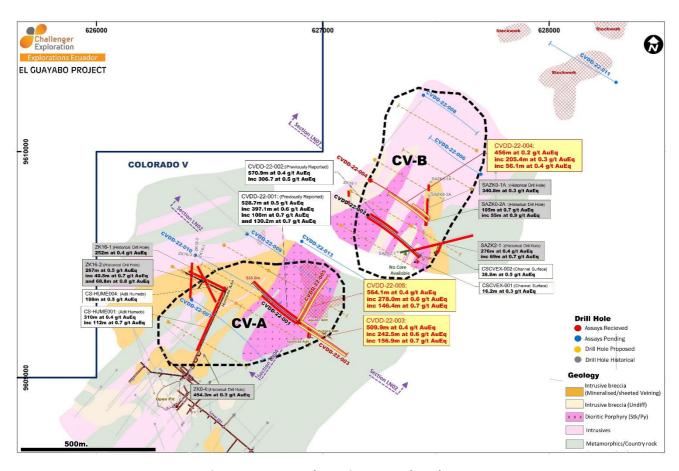


Figure 13 - CV-A and CV-B interpreted Geology

CVDD-22-002 - First test CV-B anomaly

CVDD-22-002 was the Company's first drill hole targeting the CV-B soil anomaly in the Colorado V concession. CV-B is a gold, silver and copper soil anomaly 1 kilometre long and 500 metres wide which also forms part of the greater 3-kilometre linear NE/SW trending gold in soil feature at Colorado V (Figure 11).

Limited historical drilling had been undertaken on the south-eastern edge of the CV-B soil anomaly with results including 276 metres at 0.4 g/t AuEq including 69 metres at 0.7 g/t AuEq, in drillhole SAZK2-1 and 105 metres at 0.7 g/t AuEq including 55m at 0.9 g/t AuEq in drillhole SAZK0-2A also on the eastern limit of CV-B.

The intersection of **570.0m** at **0.4** g/t AuEq (**0.2** g/t gold, **2.0** g/t Ag, **0.1%** Cu **11.4** ppm molybdenum) from 4.5m to until the end of the hole in the first hole to test CV-B anomaly confirms a significant gold discovery. Like the first hole on the CV-A anomaly the mineralisation in CVDD-22-002 is consistent and pervasive throughout the intersection and appears to have a similar paragenetic relation to the mineralisation intersected in El Guayabo to the south and Lumina Gold's Cangrejos Project immediately to the north.

Importantly from an open pit mining perspective the hole included a higher-grade section from surface. Including intersections of 306.7m at 0.5 g/t AuEq (0.2 g/t gold, 2.3 g/t silver, 0.1 % copper, 13.6 ppm molybdenum) from surface including 24.9m at 0.9 g/t AuEq (0.4 g/t gold, 4.5 g/t silver, 0.3% copper, 53.4 ppm molybdenum) from 174.6m. The hole also included two higher grade deeper zones with intersections of 9.1m at 1.1 g/t AuEq (0.8 g/t gold, 6.9 g/t silver, 0.1% copper, 8.9 ppm molybdenum) from 387.1m and 14.0m at 0.9 g/t AuEq (0.8 g/t gold, 1.3 g/t silver, 24.7 ppm molybdenum) from 490.2m.

Drill holes CVDD-22-006, and CVDD-22-008 which collectively step another 550 metres northeast along strike from CVDD-22-002 have been completed (assays pending) with a third hole planned to test a further 1 kilometre northeast along strike (Figure 11).

CVDD-22-004: CV-B anomaly

CVDD-22-004 was drilled 250 metres north of CVDD-22-002 in a lower tenor portion of the CV-B soil anomaly. CV-B is the second 1 kilometre long and 500 metres wide gold, silver and copper soil anomaly to be drilled in Colorado V (Figure 11).

CVDD-22-004 intersected 456.0 metres at 0.25 g/t AuEq (0.1 g/t gold, 0.9 g/t Ag, 0.1% Cu 10.9 ppm molybdenum) from 203.0m. This included higher-grade zones of 205.4 metres at 0.3 g/t AuEq (0.2 g/t gold, 1.0 g/t Ag, 0.1% Cu 11.1 ppm molybdenum) from 443.9 including 56.1 metres at 0.4 g/t AuEq (0.2 g/t gold, 1.1 g/t Ag, 0.1% Cu 8.3 ppm molybdenum) from 448.4m plus 9.0 metres at 0.7 g/t AuEq (0.6 g/t gold, 0.9 g/t Ag, 0.05% Cu 6.7 ppm molybdenum) from 593.0m.

CVDD-22-004 extends the mineralisation in the CV-B anomaly 250 metres north of the CVDD-22-002 discovery hole which intersected 570.9 metres at 0.4 g/t AuEq including 306.7 metres at 0.5 g/t AuEq from surface. Mineralisation at CV-B remains open to the north over 750 metres strike extent, at depth, and has a true width of approximately 500 metres.

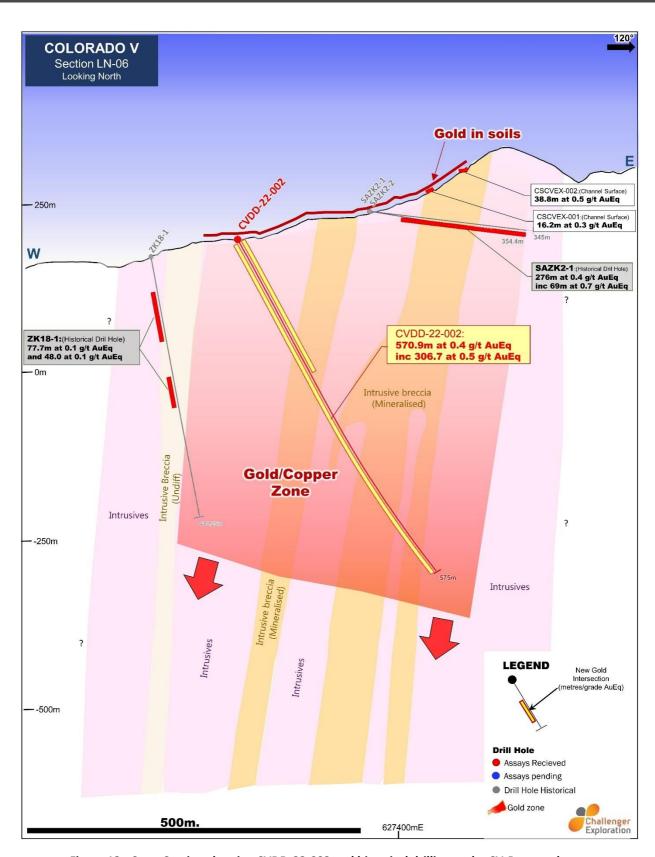


Figure 13 - Cross Section showing CVDD-22-002 and historical drilling at the CV-B anomaly

1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

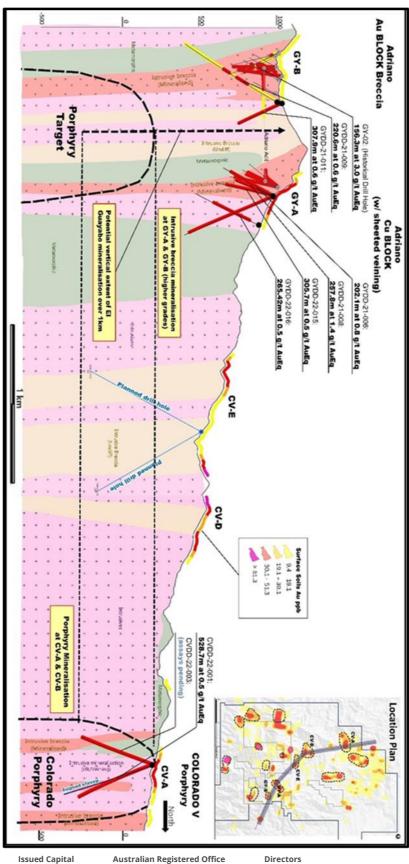


Figure 14 - Long Section El Guaybo to Colorado V and current and proposed drilling

1,027.7m shares 120m perf shares 16m perf rights

Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

GYDD-22-014 Main Discovery Zone, GY-A Soil Anomaly

GYDD-22-014 was designed to test a copper in soil anomaly and magnetic MVA target located between the GY-C gold in soil anomaly to the south and the GY-B gold in soil anomaly to the north, as well as cut dominate north-south trending structures in the area. The GY-C target was tested by GYDD-21-013 (130.9m at 0.4 g/t AuEq from 33.6m and 328.3m at 0.4 g/t AuEq from 189.15m to the end of the hole, including 91.0m at 0.6 g/t AuEq). GYDD-22-14 intersected 594.5m at 0.3 g/t AuEq (0.2 g/t gold, 2.2 g/t silver, 0.1 % copper, 7.3 ppm molybdenum) from 15.3m including 71.3m at 0.7 g/t AuEq (0.5 g/t gold, 2.7 g/t silver, 0.1% copper, 14.3 ppm molybdenum) from 538.5m. The hole included a higher-grade zone of 27.8m at 1.4 g/t AuEq (1.1 g/t gold, 4.4 g/t silver, 0.1% copper, 27.6 ppm molybdenum) from 556.5m.

The hole intercepted the same intrusive breccia intercepted in hole CVDD-21-013 and demonstrates the extent of lower grade Au-Ag-Cu-Mo mineralisation in the system.

GYDD-22-015 - Main Discovery Zone, GY-A Soil Anomaly

GYDD-22-015 was drilled from the same drill pad as GYDD-21-008 (257.8m at 1.4 g/t AuEq) at a steeper angle to test 100 metres downdip of GYDD-21-008 which intersected the zone of high-grade copper rich mineralisation hosted in intrusive breccia with extensive sheeted veining that sits within the broader zone of mineralisation at the El Guayabo discovery zone. The hole successfully extended this high-grade copper rich mineralisation down-dip where it remains open at depth.

GYDD-22-015 intersected 305.7m at 0.5 g/t AuEq (0.2 g/t gold, 4.6 g/t silver, 0.2 % copper, 1.5 ppm molybdenum) from 3.0m. This included two zones of higher-grade mineralisation of 59.8m at 0.7 g/t AuEq (0.2 g/t gold, 7.1 g/t silver, 0.3% copper, 1.5 ppm molybdenum) from 87.1 and 47.3m at 0.9 g/t AuEq (0.4 g/t gold, 6.7 g/t silver, 0.3% copper, 1.3 ppm molybdenum) from 257.7m, including 18.0 metres at 1.1 g/t AuEq and 15.0 metres at 1.2 g/t AuEq from 289.9m. The two higher grade zones are located at the top and base of this copper rich zone which correlates well with copper-rich sheeted vein hosted mineralisation intersected in GYDD-006 and GYDD-008. Follow up drilling is planned both up and down-dip.

GYDD-22-016 - Main Discovery Zone, GY-A Soil Anomaly

GYDD-22-016 was drilled to test the main discovery zone and extend the zone of high-grade copper rich mineralisation hosted in intrusive breccia and containing extensive sheeted veining within the broader zone of mineralisation 150 metres west along strike. Logging Indicates that the initial 68 metres from surface was a zone of surface leaching. Below this, the hole intersected 265.4m at 0.5 g/t AuEq (0.3 g/t gold, 2.9 g/t silver, 0.1% copper, 2.9 ppm molybdenum) from 68.0m including 107.6m at 0.9 g/t AuEq (0.5 g/t gold, 5.7 g/t silver, 0.2% copper 2.1 ppm molybdenum) from 225.8m.

The higher-grade zone from 225.8 metres correlates well with the copper rich higher-grade zone of mineralisation hosted in intrusive breccia and containing sheeted veining. As is observed elsewhere in the system the copper rich zone contains two zones of higher-grade mineralisation at the top and

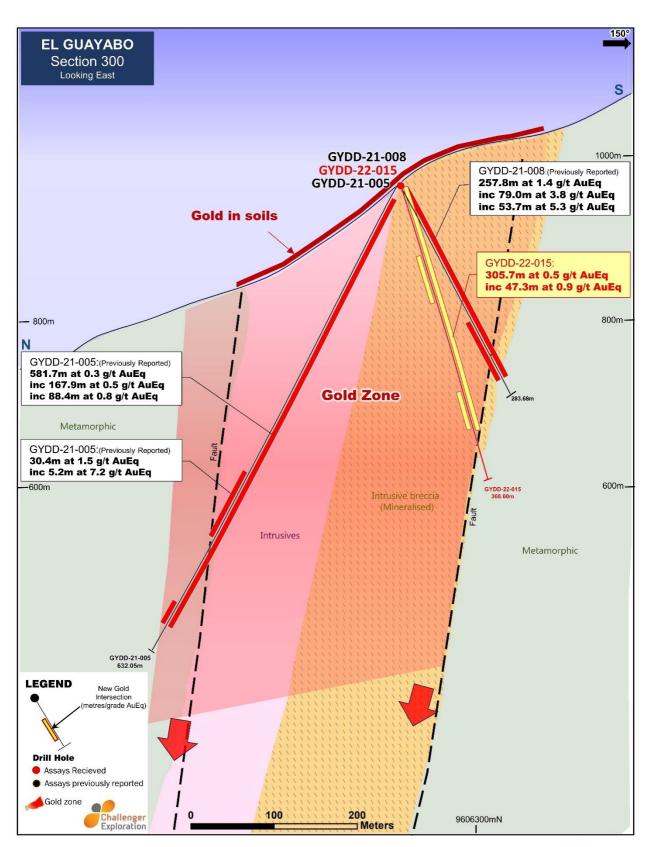


Figure 15 - Cross Section showing GYDD-22-015 on the main El Guayabo Discovery Zone (GY-A anomaly)

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

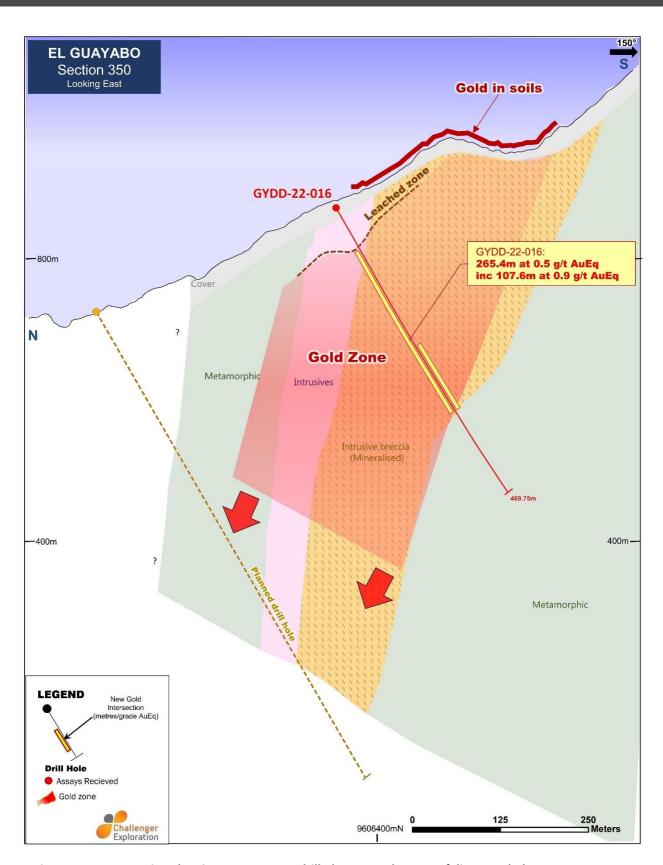


Figure 16 - Cross Section Showing GYDD-22-016 drilled 150m to the west of discovery hole GYDD-21-008

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

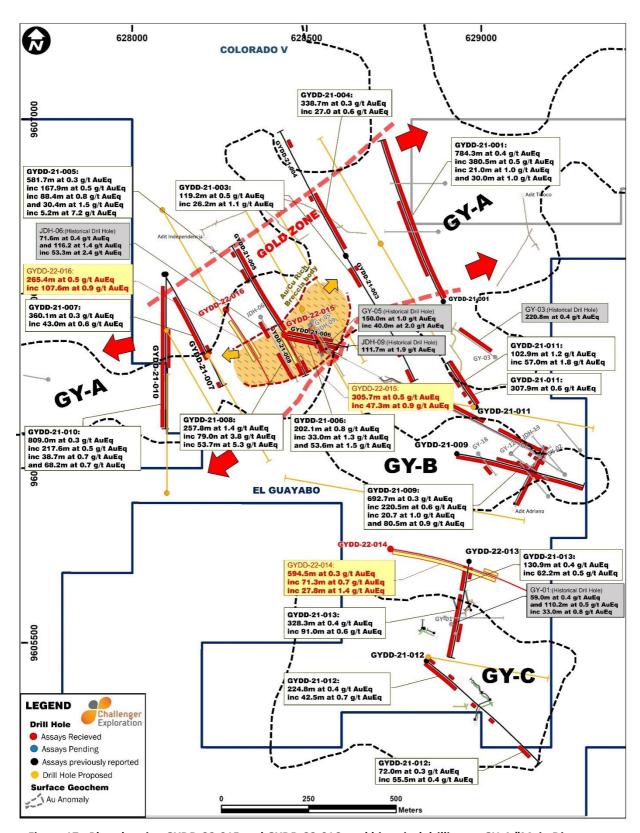


Figure 17 - Plan showing GYDD-22-015 and GYDD-22-016 and historical drilling on GY-A "Main Discovery Zone" and GYDD-22-014 between GY-C and GY-B "Gold Block Breccia"

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

base of the zone with intersections of 31.0m at 1.1 g/t AuEq (0.7 g/t gold, 6.1 g/t silver, 0.2% copper, 2.1 ppm molybdenum) from 225.8 and 39.1m at 1.1 g/t AuEq (0.6 g/t gold, 8.5 g/t silver, 0.3% copper, 1.9 ppm molybdenum) from 294.3m.

GYDD-22-016 successfully extended the zone of higher-grade copper rich mineralisation 150 metres along strike to the west. It also confirmed continuous mineralisation between GYDD-21-008 and GYDD-21-007 collared 500 metres west along strike from GYDD-21-008 and 200 metres west along strike from GYDD-22-016. A drill hole is planned to test down-dip of GYDD-22-016 (Figure 16).

Ongoing Drill program

The company has completed drill holes CVDD-22-006 to CVDD-22-010 (assays pending) targeting the CV-A and CV-B anomalies at Colorado V. The next five drill holes have targeted CV-D (one hole completed with assays pending, one hole pending), CV-E (one hole in progress), CV-G (one hole in progress), and CV-H (one hole pending) anomalies.

Three additional drill holes are planned to test the GY-E and GY-D anomalies as both drill rigs move back into the El Guayabo concession. The rigs will then complete a Phase-2 drill program of 25,000-30,000 metres at GY-A and GY-B which encompasses the main discovery zone at the 100% owned El Guayabo concession. This program has been designed to generate a maiden Resource Estimate in accordance with the JORC 2012 Code at the GY-A anomaly.

KAROO BASIN - SOUTH AFRICA

The Company continues to pursue its application for shale gas exploration rights in South Africa. As previously reported, the Department of Mineral Resources is progressing a new petroleum resources development bill, and the Minister reportedly indicated during his address in the debate on the Presidential State of the Nation Address in June that the bill will soon undergo public participation, as part of the cabinet and parliamentary approval processes.

Ends

For further information contact:

Kris Knauer
Managing Director
+61 411 885 979
kris.knauer@challengerex.com

Scott Funston
Chief Financial Officer
+61 413 867 600
scott.funston@challengerex.com

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the 100% owned Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation at both Hualilan and El Guayabo in Ecuador.

The Company has cash at bank of \$10.3 million (June 30st) and it is nearing completion of an initial 204,000 metre drill program at its Flagship Hualilan Gold project.

- 1. Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and has an Interim JORC 2012 Compliant resource of 2,133,065 ounces which remains open in most directions. This resource contains a Skarn component 6.3 Mt at 5.6 g/t AuEq for 1.1 Moz AuEq and an intrusion/sediment-hosted component of 41.5Mt at 0.8 g/t AuEq for 1.0 Moz AuEq. The resource was based on 126,000 metres of CEL's 204,000 metre drill program. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. In the past 2 years CEL has completed over 500 drill holes for more than 185,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over 3.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. CEL's current program which is fully funded will take metres drilled by CEL to 204,000 metres, and include metallurgical test work of key ore types, and an initial JORC Compliant Resource and PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which have never been followed up. This has been confirmed with results including 257.8m at 1.4 g/t AuEq inc 53.7m at 5.3 g/t AuEq and 309.8m at 0.7 g/t AuEq inc 202.1m at 0.8 g/t AuEq in CEL's first 8 drill holes. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late-stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver.

JORC 2012 Mineral Resource Estimate for the Hualilan Gold Project											
Domain	Category	Mt	Au g/t	Ag g/t	Zn %	Pb %	AuEq g/t	AuEq (mozs)			
US\$1800 optimised shell > 0.25ppm AuEq	Indicated Inferred	18.7 25.0	1.1	5.4 5.6	0.41	0.07	1.3	0.80			
Below US\$1800 shell >1.0ppm AuEq	Inferred	4.0	1.9	11.5	1.04	0.07	2.6	0.33			
Total		47.7	1.1	6.0	0.45	0.06	1.4	2.13			

Mineralisation Style	Mt (0.25 g/t AuEq cut-off)	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	Au Eq (g.t)
Skarn (limestone hosted)	6.3	4.4	19.4	2.0	0.2	5.6
intrusion/sediment hosted	41.4	0.6	4.0	0.2	0.04	0.8
			Co	ntained Me	tal	
Mineralisation Style		Au (Moz)	Ag (Moz)	Zn (kt)	Pb (kt)	Au Eq (kOz)
Skarn (limestone hosted)		0.9	3.9	123	11	1.13
intrusion/sediment hosted		0.8	5.3	95	19	1.00
Total Contained metal		1.7	9.2	218	29	2.13

Table 6 - Interim MRE reported as Skarn and Intrusion/sediment hosted components of mineralisation

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information in this report that relates to sampling techniques and data, exploration results and geological interpretation and Mineral Resources has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Table 7 - New Intercepts Reported During the Quarter

Drill Hole	From	То	Interval	Gold	Ag	Zn	Pb	AuEq	Comments	Grams x
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(g/t)		metres
GNDD271	77.0	96.2	19.2	0.2	1.9	0.07	0.02	0.3	0.2 g/t AuEq cut	4.9
inc	77.0	78.0	1.0	1.8	3.7	0.11	0.13	1.9		1.9
and	113.9	127.1	13.2	0.5	3.1	0.36	0.27	0.8	0.2 g/t AuEq cut	10.1
inc	123.5	127.1	3.6	1.6	6.4	1.1	0.9	2.4		8.6
GNDD317	NSI									
GNDD323	292.9	305.0	12.1	0.2	1.8	0.03	0.01	0.3	0.2 g/t AuEq cut	3.2
inc	292.9	294.2	1.3	1.0	7.7	0.09	0	1.2		1.6
GNDD331	NSI									
GNDD335	NSI									
GNDD340	344.0	370.0	26.0	0.4	0.7	0.04	0.01	0.4	0.2 g/t AuEq cut	10.7
inc	360.0	362.0	2.0	1.3	1.6	0.01	0	1.3		2.7
GNDD355	28.0	38.0	10.0	0.3	6.8	0.02	0.01	0.3	0.2 g/t AuEq cut	3.4
and	50.0	68.0	18.0	0.3	0.9	0.03	0.01	0.3	0.2 g/t AuEq cut	5.4
inc	56.0	58.0	2.0	1.1	3.9	0.06	0.02	1.2		2.4
inc	66.0	67.0	1.0	1.1	0.8	0.05	0.01	1.2		1.2
and	79.0	85.0	6.0	0.8	1.2	0.15	0.13	0.9	0.2 g/t AuEq cut	5.4
inc	83.0	84.0	1.0	2.6	3.6	0.64	0.54	3.0		3.0
and	101.0	123.0	22.0	0.3	1.3	0.04	0.04	0.4	0.2 g/t AuEq cut	7.6
inc	101.0	103.0	2.0	1.2	1.3	0.01	0.15	1.3		2.5
inc	109.0	111.0	2.0	1.0	1.9	0.02	0.03	1.1		2.1
GNDD371	NSI									
GNDD374	NSI									
GNDD388	NSI									
GNDD395	174.9	196.0	21.1	0.2	2.0	0.05	0.01	0.2	0.2 g/t AuEq cut	4.3
and	337.4	338.4	1.0	4.7	91.5	5.9	0.14	8.5	<i>J</i> , 1	8.5
and	352.0	354.0	2.0	3.9	0.1	0	0	3.9		7.8
and	409.0	416.1	7.1	1.0	5.0	0.65	0.01	1.4	0.2 g/t AuEq cut	9.8
inc	409.0	415.0	6.0	1.2	5.8	0.76	0.02	1.6	<i>J</i> , 1	9.5
and	431.8	432.5	0.7	0.6	10.0	2	0.09	1.7		1.1
and	569.5	571.5	2.0	0.1	3.9	1.2	0	0.7	0.2 g/t AuEq cut	1.3
GNDD396	NSI									
GNDD398	NSI									
GNDD400	NSI									
GNDD404	NSI									
GNDD410	NSI									
GNDD415	17.0	19.0	2.0	0.7	0.7	0.07	0.05	0.7	0.2 g/t AuEq cut	1.5
and	49.0	57.0	8.0	0.4	0.7	0.01	0	0.4	0.2 g/t AuEq cut	3.3
inc	55.0	57.0	2.0	1.2	0.9	0.01	0	1.2	Ŭ.	2.3
and	87.0	90.4	3.4	0.4	7.4	0.05	0.01	0.5	0.2 g/t AuEq cut	1.6
GNDD418	NSI								5, 1,1	
GNDD419	NSI									
GNDD430	NSI									
GNDD444	NSI									
GNDD446	243.0	244.2	1.2	1.6	0.3	0.02	0.01	1.6		1.8
GNDD447	75.0	76.0	1.0	0.1	4.8	2.2	0.01	1.1		1.1
and	233.0	266.0	33.0	0.2	2.6	0.15	0.04	0.3	0.2 g/t AuEq cut	8.9

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

				I			1			
inc	247.3	248.6	1.3	0.6	15.0	1.4	0.45	1.5	00 / 0	1.9
and	289.6	334.0	44.4	0.8	5.1	0.09	0.01	1.0	0.2 g/t AuEq cut	42.2
inc	289.6	293.0	3.4	6.6	47.8	0.05	0.03	7.2		24.4
inc	291.0	293.0	2.0	10.4	76.8	0.08	0.05	11.4	10 g/t AuEq ut	22.8
inc	329.3	330.0	0.7	12.7	17.5	3.7	0.19	14.7	10 g/t AuEq ut	10.3
GNDD488A	NSI									
GNDD461	116.0	127.4	11.4	0.2	3.2	0.1	0.01	0.3	0.2 g/t AuEq cut	3.6
and	199.0	201.0	2.0	0.4	32.6	0.4	0.22	1.0	0.2 g/t AuEq cut	2.0
and	337.5	349.0	11.5	0.4	19.2	0.1	0.01	0.6	0.2 g/t AuEq cut	7.0
inc	347.0	349.0	2.0	0.9	95.5	0.27	0.06	2.2		4.5
and	498.0	501.3	3.3	0.3	8.3	0.35	0.02	0.5	0.2 g/t AuEq cut	1.7
GNDD464	93.0	99.0	6.0	0.9	0.7	0.01	0	0.9	0.2 g/t AuEq cut	5.3
inc	93.0	95.0	2.0	1.4	1.2	0.01	0	1.4		2.7
and	192.8	195.4	2.6	0.4	0.4	0.01	0	0.4	0.2 g/t AuEq cut	1.1
and	205.0	220.0	15.0	0.3	0.3	0.01	0	0.3	0.2 g/t AuEq cut	4.1
GNDD465	358.0	365.0	7.0	0.2	0.8	0	0	0.2	0.2 g/t AuEq cut	1.6
and	441.0	446.0	5.0	0.4	1.8	0.04	0.06	0.5	0.2 g/t AuEq cut	2.3
inc	441.0	442.0	1.0	1.3	5.1	0.19	0.28	1.5		1.5
and	524.0	538.0	14.0	0.2	9.8	0.32	0.08	0.5	0.2 g/t AuEq cut	7.3
inc	528.0	530.0	2.0	0.6	43.5	2	0.46	2.1		4.1
GNDD466	22.6	99.0	76.5	0.2	1.1	0.05	0.01	0.3	0.2 g/t AuEq cut	19.9
inc	90.0	91.3	1.3	1.5	0.4	0.01	0	1.5	·	1.9
and	131.2	144.0	12.9	1.1	18.3	2.4	1	2.7	0.2 g/t AuEq cut	34.2
inc	131.2	132.2	1.1	11.8	166.0	22	8.7	25.7	10 g/t AuEq cut	27.0
and	139.8	140.3	0.5	0.7	91.9	13.9	7.6	9.7	, , , , , , , , , , , , , , , , , , ,	4.9
GNDD468	39.0	65.0	26.0	0.2	1.4	0.11	0	0.3	0.2 g/t AuEq cut	6.6
and	87.0	125.0	38.0	0.3	0.9	0.08	0.01	0.4	0.2 g/t AuEq cut	13.4
inc	123.0	125.0	2.0	2.7	2.6	0.24	0.09	2.9		5.7
GNDD469	NSI									
GNDD470	12.0	90.0	78.0	0.2	1.6	0.09	0.01	0.3	0.2 g/t AuEq cut	20.0
inc	42.5	43.0	0.5	1.9	27.5	4.7	0.04	4.4	J. 1	2.2
and	112.5	124.0	11.5	0.3	5.9	0.24	0.03	0.5	0.2 g/t AuEq cut	5.5
inc	122.0	124.0	2.0	1.4	11.5	0.09	0.02	1.6	<i>O</i> , 1	3.2
GNDD471	243.0	245.9	2.9	0.5	0.4	0.01	0	0.5	0.2 g/t AuEq cut	1.5
inc	245.0	245.9	0.9	1.2	0.7	0.01	0	1.2	<i>O</i> , 1 1, 11	1.1
and	372.0	379.0	7.0	1.2	3.6	0.04	0.03	1.3	0.2 g/t AuEq cut	9.1
inc	375.0	377.0	2.0	3.8	5.1	0.06	0.05	3.9	0:= 8, 0:: ::==q 0::0	7.8
GNDD472	333.0	345.2	12.2	0.3	4.4	0.09	0.03	0.4	0.2 g/t AuEq cut	5.4
inc	344.4	345.2	0.8	1.1	11.3	1.02	0.38	1.8	0.2 8/ 0.1029 000	1.4
and	374.5	375.1	0.6	11.9	126.0	20.85	0.07	23.1	10 g/t AuEq cut	13.8
and	432.2	432.7	0.5	0.2	7.1	2.5	0.07	1.5	10 6/ 17 10 24 001	0.7
GNDD473	33.0	53.0	20.0	0.2	1.4	0.01	0	0.2	0.2 g/t AuEq cut	4.2
inc	51.0	52.0	1.0	1.4	15.7	0.01	0.03	1.6	0.2 g/t Auly cut	1.6
							_		0.2 g/t AuEg cut	
and	287.3	310.0	22.7	1.8	32.8	0.73	0.27	2.6	0.2 g/t AuEq cut	59.8
inc	287.3	300.3	13.0	3.0	55.4	1.1	0.38	4.3		55.5
and CNDD474	436.4	437.1	0.7	2.7	28.2	4.4	0.2	5.2	0.2 a/+ ΔΓ. a+	3.6
GNDD474	37.0	46.0	9.0	1.0	3.2	0.31	0	1.2	0.2 g/t AuEq cut	10.5
inc	39.3	44.8	5.6	1.4	3.4	0.44	0	1.7	0.2 = /+ 4 = 5 = = = 1	9.2
and	61.0	83.8	22.8	0.4	2.1	0.07	0.01	0.5	0.2 g/t AuEq cut	11.3

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

GNDD475	10.0	23.0	13.0	0.2	1.2	0.1	0.01	0.3	0.2 g/t AuEq cut	3.3
GNDD477A	NSI									
GNDD478	247.0	276.8	29.9	0.2	0.3	0.11	0.03	0.3	0.2 g/t AuEq cut	8.6
and	285.0	294.7	9.7	0.3	0.9	0.2	0.06	0.4	0.2 g/t AuEq cut	3.9
inc	293.0	294.7	1.7	0.8	2.9	0.75	0.15	1.2		2.0
and	335.0	337.0	2.0	1.4	0.4	0.01	0.01	1.4		2.7
and	354.5	355.0	0.5	13.8	26.7	1.9	2.8	15.5	10 g/t AuEq cut	7.8
and	363.0	373.0	10.0	0.4	0.6	0.01	0	0.4	0.2 g/t AuEq cut	4.1
GNDD480	63.0	64.5	1.5	0.8	3.8	0.19	0.09	0.9	0.2 g/t AuEq cut	1.4
and	194.0	198.1	4.1	1.5	2.4	0.02	0.01	1.6	0.2 g/t AuEq cut	6.5
inc	196.7	198.1	1.4	3.5	4.9	0.04	0.03	3.6		5.0
and	212.0	224.6	12.6	0.3	1.0	0.01	0.01	0.3	0.2 g/t AuEq cut	3.9
and	251.0	255.0	4.0	0.4	0.5	0.01	0	0.4	0.2 g/t AuEq cut	1.5
and	361.7	372.0	10.4	0.3	9.7	0.05	0.02	0.5	0.2 g/t AuEq cut	5.1
inc	361.7	362.4	0.8	1.3	16.1	0.04	0.01	1.5		1.1
and	418.0	422.0	4.0	0.5	0.5	0	0	0.5	0.2 g/t AuEq cut	2.1
GNDD482	229.0	231.0	2.0	0.5	0.4	0.06	0.05	0.6	0.2 g/t AuEq cut	1.1
and	346.0	358.0	12.0	1.1	0.4	0.01	0	1.1	0.2 g/t AuEq cut	12.8
inc	346.0	348.0	2.0	2.2	0.5	0.01	0	2.3		4.5
inc	352.0	354.0	2.0	2.7	1.4	0.01	0	2.8		5.5
and	370.0	386.0	16.0	0.4	2.2	0.01	0	0.4	0.2 g/t AuEq cut	6.8
inc	370.0	372.0	2.0	1.1	0.2	0.01	0	1.2		2.3
inc	383.0	384.0	1.0	1.1	27.2	0.1	0.05	1.5		1.5
and	416.0	426.0	10.0	0.9	0.3	0	0	0.9		9.2
and	539.0	545.0	6.0	0.4	0.1	0	0	0.4	0.2 g/t AuEq cut	2.4
GNDD484	343.0	364.0	21.0	0.6	0.4	0.03	0.01	0.6	0.2 g/t AuEq cut	11.9
inc	360.0	364.0	4.0	2.0	0.9	0.07	0.01	2.1		8.2
GNDD485	10.0	70.0	60.0	0.4	4.3	0.09	0.01	0.5	0.2 g/t AuEq cut	27.9
inc	23.6	25.0	1.5	2.8	19.8	0.16	0.02	3.2		4.6
inc	46.0	48.0	2.0	1.7	5.7	0.13	0.02	1.8		3.6
and	104.0	126.0	22.0	0.1	2.7	0.27	0.02	0.3	0.2 g/t AuEq cut	5.9
GNDD487	358.0	362.0	4.0	0.4	0.1	0.01	0	0.4	0.2 g/t AuEq cut	1.7
and	373.2	376.0	2.8	0.4	5.1	0.03	0.01	0.5	0.2 g/t AuEq cut	1.4
and	495.5	518.0	22.5	0.4	0.5	0.01	0	0.4	0.2 g/t AuEq cut	9.7
inc	497.0	497.5	0.5	4.0	5.8	0.01	0	4.1		2.0
and	545.4	547.0	1.6	0.6	3.1	1.1	0	1.1		1.7
GNDD489	514.3	515.0	0.8	0.7	58.5	1.8	0.05	4.3		3.0
and	514.3	515.0	0.8	0.7	58.5	0.18	0.1	1.5		1.1
and	525.0	528.0	3.0	0.2	9.7	0.04	0.01	0.3	0.2 g/t AuEq cut	1.0
GNDD490	299.0	318.6	19.6	0.1	2.6	0.1	0.03	0.2	0.2 g/t AuEq cut	4.4
inc	304.6	305.2	0.6	1.1	0.8	0.27	0	1.2		0.7
and	368.8	370.2	1.4	0.3	49.3	7.5	0.01	4.4		6.2
and	414.0	416.0	2.0	0.9	3.1	0.66	0	1.2	0.2 g/t AuEq cut	2.4
inc	415.0	416.0	1.0	1.4	5.5	1.2	0	2.0	0.2 // 5	2.0
and	436.0	437.7	1.7	0.3	7.0	0.94	0	0.8	0.2 g/t AuEq cut	1.3
inc	436.0	436.8	0.8	0.3	14.0	1.9	0.01	1.3	0.2 = // 1. 5	1.1
GNDD494	15.0	23.0	8.0	0.4	2.3	0.05	0.01	0.5	0.2 g/t AuEq cut	3.8
inc	21.0	22.0	1.0	1.6	8.7	0.06	0.02	1.7	0.2 // 5	1.6
and	63.0	65.0	2.0	0.1	45.2	0.12	0.07	0.7	0.2 g/t AuEq cut	1.4

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

and	217.0	219.0	2.0	0.9	0.9	0.11	0.05	1.0		2.0
GNDD495	nsi	213.0	2.0	0.5	0.5	0.11	0.05	1.0		2.0
GNDD496	35.0	78.0	43.0	0.3	2.1	0.15	0	0.4	0.2 g/t AuEq cut	16.3
inc	51.0	53.0	2.0	1.0	2.6	0.02	0	1.0	012 8/ 17 1029 001	2.1
and	106.0	144.0	38.0	0.6	1.9	0.04	0.01	0.6	0.2 g/t AuEq cut	23.1
inc	106.0	108.0	2.0	2.6	4.3	0.03	0.01	2.6	3,7 7 4,777	5.3
inc	122.0	128.0	6.0	1.8	3.1	0.05	0.01	1.9		11.3
and	210.0	212.0	2.0	3.9	17.4	3.1	0.14	5.5	0.2 g/t AuEq cut	11.0
inc	211.2	212.0	0.8	9.3	43.3	7.6	0.34	13.4	10 g/t AuEq cut	10.8
and	235.4	237.6	2.3	3.0	60.4	6.1	0.35	6.6	<i>g,</i> 1 1, 111	14.8
GNDD-497	nsi									
GNDD498	39.0	54.0	15.0	1.7	2.1	0.02	0.01	1.8	0.2 g/t AuEq cut	26.3
inc	48.4	50.0	1.7	12.0	9.9	0.07	0.02	12.2	10 g/t AuEq cut	20.1
and	66.0	69.8	3.8	4.1	3.1	0.01	0	4.1	<i>g,</i> · · · · · · · · · · · · · · · · · · ·	15.3
and	77.0	80.0	3.0	1.9	4.2	0.04	0.02	2.0	0.2 g/t AuEq cut	5.9
inc	78.5	80.0	1.5	3.2	3.6	0.01	0.01	3.2	5, 1	4.8
and	91.0	103.0	12.0	0.2	0.8	0.01	0	0.2	0.2 g/t AuEq cut	2.9
and	201.9	223.3	21.4	0.3	4.7	0.1	0.01	0.4	0.2 g/t AuEq cut	7.7
inc	222.7	223.3	0.6	0.8	11.1	1.2	0.03	1.4	3,7 7,477	0.9
and	276.0	278.0	2.0	0.7	0.9	0.05	0.04	0.7	0.2 g/t AuEq cut	1.4
and	308.0	310.0	2.0	0.7	0.5	0.1	0.01	0.8	0.2 g/t AuEq cut	1.5
GNDD499	200.0	228.0	28.0	0.2	3.6	0.07	0.04	0.3	0.2 g/t AuEq cut	8.6
and	458.0	462.0	4.0	0.4	4.8	0.01	0.01	0.4	0.2 g/t AuEq cut	1.7
GNDD500	81.5	149.0	67.6	0.3	2.8	0.05	0.01	0.3	0.2 g/t AuEq cut	22.6
inc	101.0	107.0	6.0	0.9	12.9	0.24	0.05	1.2		7.1
and	267.0	307.0	40.0	0.6	4.4	0.17	0.02	0.8	0.2 g/t AuEq cut	30.5
inc	272.0	276.7	4.7	1.7	13.1	0.44	0.04	2.1		9.9
inc	294.1	296.0	2.0	2.6	20.2	1.26	0.09	3.4		6.6
and	378.4	385.4	7.1	0.9	4.1	0.48	0.03	1.2		8.5
and	403.0	420.0	17.0	0.2	1.3	0.04	0.01	0.2	0.2 g/t AuEq cut	4.1
GNDD501	35.0	53.3	18.3	0.2	32.7	0.07	0.02	0.7	0.2 g/t AuEq cut	11.8
inc	39.0	41.0	2.0	1.2	78.7	0.05	0.03	2.1		4.3
inc	52.5	53.3	0.8	0.9	276.0	0.88	0.18	4.7		3.5
and	187.7	189.0	1.4	2.5	2.0	0.02	0	2.5	0.2 g/t AuEq cut	3.4
inc	187.7	188.4	0.7	4.4	2.5	0.03	0	4.4		3.1
GNDD505	443.0	445.0	2.0	0.3	25.9	0.41	0.04	0.8	0.2 g/t AuEq cut	1.6
GNDD506	116.1	118.2	2.1	0.0	4.5	1.9	0.09	1.0	0.2 g/t AuEq cut	2.1
inc	117.0	118.2	1.2	0.0	5.2	2.2	0.07	1.1		1.3
and	205.4	216.0	10.6	0.9	1.1	0.1	0	0.9	0.2 g/t AuEq cut	9.8
inc	205.4	214.0	8.6	0.9	1.3	0.09	0	1.0		8.2
and	238.4	273.6	35.2	0.3	1.4	0.49	0.01	0.6	0.2 g/t AuEq cut	20.0
inc	238.4	239.6	1.2	0.2	4.1	2.2	0.02	1.3		1.6
inc	267.5	273.6	6.1	0.9	3.1	1.5	0.01	1.7		10.1
and	294.0	302.0	8.0	0.4	0.5	0.07	0.01	0.5	0.2 g/t AuEq cut	3.7
and	318.0	323.5	5.5	0.3	0.7	0.09	0.01	0.4	0.2 g/t AuEq cut	2.1
and	430.4	438.7	8.3	0.3	0.3	0.03	0.02	0.3	0.2 g/t AuEq cut	2.6
GNDD508	89.8	91.1	1.4	0.9	2.0	0.32	0.1	1.0		1.4
and	125.0	128.4	3.4	0.2	8.6	0.19	0	0.4	0.2 g/t AuEq cut	1.5
and	167.0	191.0	24.0	0.3	0.5	0.06	0.04	0.4	0.2 g/t AuEq cut	8.8

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

and	331.0	333.0	2.0	1.1	7.0	0.09	0.02	1.2		2.5
and	388.4	389.0	0.7	1.0	40.0	1.6	0.03	2.2		1.4
and	498.8	499.3	0.5	2.6	30.6	3.1	0.01	4.4		2.2
GNDD509	17.0	19.0	2.0	0.7	8.0	0.04	0.01	0.8	0.2 g/t AuEq cut	1.7
and	61.0	63.0	2.0	2.0	15.5	0.01	0	2.2		4.4
and	223.8	227.3	3.6	2.3	2.5	0.03	0	2.4		8.4
GNDD510	167.0	169.0	2.0	1.4	0.3	0.01	0	1.4		2.7
and	224.0	284.0	60.0	0.2	2.0	0.07	0.03	0.3	0.2 g/t AuEq cut	18.4
inc	238.0	240.0	2.0	0.8	7.8	0.44	0.06	1.1		2.2
and	348.0	350.0	2.0	3.7	5.9	1.2	0.44	4.4		8.9
and	430.0	447.0	17.0	0.9	0.4	0	0	0.9	0.2 g/t AuEq cut	15.6
inc	439.6	447.0	7.4	1.8	0.3	0	0	1.8		13.3
and	461.0	465.0	4.0	0.4	0.8	0.01	0	0.4	0.2 g/t AuEq cut	1.7
GNDD511	68.0	70.0	2.0	0.5	2.9	0.07	0.06	0.6	0.2 g/t AuEq cut	1.2
and	130.0	132.0	2.0	0.3	26.5	0.07	0.03	0.6	0.2 g/t AuEq cut	1.2
GNDD513	148.0	172.0	24.0	0.2	1.2	0.02	0	0.3	0.2 g/t AuEq cut	6.3
and	186.0	188.0	2.0	1.0	15.2	0.3	0.23	1.3		2.7
and	239.0	243.0	4.0	0.3	1.0	0.01	0	0.4	0.2 g/t AuEq cut	1.4
and	484.0	486.0	2.0	2.1	4.8	0.01	0.01	2.2		4.4
and	508.0	512.0	4.0	0.5	0.2	0	0	0.5	0.2 g/t AuEq cut	1.9
and	532.0	542.0	10.0	0.3	1.0	0.08	0.04	0.4	0.2 g/t AuEq cut	3.7
and	644.1	653.0	8.9	0.1	3.2	0.53	0.01	0.4	0.2 g/t AuEq cut	3.7
inc	644.1	644.7	0.6	0.4	12.4	5.4	0	3.0		1.8
GNDD514	294.0	295.4	1.4	0.6	268.0	1.45	0.63	4.6		6.5
and	307.8	315.9	8.1	1.0	12.7	1	0.07	1.6		13.1
and	324.1	326.5	2.4	8.5	59.1	5.2	0.14	11.6		27.4
and	349.3	351.2	1.9	0.7	11.0	2.6	0.06	2.0		3.8
and	401.5	406.1	4.6	0.5	5.3	1.3	0.03	1.2	0.2 g/t AuEq cut	5.5
inc	402.6	404.5	1.9	0.9	8.7	2.4	0.02	2.1		4.0
and	418.1	419.0	0.9	1.5	2.9	0.21	0	1.7		1.5
and	549.0	549.5	0.6	0.8	11.7	1.4	0	1.5		0.8
GNDD516	NSI									
GNDD518	172.0	175.0	3.0	0.4	1.3	0	0	0.4	0.2 g/t AuEq cut	1.2
and	183.5	185.0	1.5	1.5	25.0	0.79	0.58	2.3		3.5
and	201.0	206.0	5.0	0.8	2.5	0.21	0.17	1.0	0.2 g/t AuEq cut	5.0
inc	203.0	204.3	1.3	2.2	0.9	0.14	0.05	2.2		2.8
and	265.0	268.0	3.0	0.1	27.2	0.3	0.09	0.6	0.2 g/t AuEq cut	1.9
GNDD519	NSI									
GNDD520	231.0	240.0	9.0	0.2	0.9	0.22	0	0.3	0.2 g/t AuEq cut	2.9
and	305.6	306.1	0.6	2.7	2.7	0.17	0.05	2.8		1.6
and	445.6	448.0	2.4	60.8	53.4	7.1	0.04	64.7		155.3
and	461.3	465.2	3.8	1.0	0.7	0.03	0	1.0	0.2 g/t AuEq cut	3.9
inc	462.3	464.0	1.7	1.8	1.1	0.05	0	1.8		3.1
GNDD521	82.0	86.0	4.0	0.3	0.2	0.01	0	0.3	0.2 g/t AuEq cut	1.0
and	267.0	307.0	40.0	0.2	2.0	0.12	0.04	0.3	0.2 g/t AuEq cut	12.5
inc	302.0	307.0	5.0	0.8	3.4	0.34	0.08	1.0		5.0
GNDD525	157.0	160.5	3.5	0.3	5.2	0.32	0.01	0.5	0.2 g/t AuEq cut	1.8
and	268.0	274.0	6.0	0.6	1.6	0.15	0.1	0.7	0.2 g/t AuEq cut	4.4
and	330.0	331.0	1.0	1.6	7.9	0.59	0.23	2.0		2.0

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

and	353.6	359.3	5.8	0.4	0.9	0.05	0.01	0.5	0.2 g/t AuEq cut	2.7
inc	358.3	359.3	1.0	1.1	1.5	0.13	0.04	1.2		1.2
and	428.0	429.0	1.0	0.4	28.8	0.81	0.44	1.2		1.2
GNDD526	0.0	0.6	0.6	0.8	19.7	0.22	0.03	1.1		0.6
and	142.0	142.9	0.9	1.4	3.4	0.59	0.02	1.7		1.5
GNDD527	280.0	294.0	14.0	0.4	3.7	0.01	0	0.4	0.2 g/t AuEq cut	5.6
inc	280.0	282.0	2.0	1.3	14.1	0.01	0	1.5		3.0
and	338.3	341.3	3.0	5.4	136.0	12.5	0.38	12.9	10 g/t AuEq cut	37.9
and	410.0	415.0	5.0	1.0	13.5	1.6	0.02	1.9	0.2 g/t AuEq cut	9.6
inc	410.0	413.1	3.1	1.5	20.5	2.4	0.03	2.9		8.9
and	427.8	434.0	6.3	0.8	3.4	0	0	0.9	0.2 g/t AuEq cut	5.5
inc	430.2	432.2	2.0	2.0	8.0	0.01	0	2.1		4.2
and	465.0	472.0	7.0	0.5	5.8	0.01	0	0.6	0.2 g/t AuEq cut	4.0
inc	465.0	467.0	2.0	0.9	10.7	0.01	0	1.0		2.0
and	491.6	496.8	5.3	2.0	26.4	1.6	0.02	3.1		16.2
GNDD528	412.0	438.0	26.0	0.3	0.6	0.04	0	0.3	0.2 g/t AuEq cut	8.2
inc	426.8	428.0	1.2	1.4	0.4	0.01	0	1.4		1.7
and	448.0	462.0	14.0	0.2	0.4	0.02	0	0.3	0.2 g/t AuEq cut	3.6
GNDD529	144.0	150.0	6.0	0.4	1.0	0.07	0.06	0.5	0.2 g/t AuEq cut	2.9
and	248.9	250.0	1.1	0.2	11.9	1.9	1.5	1.5		1.5
and	311.0	311.8	0.8	1.4	4.5	0.1	0.06	1.5		1.2
GNDD530	107.0	130.0	23.0	0.3	1.2	0.02	0.01	0.3	0.2 g/t AuEq cut	6.7
and	159.0	213.0	54.0	0.3	2.0	0.06	0.01	0.4	0.2 g/t AuEq cut	19.1
inc	196.0	198.9	2.9	1.8	12.2	0.51	0.05	2.2		6.2
and	357.5	386.0	28.5	5.0	23.9	0.03	0.02	5.3	0.2 g/t AuEq cut	152.4
inc	358.8	360.0	1.2	116.0	536.0	0.25	0.31	122.0		146.8
GNDD531	283.0	295.0	12.0	0.2	2.3	0.03	0.01	0.3	0.2 g/t AuEq cut	3.0
and	319.5	324.0	4.5	0.4	2.4	0.02	0.01	0.5	0.2 g/t AuEq cut	2.0
inc	319.5	320.0	0.5	1.7	18.1	0.02	0	2.0		1.0
and	348.1	348.6	0.5	0.2	7.2	2.3	0.03	1.4		0.7
and	402.2	403.3	1.1	1.6	14.8	2.6	0.02	3.0		3.3
and	416.2	416.7	0.5	2.6	11.4	0.16	0	2.8		1.4
GNDD532	93.8	108.2	14.4	1.2	69.4	0.1	0.06	2.1	0.2 g/t AuEq cut	29.6
inc	93.8	103.0	9.2	1.5	107.0	0.15	0.09	2.9		26.4
and	123.0	127.0	4.0	0.3	12.6	0.02	0.01	0.4	0.2 g/t AuEq cut	1.7
and	157.7	161.0	3.4	0.3	13.4	0.02	0.01	0.4	0.2 g/t AuEq cut	1.4
and	274.0	311.0	37.0	1.3	8.6	0.1	0.01	1.4	0.2 g/t AuEq cut	53.6
inc	278.0	280.0	2.0	2.0	8.7	0.01	0	2.1		4.3
inc	288.7	298.4	9.7	3.6	25.8	0.29	0.03	4.0		38.8
inc	288.7	290.0	1.3	8.9	72.9	1.2	0.19	10.3	10 g/t AuEq cut	13.4
inc	296.0	297.2	1.2	12.5	59.3	0.53	0.01	13.5	10 g/t AuEq cut	15.5
and	348.3	348.9	0.7	4.6	37.4	6	3.92	8.6		5.6
and	358.5	359.2	0.8	0.3	67.1	1.8	2.98	2.5		1.9
and	416.5	427.4	10.9	2.0	14.8	0.94	0.17	2.6		28.7
inc	426.6	427.4	0.8	13.1	79.0	0	0.08	14.1	10 g/t AuEq cut	11.3
GNDD533	213.0	225.6	12.6	0.3	0.1	0.02	0.01	0.3	0.2 g/t AuEq cut	3.4
inc	224.5	225.6	1.1	1.1	0.6	0.05	0.08	1.1		1.2
and	254.0	267.0	13.0	0.2	0.3	0.02	0	0.2	0.2 g/t AuEq cut	3.0
and	362.0	363.4	1.4	67.0	101.0	15	0.04	75.1	10 g/t AuEq cut	101.4

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

and	378.2	378.8	0.7	16.6	5.7	0.74	0	17.0	10 g/t AuEq cut	11.1
and	403.5	404.0	0.5	3.0	32.6	1.4	0.04	4.0		2.0
and	473.0	494.0	21.0	0.4	0.9	0.01	0	0.4	0.2 g/t AuEq cut	9.3
inc	481.0	483.0	2.0	1.2	0.3	0.01	0	1.2		2.4
GNDD534	88.0	92.0	4.0	0.2	1.4	0.19	0.06	0.3	0.2 g/t AuEq cut	1.2
and	219.0	236.0	17.0	0.6	7.6	0.08	0.01	0.7	0.2 g/t AuEq cut	12.1
inc	228.0	234.0	6.0	1.3	15.1	0.07	0.03	1.5		9.0
and	247.0	249.0	2.0	1.2	10.4	0.05	0	1.3		2.6
and	261.0	277.0	16.0	0.2	1.9	0.17	0.04	0.3	0.2 g/t AuEq cut	5.0
and	312.0	321.4	9.4	0.2	1.8	0.08	0.04	0.3	0.2 g/t AuEq cut	2.7
and	334.0	337.0	3.0	1.3	0.3	0.01	0	1.3	0.2 g/t AuEq cut	3.9
inc	334.0	335.0	1.0	3.5	0.6	0.02	0.01	3.5		3.5
GNDD535	88.0	90.0	2.0	0.7	0.1	0.01	0	0.7	0.2 g/t AuEq cut	1.4
and	392.0	414.3	22.3	0.2	0.4	0.1	0	0.3	0.2 g/t AuEq cut	6.0
inc	401.8	403.0	1.3	1.5	2.9	0.59	0	1.8		2.2
and	428.0	440.0	12.0	0.4	0.1	0	0	0.4	0.2 g/t AuEq cut	5.3
GNDD536	188.9	213.0	24.2	0.7	1.7	0.23	0.02	0.9	0.2 g/t AuEq cut	21.0
inc	201.2	203.0	1.8	2.9	13.4	2.2	0.01	4.1		7.4
inc	211.0	213.0	2.0	4.4	0.1	0.01	0	4.4		8.9
and	240.5	252.7	12.2	0.4	0.4	0.01	0	0.4	0.2 g/t AuEq cut	5.0
and	508.3	512.0	3.7	1.0	1.7	0.4	0.03	1.2	0.2 g/t AuEq cut	4.6
inc	508.3	510.1	1.8	1.7	1.3	0.15	0.02	1.8		3.2
and	552.0	558.6	6.6	4.2	50.0	3.4	0.01	6.4	0.2 g/t AuEq cut	41.9
inc	556.8	558.6	1.8	14.2	183.0	12.5	0.04	22.1		39.9
inc	556.8	558.1	1.3	19.2	252.0	17.1	0.06	30.2	10 g/t AuEq cut	39.2
GNDD537	78.0	94.3	16.3	0.3	1.2	0.02	0.01	0.3	0.2 g/t AuEq cut	5.3
and	144.0	150.0	6.0	0.2	0.6	0.03	0.03	0.3	0.2 g/t AuEq cut	1.6
and	308.0	336.5	28.5	0.2	1.0	0.05	0.02	0.3	0.2 g/t AuEq cut	7.0
GNDD540	134.0	186.5	52.5	0.3	5.1	0.06	0	0.4	0.2 g/t AuEq cut	20.0
inc	136.6	137.4	0.8	0.8	49.5	0.14	0.03	1.4		1.2
inc	150.0	152.0	2.0	1.2	19.4	0.08	0	1.4		2.9
and	224.0	254.2	30.2	0.4	4.5	0.26	0.06	0.6	0.2 g/t AuEq cut	17.6
inc	234.0	236.0	2.0	3.8	41.8	2.4	0.17	5.5		11.0
and	309.2	311.7	2.5	4.0	67.5	7.5	0.45	8.3		20.9
GNDD541	398.0	399.6	1.6	0.7	0.0	0	0	0.7	0.2 g/t AuEq cut	1.1
and	436.0	441.0	5.0	0.1	62.3	0.1	0.06	0.9	0.2 g/t AuEq cut	4.4
inc	439.9	441.0	1.1	0.2	222.0	0.35	0.18	3.1		3.4
and	464.2	464.7	0.5	1.4	48.7	3.7	0	3.7		1.8
GNDD542	NSI									
GNDD543	90.3	106.0	15.7	0.2	1.7	0.1	0.01	0.2	0.2 g/t AuEq cut	3.8
and	179.6	181.0	1.4	0.9	1.2	0.4	0.16	1.1		1.5
GNDD544	48.0	58.6	10.6	0.1	3.6	1	0.23	0.7	0.2 g/t AuEq cut	6.9
inc	57.0	58.6	1.6	0.1	11.0	3.5	0.91	2.1		3.3
and	152.0	160.0	8.0	0.2	1.4	0	0	0.3	0.2 g/t AuEq cut	2.0
and	299.0	318.0	19.0	0.3	1.0	0	0	0.3	0.2 g/t AuEq cut	5.2
and	333.5	338.0	4.6	0.3	1.8	0	0	0.3	0.2 g/t AuEq cut	1.5
and	409.0	410.4	1.4	1.1	12.0	0.6	0.13	1.5		2.2
and	422.0	426.0	4.0	0.4	2.9	0	0.07	0.5	0.2 g/t AuEq cut	1.9
GNDD545	145.0	155.0	10.0	0.2	6.0	0.15	0.1	0.3	0.2 g/t AuEq cut	3.4

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

and	273.0	275.6	2.6	0.3	1.3	0.2	0.08	0.4	0.2 g/t AuEq cut	1.0
and	310.3	319.0	8.7	0.3	7.9	0.19	0.06	0.5	0.2 g/t AuEq cut	4.3
inc	310.3	311.0	0.7	1.1	7.9	0.24	0.08	1.4		0.9
and	343.2	348.7	5.5	6.9	66.7	5.5	0.36	10.4		57.1
inc	343.2	345.2	2.0	12.5	75.4	1	0.05	13.9	10 g/t AuEq cut	27.7
and	352.9	355.8	2.9	1.4	17.8	2.9	0.32	3.0		8.6
and	380.0	387.9	7.9	1.5	22.6	3.2	0.6	3.4		26.6
GNDD547	54.0	69.0	15.0	3.9	3.7	0.17	0.03	4.1	0.2 g/t AuEq cut	60.8
inc	54.0	67.2	13.2	4.4	4.2	0.2	0.03	4.6		60.4
inc	65.0	67.2	2.2	11.6	9.5	0.25	0.12	11.8	10 g/t AuEq cut	26.0
and	83.0	85.1	2.1	2.8	7.0	0.4	0.38	3.1	0.2 g/t AuEq cut	6.5
inc	83.0	84.0	1.0	5.5	13.9	0.83	0.79	6.2		6.2
and	157.0	160.7	3.7	2.6	50.5	9.3	4.9	8.5		31.5
inc	157.0	158.8	1.8	4.1	92.7	17.8	8.8	15.2	10 g/t AuEq cut	26.6
GNDD548	NSI									
GNDD549	2.0	17.5	15.5	0.3	5.9	0.05	0.01	0.4	0.2 g/t AuEq cut	6.3
and	28.1	39.0	10.9	4.0	71.5	0.81	0.51	5.3	0.2 g/t AuEq cut	58.2
inc	29.2	31.8	2.6	15.4	245.0	2.1	1.7	19.6		50.1
inc	29.8	30.9	1.1	31.1	381.0	3.2	2.8	37.8	10 g/t AuEq cut	39.7
inc	37.0	39.0	2.0	1.6	44.3	0.32	0.6	2.4		4.9
GNDD550	373.3	377.7	4.4	1.0	16.0	4.5	0.03	3.3	0.2 g/t AuEq cut	14.3
inc	374.0	377.7	3.7	1.1	18.7	5.4	0.03	3.8		14.2
and	425.0	427.1	2.1	3.7	27.0	1.7	0.01	4.8		10.2
and	437.5	443.0	5.5	0.5	15.3	3.3	0.02	2.2		12.2
GNDD552	2.2	36.0	33.8	0.8	12.1	0.15	0.1	1.0	0.2 g/t AuEq cut	33.2
inc	9.0	12.4	3.4	6.0	82.4	0.58	0.8	7.4		24.8
inc	11.4	12.4	1.0	15.6	254.0	0.07	1.1	18.9	10 g/t AuEq cut	18.0
GNDD553	300.0	306.0	6.0	0.2	1.1	0.18	0.1	0.3	0.2 g/t AuEq cut	2.0
and	323.5	325.4	1.9	2.2	11.2	1	0.02	2.9		5.3
and	343.0	343.5	0.5	0.2	5.8	2.1	0.07	1.2		0.6
GNDD555	68.6	69.1	0.6	0.0	79.0	0.12	0.09	1.1		0.6
and	284.0	288.0	4.0	0.4	4.4	0.51	0.13	0.7	0.2 g/t AuEq cut	2.7
and	314.0	327.7	13.7	0.3	8.0	0.76	0.25	0.8	0.2 g/t AuEq cut	10.8
inc	314.0	316.0	2.0	0.3	34.9	0.72	0.23	1.1		2.2
inc	326.9	327.7	0.9	1.0	32.5	10.1	3.3	6.7		5.7
and	468.7	470.0	1.3	1.0	19.5	2.7	0.01	2.4		3.2
and	481.1	482.6	1.5	0.6	11.5	2.2	0.04	1.7		2.5
and	489.8	490.3	0.5	0.2	6.0	1.7	0.05	1.1		0.5
and	495.0	498.7	3.7	0.9	11.3	1.2	0.01	1.6	0.2 g/t AuEq cut	5.9
inc	496.4	498.7	2.4	1.1	15.6	1.6	0.01	2.0		4.8
and	520.9	522.5	1.7	1.3	16.5	0.2	0	1.6	0.2 g/t AuEq cut	2.6
inc	521.8	522.5	0.7	2.3	26.7	0.42	0	2.8		1.9
and	531.8	532.4	0.6	9.4	19.8	1.6	0.02	10.4	10 g/t AuEq cut	6.2
and	538.8	539.6	0.8	1.7	20.0	0.92	0	2.4		1.8
GNDD556	83.2	97.0	13.8	0.4	1.3	0.14	0.09	0.5	0.2 g/t AuEq cut	6.2
inc	86.0	87.5	1.5	1.0	1.1	0.17	0.09	1.1		1.7
inc	94.6	95.8	1.2	1.0	2.2	0.17	0.11	1.1		1.4
and	115.0	124.0	9.0	0.3	0.4	0.1	0.03	0.3	0.2 g/t AuEq cut	2.7
GNDD559	14.0	18.0	4.0	0.2	0.5	0.1	0.01	0.3	0.2 g/t AuEq cut	1.1

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

GNDD561	NSI									
GNDD563	59.0	93.4	34.4	0.5	2.0	0.48	0.23	0.8	0.2 g/t AuEq cut	25.8
inc	76.0	82.3	6.3	1.1	7.7	2.2	1.1	2.4		15.3
inc	90.0	92.0	2.0	3.0	0.4	0.05	0.04	3.1		6.1
and	125.0	128.1	3.1	0.4	0.6	0.07	0.02	0.5	0.2 g/t AuEq cut	1.5
and	148.0	154.0	6.0	0.1	2.0	0.25	0.07	0.3	0.2 g/t AuEq cut	1.6
and	182.0	202.0	20.0	0.3	1.7	0.07	0.04	0.4	0.2 g/t AuEq cut	7.4
inc	184.0	184.5	0.5	5.1	16.8	2.1	1.2	6.5		3.3

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1900 Oz, Ag US\$24 Oz, Zn US\$4,000/t, Pb US\$2000/t
- Metallurgical recoveries are estimated to be Au (95%), Ag (91%), Zn (67%) Pb (58%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: $AuEq (g/t) = Au (g/t) + [Ag (g/t) \times 0.012106] + [Zn (%) \times 0.46204] + [Pb (%) \times 0.19961]$
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Table 8: Significant El Guayabo/Colorado V intercepts reported during the Quarter

Drill Hole	From	То	Interval	Au	Ag	Cu	Мо	AuEq	Comments	Gram
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		Metres
GYDD-22-014	15.30	609.80	594.50	0.16	2.22	0.05	7.34	0.28	0.1 g/t AuEq cut off	164.7
inc	538.50	609.80	71.30	0.50	2.67	0.07	14.28	0.66	1.0 g/t AuEq cut off	46.9
inc	556.50	584.30	27.80	1.14	4.43	0.12	27.61	1.43	1.0 g/t AuEq cut off	39.6
GYDD-22-015	3.00	308.70	305.70	0.15	4.65	0.15	1.54	0.46	0.1 g/t AuEq cut off	141.7
incl.	87.10	146.90	59.80	0.19	7.06	0.25	1.48	0.69	1.0 g/t AuEq cut off	41.2
and	257.65	304.90	47.25	0.38	6.74	0.25	1.30	0.89	1.0 g/t AuEq cut off	42.1
inc	257.65	275.65	18.00	0.40	9.81	0.35	1.37	1.11	1.0 g/t AuEq cut off	20.0
and	289.90	304.90	15.00	0.57	7.73	0.31	1.20	1.19	1.0 g/t AuEq cut off	17.8
GYDD-22-016	68.00	333.42	265.42	0.29	2.90	0.08	2.93	0.47	0.1 g/t AuEq cut off	123.5
inc	225.80	333.42	107.62	0.51	5.65	0.16	2.09	0.86	1.0 g/t AuEq cut off	92.0
and	225.80	256.80	31.00	0.73	6.10	0.17	2.05	1.09	1.0 g/t AuEq cut off	33.9
inc	294.30	333.42	39.12	0.61	8.45	0.25	1.86	1.13	1.0 g/t AuEq cut off	44.1
CVDD-22-001	4.50	533.20	528.70	0.30	2.30	0.09	13.22	0.49	1.0 g/t AuEq cut off	260.8
incl.	4.50	401.60	397.10	0.34	2.76	0.11	14.31	0.56	1.0 g/t AuEq cut off	222.4
incl.	6.00	114.00	108.00	0.42	2.83	0.13	15.75	0.68	1.0 g/t AuEq cut off	73.8
and	166.60	296.80	130.20	0.42	3.33	0.12	15.55	0.67	1.0 g/t AuEq cut off	87.8
incl.	273.50	284.30	10.80	2.51	14.93	0.35	9.16	3.29	1.0 g/t AuEq cut off	35.6
CVDD-22-002	5.00	575.00	570.00	0.21	1.99	0.08	11.43	0.38	0.1 g/t AuEq cut off	218.6
incl.	14.00	320.70	306.70	0.22	2.27	0.12	13.59	0.45	0.5 g/t AuEq cut off	138.2
incl.	174.65	199.50	24.85	0.40	4.54	0.25	53.36	0.91	1.0 g/t AuEq cut off	22.7
incl.	309.30	319.20	9.90	0.97	6.14	0.26	15.83	1.50	1.0 g/t AuEq cut off	14.8
and	387.10	396.20	9.10	0.75	6.91	0.14	8.93	1.08	1.0 g/t AuEq cut off	9.8
incl.	490.20	504.20	14.00	0.77	1.29	0.03	24.72	0.85	1.0 g/t AuEq cut off	11.9
CVDD-22-003	2.5	eoh	509.90	0.24	1.41	0.07	31.30	0.4	0.1 g/t AuEq cut off	203.96
incl.	2.5	246.5	244.00	0.36	1.76	0.09	44.80	0.6	0.5 g/t AuEq cut off	146.4
incl.	2.5	159.4	156.90	0.44	1.76	0.10	54.70	0.7	1.0 g/t AuEq cut off	109.83
incl.	2.5	75.8	73.30	0.55	1.81	0.11	59.10	0.8	1.0 g/t AuEq cut off	58.64
incl.	66.3	75.8	9.50	0.85	1.40	0.13	146.00	1.2	1.0 g/t AuEq cut off	11.4
CVDD-22-004	203	eoh	456.20	0.13	0.91	0.05	10.90	0.25	0.1 g/t AuEq cut off	114.05
incl.	443.9	649.3	205.40	0.19	1.00	0.06	11.10	0.3	0.5 g/t AuEq cut off	61.62
incl.	448.4	504.5	56.10	0.23	1.13	0.07	8.30	0.4	1.0 g/t AuEq cut off	22.44
incl.	593	602	9.00	0.58	0.87	0.04	6.70	0.7	1.0 g/t AuEq cut off	6.3
CVDD-22-005	8.1	572.2	564.10	0.21	2.30	0.09	44.10	0.4	0.1 g/t AuEq cut off	225.64
incl.	8.1	286.1	278.00	0.30	3.21	0.11	68.20	0.6	0.5 g/t AuEq cut off	166.8
incl.	25.8	154.5	128.70	0.39	3.36	0.11	112.10	0.7	1.0 g/t AuEq cut off	90.09

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$22 Oz, Cu US\$9,650 /t, Mo US\$40,500 /t,
- Metallurgical recovery factors for gold, silver, copper, and molybdenum are assumed to be equal. No metallurgical factors have been applied in calculating the Au Eq.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (22/1780)] + [Cu (%) x (9650/100*31.1/1780)] + [Mo (%) x (40500/100*31.1/1780)].
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have reasonable potential to be recovered and sold.

Appendix 1 - Schedule of Tenements

Duciost	Duonouty Nove	Tenure Title	Interest	Area	DNPM No	Status of
Project	Property Name	Holder	%	(ha)	of Area	Tenure
El Guayabo	El Guayabo	Torata Mining Resources S.A	100%	281	COD225	Granted
El Guayabo	Colorado V	Goldking Mining Company S.A	earning 50%	2331	COD3363.1	Granted
El Guayabo	El Guaybo 2	Mr. Segundo Ángel Marín Gómez	earning 80%	957	COD300964	Granted
Hualilan	Divisadero	Golden Mining S.R.L.	earning 75%	6	5448-M-1960	Granted
Hualilan	Flor de Hualilan	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pereyra y Aciar	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Bicolor	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sentazon	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Muchilera	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Magnata	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pizarro	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Toro	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Puntilla	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pique de Ortega	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Descrubidora	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pardo	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sanchez	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Andacollo	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	North of "Pizarro"	Golden Mining S.R.L.	as above	1.9	195-152-C-1981	Granted
Hualilan	South of "La Toro"	CIA GPL S.R.L.	as above	1.9	195-152-C-1981	Granted
Hualilan	Josefina	Golden Mining S.R.L.	as above	2570	30.591.654	Granted
Hualilan		Armando J. Sanchez	100% Option	721.90	414-998-M-05	Granted
Hualilan	Guillermina	Armando J. Sanchez	100% Option	2,921.05	1124-045-S-19	Granted
Hualilan	Agu 3	Armando J. Sanchez	100% Option	1,500.00	1124-114-S-14	Granted
Hualilan	Agu 5	Armando J. Sanchez	100% Option	1443.50	1124-343-S-14	Granted
Hualilan	Agu 6	Armando J. Sanchez	100% Option	1500.00	1124-623-S-17	Granted
Hualilan	Agu 7	Armando J. Sanchez	100% Option	1459.00	1124-622-S-17	Granted
Hualilan	El Petiso	Armando J. Sanchez	100% Option	18.00	2478-C-71	Granted

Appendix 2 - ASX Waivers

The ASX granted the Company a waiver from ASX Listing Rule 7.3.2 to permit the notice of meeting (the "Notice") seeking shareholder approval for the issue of up to 245,000,001 fully paid ordinary shares in the Company ("Waiver Securities") upon the Company satisfying the milestones in relation to each of the Projects ("Milestones") not to state that the Waiver Securities will be issued within 3 months of the date of the shareholder meeting.

The Waiver Securities must be issued no later than 60 months after the date of reinstatement of the Company's securities to official quotation.

All Waiver Securities agreements were amended, received shareholder approval and have been issued.

Performance Shares

The Company has 60,000,000 Class A Performance Shares and 60,000,000 Class B Performance Shares on Issue.

A summary of the terms and conditions of the Performance Shares are as follows:

The Performance Shares shall automatically convert into Shares, provided that if the number of Shares that would be issued upon such conversion is greater than 10% of the Company's Shares on issue as at the date of conversion, then that number of Performance Shares that is equal to 10% of the Company's Shares on issue as at the date of conversion under this paragraph will automatically convert into an equivalent number of Company Shares. The conversion will be completed on a pro rata basis across each class of Performance Shares then on issue as well as on a pro rata basis for each Holder. Performance Shares that are not converted into Shares under this paragraph will continue to be held by the Holders on the same terms and conditions.

(**No Conversion if Milestone not Achieved**): If the relevant Milestone is not achieved by the required date (being seven years from the date of the Proposed Acquisition or such other date as required by ASX), then all Performance Shares held by each Holder shall lapse.

(After Conversion): The Shares issued on conversion of the Performance Shares will, as and from 5.00pm (WST) on the date of issue, rank equally with and confer rights identical with all other Shares then on issue and application will be made by the Company to ASX for official quotation of the Shares issued upon conversion (subject to complying with any restriction periods required by the ASX). (Milestones):

The Performance Shares will, convert upon the satisfaction of the following milestones:

(Class A): A JORC Compliant Mineral Resource Estimate of at least Inferred category on either Project of the following:

a minimum 500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 6 grams per tonne Gold Equivalent; or a minimum 1,500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 2.0 grams per tonne Gold Equivalent; or a minimum 3,000,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 1.0 grams per tonne Gold Equivalent.

(Class B): The Class B Performance Shares held by the holder will convert into an equal number of Shares upon the Company:

Completion and announcement by CEL (subject to the provision of information allowable at the time of completion) of a positive Scoping Study (as defined in the JORC Code) on either Project by an independent third-party expert which evidences an internal rate of return of US Ten Year Bond Rate plus 10% (using publicly available industry assumptions, including deliverable spot commodity / mineral prices, which are independently verifiable) provided that the total cumulative EBITDA over the project life is over US\$50m.

No Performance Milestones were met during the quarter

•

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -El Guayabo Project

Section 1 Sampling Techniques and Data -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 El Guayabo: CEL have drilled HQ diamond core which is sampled by cutting the core longitudinal into two halves. One half is retained for future reference and the other half is sent for sampling. Sampling is done according to the geology. Sample lengths range from 0.5 to 2.5 metres. The average sample length is 1.5m. Samples are prepared at SGS Laboratories in Guayaquil for 30g fire assay and 4-acid digest ICPMS and then assayed in SGS Lima. The sample size is considered representative for the geology and style of mineralisation intersected. All the core All collected material is sampled for assay. Historic Drilling: Newmont Mining Corp (NYSE: NEM) ("Newmont") and Odin Mining and Exploration Ltd (TSX: ODN) ("Odin") core drilled the property between February 1995 and November 1996 across two drilling campaigns. The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality Diamond drilling produced core that was sawed in half with one half sent to the laboratory for assaying per industry standards and the remaining core retained on site. Cu assays above 2% were not re-assayed using a technique calibrated to higher value Cu results hence the maximum reported assay for copper is 2%. All core samples were analysed using a standard fire assay with atomic absorption finish on a 30 g charge (30

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
		 CEL has re-sampled sections of the Newmont and Odin drill core. ¼ drill core was cutover intervals that replicated the earlier sampling. Sample intervals ranged from 0.7 – 4.5m with an average of 2.0m. 533 samples totaling 1,094.29m were collected. Sampling was done for Au analysis by fire assay of a 30g charge and 43 element 4-acid digest with ICP_AES determination.
		 Field mapping (creek traverse) by CEL includes collection of rock chip samples for assay for Au by fire assay (50g) with AAS determination and gravimetric determination for values > 10 g/t Au and assay for 48 elements by 4-acid digest with ICP-MS determination. Rock chip samples are taken so as to be as representative as possible of the exposure being mapped.
		Colorado V:
		 Soil sampling: A database of 4,495 soil analyses has been provided by Goldking Mining Company S.A. (GK) has been fully evaluated. No information has been provided on the method of sample collection or assay technique. The soil analyses include replicate samples and second split analyses. Pulps have been securely retained by Goldking Mining Company and have been made available to CEL for check assaying. Check assaying is planned, including collection of field duplicates.
		 Rock chip sampling during regional mapping has been done on selected exposures. Sampling involves taking 2-3 kg of rock using a hammer from surface exposures that is representative of the exposure. Selected intervals of drill core have been cut longitudinally and half core were submitted for gold determination at GK's on-site laboratory prior to CEL's involvement with the Project.
		• Re-sampling of the core by CEL involves taking ¼ core (where the core has previously been sampled) or ½ core (where the core has not previously been sampled). The core is cut longitudinally and sample intervals of 1 – 3 meters have been collected for analysis. ZK0-1 and ZK1-3 have been analysed for of gold by fire assay (30g) with ICP determination and other elements by 4 acid digest with ICP-AES finish (36 elements) at SGS del Peru S.A.C. SAZK0-1, SAZK0-2, SAZK2-1, ZK0-2, ZK0-5, ZK1-5, ZK1-6, ZK2-1, ZK3-1, ZK3-4, ZK13-1 and ZK18-1 have been analysed for of gold by fire assay (30g) with ICP determination and other elements by 4 acid digest with combined ICP-AES and ICP-MS finish (50 elements) at SGS del Peru S.A.C. Samples from other holes have been analysed for gold by fire assay (30g) with ICP determination and overlimit (>10 g/t Au) by fire assay with gravimetric determination and other elements by 4-acid digest with ICP-MS (48 elements) at ALS Laboratories in Peru.
		 Underground development has been mapped and channel sampled. Channel samples have been taken by cutting a horizontal channel of approximately 5 cm width and 4 cm depth into the walls at a nominal height of 1m above the ground. The channel cuts were made with an angle grinder mounted with a diamond blade. Samples were extracted from the channel with a hammer and chisel to obtain a representative sample with a similar weight per metre as would be obtained from a drill core sample. Analysis of the samples has been done by ALS Laboratories in Peru using the same preparation and analysis as has been used for drill core samples.

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	El Guayabo: CEL Drilling: • Diamond core drilling collecting HQ core (standard tube). The core is not oriented. Historic Drilling: • Diamond core drilling HQ size from surface and reducing to NQ size as necessary. The historical records do not indicate if the core was oriented Colorado V: • Diamond drilling was done using a rig owned by GK. Core size collected includes HQ, NQ and NQ3. There is no indication that oriented core was recovered.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	El Guayabo: CEL Drilling: Core run lengths recovered are recorded against the drillers depth markers to determine core recovery. Core sample recovery is high using standard HQ drilling No relationship between sample recovery and grade has been observed. Historic Drilling: In a majority of cases core recovery was 100%. In the historical drill logs where core recoveries were less than 100% the percentage core recovery was noted. No documentation on the methods to maximise sample recovery was reported in historical reports however inspection of the available core and historical drilling logs indicate that core recoveries were generally 100% with the exception of the top few metres of each drill hole. No material bias has presently been recognised in core. Observation of the core from various drill holes indicate that the rock is generally fairly solid even where it has been subjected to intense, pervasive hydrothermal alteration and core recoveries are generally 100%. Consequently, it is expected that the samples obtained were not unduly biased by significant core losses either during the drilling or cutting processes Colorado V: Core from Goldking has been re-boxed prior to sampling where boxes have deteriorated, otherwise the original boxes have been retained. Core lengths have been measured and compared to the depth tags that are kept in the boxes from the drilling and recovered lengths have been recorded with the logging. Where re-boxing of the core is required, core has been placed in the new boxes, row-by row with care taken to ensure all of the core has been transferred.

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commenta	гу				
- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	• Pee • 100	ere appropriate er review of cor 0% of all core ir gress of currer	e. All core logge re logging is don acluding all relev	ed has been phot ne to check that t vant intersection	drill core has been logge ographed after logging a he logging is representa s are logged blorado V drill core re-lo Sampling Status	and before sampling. tive.	
	The total length and percentage of the	GY-01	249.2	Complete	Complete	Partial	25
	relevant intersections logged.	GY-02	272.9	Complete	Complete	Partial	88
		GY-03	295.99	Pending	Complete	Pending	
		GY-04	172.21	Pending	Complete	Pending	
		GY-05	258.27	Partial	Complete	Partial	56
		GY-06	101.94	Pending	Complete	Pending	
		GY-07	127.0	Pending	Complete	Pending	
		GY-08	312.32	Pending	Complete	Pending	
		GY-09	166.25	Pending	Complete	Pending	
		GY-10	194.47	missing core	missing core	missing core	
		GY-11	241.57	Complete	Complete	Partial	84
		GY-12	255.7	Partial	Complete	Pending	
		GY-13	340.86	missing core	missing core	missing core	
		GY-14	309.14	missing core	missing core	missing core	
		GY-15	251.07	missing core	missing core	missing core	
		GY-16	195.73	missing core	missing core	missing core	
		GY-17	280.04	Complete	Complete	Partial	36
		GY-18	160.35	Pending	Complete	Pending	
		GY-19	175.42	Pending	Complete	Pending	
		Logged (m)	1,043.71	Re-logged		Samples Submitted	289
		Total (m)	4,185.01	Odin Drilled			
		JDH-01	236.89	missing core	missing core	missing core	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary					
		JDH-02	257.62	missing core	missing core	missing core	
		JDH-03	260.97	missing core	missing core	missing core	
		JDH-04	219.00	missing core	missing core	missing core	
		JDH-05	210.37	missing core	missing core	missing core	
		JDH-06	302.74	Complete	Complete	Partial	98
		JDH-07	105.79	missing core	missing core	missing core	
		JDH-08	352.74	missing core	missing core	missing core	
		JDH-09	256.70	Complete	Complete	Partial	49
		JDH-10	221.64	Complete	Complete	Partial	43
		JDH-11	217.99	Pending	Complete	Pending	
		JDH-12	124.08	Complete	Complete	Partial	22
		JDH-13	239.33	Complete	Complete	Partial	21
		JDH-14	239.32	Complete	Complete	Partial	30
		Logged (m)	1,038.09	Re-logged		Samples Submitted	263
		Total (m)	3,245.18	Newmont Dri	lled		

CEL El Guayabo Drill Hole Processing Completed

022 2. 000,000 2					
Hole_ID	Depth (m)	Logging Status	Core Photograph	Sampling Status	Total Samples
GYDD-21-001	800.5	Complete	Complete	Complete	581
GYDD-21-002	291.7	Complete	Complete	Complete	204
GYDD-21-002A	650.6 723.2	Complete	Complete	Complete	282
GYDD-21-003					545
GYDD-21-004	696.1				513
GYDD-21-005	632.1				445
GYDD-21-006	365.3				258
GYDD-21-007	651.8	Complete	Complete	Complete	407
GYDD-21-008	283.7	Complete	Complete	Complete	214
GYDD-21-009	692.7	Complete	Complete	Complete	517

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Kna

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact T: +61 8 6380 9235

Criteria	JORC Code explanation	Commentary					
		GYDD-21-010	888.6	Complete	Complete	Complete	620
		GYDD-21-011	314.5	Complete	Complete	Complete	227
		GYDD-21-012	797.7	Complete	Complete	Complete	588
		GYDD-21-013	517.5	Complete	Complete	Complete	388
		GYDD-22-014	783.6	Complete	Complete	Complete	546
		GYDD-22-015	368.3	Complete	Complete	Complete	265
		GYDD-22-016	469.8	Complete	Complete	Complete	314
		Logged (m)	9927.23			Samples Submitted	6915
		Total (m)	9927.23				

Colorado V:

- Core has been logged for lithology, alteration, mineralisation and structure. Where possible, logging is quantitative.
- Colorado V core re-logging and re-sampling is summarized below:

Hole_ID	Depth (m)	Logging Status	Core Photograph	Sampling Status	Total Samples
ZK0-1	413.6	Complete	Complete	Samples Submitted	281
ZK0-2	581.6	Complete	Complete	Samples Submitted	388
ZK0-3	463.0	Complete	Complete	Samples Submitted	330
ZK0-4	458.0	Complete	Complete	Samples Submitted	350
ZK0-5	624.0	Complete	Complete	Samples Submitted	482
ZK1-1	514.6	Complete	Complete	Samples Submitted	288
ZK1-2	403.1	Complete	Complete	Not Re-Sampled	
ZK1-3	425.0	Complete	Complete	Samples Submitted	279
ZK1-4	379.5	Complete	Complete	Samples Submitted	267
ZK1-5	419.5	Complete	Complete	Samples Submitted	266
ZK1-6	607.5	Complete	Complete	Samples Submitted	406
ZK1-7	453.18	Complete	Complete	Samples Submitted	370
ZK1-8	556.0	Complete	Complete	Not Re-Sampled	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary					
		ZK1-9	220.0	Complete	Complete	Samples Submitted	140
		ZK2-1	395.5	Complete	Complete	Samples Submitted	320
		ZK3-1	372.48	Complete	Complete	Samples Submitted	250
		ZK3-1A	295.52	Pending	Pending	Pending	
		ZK3-2	364.80	Complete	Complete	Samples Submitted	235
		ZK3-4	322.96	Complete	Complete	Samples Submitted	156
		ZK4-1	434.0	Complete	Complete	Not Re-sampled	
		ZK4-2	390.5	Complete	Complete	Not Re-sampled	
		ZK4-3	650.66	Complete	Complete	Not Re-sampled	
		ZK4-4	285.0	Complete	Complete	Not Re-sampled	
		ZK5-1	321.90	Complete	Complete	Not Re-sampled	
		ZK5-2	321.0	Complete	Complete	Not Re-sampled	
		ZK5-3	446.5	Complete	Complete	Not Re-sampled	
		ZK5-4	508.0	Complete	Complete	Not Re-sampled	
		ZK5-5	532.0	Complete	Complete	Samples Submitted	378
		ZK6-1	552.6	Complete	Complete	Not Re-sampled	
		ZK6-2	531	Complete	Complete	Not Re-sampled	
		ZK10-1	454.0	Complete	Complete	Samples Submitted	229
		ZK10-2	318.82	Complete	Complete	Samples Submitted	206
		ZK10-3	331.52	Complete	Complete	Samples Submitted	220
		ZK11-1	237.50	Complete	Complete	Not Re-sampled	
		ZK12-1	531.50	Complete	Complete	Not Re-sampled	
		ZK12-2	510.6	Complete	Complete	Not Re-sampled	
		ZK13-1	394.0	Complete	Complete	Samples Submitted	246
		ZK13-2	194.0	Complete	Complete	Not Re-sampled	
		ZK16-1	324.0	Complete	Complete	Samples Submitted	212
		ZK16-2	385.83	Complete	Complete	Samples Submitted	223
		ZK18-1	410.5	Complete	Complete	Samples Submitted	286
		ZK19-1	548.60	Complete	Complete	Not Re-sampled	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

riteria	JORC Code explanation	Commentary					
		ZK100-1	415.0	Complete	Complete	Not Re-sampled	
		ZK103-1	524.21	Complete	Complete	Not Re-sampled	
		ZK105-1	404.57	Complete	Complete	Not Re-sampled	
		ZK205-1	347.0	Complete	Complete	Samples Submitted	211
		SAZKO-1A	569.1	Complete	Complete	Samples Submitted	396
		SAZKO-2A	407.5	Complete	Complete	Samples Submitted	260
		SAZK2-1	430.89	Complete	Complete	Samples Submitted	195
		SAZK2-2 CK2-1	354.47 121.64	Complete missing core	Complete missing core	Not Re-Sampled missing core	
		CK2-2	171.85	missing core	missing core	missing core	
		CK2-3	116.4	missing core	missing core	missing core	
		CK2-4	146.12	missing core	missing core	missing core	
		CK2-5	357.56	Complete	Complete	Complete	
		CK2-6	392.56	Complete	Complete	Complete	
		CK3-1	185.09	missing core	missing core	missing core	
		CK3-2	21.75	missing core	missing core	missing core	
		CK3-3	138.02	missing core	missing core	missing core	
		CK5-1	273.56	Complete	Complete	Not Re-Sampled	
		CK5-2	273.11	Complete	Complete	Not Re-Sampled	
		CK13-1	227.1	Complete	Complete	Not Re-Sampled	
		CK13-2	231.16	Complete	Complete	Not Re-Sampled	
		CK13-3	197.06	Complete	Complete	Not Re-Sampled	
		CK13-4	176.57	Complete	Complete	Not Re-Sampled	
		CK13-5	184.70	Complete	Complete	Not Re-Sampled	
		CK21-1	143.47	Complete	Complete	Not Re-Sampled	
		Logged (m)	25,315.07	Re-logged		Samples Submitted	7,894
		Total (m)	24,414.20	Core Shack			
		Total (m)	26,528.26	Drilled			

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Dire

Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		CEL Colorado V Di	ill Hole Pro	cessing Comple	eted			
		Hole_ID	Depth (m)	Logging Status	Core Photograph	Sampling Status	Total Samples	
		CVDD-22-001	533.20	Complete	Complete	Complete	398	
		CVDD-22-002	575.00	Complete	Complete	Complete	412	
		CVDD-22-003	512.40	Complete	Complete	Complete	384	
		CVDD-22-004	658.95	Complete	Complete	Complete	478	
		CVDD-22-005	607.15	Complete	Complete	Complete	456	
		CVDD-22-006	600.70	Complete	Complete	Complete	427	
		CVDD-22-007	808.00	Complete	Complete	Complete	602	
		CVDD-22-008	535.70	Complete	Complete	Complete	306	
		CVDD-22-009	890.80	Complete	Complete	Complete	668	
		Logged (m) Total (m)	5721.90 5721.90			Samples Submitted	4131	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	and the saw to p The loca represer The sam Historic: Core wa All drillin Sample nominal then ser nominal Measure	other retain prepare two ation of the ntative same apple preparates cut with doing was core preparation — 10 meshot for analys 5 ppb Au des taken to	ned for future of the country of the	reference. Where ates. on the core by the e is appropriate found half core was tan this is not relevante and of good quante 250 g of chips we standard fire assay the sampling is represented.	duplicate samples geologist that logg r the material being aken nt uality. Each 1-3 m s ere split out and pu r on a 30 g charge v	are taken, ¼ core is ged the core to ensing sampled ample of half core allowerized. A sub-sample with an atomic absorption absorption is sub-sample of the core allowerized.	f is sampled for assay is cut using a diamond ure the cut creates a was dried, crushed to a mple of the pulp was orption finish with a ected is not outlined in which demonstrated

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
		 the repeatability of original assay results The use of a 1-3 m sample length is appropriate for deposits of finely disseminated mineralisation where long mineralised intersections are to be expected. CEL ½ core sampling was done by cutting the core with a diamond saw. Standards (CRM) and blanks were inserted into the batched sent for preparation and analysis. No duplicate samples were taken and ½ core was retained for future reference. The sample size is appropriate for the style of mineralisation observed. CEL rock chip samples of 2-3 kg are crushed to a nominal 2mm and a 500 g sub-sample is pulverized. The rock chips are collected from surface expose in creeks. Sampling is done so as to represent the material being mapped. The sample size is appropriate for the grain size of the material being sampled. Colorado V: No information is available on the method/s that have been used to collect the soil samples. Selected intervals of drill core have been cut longitudinally using a diamond saw and ½ core has been sampled. Sample intervals range from 0.1m to 4.5m with an average length of 1.35m. The size of the samples is appropriate for the mineralisation observed in the core. Re-sampling of the core involves cutting of ½ core (where previously sampled) or ½ core where not previously sampled. ½ or ½ core over intervals of 1-3 metres provides an adequate sample size for the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 CEL: All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where overlimit. Subsamples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample. Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses. 5 different CRM pulp samples have been submitted with the core samples. All 5 are certified for Au, 1 is certified for Ag, 4 are certified for Cu, 1 is certified for Fe and 2 are certified for Mo. For Au, of 184 CRM pulp analyses, 174 are within +/- 2 SD (95%) For Ag, of 44 CRM pulp analyses, all are within +/- 2 SD (100%) For Cu, of 159 CRM pulp analyses, 151 are within +/- 2 SD (81%) For Fe, of 56 CRM pulp analyses, 36 are within +/- 2 SD (64%) 100 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 1

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	samples returned Au values of 5 ppb or more (up to 9 ppb) indicating only mild instrument calibration or contamination during fire assay. 137 % core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate sample analyses follow very closely the original analyses providing assurance that the sample size and technique is appropriate. Historic: The nature, quality and appropriateness of the assaying and laboratory procedures used by Newmont and Odin are still in line with industry best practice with appropriate QA/QC and chain of custody and are considered appropriate. Available historical data does not mention details of geophysical tools as such it is believed a geophysical campaign was not completed in parallel with the drilling campaign. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality. Later Odin undertook a reassaying program of the majority of the higher-grade sections which confirmed the repeatability. Given the above, it is considered acceptable levels of accuracy and precision have been established CEL ¼ and ½ core samples were prepared for assay at SGS Del Ecuador S.A.in Quito, Ecuador with analysis completed by in Lima at SGS del in Peru S.A.C and by ALS Laboratories in Quito with analysis completed by ALS in Vancouver, Canada. Samples were crushed and a 500g sub-sample was pulverized to 85% passing 75 µm. The technique provides for a near total analysis of the economic elements of interest. CEL rock chip samples were prepared for assay at ALS Laboratories (Quito) with analysis being completed at ALS Laboratories (Peru). The fire assay and 4-acid digest provide for near-total analysis of the economic elements of interest. No standards or blanks were submitted with the rock chip samples. Colorado V: No information is available on the methods used to analyse the historic soil or drill co

West Perth WA 6005

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

rocedures, data verification, data starage (physical and electronic) protocols. Discuss any adjustment to assay data. Historic: All intersections with results greater than 0.5 g/t were re-assayed using the "biaster" technique - a screen type fire analysis based on a pulverised sample with a mass of about 5 kg. Additionally, Odin re-assayed the many of the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted system did logs and in some cases original apper copies of assay sheets are available. This data is currently intercepts with twinned holes of the data. Colorado: **Colorado: **Colorado: **Colorado: **Colorado: **Accuracy and quality of surveys used to locate appinsts **International dequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Specification of the grid system used. Quality and adequacy of topographic control. **Down-hole surveys are performed at regular intervals down hole (nominally 30 metres or as required by the geologist) during the drilling of the hole to ensure the hole i	Criteria	JORC Code explanation	Commentary
Location of data points - Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control. - Quality and adequacy of topographic control. - When the provided in the		(physical and electronic) protocols.	 assay data. Historic: All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screen type fire analysis based on a pulverised sample with a mass of about 5 kg. Additionally, Odin re-assayed the many of the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of assay sheets are available. This data is currently stored in a drop box data base with the originals held on site. No adjustments to assay data were made. CEL assay data has not been independently verified or audited. Data is stored electronically in MS Excel and PDF format from the Laboratory and entered into a Project database for analysis. There has been no adjustment of the data. Colorado V: There is no information available on the verification of sample and assay results. No assay data is provided in this report. Soil replicate samples and second split assay results have been provided but not fully analysed at this stage. Of the 4,495 soil samples in the GK database, 166 are replicate samples and 140 are second split re-analyses. 37 samples have no co-ordinates in the database. The remaining 4,152 have analyses for all 19 elements indicated above. Significant intersections have been internally checked against the assay data received. The data received has been archived electronically and a database of all drill information is being developed. There is no adjustment of
·	-	drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation Specification of the grid system used.	 Drill hole collars are surveyed after the drilling using a DGPS. The co-ordinate system used is PSAD 1956, UTM zone 17S. Down-hole surveys are performed at regular intervals down hole (nominally 30 metres or as required by the geologist) during the drilling of the hole to ensure the hole is on track to intersect planned targets. Down hole surveys are done using a magnetic compass and inclinometer tool fixed to the end of the wire line. Down hole surveys are recorded by the drillers and sent to the geologist and GIS team for checking and entry into the drill hole database.
			·

1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been 	 Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 Quality of topographic control appears to be+ - 1 meter which is sufficient for the exploration activities undertaken. Rock chip samples have been located using topographic maps with the assistance of hand-held GPS. Colorado V: Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 No information is available on the collar and down-hole survey techniques used on the Colorado V concession. Rock chip sample locations are determined by using a handheld GPS unit which is appropriate for the scale of the mapping program being undertaken. Drilling is exploration based and a grid was not considered appropriate at that time. A JORC compliant Mineral Resource has not been estimated Sample compositing was not used
Orientation of data in relation to geological structure	 applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 A sampling bias is not evident. Drill pads are located in the best possible location to ensure there is no bias introduced, subject to the topography and existing infrastructure. The steep terrain and thick vegetation often dictates where is it possible to place a drill collar.
Sample security	- The measures taken to ensure sample security.	El Guayabo: CEL Samples: All CEL samples are held in a secure compound from the time they are revied from the drillers to the time they are loaded onto a courier truck to be taken to the laboratory. The logging and sampling is done in a fenced and gated compound that has day and night security. Samples are sealed in bags and then packed in secure polyweave bags for transport

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
		 Newmont sent all its field samples to the Bondar Clegg sample preparation facility in Quito for preparation. From there, approximately 100 grams of pulp for each sample was air freighted to the Bondar Clegg laboratory (now absorbed by ALS-Chemex) in Vancouver, for analysis. There is no record of any special steps to monitor the security of the samples during transport either between the field and Quito, or between Quito and Vancouver. However, Newmont did insert its own standards at 25 sample intervals as a control on analytical quality. CEL samples are kept in a secure location and prepared samples are transported with appropriate paperwork, securely by registered couriers. Details of the sample security and chain of custody are kept at the Project office for future audits. Colorado V: GK analysed samples in an on-site laboratory. It is understood that the samples have remained on site at all times. CEL have collected samples at the core shed at El Guayabo and secured the samples in polyweave sacks for
Audits or review	rs - The results of any audits or reviews of sampling techniques and data.	transport by courier to SGS Laboratories in Quito for preparation. SGS in Quito courier the prepared sample pulps to SGS in Peru for analysis. Photographs and documentation are retained to demonstrate the chain of custody of the samples at all stages. El Guayabo: CEL drilling: There has been no audit or review of the sampling techniques and data Historic:
		 The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. There have been no audits of reviews of CEL data for the El Guayabo. Colorado V: No audits or reviews of sampling techniques and data is known. Goldking did twin two earlier holes with results still being compiled.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The El Guayabo (Code. 225) mining concession is located within El Oro Province. The concession is held by Torata Mining Resources S.A (TMR S.A) and was granted in compliance with the Mining Act ("MA") in on April 27, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness or national park issues. The mining title grants the owner an exclusive right to perform mining activities, including, exploration, exploitation and processing of minerals over the area covered by the prior title for a period of 25 years, renewable for a further 2 years. Under its option agreement, the owner has been granted a negative pledge (which is broadly equivalent to a fixed and floating charge) over the concession. In addition, a duly notarized Irrevocable Promise to Transfer executed by TMR S.A in favor of AEP has been lodged with the Ecuador Mines Department. The Colorado V mining concession (Code No. 3363.1) located in Bellamaria, Santa Rosa, El Oro, Ecuador was granted in compliance with the Mining Act ("MA") in on July 17, 2001. It is adjacent to El Guayabo concession to the north. The concession is held by Goldking Mining Company S.A. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The El Guayabo 2 (Code. 300964) mining concession is located Torata parish, Santa Rosa canton, El Oro province, Ecuador. The concession is held by T Mr. Segundo Ángel Marín Gómez and Mrs. Hermida Adelina Freire Jaramillo and was granted in compliance with the Mining Act ("MA") on 29April 29, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness, or national park issues.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Previous exploration on the project has been undertaken by Newmont and Odin from 1994 to 1997. This included surface pit and rock chip geochemistry, followed by the drilling of 33 drill holes for a total of 7605.52 meters) to evaluate the larger geochemical anomalies. The collection of all exploration data by Newmont and Odin was of a high standard and had appropriate sampling techniques and intervals, adequate QA/QC and custody procedures, and appropriate duplicates and blanks used for determining assay precision and accuracy. The geological interpretation of this data, including core logging and follow up geology was designed and directed by in-country inexperienced geologists. It appears to have been focused almost exclusively for gold targeting surface gold anomalies or the depth extensions of higher-grade gold zones being exploited by the artisanal miners. The geologic logs for all drill holes did not record details that would have been typical, industry standards for porphyry

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary	y							
		- In short, i turn pres Colorado V: - All explor 21,471.83 El Guayabo 2: - Explorations small nur	mportant de ents an oppo ation knowr Bm have bee	etails which ortunity to n has been o en complete lertaken by ples for gole	the current completed by GK. the previoud, silver, cop	e allowed th owner. by GK. Drilli as owner wa oper, lead a	ne type of to ng has been as limited to nd zinc. The	n done from tield mappereport is o	petter explo 1 2016 to 20 ing and sam nly available	ve never been followed up. ored were missed which in one of the second o
Geology	 Deposit type, geological setting and mineralisation. 	copper sy Oligocene sequence	stem and in e – Mid-Mioo e, which also prite and da Steeply plui diameter) Quartz vein	trusive-rela cene volcar suggests a cite. Minera nging brecc s and veinla	ated gold. Thic rocks. The evolving balisation has in a bodies and ets.	ne host rock nis suggests asement ma been recog nd in the me	s for the in the intrusic agmatic sys gnized in: stamorphic	trusive com ons are of a stem. Intrus host rock ac	plex is meta similar age sions are de djacent to tl	ow Sulfide" porphyry gold amorphic basement and to the host volcanic scribed in the core logs as the breccia (up to 200 m in st rock near the intrusions.
Drill hole Information	 A summary of all information material to understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole 	DRILLHOLE CODE DDHGY01 DDHGY02 collar DDHGY0A	(X) 628928.09 629171.15 629041.84		ELEVATION (m.a.s.l)		-90.0 -90.0 -90.0 -60.0	FINAL DEPTHP 249.20 272.90 295.94 172.21	DRILLED BY Odin Odin Odin Odin	

9606405.29

9606025.97

9606025.80

9606405.74

9606025.88

9606025.24

9606405.33

9606035.53

9605975.42

9605975.64

9605912.35

9606044.44

9606058.64

9606035.45

9606034.98

628509.21

629170.56

629170.81

628508.95

629171.22

629170.77

628507.97

629087.18

629242.46

629242.27

629194.67

629285.92

629122.31

628993.10

629087.23

- o elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
- o dip and azimuth of the hole
- down hole length and interception depth
- o hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

Level 1

1205 Hay Street

West Perth WA 6005

Australian Registered Office

Directors

DDHGY 05

DDHGY 06

DDHGY 07

DDHGY 08

DDHGY 09

DDHGY 10

DDHGY11

DDHGY 12

DDHGY 13

DDHGY 14

DDHGY 15

DDHGY 16

DDHGY 17

DDHGY 18

DDHGY 19

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact T: +61 8 6380 9235 E: admin@challengerex.com

989.87

983.11

983.16

989.86

983.22

983.12

989.83

996.98

997.292

997.285

977.001

1036.920

1021.053

977.215

997.332

145.0

305.0

305.0

145.0

45.0

225.0

160.0

125.0

320.0

320.0

320.0

320.0

125.0

140.0

45.0

-60.0

-60.0

-75.0

-75.0

-75.0

-75.0

-60.0

-60.0

-65.0

-75.0

-60.0

-60.0

-82.0

-60.0

-53.0

258.27

101.94

127.00

312.32

166.25

194.47

241.57

255.7

340.86

309.14

251.07

195.73

280.04

160.35

175.41

Odin

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Criteria	JORC Code explanation	Commentary
----------	-----------------------	------------

DRILLHOLE CODE	EAST (X)	NORTH (N)	ELEVATION (m.a.s.l)	AZIMUTH (°)	DIP (°)	FINAL DEPTHP	DRILLED BY
JDH01	627185.78	9606463.27	933.47	280.0	-60.0	236.89	Newmont
JDH02	627260.37	9606353.12	921.56	280.0	-45.0	257.62	Newmont
JDH03	627191.61	9606200.35	952.82	280.0	-45.0	260.97	Newmont
JDH04	627429.81	9606324.00	933.80	280.0	-45.0	219.00	Newmont
JDH05	627755.97	9606248.70	1066.24	280.0	-45.0	210.37	Newmont
JDH06	628356.37	9606416.13	911.58	150.0	-45.0	302.74	Newmont
JDH07	628356.37	9606416.13	911.58	150.0	-75.0	105.79	Newmont
JDH08	628356.37	9606416.13	911.58	150.0	-60.0	352.74	Newmont
JDH09	628507.01	9606408.43	990.18	150.0	-45.0	256.70	Newmont
JDH10	628897.96	9606813.62	985.60	270.0	-45.0	221.64	Newmont
JDH11	628878.64	9606674.39	1081.96	270.0	-45.0	217.99	Newmont
JDH12	629684.61	9606765.31	993.45	150.0	-60.0	124.08	Newmont
JDH13	629122.61	9606058.49	1020.98	125.0	-60.0	239.33	Newmont
JDH14	628897.15	9605562.77	852.59	90.0	-45.0	239.32	Newmont

El Guayabo CEL Drill Hole Information:

Hole ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	final depth	Driller
GYDD-21-001	628893.56	9606473.61	1074.98	330	-60	800.5	CEL
GYDD-21-002	629648.12	9606889.41	913.03	330	-60	291.7	CEL
GYDD-21-002A	629648.91	9606888.00	913.71	330	-60	650.6	CEL
GYDD-21-003	628613.31	9606603.66	1031.61	149	-60	723.2	CEL
GYDD-21-004	628612.169	9606605.66	1031.91	330	-60	696.1	CEL
GYDD-21-005	628433.90	9606380.35	962.07	329	-60	632.1	CEL
GYDD-21-006	628435.80	9606380.46	962.58	100	-60	365.3	CEL
GYDD-21-007	628087.05	9606555.24	840.093	150	-60	651.8	CEL
GYDD-21-008	628435.62	9606377.74	962.24	150	-60	283.7	CEL
GYDD-21-009	628932.60	9606035.43	987.81	100	-60	692.7	CEL
GYDD-21-010	628088.44	9606552.79	839.92	180	-60	888.6	CEL
GYDD-21-011	628987.88	9606169.64	1018.56	330	-60	314.5	CEL
GYDD-21-012	628844.64	9605438.73	870.24	129	-60	797.7	CEL
GYDD-21-013	628967.42	9605725.52	901.76	190	-60	517.5	CEL
GYDD-22-014	628741.17	9605761.53	955.53	100	-60	783.6	CEL
GYDD-22-015	628436.64	9606377.19	961.88	150	-72	368.3	CEL
GYDD-22-016	628267.60	9606450.31	872.25	150	-62	469.8	CEL

Colorado V Drill Hole Information:

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

riteria	JORC Code explanation	Co	mmentary						
		Hole ID	East (m)	North (m)	Elevatio	Azimuth	Dip	final	Driller
					n	(°)	(°)	depth	
		ZK0-1	626378.705	9608992.99	204.452	221	-60	413.60	Shandong Zhaojin
		ZK0-2	626378.705	9608992.99	204.452	221	-82	581.60	Shandong Zhaojin
		ZK0-3	626475.236	9609095.444	197.421	221	-75	463.00	Shandong Zhaojin
		ZK0-4	626476.119	9609098.075	197.225	221	-90	458.00	Shandong Zhaojin
		ZK0-5	626475.372	9609100.909	197.17	300	-70	624.00	Shandong Zhaojin
		ZK1-1	626310.629	9608865.923	226.385	61	-70	514.60	Shandong Zhaojin
		ZK1-2	626313.901	9608867.727	226.494	150	-70	403.10	Shandong Zhaojin
		ZK1-3	626382.401	9608894.404	229.272	61	-70	425.00	Shandong Zhaojin
		ZK1-4	626502.206	9608982.539	227.333	61	-70	379.50	Shandong Zhaojin
		ZK1-5	626497.992	9608979.449	227.241	241	-70	419.50	Shandong Zhaojin
		ZK1-6	626500.813	9608979.367	227.315	180	-70	607.50	Shandong Zhaojin
		ZK1-7	626498.548	9608979.541	227.28	241	-82	453.18	Shandong Zhaojin
		ZK1-8	626501.094	9608980.929	227.208	61	-85	556.00	Shandong Zhaojin
		ZK1-9	626416.4	9609040.6	202.416	203	-23	220.00	Lee Mining
		ZK2-1	626329.859	9609005.863	213.226	221	-90	395.50	Shandong Zhaojin
		ZK3-1	628295.833	9608947.769	309.987	279	-38	372.48	
		ZK3-1-A	626416.4	9609040.6	202.416	179	-29	295.52	Lee Mining
		ZK3-2	628295.833	9608947.769	309.987	205	-30	364.80	_
		ZK3-4	628295.833	9608947.769	309.987	170	-30	322.96	
		ZK4-1	626281.066	9609038.75	224.176	221	-90	434.00	Shandong Zhaojin
		ZK4-2	626281.066	9609038.75	224.176	221	-70	390.50	Shandong Zhaojin
		ZK4-3	626386.498	9609186.951	225.517	221	-70	650.66	Shandong Zhaojin
		ZK4-4	626287.7817	9609031.298	215	215	-05	285.00	· ,
		ZK5-1	626377.846	9608790.388	273.43	221	-78	321.90	Shandong Zhaojin
		ZK5-2	626377.539	9608793.769	273.542	41	-78	319.00	Shandong Zhaojin
		ZK5-3	626383.556	9608800.999	273.622	330	-70	446.50	Shandong Zhaojin
		ZK5-4	626383.556	9608800.999	273.622	330	-78	508.00	Shandong Zhaojin
		ZK5-5	626432.795	9608847.735	242.572	61	-70	532.00	Shandong Zhaojin
		ZK6-1	626230.28	9609020.202	260.652	221	-70	552.60	Shandong Zhaojin
		ZK6-2	626165.623	9608991.594	271.928	221	-70	531.00	Shandong Zhaojin
		ZK10-1	626700.8538	9609675.002	126.617	221	-53	454.00	Lee Mining
		ZK10-2	626744.7	9609711	110.817	310	-30	318.82	
		ZK10-3	626744.7	9609711	110.817	310	-60	331.52	
		ZK11-1	626446.263	9608705.238	290.028	221	-78	237.50	Shandong Zhaojin
		ZK12-1	626088.326	9609034.197	314.552	221	-70	531.50	Shandong Zhaojin
		ZK12-1	626019.538	9608961.409	294.649	221	-70	510.60	Shandong Zhaojin

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

teria	JORC Code explanation	Com	nmentary							
		ZK13-1	627763.877	9609906.484	197.899	9 180	-70	394.00	Shandon	g Zhaojin
		ZK13-2	627757.925	9609713.788	234.34		-70	194.00	Shandon	g Zhaojin
		ZK16-1	626432.95	9609539.705	207.288	3 153	-45	330.00		
		ZK16-2	626432.95	9609539.705	207.288	3 183	-45	394.00		
		ZK18-1	627123.327	9609846.268	142.465	5 180	-70	410.50	Shandon	g Zhaojin
		ZK19-1	626753.271	9608802.634	386.627	7 221	-70	548.60	Shandon	g Zhaojin
		ZK100-1	626170.882	9608923.778	251.177	7 131	-70	415.00	Shandon	g Zhaojin
		ZK103-1	628203.1453	9607944.85	535.324	4 215	-53	524.21	Lee M	lining
		ZK105-1	628172.5923	9607826.055	541.244		-54	404.57	Lee M	lining
		ZK205-1	626257.123	9608795.904	243.297	7 160	-70	347.00	Shandon	g Zhaojin
		SAZK0-1A	627477.062	9609865.618	217.992	2 180	-70	569.10	Shandon	g Zhaojin
		SAZK0-2A	627468.807	9609805.054	213.63			407.50	Shandon	g Zhaojin
		SAZK2-1	627330.0126	9609556.466	201.145	5 76	-05	430.89	Lee M	lining
		SAZK2-2	627330.0126	9609556.466	201.145	5 62	-05	354.47	Lee N	lining
		CK2-1	626328.573	9609000.856	216.798			121.64	Shandon	g Zhaojin
		CK2-2	626328.573	9609000.856	216.798	3 251	-45	171.85	Shandon	g Zhaojin
		CK2-3	626328.573	9609000.856	216.798	3 191	-45	116.40	Shandon	g Zhaojin
		CK2-4	626328.573	9609000.856	216.798 221		-70	146.12	Shandong Zhaojin	
		CK2-5	626254.4315	9608931.693	190.593	3 342	-05	357.56	Lee Mining	
		CK2-6	626298.1066	9608961.819	203.231	1 332	-18	392.56	Lee M	lining
		CK3-1	626359.641	9608859.373	205.96	20	-15	185.09	Shandon	g Zhaojin
		CK3-2	626359.641	9608859.373	205.96	163	00	21.75	Shandon	g Zhaojin
		CK3-3	626359.641	9608859.373	205.96		-15	138.02	Shandon	g Zhaojin
		CK5-1	626460.1233	9608906.592	202.124			273.56	Lee M	lining
		CK5-2	626457.0999	96089.8.4999	202.126	5 251	-69	273.11	Lee N	lining
		CK13-1	626610.0642	9608838.445	202.556	5 41	-05	227.10	Lee N	lining
		CK13-2	626610.0642	9608838.445	202.556		-40	231.16	Lee M	-
		CK13-3	626605.2307	9608833.471	202.556			197.06	Lee N	lining
		CK13-4	626604.0848	9608836.544	203.013			176.57		
		CK13-5	626607.5245	9608832.296	203.013	3 136	-45	184.70		
		CK21-1	626693.536	9608691.062	204.927	7 41	00	143.47		
			EL Drill Hole Info							
		Hole ID	East (m)	North (m	1) E	levation	Azimuth (°)	Dip (°)	final depth	Driller
		CVDD-22-00	626891.5	22 9609246	.373 1	.99.393	300	-60	533.20	CEL
		CVDD-22-00	02 627198.3	52 9609719	.449 1	.98.970	120	-60	575.00	CEL
		CVDD-22-00	626894.6	33 9609244	.452 1	.99.514	120	-60	512.40	CEL

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

JORC Code explanation	Comme	ntary						
	CVDD-22-004	627209.772	9609873.677	203.018	120	-60	658.95	CEL
	CVDD-22-005	626893.119	9609246.715	199.383	030	-65	607.15	CEL
	CVDD-22-006	627698.461	9609900.275	180.879	300	-60	600.70	CEL
	CVDD-22-007	626419.745	9609344.874	264.563	120	-60	808.00	CEL
	CVDD-22-008	627444.177	9610249.652	191.069	120	-60	535.70	CEL
	CVDD-22-009	626664.672	9609635.445	179.594	120	-60	890.80	CEL

Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

- No grade cutting has been used to derive the weighted average grades reported.
- Minimum cut of grade of 0.2 g/t Au Equivalent (AuEq) was used for determining intercepts.
- Aggregate intercepts have been reported with higher grade inclusions to demonstrate the impact of aggregation. A bottom cut of 0.5 g/t Au Equivalent has been used to determine the higher-grade inclusions. Given the generally consistent nature of the mineralisation the impact of the aggregation of high-grade results and longer lengths of low-grade results does not have a large impact. For example, in the intercept of 156m @ 2.6 g.t Au in hole GGY-02:
- over half of the intercept comprises gold grades in excess of 1 g/t Au
- only 20% of the intercept includes grades between 0.2 and 0.5 g/t Au
- over one third includes gold grades in excess of 2 g/t Au.
- Au Eq assumes a gold price of USD 1,780/oz, a silver price of USD 22 /oz, a copper price of USD 9,650 /t, and a Molybdenum price of US\$40,500
- Metallurgical recovery factors for gold, silver, copper, and Molybdenum are assumed to be equal. No metallurgical factors have been applied in calculating the AuEq at this early stage of the Project, hence the formula for calculating the Au Eq is: Au $(g/t) + (Ag (g/t) \times 22/1780) + (1.68604 \times Cu (\%) + (7.07612 \times Mo (\%))$.
- CEL confirms that it is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

C	Criteria	JORC Code explanation	Commentary
			Significant historic intersections from El Guayabo drilling are shown below:

West Perth WA 6005

Drillhole		Minerali	sed Inte	Total	(Gold			Ag			Cu		Au Equiv	Azimuth	Incl	TD
(#)		From	To	(m)	(g/t)		(g/t)			(%)		(g/t)	(deg)	(deg)	(m)
JDH-001	from	183	190.6	7.6	m @	0.3	g/t Au	+		not a	issa	yed		n/a	280	-60	236.9
JDH-002	from	7.6	152.9	145.3	m @	0.4	g/t Au	+		not a	issa	ved		n/a	280	-45	257.5
	and	199	243	44.0	m @	0.4	g/t Au	+		not a		•		n/a			
JDH-003	from	35.95	71.6	35.7	m @	0.5	g/t Au	+		not a	ssa	yed		n/a	280	-45	261
	and	120.4	254.6	134.2	m @	0.4	g/t Au	+		not a	ssa	yed		n/a			
	inc	146.81	224.08	77.3	m @	0.5	g/t Au	+		not a	ssa	yed		n/a			
JDH-004	from	3.96	21.95	18.0	m @	0.4	g/t Au	+		not a	issa	yed		n/a	280	-45	219
	and	79.74	120.42	40.7	m @	0.4	g/t Au	+		not a	ssa	yed		n/a			
	and	150.9	203.7	52.8	m @	0.7	g/t Au	+		not a	ssa	yed		n/a			
JDH-005	from	5.2	81.4	76.2	m @	0.4	g/t Au	+		not a	ssa	yed		n/a	280	-45	210.4
	and	169.7	208.5	38.8	m @	0.2	g/t Au	+		not a	ssa	yed		n/a			
JDH-006	from	17.99	89.6	71.6	m @	0.2	g/t Au	+	2.0	g/t Ag	+	0.10	% Cu	0.42	150	-45	302.7
	and	164.8	281	116.2	m @		g/t Au			g/t Ag				1.37			
	inc	227.8	281.09	53.3	m @	1.2	g/t Au	+ '	13.2	g/t Ag	+	0.62	% Cu	2.39			
JDH-007	from	39.7	84.45	44.8	m @	0.3	g/t Au	+	1.4	g/t Ag	+	0.04	% Cu	0.38	150	-75	105.8
JDH-008	from	104.7	136.7	32.0	m @	0.1	g/t Au	+	3.6	g/t Ag	+	0.13	% Cu	0.41	150	-60	352.7
	and	249.08	316.15	67.1	m @	0.2	g/t Au	+	5.7	g/t Ag	+	0.21	% Cu	0.62			
	and	291.76	316.15	24.4	m @	0.5	g/t Au	+	9.2	g/t Ag	+	0.34	% Cu	1.13			
JDH-009	from	10.3	122.03	111.7	m @	0.7	g/t Au	+ '	14.6	g/t Ag	+	0.58	% Cu	1.85	150	-45	256.7
	inc	34.6	91.54	56.9	m @	0.2	g/t Au	+ '	19.1	g/t Ag	+	0.82	% Cu	1.80			
	and	201.4	205.4	4.0	m @ 1	11.4	g/t Au	+	9.7	g/t Ag	+	0.01	% Cu	11.54			
	and	255.1	eoh	1.5	m @	0.7	g/t Au	+	1.5	g/t Ag	+	0.02	% Cu	0.75			
JDH-10	from	1.5	50.9	49.4	m @	0.5	g/t Au	+	2.5	g/t Ag	+	0.09	% Cu	0.68	270	-45	221.6
	and	90.54	119	28.5	m @	0.2	g/t Au	+	3.0	g/t Ag	+	0.10	% Cu	0.40			
	and	140	203	81.6	m @	0.4	g/t Au	+	1.3	g/t Ag	+	0.07	% Cu	0.53			
JDH-011	from	100.7	218	117.3	m @	0.4	g/t Au	+	4.6	g/t Ag	+	0.10	% Cu	0.62	270	-45	218.0
JDH-012	from	12.2	53.96	41.8	m @	0.6	g/t Au	+	6.5	g/t Ag	+	0.02	% Cu	0.67	150	-60	124.1
JDH-013	from	53.35	69.6	16.3	m @	0.5	g/t Au	+		g/t Ag	=		% Cu		150	-60	239.3
	and	89.9	154.9		m @		g/t Au	_		g/t Ag			% Cu				
	inc	114.32	142.76	28.4	m @		g/t Au	_		g/t Ag	_	0.10	% Cu	3.03			
JDH-014	from	26.96	75.69	48.7	m @	0.4	g/t Au	+	5.2	g/t Ag	+	0.10	% Cu	0.63	90	-60	239.4
	and	85.84	116.32		m @		g/t Au	_		g/t Ag			% Cu				
	and	128.52	175.3		m @		g/t Au	_		g/t Ag	_		% Cu				
	and	179.35	217.98		m @		g/t Au			g/t Ag			% Cu				

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

Drillhole			sed Inte			Gold		Ag			Cu		Au Equiv		Incl	TD
(#)		From	То	(m)		(g/t)	-	(g/t)			(%)		(g/t)	(deg)	(deg)	(m)
GGY-001	from	10	69	59.0	_		g/t Au +		g/t Ag			% Cu		360	-90	249.2
	and	139	249.2	110.2	_		g/t Au +		g/t Ag			% Cu				
	inc	141	174	33.0	_		g/t Au +		g/t Ag			% Cu				
GGY-002	from	9.7	166	156.3	_		g/t Au +		g/t Ag			% Cu		360	-90	272.9
	inc	27	102	75.0			g/t Au +					% Cu				
	and	114 244	166 272.9	52.0 28.9	-		g/t Au +		g/t Ag			% Cu % Cu				
551, 553	-				_		g/t Au +		g/t Ag					205		205
GGY-003	from	40	260.75	220.8			g/t Au +		g/t Ag			% Cu		305	-60	295.9
GGY-004	from	1	42	41.0	m @	0.5	g/t Au +	2.3	g/t Ag	+	0.03	% Cu	0.56	125	-60	172.2
GGY-005	from	12	162	150.0	m @	0.4	g/t Au +	11.0	g/t Ag	+	0.30	% Cu	0.99	145	-60	258.3
	inc	14	54	40.0	m @	0.6	g/t Au +	25.5	g/t Ag	+	0.60	% Cu	1.95			
	and	180	194	14.0	m @	0.2	g/t Au +	6.1	g/t Ag	+	0.22	% Cu	0.64			
GGY-006	from	72	101.9	49.0	m @	0.4	g/t Au +	2.3	g/t Ag	+	0.03	% Cu	0.45	305	-60	101.9
GGY-007	from	0.9	41	40.1	m @	1.1	g/t Au +	2.6	g/t Ag	+	0.04	% Cu	1.20	305	-75	127
	inc	110	127	17.0	m @	0.9	g/t Au +	1.2	g/t Ag	+	0.04	% Cu	0.98			
GGY-008	from	16	271	255.0	m @	0.1	g/t Au +	6.5	g/t Ag	+	0.24	% Cu	0.62	145	-75	312.3
	inc	235	271	36.0			g/t Au +					% Cu	1.32	110		
GGY-009	from	1.65	45	43.4	m @	1.7	g/t Au +	3.0	g/t Ag	+	0.06	% Cu	1.80	45	-75	166.2
GGY-010	from	0	69	69.0			g/t Au +		g/t Ag			% Cu		225	-75	194.5
001-010	inc	21	50	29.0	_		g/t Au +		g/t Ag			% Cu		223	-13	134
	and	75	95	20.0			g/t Au +		g/t Ag			% Cu	0.33			
GGY-011	from	14	229	215.0	m @		g/t Au +		g/t Ag		0.36	% Cu	0.89	160	-60	241.6
001 011	inc	14	97	83.0	_		g/t Au +		J. J			% Cu		100	- 00	241.0
	inc	202	229	27.0	_		g/t Au +					% Cu	1.90			
GGY-012	from	57	192	135.0	m @		g/t Au +		g/t Ag		0.06	% Cu	0.39	125	-60	256
001-012	and	156	192	36.0	_		g/t Au +		g/t Ag			% Cu		123	-00	230
GGY-013	from	229.7	280	50.3			g/t Au +		g/t Ag			% Cu		320	-65	340.9
	110111	229.1	200		@	0.2	g/tAu +	۷.۷	g/t Ag	_	0.05	/6 CU				
GGY-014				nsi									0.00	320	-75	309.
GGY-015	from	110	132.4	22.4	_		g/t Au +		g/t Ag			% Cu		320	-60	251.
	and	157	225.5	68.5	m @	0.3	g/t Au +	1.5	g/t Ag	+	0.10	% Cu	0.45			
GGY-016	from	8	30	22.0	m @	0.2	g/t Au +	0.7	g/t Ag	+	0.01	% Cu	0.26	320	-60	195.
	and	42	57	15.0	m @	0.3	g/t Au +	0.5	g/t Ag	+	0.02	% Cu	0.34			
	and	105	118	13.0	_		g/t Au +		g/t Ag			% Cu				
	and	185	188	3.0	m @	1.0	g/t Au +	0.8	g/t Ag	+	0.02	% Cu	1.04			
GGY-017	from	0	24	24.0	m @	0.5	g/t Au +	1.3	g/t Ag	+	0.01	% Cu	0.49	125	-82	280.4
	and	69	184	115.0	_		g/t Au +		J. J			% Cu				
	inc	125	147	22.0	_		g/t Au +		g/t Ag			% Cu	0.29			
	and	206	241	35.0			g/t Au +		g/t Ag			% Cu				
	and	254	277	23.0	m @	0.6	g/t Au +	1.2	g/t Ag	+		% Cu	0.63			
GGY-018	from	81	136	55.0	m @	0.2	g/t Au +	3.5	g/t Ag	+	0.06	% Cu	0.34	140	-60	160.4
GGY-019	from	89	155	66.0	m @	0.3	g/t Au +	2.0	g/t Ag	+	0.03	% Cu	0.36	45	-53	175.4

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commenta	ary							
		Significant in	tersections from historic a	and re-ass	ayed drill	core from El	Guayabo d	rill holes:		
		Drill hole				Total	Au	Ag	Cu	Au Eq
		(#)		From	То	(m)	(g/t)	/g (g/t)	(%)	(g/t)
		GGY-001	historical intercept	139	249.2	110.2m	0.4	1.1	0.06	0.5
		dd1-001	(re-assayed section)	141	177	36.0m	0.54	2.30	0.08	0.7
			(original assays)	,	,	36.0m	0.56	1.51	0.08	0.7
			(re-assayed section)	205	236	31.0m	0.19	0.89	0.03	0.3
			(original assays)	,	,	31.0m	0.13	0.03	0.03	0.3
		GGY-002	historical intercept	9.7	166	156.3m	2.6	9.7	0.16	3.0
		331 002	(re-assayed section)	40	102	62.0m	5.22	21.33	0.25	5.9
			(original assays)	,	,	62.0m	4.83	19.96	0.23	5.5
			historical intercept	114	166	52.0m	1.3	3.3	0.18	1.6
			(re-assayed section)	114	171	57.0m	1.20	3.44	0.18	1.5
			(original assays)	,	,	57.0m	1.24	3.53	0.17	1.6
		GGY-005	historical intercept	12	162	150.0m	0.4	11.0	0.30	1.0
			(re-assayed section)	10	60	50.0m	0.45	19.23	0.33	1.2
			(original assays)	,	,	50.0m	0.51	21.74	0.44	1.5
			(re-assayed section)	64	98	34.0m	0.10	5.25	0.16	0.4
			(original assays)	,	,	34.0m	0.84	6.22	0.16	1.2
			(re-assayed section)	132	162	30.0m	0.10	6.35	0.33	0.7
			(original assays)	,	,	30.0m	0.07	6.18	0.31	0.7
		GGY-011	historical intercept	14	229	215.0m	0.2	9.6	0.36	0.9
			(re-assayed section)	14	126	112.0m	0.17	10.89	0.30	0.8
			(original assays)	•	•	112.0m	0.18	11.73	0.36	0.9
			(re-assayed section)	166	206	40.0m	0.09	5.08	0.22	0.5
			(original assays)	′	•	40.0m	0.09	4.90	0.22	0.5
			(re-assayed section)	218	231	13.0m	0.22	8.52	0.41	1.0
			(original assays)	′	•	13.0m	0.34	19.48	0.96	2.2
		GGY-017	historical intercept	69	184	115.0m	0.5	2.1	0.03	0.5
			(re-assayed section)	94	129	35.0m	0.45	2.76	0.04	0.6
			(original assays)	1	•	35.0m	0.30	4.01	0.03	0.4
			(re-assayed section)	206	258	52.0m	0.37	2.00	0.06	0.5
			(original assays)	1	•	52.0m	0.26	1.42	0.06	0.4
		JDH-006	historical intercept	17.99	89.6	71.6m	0.2	2.0	0.10	0.4

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

	(re-assayed section)	10.3	81.3	71.0m	0.18	1.38	0.03	0.2	
	(original assays)	•	•	71.0m	0.20	1.59	0.07	0.3	
	historical intercept	164.8	281	116.2m	0.6	8.9	0.40	1.4	
	(re-assayed section)	150.6	281.1	130.5m	0.26	7.21	0.26	0.8	
	(original assays)	′	•	130.5m	0.42	8.02	0.36	1.1	
JDH-009	historical intercept	10.3	122	111.7m	0.7	14.6	0.58	1.8	
	(re-assayed section)	6.7	107.8	101.1m	0.21	13.80	0.36	1.0	
	(original assays)	•	•	101.1m	0.22	15.08	0.59	1.4	
JDH-10	historical intercept	1.5	50.9	49.4m	0.5	2.5	0.09	0.7	
	(re-assayed section)	15.2	50.9	35.7m	0.44	2.88	0.10	0.6	
	(original assays)	•	•	35.7m	0.41	2.96	0.10	0.6	
	historical intercept	140	203	81.6m	0.4	1.3	0.07	0.5	
	(re-assayed section)	150.5	203.4	52.9m	0.36	1.34	0.07	0.5	
	(original assays)	•	•	52.9m	0.39	1.24	0.06	0.5	
JDH-012	historical intercept	12.2	53.96	41.8m	0.6	6.5	0.02	0.7	
	(re-assayed section)	18.3	54	35.7m	0.68	7.62	0.02	0.8	
	(original assays)	′	•	35.7m	0.69	7.36	0.02	0.8	
JDH-013	historical intercept	89.9	154.9	65.0m	1.4	2.8	0.06	1.5	
	(re-assayed section)	112.3	155	42.7m	2.11	2.84	0.05	2.2	
	(original assays)	′	•	42.7m	2.00	3.70	0.08	2.2	
JDH-014	historical intercept	26.96	75.69	48.7m	0.4	5.2	0.10	0.6	
	(re-assayed section)	27	61.5	34.5m	0.64	5.99	0.13	0.9	
	(original assays)	′	•	34.5m	0.52	6.25	0.13	0.8	
	historical intercept	128.52	175.3	46.8m	0.46	3.3	0.08	0.6	
	(re-assayed section)	140.7	167.2	26.5m	0.26	2.24	0.07	0.4	
	(original assays)	′	•	26.5m	0.65	2.91	0.08	0.8	
	JDH-012 JDH-013	(re-assayed section) (original assays) JDH-10 historical intercept (re-assayed section) (original assays) historical intercept (re-assayed section) (original assays) JDH-012 historical intercept (re-assayed section) (original assays) JDH-013 historical intercept (re-assayed section) (original assays) JDH-014 historical intercept (re-assayed section) (original assays) historical intercept (re-assayed section) (original assays) historical intercept (re-assayed section)	(re-assayed section) 6.7 (original assays) ' JDH-10 historical intercept 1.5 (re-assayed section) 15.2 (original assays) ' historical intercept 140 (re-assayed section) 150.5 (original assays) ' JDH-012 historical intercept 12.2 (re-assayed section) 18.3 (original assays) ' JDH-013 historical intercept 89.9 (re-assayed section) 112.3 (original assays) ' JDH-014 historical intercept 26.96 (re-assayed section) 27 (original assays) ' historical intercept 128.52 (re-assayed section) 140.7	(re-assayed section) 6.7 107.8 (original assays) ' ' JDH-10 historical intercept 1.5 50.9 (re-assayed section) 15.2 50.9 (original assays) ' ' intercept 140 203 (re-assayed section) 150.5 203.4 (original assays) ' ' JDH-012 historical intercept 12.2 53.96 (re-assayed section) 18.3 54 (original assays) ' ' JDH-013 historical intercept 89.9 154.9 (re-assayed section) 112.3 155 (original assays) ' ' JDH-014 historical intercept 26.96 75.69 (re-assayed section) 27 61.5 (original assays) ' ' historical intercept 128.52 175.3 historical intercept 128.52 175.3 (re-assayed section) 140.7 167.2	(re-assayed section) 6.7 107.8 101.1m JDH-10 historical intercept 1.5 50.9 49.4m (re-assayed section) 15.2 50.9 35.7m (original assays) ' ' 35.7m historical intercept 140 203 81.6m (re-assayed section) 150.5 203.4 52.9m JDH-012 historical intercept 12.2 53.96 41.8m (re-assayed section) 18.3 54 35.7m JDH-013 historical intercept 89.9 154.9 65.0m (re-assayed section) 112.3 155 42.7m (original assays) ' ' 42.7m JDH-014 historical intercept 26.96 75.69 48.7m JDH-014 historical intercept 26.96 75.69 48.7m (re-assayed section) 27 61.5 34.5m (original assays) ' ' 42.7m <td colspa<="" td=""><td>(re-assayed section) 6.7 107.8 101.1m 0.21 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 (re-assayed section) 15.2 50.9 35.7m 0.44 (original assays) ' ' 35.7m 0.41 historical intercept (re-assayed section) 150.5 203.4 52.9m 0.36 (original assays) ' ' 52.9m 0.39 JDH-012 historical intercept (re-assayed section) 18.3 54 35.7m 0.68 (original assays) ' ' ' 35.7m 0.69 JDH-013 historical intercept (re-assayed section) 112.3 155 42.7m 2.00 JDH-014 historical intercept (re-assayed section) 27 61.5 34.5m 0.64 (original assays) ' ' 42.7m 2.00 JDH-014 historical intercept (re-assayed section) 27 61.5 34.5m 0.4 (original assays) ' ' 34.5m 0.52 historical intercept (re-assayed section)</td><td>(re-assayed section) 6.7 107.8 101.1m 0.21 13.80 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 2.5 (priginal assays) (re-assayed section) 15.2 50.9 35.7m 0.44 2.88 historical intercept (re-assayed section) 140 203 81.6m 0.4 1.3 (priginal assays) (re-assayed section) 150.5 203.4 52.9m 0.36 1.34 JDH-012 historical intercept 12.2 53.96 41.8m 0.6 6.5 (re-assayed section) 18.3 54 35.7m 0.68 7.62 (original assays) (reassayed section) 18.3 54 35.7m 0.68 7.62 JDH-013 historical intercept 89.9 154.9 65.0m 1.4 2.8 (re-assayed section) 112.3 155 42.7m 2.11 2.84 (priginal assays) (reassayed section) 27 61.5 34.5m 0.4 5.2 (re-assayed section) 27 61.5 <t< td=""><td>(re-assayed section) 6.7 107.8 101.1m 0.21 13.80 0.36 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 2.5 0.09 (re-assayed section) 15.2 50.9 35.7m 0.44 2.88 0.10 (original assays) ' ' 35.7m 0.41 2.96 0.10 historical intercept (re-assayed section) 150.5 203.4 52.9m 0.36 1.34 0.07 (original assays) ' ' 52.9m 0.36 1.34 0.07 (original assays) ' ' 52.9m 0.39 1.24 0.06 JDH-012 historical intercept (re-assayed section) 18.3 54 35.7m 0.68 7.62 0.02 (re-assayed section) (original assays) ' ' 35.7m 0.68 7.62 0.02 JDH-013 historical intercept (re-assayed section) 112.3 155.9 42.7m 2.01 2.84 0.0</td></t<></td></td>	<td>(re-assayed section) 6.7 107.8 101.1m 0.21 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 (re-assayed section) 15.2 50.9 35.7m 0.44 (original assays) ' ' 35.7m 0.41 historical intercept (re-assayed section) 150.5 203.4 52.9m 0.36 (original assays) ' ' 52.9m 0.39 JDH-012 historical intercept (re-assayed section) 18.3 54 35.7m 0.68 (original assays) ' ' ' 35.7m 0.69 JDH-013 historical intercept (re-assayed section) 112.3 155 42.7m 2.00 JDH-014 historical intercept (re-assayed section) 27 61.5 34.5m 0.64 (original assays) ' ' 42.7m 2.00 JDH-014 historical intercept (re-assayed section) 27 61.5 34.5m 0.4 (original assays) ' ' 34.5m 0.52 historical intercept (re-assayed section)</td> <td>(re-assayed section) 6.7 107.8 101.1m 0.21 13.80 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 2.5 (priginal assays) (re-assayed section) 15.2 50.9 35.7m 0.44 2.88 historical intercept (re-assayed section) 140 203 81.6m 0.4 1.3 (priginal assays) (re-assayed section) 150.5 203.4 52.9m 0.36 1.34 JDH-012 historical intercept 12.2 53.96 41.8m 0.6 6.5 (re-assayed section) 18.3 54 35.7m 0.68 7.62 (original assays) (reassayed section) 18.3 54 35.7m 0.68 7.62 JDH-013 historical intercept 89.9 154.9 65.0m 1.4 2.8 (re-assayed section) 112.3 155 42.7m 2.11 2.84 (priginal assays) (reassayed section) 27 61.5 34.5m 0.4 5.2 (re-assayed section) 27 61.5 <t< td=""><td>(re-assayed section) 6.7 107.8 101.1m 0.21 13.80 0.36 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 2.5 0.09 (re-assayed section) 15.2 50.9 35.7m 0.44 2.88 0.10 (original assays) ' ' 35.7m 0.41 2.96 0.10 historical intercept (re-assayed section) 150.5 203.4 52.9m 0.36 1.34 0.07 (original assays) ' ' 52.9m 0.36 1.34 0.07 (original assays) ' ' 52.9m 0.39 1.24 0.06 JDH-012 historical intercept (re-assayed section) 18.3 54 35.7m 0.68 7.62 0.02 (re-assayed section) (original assays) ' ' 35.7m 0.68 7.62 0.02 JDH-013 historical intercept (re-assayed section) 112.3 155.9 42.7m 2.01 2.84 0.0</td></t<></td>	(re-assayed section) 6.7 107.8 101.1m 0.21 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 (re-assayed section) 15.2 50.9 35.7m 0.44 (original assays) ' ' 35.7m 0.41 historical intercept (re-assayed section) 150.5 203.4 52.9m 0.36 (original assays) ' ' 52.9m 0.39 JDH-012 historical intercept (re-assayed section) 18.3 54 35.7m 0.68 (original assays) ' ' ' 35.7m 0.69 JDH-013 historical intercept (re-assayed section) 112.3 155 42.7m 2.00 JDH-014 historical intercept (re-assayed section) 27 61.5 34.5m 0.64 (original assays) ' ' 42.7m 2.00 JDH-014 historical intercept (re-assayed section) 27 61.5 34.5m 0.4 (original assays) ' ' 34.5m 0.52 historical intercept (re-assayed section)	(re-assayed section) 6.7 107.8 101.1m 0.21 13.80 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 2.5 (priginal assays) (re-assayed section) 15.2 50.9 35.7m 0.44 2.88 historical intercept (re-assayed section) 140 203 81.6m 0.4 1.3 (priginal assays) (re-assayed section) 150.5 203.4 52.9m 0.36 1.34 JDH-012 historical intercept 12.2 53.96 41.8m 0.6 6.5 (re-assayed section) 18.3 54 35.7m 0.68 7.62 (original assays) (reassayed section) 18.3 54 35.7m 0.68 7.62 JDH-013 historical intercept 89.9 154.9 65.0m 1.4 2.8 (re-assayed section) 112.3 155 42.7m 2.11 2.84 (priginal assays) (reassayed section) 27 61.5 34.5m 0.4 5.2 (re-assayed section) 27 61.5 <t< td=""><td>(re-assayed section) 6.7 107.8 101.1m 0.21 13.80 0.36 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 2.5 0.09 (re-assayed section) 15.2 50.9 35.7m 0.44 2.88 0.10 (original assays) ' ' 35.7m 0.41 2.96 0.10 historical intercept (re-assayed section) 150.5 203.4 52.9m 0.36 1.34 0.07 (original assays) ' ' 52.9m 0.36 1.34 0.07 (original assays) ' ' 52.9m 0.39 1.24 0.06 JDH-012 historical intercept (re-assayed section) 18.3 54 35.7m 0.68 7.62 0.02 (re-assayed section) (original assays) ' ' 35.7m 0.68 7.62 0.02 JDH-013 historical intercept (re-assayed section) 112.3 155.9 42.7m 2.01 2.84 0.0</td></t<>	(re-assayed section) 6.7 107.8 101.1m 0.21 13.80 0.36 JDH-10 historical intercept (re-assayed section) 1.5 50.9 49.4m 0.5 2.5 0.09 (re-assayed section) 15.2 50.9 35.7m 0.44 2.88 0.10 (original assays) ' ' 35.7m 0.41 2.96 0.10 historical intercept (re-assayed section) 150.5 203.4 52.9m 0.36 1.34 0.07 (original assays) ' ' 52.9m 0.36 1.34 0.07 (original assays) ' ' 52.9m 0.39 1.24 0.06 JDH-012 historical intercept (re-assayed section) 18.3 54 35.7m 0.68 7.62 0.02 (re-assayed section) (original assays) ' ' 35.7m 0.68 7.62 0.02 JDH-013 historical intercept (re-assayed section) 112.3 155.9 42.7m 2.01 2.84 0.0

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentar	у							
		ZK0-1	9.4	37.5	28.1	0.4	1.0			
		and	66.5	89.5	23.0	0.9	4.7			
		and	105.7	129.7	24.0	0.3	1.0			
		and	167.5	214.0	46.5	0.4	7.1			
		ZK1-3	46.0	103.7	57.7	0.5	1.9			
		inc	56.0	85.7	29.7	0.8	3.1			
		from	127.0	163.0	36.0	0.5	3.5			
		and	290.5	421.0	130.5	0.5	3.1			
		inc	302.5	380.5	78.0	0.7	3.5			
		ZK1-5	211.4	355.0	145.6	1.5	1.7			
		inc	253.0	340.0	87.0	2.1	1.9			
		ZK0-2	13.3	108.2	94.9	0.3	1.7			
		inc	75.7	108.2	32.5	0.4	2.6			
		and	172.7	193.1	20.4	0.3	2.1			
		and	225.0	376.4	151.4	0.9	3.8			
		inc	227.0	361.0	134.0	1.0	4.1			
		inc	227.0	290.0	63.0	1.6	5.1			
		ZK3-4	26	38	12	0.3	1.5	513	5	
		and	50	114	64	0.2	1.5	549	5	
		inc	86	88	2	1.5	1.4	458	3	1 g/t Au cut off
		and	180	250	70	0.2	1.6	777	3	
		ZK3-1	49.5	112.5	63	0.1	1.7	654	5	
		inc	94.5	96	1.5	1.5	1.4	3126	7	1 g/t Au cut off
		and	94.5	174	79.5	0.1	2	662	4	
		inc	171	172.5	1.5	1.4	2.6	771	7	1 g/t Au cut off
		SAZK0-1	31.2	90.8	59.6	0.2	1.4	392	3	_
		and	131.5	179.5	48	0.1	4.3	824	6	
		and	229.8	292.8	63	0.2	1	325	8	
		and	319	490.8	171.8	0.2	1.5	616	12	
		inc	352	446.5	94.5	0.3	2.4	996	15	1 g/t Au cut off
		SAK2-1	66.5	275	208.5	0.3	1.5	626	5	
		inc	122	185	63	0.6	2.1	825	3	1 g/t Au cut off
		and	225.5	227	1.5	1.6	1.4	638	2	1 g/t Au cut off
		and	288.5	330.5	42	0.2	2	454	1	
		inc	288.5	291.5	3	1.3	5.6	1136	1	1 g/t Au cut off

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentar	у							
		SAZK0-2	0	80.7	80.7	0.4	1.9	478	3	
		inc	30.7	51.2	20.5	1	2.5	460	5	1 g/t Au cut off
		and	136	148	12	0.6	0.4	61	14	
		inc	137.5	140.5	3	1.4	0.3	10	4	1 g/t Au cut off
		and	200.5	403.8	203.3	0.3	1.3	588	15	Hole ends in
										mineralisation
		inc	293.5	399.3	105.8	0.5	1.3	635	16	
		inc	214	215.5	1.5	1.8	2.1	681	12	1 g/t Au cut off
		inc	344.5	399.3	54.8	0.7	1.5	767	12	
		inc	361.8	366.3	4.5	5.5	8.0	502	61	1 g/t Au cut off
		and	397.8	399.3	1.5	1.3	2.3	770	2	1 g/t Au cut off
		ZK1-13	46.2	73.2	27	0.1	8.0	306	1	
		and	140	141.5	1.5	1.9	0.7	236	1	1 g/t Au cut off
		and	161	196	35	0.1	1.4	391	2	
		ZK0-5	6.1	19.8	13.7	0.2	1.3	313	10	
			46.3	130.1	83.8	0.5	1.2	356	7	
		inc	67	118	51	0.7	1.4	409	5	0.5 g/t Au cut off
		inc	75.7	76.8	1.1	1.2	1.4	483	2	1 g/t Au cut off
		and	80.7	81.7	1	1.8	2.2	549	4	1 g/t Au cut off
		and	93.7	94.7	1	13.9	3.4	354	7	1 g/t Au cut off
		and	146.5	296.5	150	0.2	1	310	3	
		and	370	371.5	1.5	0.9	5.2	1812	3	
		and	414.3	415.8	1.5	1.2	0.3	127	1	
		and	560.5	562	1.5	2.3	0.6	189	2	
		and	596	598.2	2.2	1.7	2.1	391	4	
		and	607	608.5	1.5	2	8.0	190	2	
		ZK18-1	NSI							
		ZK0-4	3.70	458.00	454.30*	0.20	1.3	0.04	5.9	
		inc	42.60	154.25	111.65	0.39	1.9	0.05	7.6	0.5 g/t AuEq cut off
		inc	69.70	97.20	27.50	0.66	1.7	0.05	8.6	1.0 g/t AuEq cut off
		ZK10-1	25.02	151.00	125.98	0.16	1.1	0.06	17.9	0.1 g/t AuEq cut off
		and	309.00	326.00	17.00	0.16	0.91	0.07	6.1	0.1 g/t AuEq cut off
		and	354.02	451.00	96.98*	0.17	1.2	0.06	15.8	
		inc	435.02	451.00	15.98*	0.32	1.8	0.07	2.6	
		ZK16-2	19.00	267.31	248.31	0.33	2.7	0.07	2.6	0.1 g/t AuEq cut off

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

JORC Code explanation	Commentary								
	inc	140.00	254.00	114.00	0.53	2.9	0.09	3.3	0.5 g/t AuEq cut off
	inc	224.00	254.00	30.00	0.85	3.6	0.12	3.4	1.0 g/t AuEq cut off
	* Mineralisation	to end of h	ole						
	Significant inters	ections fro	m Colorado \	/ channel :	sample re	sults fron	n undergr	ound expo	osure:
	Channel_id	From	Interval	AuEq	Au	Ag	Cu	Mo	Comment
		(m)	(m)	(g/t)	(g/t)	(g/t)	(%)	(ppm)	
	Main Adit	0.0	264.0	0.42	0.30	2.1	0.05	9.4	0.1 g/t AuEq cut off
	inc	0.0	150.0	0.60	0.46	2.4	0.07	9.8	0.5 g/t AuEq cut off
	inc	0.0	112.0	0.71	0.55	2.7	0.08	9.3	1 g/t AuEq cut off
	and	276.0	32.0	0.29	0.21	1.4	0.04	5.1	0.1 g/t AuEq cut off
	Main Adit	20.0	39.1	0.30	0.28	2.3	0.03	4.5	0.1 g/t AuEq cut off
	(west drive)								
	and	74.0	56.0	0.69	0.64	1.8	0.01		0.5 g/t AuEq cut off
	inc	84.0	46.0	0.81	0.76	2.1	0.01	3.0	1.0 g/t AuEq cut off
	Significant inters	ections fro	m El Guayabo	o drilling c	ompleted	by CEL:			
	Significant inters	From	Interval	AuEq	Au	Ag	Cu (%)	Mo (nnm)	Comment
	Drill Hole	From (m)	Interval (m)	AuEq (g/t)	Au (g/t)	Ag (g/t)	(%)	(ppm)	
	Drill Hole GYDD-21-001	From (m) 16.15	Interval (m) 784.31	AuEq (g/t) 0.36	Au (g/t) 0.24	Ag (g/t) 1.57	0.06	(ppm) 11.95	0.1 g/t AuEq cut off
	Drill Hole	From (m)	Interval (m)	AuEq (g/t)	Au (g/t)	Ag (g/t)	(%)	(ppm)	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc	From (m) 16.15 167.50	Interval (m) 784.31 380.50	AuEq (g/t) 0.36 0.47	Au (g/t) 0.24 0.32	Ag (g/t) 1.57 1.97	0.06 0.07	(ppm) 11.95 18.41	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 1.0 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc inc	From (m) 16.15 167.50 359.50	Interval (m) 784.31 380.50 188.50	AuEq (g/t) 0.36 0.47 0.61	Au (g/t) 0.24 0.32 0.40	Ag (g/t) 1.57 1.97 2.35	0.06 0.07 0.10	(ppm) 11.95 18.41 29.50	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc inc inc	From (m) 16.15 167.50 359.50 403.00	Interval (m) 784.31 380.50 188.50 28.00	AuEq (g/t) 0.36 0.47 0.61 0.95	Au (g/t) 0.24 0.32 0.40 0.54	Ag (g/t) 1.57 1.97 2.35 6.90	0.06 0.07 0.10 0.15	(ppm) 11.95 18.41 29.50 104.40	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 1.0 g/t AuEq cut off 1.0 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc inc inc inc	From (m) 16.15 167.50 359.50 403.00 403.00	Interval (m) 784.31 380.50 188.50 28.00 21.00	AuEq (g/t) 0.36 0.47 0.61 0.95 1.09	Au (g/t) 0.24 0.32 0.40 0.54 0.77	Ag (g/t) 1.57 1.97 2.35 6.90 2.98	0.06 0.07 0.10 0.15 0.20	(ppm) 11.95 18.41 29.50 104.40 138.91	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 1.0 g/t AuEq cut off 1.0 g/t AuEq cut off 1.0 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc inc inc and	From (m) 16.15 167.50 359.50 403.00 403.00 468.50	Interval (m) 784.31 380.50 188.50 28.00 21.00 30.00	AuEq (g/t) 0.36 0.47 0.61 0.95 1.09 1.06	Au (g/t) 0.24 0.32 0.40 0.54 0.77 0.76	Ag (g/t) 1.57 1.97 2.35 6.90 2.98 2.61	0.06 0.07 0.10 0.15 0.20 0.15	(ppm) 11.95 18.41 29.50 104.40 138.91 24.80	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc inc inc and GYDD-21-002	From (m) 16.15 167.50 359.50 403.00 403.00 468.50 85.00	Interval (m) 784.31 380.50 188.50 28.00 21.00 30.00 46.50	AuEq (g/t) 0.36 0.47 0.61 0.95 1.09 1.06	Au (g/t) 0.24 0.32 0.40 0.54 0.77 0.76	Ag (g/t) 1.57 1.97 2.35 6.90 2.98 2.61 3.99	0.06 0.07 0.10 0.15 0.20 0.15	(ppm) 11.95 18.41 29.50 104.40 138.91 24.80 5.72	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 0.1 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc inc inc and GYDD-21-002 incl.	From (m) 16.15 167.50 359.50 403.00 403.00 468.50 85.00 112.00	Interval (m) 784.31 380.50 188.50 28.00 21.00 30.00 46.50 2.30	AuEq (g/t) 0.36 0.47 0.61 0.95 1.09 1.06 0.43 1.95	Au (g/t) 0.24 0.32 0.40 0.54 0.77 0.76 0.32 1.33	Ag (g/t) 1.57 1.97 2.35 6.90 2.98 2.61 3.99 33.17	0.06 0.07 0.10 0.15 0.20 0.15 0.04 0.12	(ppm) 11.95 18.41 29.50 104.40 138.91 24.80 5.72 5.10	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 0.1 g/t AuEq cut off 1.0 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc	From (m) 16.15 167.50 359.50 403.00 403.00 468.50 85.00 112.00 129.75	Interval (m) 784.31 380.50 188.50 28.00 21.00 30.00 46.50 2.30 1.75	AuEq (g/t) 0.36 0.47 0.61 0.95 1.09 1.06 0.43 1.95 2.16	Au (g/t) 0.24 0.32 0.40 0.54 0.77 0.76 0.32 1.33 2.05	Ag (g/t) 1.57 1.97 2.35 6.90 2.98 2.61 3.99 33.17 7.36	0.06 0.07 0.10 0.15 0.20 0.15 0.04 0.12	(ppm) 11.95 18.41 29.50 104.40 138.91 24.80 5.72 5.10 1.29	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 1.0 g/t AuEq cut off 1.0 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc inc inc inc inc inc inc inc and GYDD-21-002 incl. incl. and	From (m) 16.15 167.50 359.50 403.00 403.00 468.50 85.00 112.00 129.75 279.45	Interval (m) 784.31 380.50 188.50 28.00 21.00 30.00 46.50 2.30 1.75 27.05	AuEq (g/t) 0.36 0.47 0.61 0.95 1.09 1.06 0.43 1.95 2.16 1.53	Au (g/t) 0.24 0.32 0.40 0.54 0.77 0.76 0.32 1.33 2.05 1.49	Ag (g/t) 1.57 1.97 2.35 6.90 2.98 2.61 3.99 33.17 7.36 0.82	0.06 0.07 0.10 0.15 0.20 0.15 0.04 0.12 0.01 0.02	(ppm) 11.95 18.41 29.50 104.40 138.91 24.80 5.72 5.10 1.29 2.21	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 0.1 g/t AuEq cut off 0.1 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc inc inc inc and GYDD-21-002 incl. incl. and incl.	From (m) 16.15 167.50 359.50 403.00 403.00 468.50 85.00 112.00 129.75 279.45 305.00	Interval (m) 784.31 380.50 188.50 28.00 21.00 30.00 46.50 2.30 1.75 27.05 1.50	AuEq (g/t) 0.36 0.47 0.61 0.95 1.09 1.06 0.43 1.95 2.16 1.53 19.23	Au (g/t) 0.24 0.32 0.40 0.54 0.77 0.76 0.32 1.33 2.05 1.49 19.16	Ag (g/t) 1.57 1.97 2.35 6.90 2.98 2.61 3.99 33.17 7.36 0.82 1.89	0.06 0.07 0.10 0.15 0.20 0.15 0.04 0.12 0.01 0.02 0.03	(ppm) 11.95 18.41 29.50 104.40 138.91 24.80 5.72 5.10 1.29 2.21 3.21	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 0.1 g/t AuEq cut off 0.1 g/t AuEq cut off
	Drill Hole GYDD-21-001 inc inc inc inc and GYDD-21-002 incl. incl. and incl. and	From (m) 16.15 167.50 359.50 403.00 403.00 468.50 85.00 112.00 129.75 279.45 305.00 378.50	Interval (m) 784.31 380.50 188.50 28.00 21.00 30.00 46.50 2.30 1.75 27.05 1.50 13.50	AuEq (g/t) 0.36 0.47 0.61 0.95 1.09 1.06 0.43 1.95 2.16 1.53 19.23 0.46	Au (g/t) 0.24 0.32 0.40 0.54 0.77 0.76 0.32 1.33 2.05 1.49 19.16 0.44	Ag (g/t) 1.57 1.97 2.35 6.90 2.98 2.61 3.99 33.17 7.36 0.82 1.89 0.21	0.06 0.07 0.10 0.15 0.20 0.15 0.04 0.12 0.01 0.02 0.03 0.01	(ppm) 11.95 18.41 29.50 104.40 138.91 24.80 5.72 5.10 1.29 2.21 3.21 1.45	0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 0.1 g/t AuEq cut off 1.0 g/t AuEq cut off 0.1 g/t AuEq cut off 0.1 g/t AuEq cut off 0.1 g/t AuEq cut off

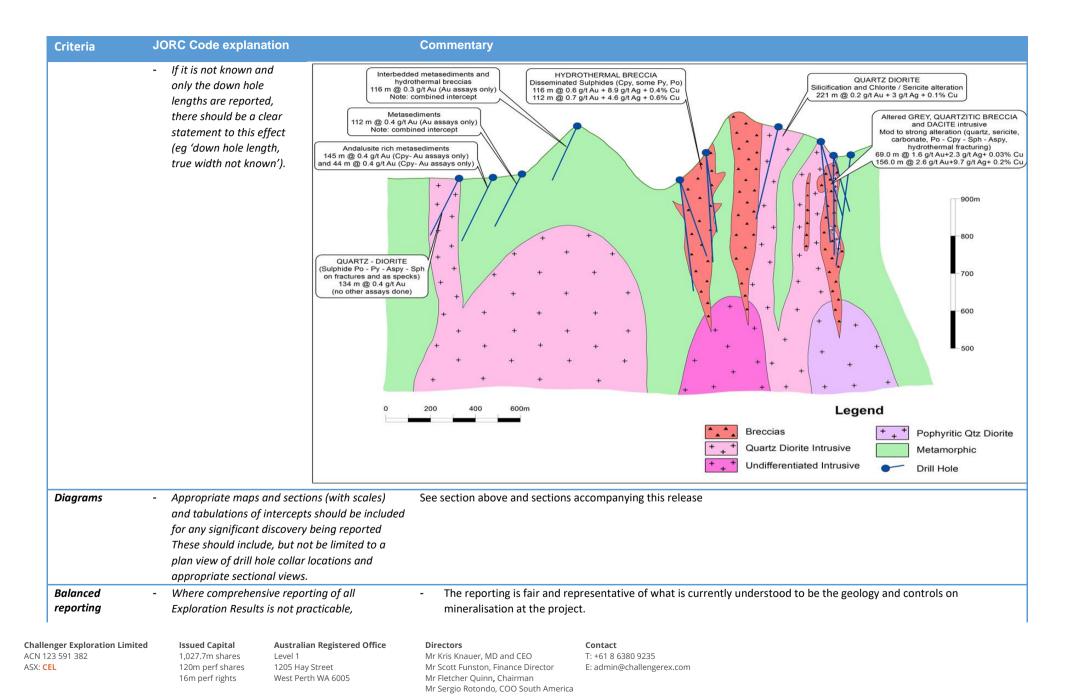
Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Dire

Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary								
		incl.	554.10	0.70	1.09	1.06	0.20	0.01	1.08	1.0 g/t AuEq cut off
		GYDD-21-003	71.9	119.2	0.5	0.4	0.8	0.02	2.2	0.1 g/t AuEq
		inc	76.4	77.2	0.6	0.5	0.5	0.01	1.1	1.0 g/t AuEq
		inc	76.4	26.2	1.1	1.1	0.9	0.02	1.7	1.0 g/t AuEq
		inc	101.8	0.8	20.7	20.6	4.9	0.04	0.6	10.0 g/t AuEq cut
		and	356.5	15.0	0.4	0.3	0.4	0.02	5.0	0.1 g/t AuEq
		inc	361.0	1.5	1.1	1.0	0.5	0.04	3.9	1.0 g/t AuEq
		and	575.8	21.4	0.3	0.1	2.6	0.08	57.7	0.1 g/t AuEq
		and	662.2	61.0	0.2	0.1	0.9	0.05	24.5	0.1 g/t AuEq
		GYDD-21-004	37.1	338.7	0.3	0.2	1.0	0.03	6.5	0.1 g/t AuEq
		inc	223.5	152.3	0.3	0.2	1.3	0.04	7.3	0.1 g/t AuEq
		inc	348.8	27.0	0.6	0.5	1.8	0.05	7.3	1.0 g/t AuEq
		and	613.5	33.0	0.3	0.2	0.6	0.05	18.7	0.1 g/t AuEq
		inc	639.0	7.5	0.5	0.5	0.5	0.05	10.7	1.0 g/t AuEq
		GYDD-21-005	16.1	581.7	0.3	0.3	0.9	0.04	2.5	0.1 g/t AuEq
		inc	389.8	88.4	0.8	0.6	1.8	0.09	1.5	1.0 g/t AuEq
		inc	476.5	1.7	25.2	25.1	1.8	0.02	4.0	10.0 g/t AuEq cut
		and	567.3	30.4	1.5	1.4	0.9	0.03	5.1	1.0 g/t AuEq
		inc	592.6	5.2	7.2	7.1	2.0	0.03	3.9	1.0 g/t AuEq
		inc	596.2	1.0	22.2	22.0	3.9	0.04	10.9	10.0 g/t AuEq cut
		GYDD-21-006	3.3	309.8	0.7	0.2	6.3	0.21	3.0	0.1 g/t AuEq
		inc	17.4	259.1	8.0	0.2	7.3	0.25	3.3	0.1 g/t AuEq
		inc	74.4	202.1	8.0	0.3	6.5	0.27	3.6	lithology based
		inc	74.4	33.0	1.3	0.3	15.5	0.49	3.7	1.0 g/t AuEq
		a nd	231.9	53.6	1.5	0.7	8.8	0.41	1.1	1.0 g/t AuEq

Relationship between mineralisation widths and intercept lengths


- These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be
- The geometry of the breccia hosted mineralisation appears to be predominantly vertical pipes while the geometry of the intrusive hosted mineralisation is sub-vertical..
- The preliminary interpretation is that the breccia hosted mineralisation occurs in near vertical breccia pipes. Thus, intersections in steeply inclined holes may not be representative of the true width of this breccia hosted mineralisation. The relationship between the drilling orientation and some of the key mineralised structures and possible reporting bias in terms of true width is illustrated in the figure below.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights

reported.

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
	representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Results. - Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	El Guayabo: Quantec Geophysical services conducted a SPARTAN Broadband Magnetotelluric and TITAN IP/EMAP surveys completed February 3rd to April 1st, 2019 over the El Guayabo property by Quantec Geoscience Ltd. on behalf of AAR Resources. The survey covered 16 square kilometersa with data collected on 300m 3D spacing on a gride oriented at 10 degerees and 100 degerees. The grid was moved 10 degrees so the survey could be orineted perpendicu;lar to the main geological structures. The survey involved a total of 205 Magnetotelluric (MT) sites and 2 test TITAN IP/EMAP profiles were surveyed The final survey results to which will be delivered will consist of: • Inversion 2D products • DC resistivity model; • IP chargeability model using the DC resistivity model as a reference; • IP chargeability model using a half-space resistivity model as a reference; • MT(EMAP) resistivity model; • Inversion 3D products • Joint MT+DC resistivity model; IP chargeability model using the MT+DC resistivity model; • Inversion 3D products • 3D MT model; • Cross-sections and Elevation Plan maps of the 3D MT models; Figures showing Survey Locations and Results are included in the boidy of this release DCIP INVERSION PROCEDURES DCIP is an electrical method that uses the injection of current and the measurement of voltage difference along with its rate of decay to determine subsurface resistivity and chargeability respectively. Depth of investigation is mainly controlled by the array geometry but may also be limited by the received signal (dependent on transmitted current) and ground resistivity. Chargeability is particularly susceptible to data with a low signal-to-noise ratio. The differences in penetration depth between DC resistivity and chargeability are a function of relative property contrasts and relative signal-to-noise levels between the two measurements. A detailed introduction to DCIP is given in Telford, et al. (1976). The primary tool for evaluating data is through the inversion of the data in two or three dimens
		apparent in the actual data. Inversion models must be reviewed in context with the observed data, model fit, and with an understanding of the model norm used.

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

JORC Code explanation Commentary Criteria The DC and IP inversions use the same mesh. The horizontal mesh is set as 2 cells between electrodes. The vertical mesh is designed with a cell thickness starting from 20 m for the first hundred metres to accommodate the topographic variation along the profiles, and then increases logarithmically with depth. The inversions were generally run for a maximum of 50 iterations. The DC data is inverted using an unconstrained 2D inversion with a homogenous half-space of average input data as starting model. For IP inversions, the apparent chargeability \square is computed by carrying out two DC resistivity forward models with conductivity distributions $\sigma(xi,zi)$ and $(1-\eta)\sigma(xi,zi)$ (Oldenburg and Li, 1994), where (xi,zi) specifies the location in a 2D mesh. The conductivity distributions used in IP inversions can be the inverted DC model or a half space of uniform conductivity. Two IP inversions are then calculated from the same data set and parameters using different reference models. The first inversion of the IP data uses the previously calculated DC model as the reference model and is labelled the IP dcref model. The second IP inversion uses a homogeneous half-space resistivity model as the reference model and is labelled IP hsref model. This model is included to test the validity of chargeability anomalies, and to limit the possibility of inversion artefacts in the IP model due to the use of the DC model as a reference. The results of this second IP inversion are presented on the digital archived attached to this report. MAGNETOTELLURIC INVERSIONS The Magnetotelluric (MT) method is a natural source EM method that measures the variation of both the electric (E) and magnetic (H) field on the surface of the earth to determine the distribution at depth of the resistivity of the underlying rocks. A complete review of the method is presented in Vozoff (1972) and Orange (1989). The measured MT impedance Z, defined by the ratio between the E and H fields, is a tensor of complex numbers. This tensor is generally represented by an apparent resistivity (a parameter proportional to the modulus of Z) and a phase (argument of Z). The variation of those parameters with frequency relates the variations of the resistivity with depth, the high frequencies sampling the sub-surface and the low frequencies the deeper part of the earth. However, the apparent resistivity and the phase have an opposite behaviour. An increase of the phase indicates a more conductive zone than the host rocks and is associated with a decrease in apparent resistivity. The objective of the inversion of MT data is to compute a distribution of the resistivity of the surface that explains the variations of the MT parameters, i.e. the response of the model that fits the observed data. The solution however is not unique and different inversions must be performed (different programs, different conditions) to test and compare solutions for artefacts versus a target anomaly. An additional parameter acquired during MT survey is the Tipper. Tipper parameters Tzx and Tzy (complex numbers) represent the transfer function between the vertical magnetic field and the horizontal X (Tzx), and Y (Tzy) magnetic fields respectively (as the impedance Z represent the transfer function between the electric and magnetic fields). This tipper is a 'local' effect, mainly defined by the lateral contrast of the resistivity. Consequently, the tipper can be used to estimate the geological strike direction. Another important use of the tipper is to display its components as vectors, named induction vectors. The induction vectors (defined by the real components of Tzx and Tzy) plotted following the Parkinson-Real-Reverse-Angle convention will point to conductive zones. The tipper is then a good mapping tool to delineate more conductive zones. The depth of investigation is determined primarily by the frequency content of the measurement. Depth estimates from any individual sounding may easily exceed 20 km. However, the data can only be confidently interpreted when the aperture of the array is comparable to the depth of investigation.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

JORC Code explanation Commentary Criteria The inversion model is dependent on the data, but also on the associated data errors and the model norm. The inversion models are not unique, may contain artefacts of the inversion process and may not therefore accurately reflect all the information apparent in the actual data. Inversion models need to be reviewed in context with the observed data, model fit. The user must understand the model norm used and evaluate whether the model is geologically plausible. For this project, 2D inversions were performed on the TITAN/EMAP profiles data. For each profile, we assume the strike direction is perpendicular to the profile for all sites: the TM mode is then defined by the inline E-field (and cross line Hfield); no TE mode (crossline E-field) were used in the 2D inversions. The 2D inversions were performed using the TM-mode resistivity and phase data interpolated at 6 frequencies per decade. assuming 10% and 5% error for the resistivity and phase respectively, which is equivalent to 5% error on the impedance component Z. No static shift of the data has been applied on the data. The 3D inversion was carried out using the CGG RLM-3D inversion code. The 3D inversions of the MT data were completed over an area of approximately 5km x 3.5km. All MT sites from this current survey were used for the 3D inversion. The 3D inversion was completed using a sub sample of the MT data with a maximum of 24 frequencies at each site covering the measured data from 10 kHz to 0.01 Hz with a nominal 4 frequencies per decade. At each site, the complete MT complex impedance tensors (Zxx, Zxy, Zyx, and Zyy) were used as input data with an associated error set to 5% on each parameter. The measured tipper data (Tzx, Tzy) were also used as input data with an associated error set to 0.02 on each parameter. A homogenous half space with resistivity of 100 Ohm-m was used as the starting model for this 3D MT inversion. A uniform mesh with 75 m x 75 m cell size was used in horizontal directions in the resistivity model. The vertical mesh was defined to cover the first 4 km. Padding cells were added in each direction to accommodate the inversion for boundary conditions. The 3D inversion was run for a maximum of 50 iterations. In addition a total of 129 samples distributed along 12 holes were analysed to measure the resistivity (Rho (Ohm*m) and chargeability properties (Chargeability M and Susceptibility (SCPT 0.001 SI). The equipment used for the analyses was the Sample Core IP Tester, manufactured by Instrumentation GDD Inc. It should be noted that these measures should be taken only as first order estimate, and not as "absolute" (true) value as readings by the field crew were not repeated and potentially subject to some errors (i.e. wrong size of the core entered in the equipment). Colorado V: **Exploration Target:** An Exploration Target for two mineralized zones on the Colorado V mining concession has been made using surface gold in soil anomalies, drill hole geological and assay information and panel sampling from an adit at one of the targets. **Exploration Target Anomaly A** Unit Low estimate **High Estimate** Surface area (100 ppb Au in soil envelope): m^2 250000 250000 Depth m 400 400 **Bulk Density** kg/m³ 2600 2750 Tonnage Mt 260 275 Grade Au g/t 0.4 0.7 Grade Ag g/t 1.5 2.5

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary			
		tonnage above cut-off	%	70%	90%
		Contained Au	Moz	2.3	5.6
		Contained Ag	Moz	8.8	19.9
		Exploration Target Anomaly B	Unit	Low estimate	High Estimate
		Surface area (100 ppb Au in soil envelope):	m²	175000	175000
		Depth	m	400	400
		Bulk Density	kg/m³	2600	2750
		Tonnage	Mt	182	193
		Grade Au	g/t	0.4	0.7
		Grade Ag	g/t	1.5	2.5
		% Tonnage above cut-off	%	70%	90%
		Contained Au	Moz	1.6	3.9
		Contained Ag	Moz	6.1	13.9
		_ Total of Target A & B	Unit	Low estimate	High Estimate
		Tonnage	Mt	442	468
		Contained Au	Moz	4.0	9.5
		Contained Ag	Moz	14.9	33.8
		The potential quantity and grade of the Colorado V E exploration to estimate a Mineral Resource and that Mineral Resource. The following is an explanation of the inputs used in Surface Area: The surface area of the target havertically to the surface. The surface projection gold-in-soil anomaly contour. This area has been been been been been been been bee	formulating the I as been estimate n of the intersect en used to estim as been used as a ald be expected t	Exploration Target. Id by projecting drill tions in the drill hole the horizontal error of the decorate of the decorate of the decorate of the mine	will result in the estimation of a hole gold significant intersections es coincides with the 100 ppb Au extent of the mineralization. epth that an open pit and eralization at Colorado V is
		 Bulk Density: The bulk density is based on geo bulk densities for these rock types are in the ra Gold and Silver grades: The gold and silver gra sample grades and deviations from mean from 	ange used. Ide range has bee	en estimated from t	he weighted average and median

1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
		 Proportion of tonnage above cut-off grade: These values are estimates based on drill hole intersection grade continuity down-hole assuming that not all of the Target volume, if sampled would be above the economic cut-off grade.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Drill test priority targets identified through exploration reported previously on both the EL Guayabo and Colorado V targets, centered on surface soil and rock chip sampling, underground channel sampling and previously completed drilling which has been relogged and resampled. Interpretation of magnetic survey data following calibration with drilling. Undertake additional IP and/or EM surveys subject to a review of the appropriateness of the techniques and calibration with drill hole data.

JORC Code, 2012 Edition – Table 1 report template Section 1 Sampling Techniques and Data -Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.
	the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc).	For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts.
	These examples should not be taken as limiting the broad meaning of	For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine.
	sampling Include reference to measures taken to ensure sample representivity and	CEL channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel saw cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representative sample using and hammer and chisel. The sample is collected onto a plastic mat and collected into a sample bag.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

JORC Code explanation Criteria Commentary the appropriate calibration of any Core and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and measurement tools or systems used. pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination. Aspects of the determination of mineralisation that are Material to A 10g charge was analysed for at least 48 elements by 4-acid digest and ICP-MS determination. Elements determined the Public Report. were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, In cases where 'industry standard' Sn. Sr. Ta. Te. Th. Ti. Tl. U. V. W. Y. Zn and Zr. work has been done this would be Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration. relatively simple (eg 'reverse Sample intervals were selected according to geological boundaries. There was no coarse or visible gold observed in any of circulation drilling was used to the core or channel samples. obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. **Drilling techniques** Drill type (eg core, reverse Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in circulation, open-hole hammer, WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed rotary air blast, auger, Bangka, using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases sonic, etc) and details (eg core the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were diameter, triple or standard tube, reported in POSGAR (2007) projection and converted to WGS84. depth of diamond tails, facesampling bit or other type, whether North Elevation Azimuth Dip Depth East Hole id Type Date core is oriented and if so, by what (m) (m) (m ASL) (°) (°) (m) method, etc). 6602132.3 1807.6 AG01 DD 2504908.0 000 -90 84.5 Jan-84 6602041.1 1803.4 AG02 DD 2504846.5 112 -70 60.0 Jan-84 AG03 DD 2504794.5 6601925.6 1803.1 080 -55 110.0 Jan-84 6602065.5 1806.6 -90 168.0 Jan-84 AG04 DD 2504797.1 000 AG05 DD 2504843.5 6601820.3 1798.1 000 -90 121.8 Jan-84 6601922.8 AG06 DD 2504781.9 1803.8 000 -90 182.2 Jan-84 AG07 6601731.0 1796.9 DD 2504826.3 000 -90 111.5 Jan-84

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

DD

2504469.8

AG08

Contact T: +61 8 6380 9235 E: admin@challengerex.com

1779.7

090

-57

80.2

Jan-84

6600673.7

Criteria	JORC Code explanation	Commentar	у							
		AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
		AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
		AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
		AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
		AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
		AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
		AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
		AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84
		Hole_id	Туре	East	North	Elevation	Azimuth	Dip	Depth	Date
				(m)	(m)	(m ASL)	(°)	(°)	(m)	
		MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95
		MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
		MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
		MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
		MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
		MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
		MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
		MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-95
		MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
		MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
		MG12	RC	2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
		Hole_id	Туре	East	North	Elevation	Azimuth	Dip	Depth	Date
				(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50		1999
		Hua02	RC	2504889.5	6602081.1	1809.7	125	-55		1999
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90		1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90		1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	1999
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1999

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commenta	ry								
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	1999	
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	1999	
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	1999	
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	1999	
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	1999	
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	1999	
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	1999	
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	1999	
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999	
		Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date	
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00	
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	1999-00	
		DDH22	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00	
		DDH23	DD	2504920.4	6601994.3	1767.9	000	-90	58.8	1999-00	
		DDH24	DD	2504821.0	6601938.8	1802.0	116	-80	100.3	1999-00	
		DDH25	DD	2504862.6	6601964.5	1803.7	116	-74	49.2	1999-00	
		DDH26	DD	2504920.4	6601975.3	1795.0	312	-60	80.3	1999-00	
		DDH27	DD	2504752.7	6601565.1	1806.6	116	-60	43.2	1999-00	
		DDH28	DD	2505003.6	6602174.3	1806.6	116	-50	41.7	1999-00	
		DDH29	DD	2504964.1	6602136.6	1810.0	350	-52	113.5	1999-00	
		DDH30	DD	2505004.1	6602156.3	1809.3	059	-85	62.1	1999-00	
		DDH31	DD	2504897.6	6602112.7	1808.1	116	-75	41.4	1999-00	
		DDH32	DD	2504939.4	6602139.2	1809.1	350	-51	100.7	1999-00	
		DDH33	DD	2504939.4	6602139.2	1809.1	350	-65	62.9	1999-00	
		DDH34	DD	2504826.5	6601920.2	1801.3	116	-70	69.4	1999-00	
		DDH35	DD	2505003.9	6602156.7	1808.8	310	-85	174.6	1999-00	
		DDH36	DD	2504637.5	6600777.3	1799.9	330	-50	45.5	1999-00	
		DDH37	DD	2504826.5	6601920.2	1809.4	000	-90	121.0	1999-00	
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00	
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00	
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00	
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00	
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00	
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00	
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00	
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Kna

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

teria	JORC Code explanation	Commentar	y							
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7	1999-00
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6	1999-00
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9	1999-00
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6	1999-00
		Hala 13	T	East	North	Elevation	Azimuth	Dip	Dep	th
		Hole_id	Туре	(m)	(m)	(m ASL)	(°)	(°)	(m)	
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60		30.2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary								
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130.5	
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100.2	
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104.6	
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122.6	
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136.0	
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108.2	
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	70.0	
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75.9	
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120.0	
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95.1	
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77.4	
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.0	
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.6	
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.0	
		04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65	225.5	
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.2	
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.7	
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.0	
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.0	
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.0	
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.7	
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.2	
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.8	
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.9	
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45	60.0	
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7	
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.0	
		04HD30	DD	2504421.0	6600044.0	1764.0	108	-45	128.2	
		04HD31	DD	2504687.0	6601326.0	1794.0	045	-60	242.9	
		04HD32	DD	2504828.0	6601916.0	1801.3	116	-70	68.4	
		05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	81.4	
		05HD34	DD	2505451.0	6602079.0	1763.0	273	-60	269.0	
		05HD35	DD	2504905.0	6601689.0	1794.0	140	-65	350.0	
		05HD36	DD	2504880.0	6601860.0	1802.0	295	-70	130.0	
		05HD37	DD	2504866.0	6601888.0	1797.0	295	-70	130.0	
		05HD38	DD	2504838.0	6601937.0	1796.0	115	-70	70.0	
		05HD39	DD	2504964.0	6602128.0	1814.0	030	-70	217.5	
		05HD40	DD	2504964.0	6602128.0	1814.0	030	-50	150.0	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		05HD41	DD	2504931.0	6602125.0	1812.0	022	-60	142.5
		05HD42	DD	2504552.7	6600791.5	1797.0	194	-57	120.0
		05HD43	DD	2504552.7	6600791.5	1797.0	194	-45	95.5
		05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.5	130.5
		05HD45	DD	2504362.0	6600710.0	1767.0	088	-60	121.5
		05HD46	DD	2504405.0	6600282.0	1766.0	090	-75	130.7
		05HD47	DD	2504212.0	6599177.0	1729.0	065	-45	181.5
		05HD48	DD	2504160.0	6599164.0	1728.0	065	-60	100.7
		·							·

CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various Argentinian drilling companies based in Mendoza and San Juan. The core has not been oriented as the rock is commonly too broken to allow accurate core orientation.

CEL drilling of reverse circulation (RC) drill holes was done using a track-mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling is being done using a 5.25 inch hammer bit.

Collar details for DD drill holes and RC drill holes completed by CEL are shown below in WGS84, zone 19s projection. Collar locations for drill holes are surveyed using DGPS. Interim collar locations are surveyed with a handheld GPS to be followed up with DGPS when the hole is completed.

Hole_id	East (m)	North (m)	Elevation (m)	Dip (°)	Azimuth (°)	Depth (m)
GNDD001	504803.987	6601337.067	1829.289	-57	115	109.0
GNDD002	504793.101	6601312.095	1829.393	-60	115	25.6
GNDD002A	504795.405	6601311.104	1829.286	-60	115	84.5
GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2
GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0
GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0
GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9
GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3
GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0
GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4
GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0
GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0
GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5
GNDD011	504395.352	6599644.012	1794.025	-64	115	169.2
GNDD012	504450.864	6599816.527	1798.321	-55	115	120.0

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		GNDD013	504406.840	6599613.052	1792.378	-58	112	141.0	
		GNDD014	504404.991	6599659.831	1793.728	-59	114	140.0	
		GNDD015	504442.039	6600159.812	1808.700	-62	115	166.7	
		GNDD016	504402.958	6599683.437	1794.007	-60	115	172.0	
		GNDD017	504460.948	6600075.899	1806.143	-55	115	132.6	
		GNDD018	504473.781	6600109.152	1806.458	-60	115	130.0	
		GNDD019	504934.605	6601534.429	1834.720	-70	115	80.0	
		GNDD020	504463.598	6600139.107	1807.789	-58	115	153.0	
		GNDD021	504935.804	6601567.863	1835.631	-60	115	120.0	
		GNDD022	504835.215	6601331.069	1828.015	-60	113	100.0	
		GNDD023	504814.193	6601336.790	1828.535	-55	117	100.0	
		GNDD024	504458.922	6600123.135	1807.237	-70	115	150.0	
		GNDD025	504786.126	6601137.698	1823.876	-60	115	141.0	
		GNDD026	504813.588	6601444.189	1831.810	-55	115	100.0	
		GNDD027	504416.311	6599703.996	1794.702	-55	115	139.2	
		GNDD028	504824.752	6601321.020	1827.837	-57	115	100.0	
		GNDD029	504791.830	6601316.140	1829.344	-71	115	120.2	
		GNDD030	504454.538	6599860.757	1799.266	-60	115	148.0	
		GNDD031	504622.013	6600198.726	1823.191	-60	130	149.0	
		GNDD032	504619.803	6600203.906	1822.790	-55	097	166.6	
		GNDD033	504830.792	6601385.842	1829.315	-55	115	62.0	
		GNDD034	504862.613	6601524.893	1834.263	-60	115	60.0	
		GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5	
		GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0	
		GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5	
		GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7	
		GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0	
		GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5	
		GMDD041	504473.000	6600104.000	1806.400	-55	095	428.0	
		GNDD042	504392.551	6599574.224	1790.603	-60	115	140.0	
		GMDD043	504815.800	6601320.000	1829.100	-67	115	80.0	
		GNDD044	504380.090	6599622.578	1791.934	-65	115	185.0	
		GNDD045	504366.823	6599679.058	1793.712	-57	115	311.0	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		GNDD046	504364.309	6599702.621	1794.533	-60	115	191.0	
		GNDD047	504459.642	6599644.133	1793.422	-60	115	101.0	
		GNDD048	504792.642	6601286.638	1828.497	-74	115	95.0	
		GNDD049	504807.030	6601419.483	1831.588	-60	115	90.0	
		GNDD050	504826.614	6601509.677	1833.357	-60	115	80.0	
		GNDD051	504766.792	6601032.571	1823.273	-60	115	120.0	
		GNDD060	504801.654	6601066.131	1822.596	-60	115	200.0	
		GNDD073	504367.546	6599724.992	1795.493	-57	115	150.2	
		GNDD074	504366.299	6599725.496	1795.450	-73	115	152.0	
		GNDD077	504821.005	6601145.026	1823.951	-60	115	222.0	
		GNDD079	504636.330	6600286.824	1823.053	-60	115	181.4	
		GNDD082	504769.532	6601169.127	1825.621	-60	115	266.0	
		GNDD083	504646.604	6600336.172	1823.893	-60	115	181.0	
		GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0	
		GNDD088	504815.0	6601194	1825.2	-60	115	237.0	
		GNDD088A	504815.621	6601193.811	1825.210	-60	115	265.0	
		GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1	
		GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0	
		GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0	
		GNDD095	504804.597	6601219.844	1826.834	-67	115	203.0	
		GNDD096	504666.622	6600602.793	1820.371	-60	115	215.0	
		GNDD099	504384.933	6599759.693	1796.525	-60	115	150.0	
		GNDD100	504424.250	6599784.711	1796.728	-60	115	120.0	
		GNDD101	504781.691	6600986.509	1821.679	-60	115	220.0	
		GNDD102	504787.340	6601285.049	1828.549	-57	115	260.0	
		GNDD103	504432.004	6599482.162	1788.500	-55	115	299.0	
		GNDD105	504701.392	6601025.961	1824.818	-60	115	300.0	
		GNDD106	504438.745	6599613.089	1792.511	-55	115	300.0	
		GNDD108	504893.480	6601156.138	1824.948	-60	115	200.0	
		GNDD109	504788.659	6601026.581	1822.675	-60	115	209.0	
		GNDD112	504893.408	6601198.421	1825.402	-60	115	188.0	
		GNDD113	504704.700	6601067.100	1826.300	-60	115	230.0	
		GNDD113A	504705.888	6601065.628	1825.877	-60	115	461	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		GNDD114	504430.719	6600110.231	1807.080	-50	115	116.0
		GNDD115	504860.469	6601289.558	1826.422	-60	115	251.0
		GNDD116	504441.894	6599558.746	1790.917	-65	115	269.0
		GNDD117	504428.815	6600110.985	1807.008	-60	115	120.0
		GNDD118	505085.614	6601107.067	1811.275	-60	295	300.0
		GNDD119	504827.094	6601535.651	1835.088	-66	115	115.0
		GNDD120	504411.171	6600099.998	1806.316	-60	110	164.0
		GNDD121	504863.473	6601140.462	1821.954	-57	115	181.0
		GNDD122	504659.288	6600648.314	1819.643	-60	115	250.0
		GNDD123	504823.784	6601510.706	1833.612	-63	130	130.0
		GNDD124	504410.706	6600099.603	1806.296	-70	115	160.0
		GNDD125	505135.977	6601131.034	1809.281	-60	295	300.0
		GNDD126	504716.358	6601149.031	1827.257	-60	115	196.0
		GNDD127	504889.851	6601503.430	1834.161	-55	115	300.0
		GNDD128	504715.660	6601106.719	1826.595	-60	115	230.0
		GNDD129	504637.632	6600284.287	1805.395	-55	185	291.0
		GNDD130	504838.247	6601093.352	1821.556	-60	115	227.0
		GNDD131	504650.672	6600737.758	1821.134	-60	115	280.0
		GNDD132	504819.319	6601357.930	1829.373	-55	115	300.0
		GNDD133	504869.366	6601639.665	1835.213	-60	170	182.0
		GNDD134	504639.057	6600284.444	1805.499	-55	154	290.0
		GNDD135	504845.188	6601547.554	1834.906	-64	350	135.0
		GNDD136	504837.721	6601445.719	1830.128	-55	115	310.0
		GNDD137	504647.268	6600701.174	1820.549	-60	115	370.0
		GNDD138	504883.975	6601540.420	1835.042	-65	350	237.0
		GNDD139	504755.726	6601084.848	1824.694	-60	115	200.0
		GNDD140	504991.396	6601549.750	1835.464	-60	60	230.0
		GNDD141	504779.587	6601255.947	1828.225	-70	115	270.0
		GNDD142	504433.887	6599629.407	1792.717	-62	115	360.0
		GNDD143	504902.285	6601209.174	1826.545	-20	115	120.0
		GNDD144	504961.182	6601524.651	1835.687	-70	40	410.0
		GNDD145	504557.511	6600224.447	1818.092	-64	170	243.0
		GNDD146	504772.849	6601212.611	1827.389	-70	115	350.0

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		GNDD147	504959.171	6601525.259	1835.597	-60	355	240.0	
		GNDD148	504845.962	6601442.396	1831.403	-24	115	85.5	
		GNDD149	504847.402	6601441.816	1832.186	-5	115	88.1	
		GNDD150	504848.651	6601525.476	1834.636	-65	350	251.0	
		GNDD151	504673.689	6601219.059	1830.640	-60	115	430.0	
		GNDD152	504901.725	6601465.446	1834.787	-15	115	165.0	
		GNDD153	504690.458	6600986.257	1824.840	-70	115	326.0	
		GNDD154	504891.810	6601503.838	1834.134	-65	350	212.0	
		GNDD155	504779.116	6601123.548	1823.862	-60	115	420.0	
		GNDD156	504842.752	6601402.888	1830.505	-37	115	59.0	
		GNDD157	504638.216	6600284.907	1805.408	-55	170	527.0	
		GNDD158	504807.600	6601535.300	1837.000	-60	350	170.0	
		GNDD159	504910.382	6601145.345	1825.562	-40	115	202.0	
		GNDD160	504980.539	6601546.905	1835.243	-55	350	170.0	
		GNDD161	504664.113	6600816.520	1822.385	-60	115	251.00	
		GNDD162	504723.843	6601279.506	1830.376	-60	115	180.00	
		GNDD163	504749.611	6601575.347	1837.394	-60	115	180.00	
		GNDD164	504672.435	6601526.078	1836.853	-60	115	311.00	
		GNDD165	504488.377	6599862.768	1803.486	-10	115	253.80	
		GNDD166	504557.654	6600330.511	1817.438	-60	115	327.00	
		GNDD167	504727.540	6600880.315	1820.767	-60	115	251.00	
		GNDD168	504559.923	6600382.723	1816.844	-60	115	314.00	
		GNDD169	504683.848	6601565.336	1837.928	-60	115	416.00	
		GNDD170	504663.000	6600335.000	1822.900	-60	170	123.50	
		GNDD170A	504664.576	6600335.390	1826.501	-60	170	380.00	
		GNDD171	504674.659	6600904.137	1823.445	-70	115	350.00	
		GNDD172	504487.566	6599863.343	1802.727	-45	115	119.70	
		GNDD173	504697.019	6601339.596	1833.656	-60	115	191.00	
		GNDD174	504474.118	6600097.716	1807.933	-11	115	329.50	
		GNDD175	504653.221	6601093.209	1828.285	-60	115	353.00	
		GNDD176	504733.851	6600655.255	1817.503	-60	115	350.00	
		GNDD177	504759.610	6601481.663	1834.257	-60	115	160.00	
		GNDD178	504625.984	6600185.259	1824.078	-60	185	145.20	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		GNDD179	504406.541	6600185.242	1809.531	-55	170	192.10
		GNDD180	504678.044	6600779.784	1821.026	-60	115	341.00
		GNDD181	504669.174	6600332.942	1809.056	-60	160	401.00
		GNDD182	504669.526	6601127.040	1828.630	-60	115	332.00
		GNDD183	504775.514	6601523.887	1835.124	-65	115	146.00
		GNDD184	504670.292	6601174.696	1829.453	-60	115	321.50
		GNDD185	504730.718	6601405.556	1832.739	-60	115	180.00
		GNDD186	504735.990	6600742.990	1818.290	-60	115	209.00
		GNDD187	504621.493	6601546.173	1839.975	-67	115	470.00
		GNDD188	504658.832	6601043.631	1826.939	-60	115	277.00
		GNDD189	504473.828	6600097.778	1807.415	-29	115	320.00
		GNDD190	504894.932	6601473.630	1833.192	-65	350	269.00
		GNDD191	504602.016	6601426.850	1837.553	-70	115	260.00
		GNDD192	504617.912	6600575.207	1820.347	-60	115	260.00
		GNDD193	504686.491	6601425.894	1834.934	-60	115	293.00
		GNDD194	504670.153	6600333.303	1808.999	-60	140	300.00
		GNDD195	504473.117	6600098.042	1807.172	-44	115	370.00
		GNDD196	504633.370	6600393.771	1822.260	-60	115	296.00
		GNDD197	504860.921	6601483.879	1831.591	-68	350	72.00
		GNDD198	504787.448	6601250.012	1827.763	-60	115	161.00
		GNDD199	504812.268	6601468.783	1832.487	-56	350	266.00
		GNDD200	504966.362	6601074.292	1816.847	-60	295	280.00
		GNDD201	504310.496	6599798.094	1798.387	-65	115	170.00
		GNDD202	504524.999	6600443.375	1816.607	-60	115	320.00
		GNDD203	504597.900	6600292.924	1820.443	-60	170	361.50
		GNDD204	504858.596	6601037.331	1820.096	-60	295	190.10
		GNDD205	504368.667	6599653.253	1792.808	-60	115	320.00
		GNDD206	504502.882	6600109.342	1814.752	-45	90	315.60
		GNDD207	504522.884	6600357.893	1816.137	-60	115	365.00
		GNDD208	504919.928	6601011.763	1817.683	-60	295	299.00
		GNDD209	504455.248	6599665.027	1793.655	-60	115	212.00
		GNDD210	504462.426	6600034.696	1804.674	-55	115	404.00
		GNDD211	504918.046	6601053.056	1818.575	-60	295	260.00

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		GNDD212	504556.481	6600173.681	1823.158	-50	170	90.00
		GNDD213	504437.719	6599952.199	1801.892	-55	115	401.00
		GNDD214	504479.068	6599647.469	1794.866	-25	115	185.30
		GNDD215	504841.586	6601002.965	1820.301	-60	295	215.50
		GNDD216	504575.288	6600730.335	1823.004	-60	115	260.00
		GNDD217	504528.620	6600189.318	1817.887	-60	170	140.00
		GNDD218	504744.099	6601001.774	1823.249	-60	295	250.00
		GNDD219	504559.700	6600171.900	1821.200	-67	170	125.00
		GNDD220	504503.489	6600761.157	1825.667	-60	115	269.00
		GNDD221	504559.700	6600171.900	1821.200	-75	170	165.00
		GNDD222	504740.575	6600963.697	1822.322	-60	295	251.00
		GNDD223	504516.675	6600218.714	1815.407	-60	170	200.00
		GNDD224	504450.361	6600481.295	1818.275	-60	115	338.00
		GNDD225	504526.735	6601150.967	1834.202	-60	115	299.00
		GNDD226	504649.341	6601710.086	1842.687	-60	115	281.00
		GNDD227	504517.120	6600217.001	1815.363	-66	170	266.00
		GNDD228	504776.100	6601210.300	1827.900	-61	115	330.00
		GNDD229	504632.614	6601318.236	1833.884	-60	115	255.00
		GNDD230	504658.776	6601614.082	1840.047	-60	115	284.00
		GNDD231	504919.069	6602642.725	1840.857	-60	110	240.00
		GNDD232	504317.901	6599836.390	1799.881	-65	115	179.30
		GNDD233	504669.895	6601527.348	1836.811	-50	115	236.00
		GNDD234	504822.913	6601277.432	1827.472	-60	115	116.00
		GNDD235	504381.663	6599939.975	1802.201	-65	115	140.00
		GNDD236	504595.397	6601384.531	1836.630	-60	115	260.00
		GNDD237	504628.160	6601590.640	1839.508	-60	115	450.00
		GNDD238	504906.977	6602616.887	1841.656	-60	110	250.00
		GNDD239	504477.711	6599648.097	1794.358	-50	115	91.00
		GNDD240	504474.701	6600231.137	1813.421	-55	170	200.00
		GNDD241	504489.556	6599566.448	1793.976	-45	115	146.50
		GNDD242	504577.073	6601302.101	1835.696	-60	115	340.20
		GNDD243	504443.175	6600220.099	1811.582	-60	170	161.00
		GNDD244	504840.051	6602586.818	1845.192	-60	110	281.00

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		GNDD245	504682.392	6601564.613	1837.879	-50	115	306.00	
		GNDD246	504304.458	6599841.564	1800.364	-72	115	212.00	
		GNDD247	504467.820	6599499.478	1797.272	-35	115	180.00	
		GNDD248	504663.877	6601484.106	1837.295	-60	115	320.00	
		GNDD249	504565.561	6601221.295	1834.153	-60	115	280.00	
		GNDD250	504330.009	6599876.638	1800.342	-60	115	197.00	
		GNDD251	504477.971	6599538.205	1794.923	-45	115	170.50	
		GNDD252	504831.382	6600924.214	1818.699	-60	295	308.00	
		GNDD253	504457.312	6599611.851	1792.452	-60	115	277.90	
		GNDD254	504619.880	6601545.848	1839.946	-60	115	413.00	
		GNDD255	504614.456	6601152.752	1830.734	-60	115	229.00	
		GNDD256	504439.108	6599479.931	1789.382	-40	115	200.00	
		GNDD257	504846.070	6600960.942	1819.000	-60	295	290.00	
		GNDD258	504479.202	6600229.965	1813.512	-64	170	270.00	
		GNDD259	504891.047	6601156.539	1824.952	-78	295	209.00	
		GNDD260	504686.229	6601779.816	1843.684	-60	115	281.00	
		GNDD261	504735.261	6600179.706	1847.318	-45	120	140.00	
		GNDD262	504907.951	6600975.057	1817.254	-60	295	290.00	
		GNDD263	504874.653	6601167.487	1825.604	-60	295	152.00	
		GNDD264	504404.218	6600202.470	1810.311	-60	170	229.80	
		GNDD265	504493.431	6600345.518	1815.122	-55	170	425.00	
		GNDD266	504730.982	6600175.224	1847.381	-40	170	90.00	
		GNDD267	504886.046	6601114.747	1820.458	-65	295	221.00	
		GNDD268	504445.758	6600392.598	1815.641	-60	115	360.00	
		GNDD269	504696.082	6600164.192	1843.123	-45	170	112.60	
		GNDD270	504888.213	6601199.370	1825.457	-80	295	155.30	
		GNDD271	504560.712	6600319.000	1817.861	-60	130	281.00	
		GNDD272	504444.186	6600217.869	1811.622	-52	170	191.00	
		GNDD273	504559.651	6600163.955	1825.649	-20	170	80.00	
		GNDD274	504564.640	6600318.832	1818.105	-55	175	340.00	
		GNDD275	504887.265	6601199.716	1825.475	-55	295	131.00	
		GNDD276	504464.535	6600301.076	1814.073	-60	115	340.00	
		GNDD277	504848.561	6601090.785	1821.157	-60	295	155.00	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		GNDD278	504496.144	6600345.519	1815.221	-62	170	380.00	
		GNDD279	504590.000	6600164.000	1829.600	-45	155	90.00	
		GNDD280	504570.040	6601132.497	1831.818	-60	115	266.00	
		GNDD281	504599.717	6600293.500	1820.179	-67	170	470.00	
		GNDD282	504462.194	6600299.930	1814.097	-60	170	370.00	
		GNDD283	504594.043	6600152.588	1834.467	-5	155	95.00	
		GNDD284	504625.209	6600441.245	1819.581	-60	115	130.00	
		GNDD285	504527.110	6601149.718	1834.062	-70	115	401.00	
		GNDD286	504399.531	6600237.020	1811.846	-60	170	260.00	
		GNDD287	504539.531	6600481.313	1817.200	-60	115	265.00	
		GNDD288	504624.000	6600326.000	1819.400	-60	170	450.00	
		GNDD289	504647.461	6600176.710	1826.744	-45	170	278.30	
		GNDD290	504362.544	6600205.890	1810.788	-60	170	200.00	
		GNDD291	504546.405	6600521.755	1818.103	-60	115	203.00	
		GNDD292	504535.726	6600616.837	1820.761	-60	115	270.00	
		GNDD293	504660.200	6601397.535	1835.529	-60	115	215.00	
		GNDD294	504430.474	6600252.930	1811.867	-60	170	290.00	
		GNDD295	504564.607	6600558.819	1818.945	-60	115	221.00	
		GNDD296	504376.030	6599623.403	1791.894	-60	115	299.00	
		GNDD297	504647.466	6600176.787	1827.647	-20	170	167.50	
		GNDD298	504640.941	6601452.982	1837.368	-60	115	350.00	
		GNDD299	504310.496	6599705.054	1795.176	-60	115	170.00	
		GNDD300	504592.422	6600633.313	1820.584	-60	115	200.00	
		GNDD301	504634.840	6600298.360	1823.974	-25	115	90.20	
		GNDD302	504110.500	6599843.600	1800.000	-60	115	572.00	
		GNDD303	504500.891	6600847.913	1827.602	-60	115	240.00	
		GNDD304	504745.198	6601445.416	1833.684	-60	115	158.00	
		GNDD305	504501.385	6600667.874	1822.845	-60	115	299.00	
		GNDD306	504175.078	6599950.641	1808.993	-62	115	320.00	
		GNDD307	504640.906	6600395.069	1823.493	-20	115	100.00	
		GNDD308	504499.434	6600937.779	1829.704	-60	115	1013.00	
		GNDD309	504597.494	6601511.123	1839.515	-60	115	390.00	
		GNDD310	504499.108	6600633.828	1821.946	-60	115	299.00	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		GNDD311	504218.233	6600014.914	1805.770	-60	115	246.00
		GNDD312	504481.013	6599686.467	1798.612	-25	115	80.50
		GNDD313	504320.983	6600200.995	1811.622	-60	170	210.00
		GNDD314	504303.920	6599667.855	1794.313	-60	115	350.00
		GNDD315	504505.360	6600720.169	1824.165	-60	115	497.00
		GNDD316	504112.640	6599927.547	1805.311	-60	115	342.60
		GNDD317	504284.373	6599072.783	1780.353	-10	110	155.00
		GNDD318	504350.761	6600268.662	1813.067	-60	170	300.00
		GNDD319	504647.143	6600701.925	1820.363	-60	295	240.00
		GNDD320	504978.974	6600981.597	1814.818	-60	295	374.00
		GNDD321	504391.793	6600263.900	1812.719	-60	170	281.10
		GNDD322	504832.587	6600881.904	1817.644	-60	295	442.60
		GNDD323	503850.645	6599923.562	1808.172	-60	115	479.00
		GNDD324	504662.863	6601262.021	1832.385	-60	115	255.00
		GNDD325	504485.093	6599778.228	1801.333	-41	115	83.50
		GNDD326	503924.156	6600282.705	1820.784	-60	115	320.00
		GNDD327	504460.883	6601268.457	1838.203	-60	115	480.00
		GNDD328	504484.378	6599781.645	1801.594	-30	55	100.70
		GNDD329	504481.146	6600826.822	1827.636	-60	115	458.00
		GNDD330	504972.655	6600942.875	1814.522	-60	295	380.00
		GNDD331	503963.429	6599824.291	1803.625	-70	115	301.60
		GNDD332	504587.327	6601349.860	1836.123	-60	115	320.00
		GNDD333	504584.299	6600901.853	1825.624	-60	115	464.00
		GNDD334	504989.070	6601040.241	1816.049	-60	295	371.00
		GNDD335	503974.284	6599905.019	1806.353	-70	115	300.00
		GNDD336	504449.105	6600702.650	1825.158	-60	115	422.00
		GNDD337	504489.082	6601123.736	1833.786	-60	115	395.00
		GNDD338	504207.674	6600061.020	1808.048	-60	115	299.00
		GNDD339	504366.331	6599589.784	1790.480	-60	115	300.00
		GNDD340	505041.328	6601043.067	1813.901	-60	295	380.00
		GNDD341	504585.297	6600813.792	1824.256	-60	115	311.00
		GNDD342	504310.285	6601451.069	1848.178	-60	115	472.80
		GNDD343	504271.168	6600181.786	1811.314	-60	170	275.00

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		GNDD344	504583.430	6600683.591	1821.675	-60	115	320.00
		GNDD345	505037.018	6601091.528	1813.669	-60	295	344.60
		GNDD346	504358.144	6599703.069	1794.297	-75	115	173.00
		GNDD347	504500.466	6601427.054	1840.795	-60	115	330.00
		GNDD348	504241.279	6600191.024	1812.160	-60	170	329.00
		GNDD349	504421.003	6600803.859	1828.548	-60	115	401.00
		GNDD350	504529.203	6601199.425	1834.382	-60	115	395.00
		GNDD351	504330.343	6600145.731	1809.579	-60	170	190.00
		GNDD352	504312.347	6599706.594	1795.178	-62	115	359.00
		GNDD353	504370.143	6600154.088	1808.140	-60	170	120.00
		GNDD354	504369.024	6600177.667	1808.905	-60	170	125.00
		GNDD355	504848.197	6601265.380	1825.624	-60	115	135.00
		GNDD356	504477.148	6601483.299	1842.911	-60	115	384.70
		GNDD357	504359.420	6600524.722	1821.211	-60	115	429.30
		GNDD358	504361.672	6600209.193	1810.791	-63	170	179.80
		GNDD359	504409.444	6601164.646	1838.317	-60	115	380.00
		GNDD360	504840.785	6601177.453	1823.601	-60	115	448.20
		GNDD361	504447.820	6601233.311	1837.867	-60	115	452.00
		GNDD362	504187.572	6599725.588	1798.878	-55	115	449.00
		GNDD363	504430.474	6600252.930	1811.867	-60	170	290.00
		GNDD364	504631.797	6600881.153	1824.044	-60	115	270.00
		GNDD365	504477.996	6600421.245	1816.461	-60	115	410.00
		GNDD366	504557.330	6601491.763	1841.003	-60	115	392.00
		GNDD367	504584.367	6600857.252	1825.551	-60	115	521.00
		GNDD368	504373.447	6601219.024	1840.835	-63	115	662.00
		GNDD369	504584.103	6601255.061	1834.586	-60	115	289.70
		GNDD370	504345.724	6600265.013	1812.842	-60	115	350.00
		GNDD371	505138.063	6600280.515	1781.401	-60	170	300.00
		GNDD372	504546.389	6601627.940	1843.754	-60	115	452.00
		GNDD373	504881.845	6600896.065	1816.414	-60	295	452.00
		GNDD374	505269.209	6600332.952	1783.566	-60	170	400.00
		GNDD375	504200.643	6600337.960	1818.060	-60	115	530.00
		GNDD376	504698.174	6601601.907	1838.970	-60	115	238.10

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		GNDD377	504919.607	6600743.155	1811.978	-60	115	461.00
		GNDD378	504405.967	6599619.280	1792.369	-60	115	332.00
		GNDD379	504359.152	6600346.594	1815.828	-60	115	350.00
		GNDD380	504483.845	6600597.029	1821.531	-60	115	371.00
		GNDD381	504810.676	6600935.545	1819.579	-60	295	290.00
		GNDD382	504290.645	6599628.977	1792.364	-60	115	350.00
		GNDD383	504348.341	6601759.406	1854.579	-60	115	461.00
		GNDD384	504407.810	6600152.195	1808.693	-60	170	125.00
		GNDD385	504455.659	6600651.558	1823.586	-60	115	401.00
		GNDD386	504452.379	6600143.589	1807.798	-70	170	110.00
		GNDD387	504451.552	6600521.405	1819.512	-60	115	344.00
		GNDD388	505194.815	6600310.202	1782.621	-60	170	250.00
		GNDD389	504928.999	6601499.024	1835.710	-24	115	100.00
		GNDD390	504581.621	6600320.789	1818.609	-65	170	480.00
		GNDD391	504388.708	6600464.603	1818.855	-60	115	554.00
		GNDD392	504566.471	6600779.044	1823.588	-60	115	251.00
		GNDD393	504194.600	6599760.100	1804.000	-60	112	469.00
		GNDD394	504471.923	6601926.255	1852.819	-60	115	401.00
		GNDD395	504280.280	6600552.983	1824.092	-60	115	731.00
		GNDD396	505056.631	6599621.549	1757.542	-60	115	211.50
		GNDD397	504926.000	6601422.000	1855.900	-50	170	120.00
		GNDD398	504901.411	6599438.800	1762.014	-60	115	200.00
		GNDD399	504614.100	6600382.600	1818.200	-59	170	605.00
		GNDD400	504921.643	6599372.092	1765.037	-60	115	300.00
		GNDD401	504194.600	6599760.100	1804.000	-50	115	503.00
		GNDD402	504628.400	6601676.400	1845.700	-60	115	320.00
		GNDD403	504925.187	6601428.623	1852.431	-50	130	104.90
		GNDD404	505020.104	6599330.861	1752.429	-60	115	220.00
		GNDD405	504783.329	6601560.651	1835.793	-60	115	170.00
		GNDD406	504509.289	6601601.067	1844.919	-60	112	701.00
		GNDD407	504321.626	6599682.241	1794.314	-60	115	315.00
		GNDD408	504629.050	6600279.989	1822.832	-50	170	377.00
		GNDD409	504931.958	6601437.154	1852.930	-50	115	129.90

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		GNDD410	505181.304	6600403.558	1776.685	-60	170	346.40
		GNDD411	504945.200	6601440.500	1855.500	-15	115	70.50
		GNDD412	504465.000	6600561.000	1821.200	-60	115	320.00
		GNDD413	504890.446	6601242.579	1824.660	-60	115	92.00
		GNDD414	504143.826	6599738.637	1797.669	-60	112	572.00
		GNDD415	504610.464	6600709.339	1821.174	-60	115	152.00
		GNDD416	505181.304	6600403.558	1776.685	-60	170	236.00
		GNDD416A	504484.141	6600412.354	1815.491	-60	170	213.40
		GNDD416B	504480.000	6600429.152	1816.145	-60	170	608.00
		GNDD417	504370.323	6600738.768	1827.118	-60	112	575.00
		GNDD418	504894.0	6601243.6	1826.0	-60	115	140.00
		GNDD419	505292.0	6601995.0	1785.8	-60	115	300.0
		GNDD420	504824.882	6601223.823	1825.520	-60	115	176.00
		GNDD421	504724.622	6601209.266	1828.341	-60	115	212.00
		GNDD422	504696.617	6601598.048	1838.926	-60	115	341.00
		GNDD423	505108.577	6601560.730	1877.175	-60	040	23.70
		GNDD424	504712.883	6601213.494	1828.775	-60	115	170.00
		GNDD425	505104.848	6601558.659	1876.573	-57	350	80.00
		GNDD426	504546.666	6600961.435	1828.241	-60	112	701.00
		GNDD427	504729.287	6601671.361	1840.300	-60	115	230.00
		GNDD428	504149.177	6599779.284	1799.010	-60	115	290.00
		GNDD429	504741.599	6601366.449	1831.844	-60	115	182.00
		GNDD430	505400.300	6601916.100	1799.400	-55	115	312.00
		GNDD431	504767.910	6601353.362	1830.760	-60	115	116.00
		GNDD432	504131.073	6600052.853	1808.605	-60	115	350.00
		GNDD433	504665.697	6601744.928	1843.431	-60	115	318.00
		GNDD434	505105.169	6601557.428	1876.607	-70	350	126.70
		GNDD435	504752.846	6601319.092	1830.592	-60	115	150.00
		GNDD436	504436.118	6601724.751	1849.996	-60	112	701.00
		GNDD437	504401.901	6600630.112	1823.317	-60	115	584.00
		GNDD438	504452.343	6600744.836	1825.553	-60	115	500.00
		GNDD439	504723.387	6601333.464	1831.827	-60	115	182.00
		GNDD440	503937.341	6599879.093	1806.100	-60	115	778.00

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		GNDD441	505105.901	6601559.237	1876.675	-45	010	81.20	
		GNDD442	504544.250	6600307.131	1817.448	-60	170	375.10	
		GNDD443	505049.078	6601545.351	1859.282	-50	340	114.60	
		GNDD444	504546.730	6600701.622	1822.990	-60	115	395.00	
		GNDD445	504624.4	6600663.2	1818.7	-60	115	296.00	
		GNDD446	504508.1	6601379.5	1841.9	-60	115	431.0	
		GNDD447	504267.1	6600300.3	1819.3	-60	115	450.00	
		GNDD448A	505050.0	6601544.0	1860.6	-15	130	85.00	
		GNDD449	505050.0	6601544.0	1860.6	-65	130	89.30	
		GNDD450	504051.0	6600092.0	1810.0	-60	115	587.00	
		GNDD451	504692.6	6601469.9	1839.1	-60	115	272.00	
		GNDD452	504394.9	6600682.0	1827.5	-60	112	542.00	
		GNDD453	504386.9	6600597.4	1825.9	-60	115	514.20	
		GNDD454	505062.0	6601571.0	1864.0	-45	350	86.00	
		GNDD455	504367.0	6600298.0	1815.6	-60	115	473.00	
		GNDD456	504543.5	6601274.6	1837.8	-60	112	551.00	
		GNDD457	505062.0	6601571.0	1864.0	-65	350	189.50	
		GNDD458	504472.7	6601087.0	1831.4	-60	112	650.00	
		GNDD459	504463.3	6601665.1	1846.2	-60	115	482.00	
		GNDD460	504466.3	6600869.3	1830.8	-60	112	491.00	
		GNDD461	504042.0	6599964.0	1806.0	-60	115	530.00	
		GNDD462	505091.0	6601545.0	1875.0	-65	120	129.50	
		GNDD463	504345.1	6600294.3	1816.7	-60	170	320.00	
		GNDD464	504575.5	6601083.2	1830.2	-60	115	230.00	
		GNDD465	504026.0	6600060.0	1811.0	-60	115	602.00	
		GNDD466	504578.1	6600596.5	1818.2	-60	115	203.00	
		GNDD467	505091.0	6601545.0	1875.0	-30	120	121.00	
		GNDD468	504580.1	6600463.2	1816.5	-60	115	137.00	
		GNDD469	504934.7	6602328.0	1844.7	-55	115	320.00	
		GNDD470	504615.4	6600623.2	1818.9	-45	115	152.00	
		GNDD471	503999.0	6600247.6	1815.9	-60	115	596.00	
		GNDD472	504380.6	6601306.5	1839.7	-60	112	550.00	
		GNDD473	504101.0	6599980.4	1806.2	-60	112	458.00	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		GNDD474	504588.2	6600547.7	1818.6	-45	115	110.00
		GNDD475	504672.0	6600466.0	1822.6	-75	115	146.00
		GNDD476	505106.0	6601553.0	1880.2	-10	115	55.50
		GNDD477	503644.0	6600028.0	1818.4	-60	112	320.00
		GNDD478	504563.1	6601750.2	1847.7	-60	115	401.00
		GNDD479	504597.9	6600292.9	1820.4	-50	170	305.00
		GNDD480	504012.0	6600022.0	1807.0	-60	115	632.00
		GNDD481	505106.0	6601553.0	1880.2	-65	115	95.10
		GNDD482	504343.9	6601279.5	1842.4	-60	115	620.00
		GNDD483	504127.1	6599924.1	1804.4	-50	115	380.00
		GNDD484	504388.6	6601523.4	1844.9	-60	115	482.00
		GNDD485	504577.4	6600508.6	1819.1	-45	115	161.00
		GNDD486	504399.4	6600326.6	1817.0	-60	170	362.00
		GNDD487	504284.6	6601262.1	1844.7	-60	115	602.00
		GNDD488	504531.0	6599928.0	1836.0	-30	125	65.50
		GNDD489	504020.0	6599841.4	1799.1	-60	115	555.50
		GNDD490	504423.6	6601463.0	1843.9	-60	115	461.00
		GNDD491	504312.3	6600250.4	1816.0	-60	170	281.00
		GNDD492	504531.0	6599928.0	1836.0	-65	125	52.00
		GNDD493	504529.0	6599963.0	1840.1	-65	115	55.50
		GNDD494	504729.3	6600614.3	1814.6	-60	115	221.00
		GNDD495	504339.7	6599517.9	1787.6	-60	115	167.00
		GNDD496	504552.0	6600652.8	1820.9	-60	115	245.00
		GNDD497	504339.7	6599517.9	1787.6	-60	060	293.00
		GNDD498	504189.9	6599983.1	1810.9	-60	115	320.00
		GNDD499	504504.4	6600895.7	1830.1	-60	112	575.00
		GNDD500	504119.4	6600104.3	1814.5	-60	115	434.00
		GNDD501	504467.0	6599500.0	1797.0	-60	060	290.00
		GNDD502	504529.0	6599963.0	1840.1	-30	115	46.00
		GNDD503	504528.0	6600035.0	1835.0	-60	130	65.00
		GNDD505	503976.2	6599818.0	1802.9	-60	112	635.00
		GNDD506	504635.7	6600966.9	1827.0	-60	115	515.00
		GNDD507	504526.0	6600059.0	1833.3	-60	110	65.00

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary						
		GNDD508	504276.1	6600340.1	1818.3	-60	112	560.00
		GNDD509	504491.3	6599599.8	1794.7	-60	115	232.00
		GNDD510	504517.3	6600933.8	1827.7	-60	115	500.00
		GNDD511	504526.0	6600059.0	1833.3	-10	110	175.00
		GNDD512	504193.0	6599983.1	1810.9	-55	115	425.00
		GNDD513	503968.2	6600130.6	1814.2	-60	115	662.00
		GNDD514	504400.7	6600899.9	1830.5	-60	115	563.00
		GNDD515	504059.9	6599778.0	1801.0	-60	112	554.00
		GNDD516	504723.4	6600793.6	1821.3	-60	115	188.00
		GNDD517	504528.0	6600035.0	1835.0	-18	120	55.00
		GNDD518	504468.5	6600287.0	1818.4	-60	170	332.00
		GNDD519	504491.2	6599622.0	1794.8	-50	115	101.00
		GNDD520	504490.0	6601564.0	1843.0	-60	112	500.00
		GNDD521	504907.6	6600928.4	1814.5	-60	295	392.00
		GNDD522	504526.0	6600092.0	1827.3	-65	120	50.00
		GNDD523	504456.0	6599644.0	1793.5	-62	115	215.00
		GNDD524	504526.0	6600092.0	1827.3	-26	115	46.00
		GNDD525	504331.6	6600372.6	1819.5	-60	170	437.00
		GNDD527	504095.1	6599806.1	1803.6	-60	112	560.00
		GNDD528	505056.2	6600903.2	1813.2	-60	295	489.00
		GNDD529	504539.1	6600347.5	1817.5	-60	170	452.00
		GNDD530	504038.0	6600143.0	1815.0	-60	115	557.00
		GNDD531	504431.9	6600929.5	1833.0	-60	115	461.00
		GNDD534	504304.5	6600294.6	1817.0	-60	170	359.00
		GNDD535	505067.1	6600942.2	1814.8	-60	295	446.00
		GNDD536	504388.7	6601126.1	1835.1	-60	115	599.00
		GNDD537	504491.3	6601034.2	1831.5	-60	112	650.00
		GNDD538	504073.6	6600169.7	1814.0	-60	115	482.00
		GNDD539	505056.6	6600991.3	1812.8	-60	295	449.00
		GNDD540	504274.7	6600234.2	1813.9	-60	170	413.00
		GNDD541	504303.5	6601563.3	1852.0	-60	115	488.00
		GNDD542	504528.0	6600035.0	1835.0	-18	120	151.00
		GNDD543	504631.4	6600880.6	1821.9	-60	115	371.00

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		GNDD544	504082.4	6600209.8	1818.0	-60	112	515.00	
		GNDD545	504339.5	6600327.9	1817.1	-60	170	560.50	
		GNDD546	504507.0	6601071.0	1834.2	-60	112	521.00	
		GNDD547	504667.5	6600863.8	1820.1	-60	115	251.00	
		GNDD548	504197.8	6601303.5	1850.6	-60	112	512.00	
		GNDD549	504540.0	6600144.0	1826.4	-43	170	56.00	
		GNDD550	504358.9	6600787.0	1831.3	-60	115	476.00	
		GNDD551	503957.6	6600356.2	1824.5	-60	115	74.90	
		GNDD551A	503956.0	6600356.2	1824.5	-60	115	407.00	
		GNDD552	504932.0	6601437.2	1852.9	-25	120	130.20	
		GNDD553	504399.5	6600768.0	1830.3	-60	115	407.00	
		GNDD554	504574.1	6601657.6	1844.7	-60	115	401.00	
		GNDD555	504127.5	6599879.8	1806.1	-60	112	590.00	
		GNDD556	504718.8	6601501.9	1837.7	-60	115	168.00	
		GNDD557	504109.7	6600380.7	1820.0	-60	112	551.00	
		GNDD558	504438.6	6600970.5	1835.5	-60	112	551.00	
		GNDD559	504983.0	6601474.0	1861.0	-50	115	90.50	
		GNDD560	504293.0	6601347.4	1848.5	-60	112	536.00	
		GNDD561	504983.0	6601474.0	1861.0	-20	115	100.00	
		GNDD562	505005.0	6601497.0	1859.8	-15	110	138.00	
		GNDD563	504739.0	6601713.0	1846.0	-60	115	258.00	
		GNDD564	504146.1	6600487.0	1820.0	-60	115	551.00	
		GNDD565	504599.4	6601822.4	1848.7	-60	115	455.00	
		GNDD566	504346.9	6600925.0	1836.3	-62	112	650.00	
		GNDD567	504382.9	6599694.5	1795.8	-60	115	158.00	
		GNDD568	505005.0	6601497.0	1859.8	-60	110	90.50	
		GNDD569	505005.0	6601497.0	1859.8	-50	350	70.00	
		GNDD570	504808.9	6601635.9	1840.7	-60	115	155.50	
		GNDD571	504406.5	6601206.1	1840.1	-60	115	410.00	
		GNDD572	504162.2	6599598.7	1792.6	-60	115	422.00	
		GNDD573	505005.0	6601497.0	1859.8	-65	350	80.50	
		GNDD574	504282.2	6599484.6	1787.0	-60	060	425.00	
		GNDD575	505091.0	6601545.0	1875.0	-70	350	155.00	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		GNDD576	504055.2	6600528.0	1820.0	-60	115	602.00	
		GNDD577	504447.8	6601142.7	1837.8	-60	115	605.00	
		GNRC052	504443.927	6599554.145	1790.676	-60	115	90	
		GNRC053	504452.888	6599589.416	1791.660	-60	115	96	
		GNRC054	504458.908	6599679.484	1794.408	-60	115	90	
		GNRC055	504461.566	6599726.253	1795.888	-60	115	102	
		GNRC056	504463.187	6599763.817	1796.276	-60	115	102	
		GNRC057	504453.440	6599901.106	1800.270	-60	115	96	
		GNRC058	504716.992	6600488.640	1825.624	-60	115	102	
		GNRC059	504785.101	6600721.845	1817.042	-60	115	84	
		GNRC061	504963.888	6601521.567	1835.635	-60	115	30	
		GNRC062	504943.260	6601531.855	1834.917	-60	115	30	
		GNRC063	504914.884	6601499.583	1833.781	-60	115	36	
		GNRC064	504895.067	6601472.101	1833.039	-60	115	36	
		GNRC065	504865.673	6601481.570	1831.536	-60	115	60	
		GNRC066	504896.480	6601506.894	1834.226	-60	115	48	
		GNRC067	504911.268	6601541.124	1836.127	-60	115	50	
		GNRC068	504990.546	6601552.694	1835.287	-60	030	114	
		GNRC069	504934.855	6601579.782	1836.179	-60	115	120	
		GNRC070	504925.545	6601566.505	1835.127	-60	350	84	
		GNRC071	504878.397	6601572.030	1833.873	-60	350	54	
		GNRC072	504877.872	6601568.814	1833.843	-70	350	72	
		GNRC075	504842.742	6601573.984	1835.428	-60	350	60	
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76	
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70	
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86	
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86	
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145	
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60	
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30	
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60	
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80	
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70			
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96			
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150			
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120			
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60			
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have 	Triple tube drilling has been being done by CEL to maximise core recovery. RC sub-samples are collected from a rotary splitter mounted to the face sample recovery cyclone. A 2-4 kg sub-samples collected for each metre of RC drilling. Duplicate samples are taken at the rate of I every 25-30 samples using a riffle splitter to split out a 2-4 kg sub-sample. The whole sample recovered is weighed to measure sample recovery and consistency in sampling.									
	occurred due to preferential loss/gain of fine/coarse material.	recoveries have resulted in underreporting of grade. Insufficient information is not yet available to more accumulated in underreporting of grade.									
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support 	_	available for most o drilling have been fo		-						
	 appropriate Mineral Resource estimation mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	For CEL drilling, all the core is logged for recovery, RQD, weathering, lithology, alteration, mineralization, and structure to level that is suitable for geological modelling resource estimation and metallurgical test work. RC drill chips are logged for geology, alteration and mineralisation to a level that is suitable for geological modelling resource estimation and metallurgical test work. Where possible logging is quantitative. Geological logging is done in MS Excel in a format that car readily be transferred to a database which holds all drilling logging sample and assay data.									
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. 	blade chisel or a	ore is cut longitudin manual core split pro e half-core sample r	ess. The geologist lo		-		•	-		
p - p - sp	 If non-core whether riffled tube sampled rotary split etc and whether 	•	are selected based c ore samples have be						-		

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

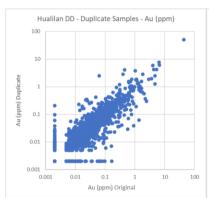
Criteria

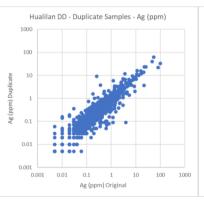
JORC Code explanation

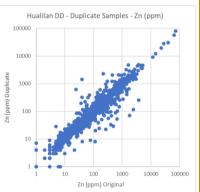
Commentary

sampled wet or dry.

- For all sample types the nature quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the insitu material collected including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.


trays for future reference.


From hole GNDD073, duplicate diamond core samples have been collected for every 25-30m drilled. The duplicate diamond core samples are ¼ core samples. Duplicate core sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

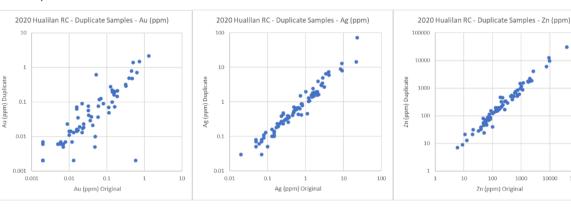

	n	RSQ	mean		median		variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	2183	0.962	0.096	0.098	0.008	0.008	1.011	1.291
Ag (ppm)	2183	0.689	0.63	0.55	0.18	0.17	12.04	4.83
Cd (ppm)	2183	0.981	1.82	1.69	0.10	0.10	254.68	229.17
Cu (ppm)	2183	0.429	15.93	14.61	3.20	3.10	6.4E+03	3.7E+03
Fe (%)	2183	0.985	1.863	1.857	1.680	1.680	3.08	3.04
Pb (ppm)	2183	0.949	79.9	77.6	14.8	14.4	3.0E+05	4.3E+05
S (%)	2183	0.979	0.339	0.336	0.140	0.140	0.466	0.443
Zn (ppm)	2183	0.977	323	306	77	76	6.0.E+06	5.6.E+06

n=count

RSQ = R squared

RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America


JORC Code explanation Criteria Commentary

The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

	n	RSQ	mean		median		variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
Zn (ppm)	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08

n=count

RSQ = R squared

CEL samples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project.

10000 100000

Sample sizes are appropriate for the mineralisation style and grain size of the deposit.

39 duplicate channel sample assays have been collected from the underground sampling program. These data show more scatter due to mobilisation of Au, Ag and Zn due to surface weathering.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1.027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

JORC Code explanation Criteria Commentary Hualilan Channel - Duplicate Samples - Au (ppm) Hualilan Channel - Duplicate Samples - Ag (ppm) Hualilan Channel - Duplicate Samples - Zn (ppm) 1000 100000 10000 0.1 100 0.001 0.01 0.01 0.1 100 100 1000 10000 0.001 0.01 Au (ppm) Original Ag (ppm) Original Zn (ppm) Original

Quality of assay data and laboratory tests

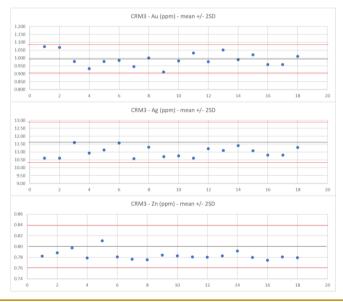
- The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.
- Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The SGS laboratory in San Juan and the ALS laboratory in Mendoza has not yet been inspected by CEL representatives.

Internal laboratory standards were used for each job to gauge precision and accuracy of assays reported.

CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores, San Yuan) with drill core, RC subsamples and channel sample to the MSA laboratory, ALS laboratory and SGS laboratory. The blank samples are strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross contamination of samples during sample preparation.

For GNDD001 - GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples


Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria JORC Code explanation Commentary

(CRM) with known values for Au Ag Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures and determination of the MSA laboratory in Canada Two of the standards were only used 4 times each and the third. 26 reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned an Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned an Au value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.

For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, 18 different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn and 7 different CRM's with known values for Au only have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures of the MSA and ALS laboratories. In the results received to date there has been no observed bias in results of the CRM. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a high degree of accuracy and a low range of standard deviations with a low fail count indicates a high degree of precision.

37 standard (CRM) sample assays submitted with the channel samples have been finalised. The results are consistent with CRM submitted with drill core samples.

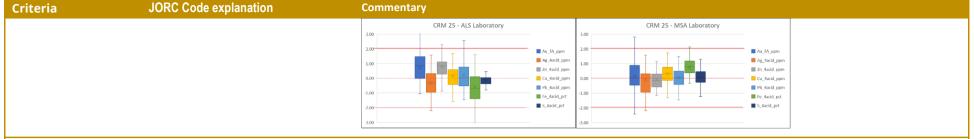
Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street


West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Mr Sergio Rotondo, COO South America

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data entry procedures data verification data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

Replicate assay of 186 coarse reject samples from 2019 drilling has been done to verify assay precision. Original core samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Coarse reject samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing high confidence in precision of results between MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

	Mean		Median		Std Devia	ation	
Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987
Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988
As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983
Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994
REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954

Cd values >1000 are set at 1000.

REE is the sum off Ce, La, Sc, Y. CE > 500 is set at 500. Below detection is set at zero

Some replicate assay of 192 coarse reject samples from 2021 drilling has been done to verify assay precision. Original core

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

samples were from the 2021 DD drilling which were analysed by SGS Laboratories (San Juan preparation and Lima analysis). Coarse reject samples were prepared and analysed by ALS (Mendoza preparation and Lima analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate closely with the original analyses providing confidence in precision of results between SGS and ALS. A summary of the results for the 192 sample pairs for key elements is provided below:

	Mean		Med	ian	Std Devia	ation		
Element	count	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	192	1.754	1.680	0.432	0.441	20.8	21.5	0.9837
Ag (ICP and ICF ppm)	192	12.14	11.57	0.93	1.03	7085	5925	0.9995
Zn (ICP and ICF ppm)	192	6829	7052	709	685	4.54E+08	5.34E+08	0.9942
Cu (ICP and ICF ppm)	192	203.4	202.9	25.7	24.5	3.30E+05	3.35E+05	0.9967
Pb (ICP and ICF ppm)	192	1768	1719	94.7	91.6	5.04E+07	4.39E+07	0.9959
S (ICP and ICF %)	192	2.23	2.10	0.94	0.87	16.51	15.56	0.9953
Cd (ICP ppm)	192	43.9	42.4	4.1	4.0	19594	18511	0.9956
As (ICP ppm))	192	45.4	45.2	16.0	16.9	10823	9893	0.9947
Fe (ICP %)	189	3.07	3.30	2.38	2.31	4.80	9.28	0.9781
REE (ICP ppm)	192	63.5	72.8	39.4	44.3	3414	4647	0.9096
Mo (ICP and ICF ppm)	192	7.69	1.68	6.74	0.97	85.83	10.33	0.3026

Values below detection were set to half the detection limit

Limit of detection for Fe was exceeded for 3 samples submitted to SGS with no overlimit analysis

REE is the sum off Ce, La, Sc, Y. Vaues below detection were set at zero

CEL have sought to twin some of the historic drill holes to check the results of previous exploration. A full analysis of the twin holes has yet to be completed. The holes are:

GNDD003 - DDH34 and 04HD08

GNRC110 - DDH53

GNDD144 - 05HD39

GNRC107 - GNDD008/008A

GNDD206 - DDH54

Final sample assay analyses are received by digital file in PDF and CSV format. The original files are backed-up and the data copied into a drill hole database for geological modelling.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
		Assay results summarised in the context of this report have been rounded appropriately to 2 significant figures. No assay data have been otherwise adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and 	Following completion of drilling collars are surveyed using a differential GPS (DGPS) relative into the Argentinian SGM survey. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.
	down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimation.	Following completion of the channel sampling, the location of the channel samples taken underground is surveyed from a survey mark at the entrance to the underground which is located using differential GPS. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.
	 Specification of the grid system used. 	The drill machine is set-up on the drill pad using hand-held equipment according to the proposed hole design.
	 Quality and adequacy of topographic control. 	Diamond core drill holes are surveyed at 30-40m intervals down hole using a Reflex tool. RC drill holes are surveyed down hole every 10 metres using a gyroscope to avoid magnetic influence from the drill rods.
		All current and previous drill collar sites, Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No regular drill hole spacing has been applied across the Project, although a nominal 40m x 40m drill spacing is being applied to infill and extension drilling where appropriate. The current drilling is designed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. No Mineral Resource Estimate to JORC 2012 reporting standards has been made at this time. Samples have not been composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the 	As far as is currently understood and where practicable, the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. For underground channel sampling, the orientation of the sample is determined by the orientation of the workings. Where the sampling is parallel with the strike of the mineralisation, plans showing the location of the sampling relative to the orientation of the mineralisation, weighted average grades and estimates of true thickness are provided to provide a balanced report of the mineralisation that has been sampled.
	orientation of key mineralised structures is considered to have introduced a sampling bias this	Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
	should be assessed and reported if material.	
Sample security	 The measures taken to ensure sample security. 	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratories in San Juan and Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

West Perth WA 6005

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

JORC Code explanation

Commentary

Mineral tenement and land tenure status

- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions), an additional 8 Minas and 3 exploration licences (Cateos) under a farmin agreement and a further 4 Cateos directly held. This covers all of the currently defined mineralization and surrounding prospective ground. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS).

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Cerro Norte					
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Criteria	JORC Code explanation	Commentary					
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
Cerro Norte					
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9

Mining Lease Farmin Agreements

Name	Number	Transfrred to CEL	Status	Grant Date	Area (ha)
Marta Alicia	2260-S-58	Yes	Current		23.54
Marta	339.154-R-92	Yes	Current		478.50
Marta 1	339.153-R-92	Yes	Current		163.42
AK4	1124.299-R-18	Yes	Current		1500.00
Solitario 1-5	545.604-C-94	Yes	Current		685.00
Solitario 1-4	545.605-C-94	Yes	Current		310.83
Solitario 1-1	545.608-C-94	Yes	Subject to Approval		ТВА
Solitario 6-1	545.788-C-94	Yes	Subject to Approval		ТВА

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria JORC Code explanation Commentary **Exploration Licence Farmin Agreements** Transfrred to CEL Name Number **Status Grant Date** Area (ha) 295.122-R-1989 Yes Current 1882.56 Subject to 228.441-R-1993 Yes 2800.00 Approval 545.880-0-1994 Yes 149.99 Current Exploration Licences Held (Direct Award) Number Transfrred to CEL **Status Grant Date** Area (ha) Name 1124.495-I-20 Yes 2059.60 Ayen Current 1124-248G-20 Yes Current 933.20 1124-188-G-20 Yes Current 267.40 1124-188-G-20 Yes Current 600.00 There are no know impediments to obtaining the exploration license or operating the Project. Exploration done Intermittent sampling dating back over 500 years has produced a great deal of information and data including sampling Acknowledgment and appraisal of geologic maps reports trenching data underground workings drill hole results geophysical surveys resource estimates plus by other parties exploration by other parties. property examinations and detailed studies by several geologists. Prior to the current exploration no work has been completed since 2006. There is 6 km of underground workings that pass through mineralised zones. Records of the underground geology and sampling have been compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Historic geophysical surveys exist but have largely yet to be check located and digitised. Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling results are listed below. 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totaling 2040m

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1.027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact T: +61 8 6380 9235

sampling

1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples

1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel

1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program

Criteria	JORC Code explanation	Commentary										
	•	- 2003 – 2005	– La Mancha (T	SE Listed) undert	ook 7447m o	f DDH core dr	illing (HD-01 t	:o HD-48)				
		 Detailed reso 	ource estimation	n studies were ur	ndertaken by	EPROM Ltda.	(EPROM) in 1	996 and CMEC (1999 revise				
		2000) both o	2000) both of which were written to professional standards and La Mancha 2003 and 2006.									
		- The collection of all exploration data by the various operators was of a high standard and had appropriate										
			•	s and custody pr	•		· ·					
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs zones and in fracture		•		ces limestone,	shale and sar	ndstone and occurs in faul				
		mineralisation. It has	been divided in	to three phases	– prograde sk	arn retrograd	e skarn and a	with vein-hosted Au-Ag late quartz—galena event iled geometallurgical worl				
			Gold occurs in native form and as inclusions with sulphide and pyroxene. The mineralisation also commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.									
		intrusions, at litholog angle. The faults have	Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matric within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.									
Drill hole Information	 A summary of all information materic to the understanding of the exploration results including a tabulation of the 	on has been used with u	o to 2m of inter	nal diltion or a cu	ut-off grade o	f 0.2 g/t Au ec	quivalent and	nde of 1 g/t Au equivalent up to 4m of internal diltion provided in the previous				
	following information for all Material	section.										
	following information for all Material drill holes:	section. Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)					
	following information for all Material drill holes: - easting and northing of the drill hole		From (m) 38.6	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)					
	following information for all Material drill holes: - easting and northing of the drill hole collar	Hole_id	• • •		Au (g/t) 0.1 1.3							
	following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level –	Hole_id AG16 MG10 DDH36	38.6	1.2	0.1	28.6	1.7					
	following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level – elevation above sea level in metres) of	Hole_id AG16 MG10 DDH36	38.6 108.0	1.2 3.0	0.1 1.3	28.6 No assay	1.7 No assay					
	following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	Hole_id AG16 MG10 DDH36	38.6 108.0 24.7	1.2 3.0 9.3	0.1 1.3 1.6	28.6 No assay 46.3	1.7 No assay 1.2					
	following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole	Hole_id AG16 MG10 DDH36 DDH53	38.6 108.0 24.7 17.3	1.2 3.0 9.3 1.4	0.1 1.3 1.6 1.0	28.6 No assay 46.3 1.7	1.7 No assay 1.2 0.00					
	following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception	Hole_id AG16 MG10 DDH36 DDH53 DDH53	38.6 108.0 24.7 17.3 24.0	1.2 3.0 9.3 1.4 8.9	0.1 1.3 1.6 1.0 3.7	28.6 No assay 46.3 1.7 239.5	1.7 No assay 1.2 0.00 0.03					
	following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth	Hole_id AG16 MG10 DDH36 DDH53 DDH53 DDH53 DDH53	38.6 108.0 24.7 17.3 24.0 35.7	1.2 3.0 9.3 1.4 8.9 3.9	0.1 1.3 1.6 1.0 3.7 3.9	28.6 No assay 46.3 1.7 239.5 87.8	1.7 No assay 1.2 0.00 0.03 0.06					
	following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception	Hole_id AG16 MG10 DDH36 DDH53 DDH53 DDH53 DDH53 DDH53 DDH53	38.6 108.0 24.7 17.3 24.0 35.7 41.0	1.2 3.0 9.3 1.4 8.9 3.9 3.0	0.1 1.3 1.6 1.0 3.7 3.9 2.6	28.6 No assay 46.3 1.7 239.5 87.8 7.6	1.7 No assay 1.2 0.00 0.03 0.06 0.20					

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

justified on the basis that the

information is not Material and this

exclusion does not detract from the

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

DDH65

DDH66

DDH66

Contact

82.0

83.1

87.9

T: +61 8 6380 9235 E: admin@challengerex.com

1.0

7.2

2.4

1.8

23.7

69.9

33.4

42.9

114.4

0.30

2.4

2.2

Criteria	JORC Code explanation	Commentary					
	understanding of the report the	DDH66	104.9	2.8	1.8	29.0	0.10
	Competent Person should clearly	DDH67	98.7	1.3	0.2	7.8	1.3
	explain why this is the case.	DDH68	4.0	17.9	2.2	6.3	0.20
		DDH68	73.7	0.5	0.8	9.0	1.2
		DDH69	4.0	16.1	2.3	1.6	0.10
		DDH69	76.9	0.3	0.1	7.0	28.0
		DDH69	79.7	0.8	1.3	120.0	4.5
		DDH70	84.0	7.0	5.2	13.5	0.70
		DDH71	11.0	2.0	0.5	218.0	0.06
		DDH71	39.9	1.0	1.3	6.0	0.03
		DDH71	45.5	1.1	0.4	22.8	0.60
		DDH71	104.0	10.0	33.5	126.7	7.9
		DDH72	26.0	11.7	3.8	14.1	1.3
		DDH72	52.7	6.3	1.5	30.4	0.04
		DDH73	62.5	3.5	0.5	15.6	0.60
		DDH74	119.9	0.5	7.3	98.5	2.6
		DDH76	61.3	0.7	4.0	11.1	0.50
		DDH76	74.4	4.0	0.8	8.8	0.30
		DDH76	84.8	1.2	1.4	10.9	2.0
		DDH78	109.1	0.7	1.1	13.4	1.9
		03HD01A	90.1	1.7	2.1	37.4	2.4
		03HD03	55.0	2.4	2.5	25.6	2.3
		04HD05	80.3	2.0	0.9	42.7	0.02
		04HD05	97.5	1.8	1.9	35.0	0.04
		04HD05	102.0	1.0	1.3	42.1	0.01
		04HD05	106.0	1.0	0.7	28.0	0.05
		04HD05	108.0	5.6	2.8	19.9	1.2
		04HD06	65.4	1.2	46.6	846.0	0.50
		04HD06	75.0	1.0	1.0	2.9	0.01
		04HD06	104.5	7.6	1.8	5.0	1.2
		04HD06	115.1	0.9	16.4	23.1	7.7
		04HD07	98.3	2.2	1.4	32.5	0.90
		04HD10	44.3	0.2	3.9	81.5	5.6
		04HD10	55.5	0.5	1.3	11.5	0.46
		04HD10	78.6	1.7	4.8	93.7	2.4
		04HD11	28.0	1.0	0.1	9.3	1.4
		04HD12	49.3	0.7	1.5	16.1	0.10

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

D N N

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary					
		04HD13	61.5	1.0	0.8	7.9	0.20
		04HD15	103.7	0.3	1.7	32.9	0.80
		04HD16C	107.5	6.8	8.6	117.1	9.1
		04HD16C	111.8	2.5	7.6	75.6	11.5
		04HD16C	144.9	1.9	9.1	31.2	5.5
		04HD16C	171.1	0.4	0.5	9.4	1.7
		04HD17	134.9	0.7	2.5	14.3	4.1
		04HD17	139.1	0.5	10.5	9.4	0.20
		04HD17	199.6	0.2	0.8	3.5	5.9
		04HD17	202.1	1.9	4.5	1.5	0.70
		04HD20	43.2	1.8	0.9	83.9	0.20
		04HD21	70.1	0.2	4.8	60.6	6.4
		04HD21	141.1	0.6	12.9	105.0	4.8
		04HD24	72.0	2.0	2.5	3.2	0.04
		04HD24	83.0	2.0	3.1	25.3	0.04
		04HD24	94.0	4.2	0.7	21.2	0.10
		04HD25	92.0	1.7	2.4	51.5	6.3
		04HD26	21.7	2.3	1.5	32.5	3.0
		04HD28	42.8	0.4	1.9	4.5	0.10
		04HD29	37.0	1.0	0.1	112.0	0.01
		05HD42	90.5	1.0	1.9	6.1	0.03
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8
		·					to a cut-off of 1.0 g/t AuEq (gold

From GNDD001 the following significant assay results have been received reported to a cut-off of 1.0 g/t AuEq (gold equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019 Significant Results:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.1	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.7	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
		inc	8.47	6.03	2.0	7.8	0.68	2.4	
		and	3.43	18.67	1.2	3.2	0.26	1.3	
		GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
		inc	2.00	29.00	0.79	18	3.3	2.5	
		and	4.00	43.00	5.1	22	0.49	5.6	
		and	7.00	59.00	7.8	72	1.4	9.3	
		inc	3.00	61.00	16.5	135	1.6	18.9	(1)
		and	10.00	75.00	0.75	38	0.27	1.4	(2)
		inc	3.00	77.00	1.7	39	0.43	2.3	
		inc	1.00	83.00	1.2	156	0.72	3.5	
		GNDD006	6.50	78.50	4.2	21	0.29	4.6	
		inc	3.80	78.50	6.8	34	0.41	7.4	
		and	1.45	90.00	2.1	41	0.92	3.1	
		GNDD007	45.92	13.00	0.43	7.8	0.12	0.58	(2)
		inc	3.00	45.00	1.9	5.2	0.26	2.0	
		inc	3.00	55.00	2.3	35	0.54	2.9	
		GNDD007A	27.00	25.00	0.43	7.2	0.09	0.56	(2)
		inc	1.80	46.00	2.4	3.1	0.12	2.5	
		and	0.70	60.30	0.8	25	0.21	1.2	
		and	6.70	149.00	14.3	140	7.3	19.3	
		inc	3.06	150.60	27.5	260	12.9	36.5	(1)
		and	0.60	176.40	1.9	6.7	0.99	2.4	
		GNDD008	35.50	16.50	0.33	8.1	0.10	0.47	(2)
		inc	1.00	36.00	1.7	6.2	0.08	1.9	
		inc	1.63	43.37	1.7	8.4	0.14	1.9	
		inc	1.15	47.85	1.2	16	0.56	1.7	
		and	5.70	91.00	12.3	182	0.67	15.0	(1)
		and	1.00	99.70	0.93	43	0.52	1.7	
		and	2.40	107.00	6.3	222	1.9	10.0	
		GNDD008A	35.50	17.50	0.24	13	0.08	0.43	(2)
		and	20.00	95.00	3.3	45	0.55	4.1	(2)
		inc	2.64	96.60	22.8	218	0.68	25.9	(1)
		inc	10.00	105.00	0.6	28.2	0.71	1.2	
		GNDD009	7.00	72.00	2.3	102	0.08	3.6	
		and	3.00	100.00	0.85	50	0.02	1.5	
		and	10.32	109.10	10.4	28	4.6	12.7	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary							
		inc	4.22	115.20	21.9	58	8.7	26.4	(1)
		GNDD010	32.00	27.00	0.29	8.6	0.13	0.46	(2)
		inc	5.00	30.00	0.65	21	0.09	0.95	
		and	1.30	55.00	1.1	30	0.80	1.8	
		and	7.22	136.00	7.5	60	1.1	8.8	(2)
		inc	3.00	139.00	17.7	143	2.5	20.6	

- (1) cut-off of 10 g/t AuEq
- (2) cut-off of 0.2 g/t AuEq

Drilling in 2020-21 Significant Results:

Hole_id	from	interval	Au	Ag	Zn (%)	AuEq	Cu (%)	Pb (%)	Note
	(m)	(m)	(g/t)	(g/t)		(g/t)			
GNDD011	81.00	1.00	1.9	43	0.13	2.5	0.01	0.06	
and	139.80	4.80	1.4	5.7	2.6	2.6	0.02	0.02	
and	147.20	0.70	9.4	13	6.6	12.4	0.07	0.00	1
and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
GNDD012	40.70	1.00	6.3	290	0.12	10.1	0.18	1.2	
GNDD013	116.40	6.93	1.3	12	2.7	2.6	0.05	0.18	
inc	122.50	0.83	4.0	61	10.1	9.1	0.21	1.2	
GNDD014	118.50	7.55	2.4	15	3.6	4.2	0.05	0.16	
GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
and	156.00	1.90	1.0	31	2.8	2.6	0.02	0.79	
GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
and	109.50	5.00	1.8	27	8.3	5.8	0.16	0.01	
and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
GNDD018	37.75	0.85	1.1	3.6	0.1	1.2	0.01	0.05	
and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
GNDD019	24.00	1.90	1.0	5.3	5.3	3.4	0.12	0.03	
GNDD020	71.25	8.25	17.7	257	0.30	21.1	0.60	0.68	
inc	74.00	5.50	26.0	355	0.42	30.7	0.05	0.21	1
and	83.30	0.65	0.03	2.7	10.70	4.7	0.00	0.02	
GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
and	31.50	0.35	28.1	104	5.8	31.9	0.35	0.12	1
and	98.20	19.80	0.29	2.2	3.4	1.8	0.01	0.04	2

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		inc	98.20	9.80	0.40	4.4	6.8	3.4	0.01	0.07	
		inc	104.20	0.80	0.88	13	22.7	10.9	0.02	0.30	1
		GNDD022	NSI								
		GNDD023	58.00	5.00	0.32	3.7	0.1	0.41	0.01	0.09	
		GNDD024	85.00	6.00	2.5	19	0.15	2.8	0.40	1.4	
		inc	88.00	1.00	14.9	107	0.46	16.5	2.4	8.3	1
		GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
		inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
		inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
		inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
		inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
		inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
		GNDD026	NSI								
		GNDD027	NSI								
		GNDD028	41.40	18.60	0.21	3.2	2.0	1.1	0.08	0.01	2
		inc	52.00	8.00	0.42	6.0	3.8	2.2	0.18	0.02	
		GNDD029	36.00	12.00	0.17	2.1	0.39	0.36	0.01	0.16	2
		GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
		GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2
		inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
		inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
		GNDD032	9.00	20.00	0.16	6.7	0.09	0.29	0.00	0.02	2
		and	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
		inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
		and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
		inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
		and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
		GNDD033	NSI								
		GNDD034	47.60	0.30	0.03	1.4	24.4	10.6	0.34	0.04	
		GNDD035	88.75	5.75	9.5	28.7	3.5	11.4	0.10	0.44	
		inc	88.75	3.15	17.1	28.8	5.6	19.9	0.14	0.56	1
		GNDD036	NSI								
		GNDD037	NSI								
		GNDD038	71.50	2.85	0.53	15.6	2.8	1.9	0.06	0.13	
		GNDD042	NSI								
		GNDD044	213.00	4.60	24.3	23.0	2.2	25.6	0.28	0.00	1
		and	230.00	10.20	12.5	10.6	3.5	14.2	0.10	0.02	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		inc	233.00	4.50	23.6	14.1	4.3	25.6	0.11	0.01	1
		and	291.15	0.60	5.4	8.3	0.1	5.6	0.07	0.00	
		GNDD045	85.90	2.10	1.4	28.8	0.1	1.8	0.01	0.02	
		GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
		and	124.15	2.85	29.5	522	10.8	40.8	0.41	0.25	1
		GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
		inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
		and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
		and	83.55	0.45	7.3	12.2	0.00	7.5	0.00	0.00	
		and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
		GNDD048	36.00	19.00	0.6	5.0	0.25	0.81	0.01	0.06	2
		inc	38.00	3.15	2.7	12.1	0.09	2.9	0.03	0.14	
		GNDD049	NSI								
		GNDD050	21.00	22.00	0.21	2.9	0.53	0.48	0.01	0.15	2
		inc	21.00	2.00	1.4	4.8	0.07	1.5	0.01	0.07	
		GNRC051	NSI								
		GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
		GNRC053	NSI								
		GNRC054	13	7	0.22	3.9	0.03	0.28	0.00	0.01	2
		and	66	15	0.53	4.0	0.66	0.87	0.01	0.13	2
		inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
		GNRC055	18	7	0.28	6.9	0.04	0.38	0.00	0.01	2
		GNRC056	56	1	2.3	138	0.08	4.1	0.01	0.07	
		GNRC057	37	12	0.06	2.4	0.58	0.34	0.01	0.06	2
		GNRC058	NSI								
		GNRC059	NSI								
		GNDD060	NSI								
		GNRC061	NSI								
		GNRC062	17	3	3.8	7.9	2.7	5.0	0.24	0.17	
		GNRC063	19	1	0.01	0.46	2.8	1.2	0.04	0.01	
		GNRC064	22	1	0.01	4.2	3.8	1.7	0.00	0.00	
		and	27	1	0.69	27	1.2	1.6	0.35	0.23	
		GNRC065	33	6	0.00	2.1	4.9	2.1	0.05	0.01	
		GNRC066	NSI								
		GNRC067	NSI								
		GNRC068	9	69	3.4	8.3	2.8	4.7	0.23	0.08	2
		inc	9	27	7.9	16	7.0	11.2	0.59	0.16	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary										
		and	51	1	1.0	40	0.93	1.9	0.08	0.12		
		and	59	1	1.3	4.9	0.09	1.4	0.00	0.02		
		and	66	2	1.6	1.2	0.02	1.7	0.01	0.00		
		and	72	4	1.9	3.0	0.06	1.9	0.01	0.04		
		GNRC069	18	7	0.62	3.0	0.11	0.71	0.01	0.16	2	
		inc	19	1	2.2	8.6	0.15	2.4	0.03	0.59		
		and	53	10	0.65	5.7	0.37	0.88	0.01	0.03	2	
		inc	59	3	1.7	11	0.84	2.3	0.03	0.07		
		and	84	15	0.54	2.4	0.13	0.63	0.01	0.00	2	
		inc	84	4	0.90	5.2	0.36	1.1	0.02	0.01		
		and	96	1	1.0	1.4	0.06	1.0	0.03	0.00		
		GNRC070	41	1	6.6	3.1	0.36	6.8	0.02	0.21		
		GNRC071	48	2	0.45	5.4	2.1	1.4	0.01	0.12		
		GNRC072	43	19	0.16	4.9	0.13	0.28	0.00	0.09	2	
		GNDD073	NSI									
		GNDD074	41	2	1.2	20.5	0.04	1.4	0.00	0.02		
		and	47	2	0.8	16.7	0.13	1.1	0.03	0.03		
		GNRC075	31	18	0.78	1.6	0.07	0.83	0.01	0.22	2	
		inc	37	2	2.2	1.6	0.08	2.2	0.01	0.32		
		and	46	2	1.8	2.4	0.08	1.9	0.00	0.07		
		GNRC076	35	5	12.2	7.2	0.02	12.3	0.01	0.10		
		inc	35	1	53.1	18	0.00	53.3	0.00	0.02	1	
		GNDD077	168.50	14.00	0.68	5.9	0.64	1.0	0.01	0.01	2	
		inc	168.50	1.00	1.5	59.3	6.6	5.2	0.13	0.08		
		inc	180.60	1.90	1.8	4.9	0.78	2.2	0.02	0.01		
		and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00		
		GNRC078	11	17	0.13	1.7	0.43	0.34	0.01	0.09	2	
		inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33		
		GNDD079	21.00	61.00	1.1	1.1	0.11	1.1	0.00	0.02	2	
		inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02		
		inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06		
		inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01		
		inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12		
		GNRC080	NSI									
		GNRC081	23	30	0.28	2.0	0.33	0.45	0.01	0.10	2	
		inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20		
		GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
		inc	175.00	0.50	10.0	5.6	0.44	10.2	0.01	0.20	
		and	193.40	34.10	1.45	1.0	0.25	1.6	0.02	0.13	2
		inc	193.40	1.00	2.2	7.9	1.6	3.0	0.14	1.7	
		inc	203.50	0.90	2.6	10.6	2.9	4.0	0.16	1.4	
		inc	209.80	2.20	0.59	4.5	0.74	1.0	0.03	0.25	
		and	235.00	31.00	0.4	0.6	0.08	0.43	0.00	0.00	
		inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
		GNDD083	11.00	21.00	0.22	10.0	0.15	0.41	0.00	0.01	2
		inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
		and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
		GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
		and	41	3	5.2	6.4	5.0	7.5	0.08	0.14	
		and	60	4	3.6	11.6	5.0	6.0	0.02	0.05	
		and	78	21	0.81	2.6	0.08	0.88	0.00	0.00	2
		inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
		and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
		and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
		GNDD085	22.50	1.30	5.47	75.6	0.08	6.5	0.01	0.09	
		and	39.30	2.20	2.11	2.4	0.55	2.4	0.01	0.24	
		GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
		inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	
		and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	
		GNRC087	22	4	0.65	15.9	0.26	1.0	0.00	0.04	
		GNDD088A	45.05	23.45	0.07	0.23	0.53	0.31	0.00	0.01	2
		and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
		and	224.00	39.00	5.5	2.0	0.30	5.6	0.01	0.00	2
		incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
		incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
		GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
		inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
		inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
		inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
		and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
		inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
		inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
		inc	109.00	1.50	1.8	11.3	0.32	2.1	0.01	0.16	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		GNRC090	7	13	0.35	2.7	0.25	0.49	0.01	0.07	2
		inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	
		GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2
		inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36	
		GNDD092	164.50	9.00	0.29	0.72	0.12	0.35	0.00	0.05	2
		and	213.00	17.00	0.23	0.63	0.06	0.26	0.00	0.04	2
		and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
		GNDD093	75.30	1.40	2.1	10.6	7.8	5.6	0.18	0.22	
		and	153.65	0.50	1.4	7.3	0.17	1.6	0.11	0.03	
		GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2
		inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12	
		inc	17	1	8.3	20.6	0.27	8.7	0.06	0.52	
		inc	23	1	0.21	4.5	3.8	1.9	0.01	0.03	
		GNDD095	47.00	17.47	0.28	1.0	0.44	0.49	0.02	0.09	2
		inc	50.00	1.30	1.0	0.92	2.8	2.3	0.18	0.61	
		and	121.00	1.00	2.6	1.7	0.01	2.6	0.00	0.00	
		GNDD096	NSI								
		GNRC097	49	8	0.39	2.2	0.04	0.44	0.00	0.02	2
		inc	50	1	1.1	2.8	0.03	1.2	0.00	0.03	
		GNRC098	40	19	0.21	1.8	0.19	0.32	0.01	0.16	2
		and	88	8	4.9	4.5	0.76	5.3	0.02	0.07	2
		inc	88	2	15.6	15.9	2.8	17.0	0.07	0.20	2
		inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03	
		GNDD099	53.00	2.80	0.42	19.8	2.0	1.5	0.09	0.33	
		and	64.00	0.90	3.1	9.7	0.22	3.3	0.01	0.01	
		and	101.00	1.00	2.9	64.4	0.04	3.7	0.01	0.04	
		GNDD100	NSI								
		GNDD101	NSI								
		GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2
		inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14	
		and	77.40	8.90	0.10	2.5	0.82	0.49	0.01	0.06	2
		inc	84.30	0.90	-	1.3	3.3	1.4	0.02	0.03	
		GNDD103	NSI								
		GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1
		GNDD105	NSI								
		GNDD106	100.00	25.00	0.66	0.29	0.01	0.67	0.00	0.00	2
		inc	114.00	1.50	1.8	1.7	0.01	1.8	0.00	0.00	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary										
		inc	121.00	4.00	2.6	0.34	0.01	2.6	0.00	0.00		
		and	141.35	1.05	1.2	2.8	0.84	1.6	0.01	0.01		
		and	205.00	8.00	0.48	1.0	0.02	0.50	0.00	0.00	2	
		inc	211.00	2.00	1.1	2.2	0.03	1.1	0.00	0.00		
		GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2	
		inc	23	1	0.17	74.4	0.07	1.1	0.01	0.1		
		inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1		
		inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3		
		and	52	1	0.18	73.2	0.11	1.2	0.00	0.1		
		and	93	1	0.12	51.2	3.1	2.1	0.03	0.65		
		GNDD108	NSI									
		GNDD109	NSI									
		GNRC110	11	44	2.8	62.7	0.05	3.7	0.01	0.25	2	
		inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04		
		inc	20	11	1.8	37.2	0.02	2.3	0.01	0.37		
		inc	36	12	8.3	190	0.12	10.7	0.02	0.51		
		inc	41	3	27.3	613	0.05	35.1	0.03	0.87	1	
		GNRC111	31	18	0.31	12.2	0.13	0.52	0.01	0.03	2	
		inc	33	1	1.3	59.4	0.02	2.1	0.01	0.27		
		inc	41	1	2.1	82.7	0.01	3.2	0.01	0.10		
		GNDD112	95.00	0.40	0.5	26.6	6.0	3.5	0.10	1.9		
		GNDD113	149.50	37.50	0.59	17.0	0.12	0.86	0.01	0.08	2	
		inc	151.00	9.00	1.3	56.2	0.17	2.1	0.05	0.11		
		inc	170.50	1.50	1.7	5.7	0.33	2.0	0.01	0.11		
		and	219.00	11.00	0.79	2.2	0.08	0.86	0.00	0.08	2	
		inc	223.00	7.00	1.1	2.5	0.09	1.1	0.00	0.05		
		GNDD113A	61.00	2.00	0.59	2.6	0.74	0.95	0.03	0.07		
		and	139.00	107.00	0.30	3.0	0.09	0.37	0.00	0.04	2	
		inc	185.00	1.40	1.6	2.5	0.07	1.7	0.00	0.05		
		inc	197.00	2.00	1.2	0.94	0.17	1.3	0.00	0.04		
		inc	202.00	1.50	3.2	2.4	0.90	3.6	0.02	0.16		
		inc	209.00	2.00	1.2	1.9	0.25	1.3	0.01	0.25		
		and	262.00	104.00	1.5	2.7	0.39	1.7	0.01	0.12	2	
		inc	266.00	2.00	1.0	1.8	0.22	1.1	0.00	0.02		
		inc	274.00	2.00	1.3	1.4	0.06	1.3	0.00	0.01		
		inc	280.00	15.00	3.6	6.9	0.56	3.9	0.04	0.73		
		inc	289.45	3.65	6.7	20.2	1.5	7.6	0.15	2.6	1	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		inc	298.65	7.45	2.9	3.7	0.63	3.2	0.02	0.01	
		inc	315.50	1.20	1.0	1.4	0.13	1.1	0.00	0.02	
		inc	333.80	4.20	11.3	22.8	5.3	13.9	0.12	0.04	
		inc	333.80	0.70	60.8	133	31.4	76.1	0.70	0.22	1
		inc	354.00	4.00	1.4	0.8	0.02	1.4	0.00	0.00	
			274.00	84.00	1.7	3.3	0.48	2.0	0.02	0.14	4
		and	390.00	30.00	0.35	0.36	0.05	0.38	0.00	0.00	2
		inc	394.00	2.00	1.2	0.33	0.04	1.2	0.00	0.00	
			139.00	227.00	0.83	2.7	0.22	1.0	0.01	0.07	3
			139.00	281.00	0.71	2.2	0.19	0.82	0.01	0.06	3
			106.00	314.00	0.65	2.1	0.17	0.75	0.01	0.05	
		GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
		inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	
		GNDD115	68.70	1.10	0.62	9.2	2.0	1.6	0.04	0.36	
		and	144.00	2.00	0.30	16.2	1.2	1.0	0.07	0.38	
		and	176.50	34.50	0.28	0.68	0.01	0.29	0.00	0.03	2
		GNDD116	27.50	4.50	1.3	14.6	0.06	1.5	0.00	0.02	2
		inc	27.50	1.00	3.7	41.4	0.13	4.3	0.01	0.05	
		and	73.70	0.80	2.4	3.9	0.26	2.5	0.00	0.00	
		GNDD117	30.00	54.80	0.58	4.2	0.13	0.69	0.01	0.07	2
		inc	61.00	10.00	2.5	10.2	0.16	2.7	0.01	0.14	
		inc	84.20	0.60	1.4	4.1	0.11	1.5	0.01	0.02	
		and	106.70	0.40	8.5	43.4	3.3	10.5	0.25	2.92	1
		GNDD118	NSI								
		GNDD119	52.40	0.80	0.21	17.4	4.2	2.3	0.03	0.25	
		GNDD120	NSI								
		GNDD121	NSI								
		GNDD122	11.50	18.10	0.64	2.2	0.03	0.68	0.00	0.01	2
		inc	21.00	6.00	1.1	3.2	0.04	1.2	0.00	0.01	
		and	54.00	21.00	0.41	0.80	0.12	0.47	0.00	0.04	2
		inc	71.00	2.00	1.2	1.0	0.14	1.2	0.00	0.09	
		and	191.00	1.50	1.6	24.4	0.95	2.3	0.10	1.24	
		and	213.80	3.20	1.7	2.1	0.23	1.8	0.01	0.02	
		and	236.00	1.50	4.8	4.9	0.63	5.1	0.03	0.16	
		GNDD123	21.00	30.00	0.11	1.6	0.32	0.27	0.01	0.04	2
		GNDD124	44.00	7.00	0.08	3.6	0.65	0.40	0.02	0.13	2
		GNDD125	NSI								

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		GNDD126	107.30	1.10	12.8	10.3	0.74	13.3	0.00	0.16	1
		and	120.00	2.00	3.2	3.6	0.16	3.4	0.01	0.00	
		and	157.30	0.50	1.0	22.1	2.2	2.2	0.11	2.3	
		and	179.00	2.00	1.7	0.62	0.01	1.7	0.00	0.00	
		GNDD127	NSI								
		GNDD128	63.00	20.00	0.49	0.42	0.02	0.50	0.00	0.00	2
		inc	77.50	1.50	4.1	0.36	0.04	4.1	0.00	0.00	
		GNDD129	15.00	21.00	0.72	1.8	0.10	0.79	0.00	0.05	2
		inc	24.00	10.00	1.0	2.1	0.13	1.1	0.00	0.04	
		and	132.50	0.70	6.7	14.1	0.15	7.0	0.01	0.12	
		GNDD130	NSI								
		GNDD131	NSI								
		GNDD132	14.50	18.10	0.12	2.5	0.18	0.23	0.01	0.04	2
		GNDD133	95.70	4.30	1.3	2.2	0.23	1.40	0.01	0.13	2
		inc	95.70	1.05	3.8	5.3	0.52	4.1	0.02	0.22	
		and	163.00	11.50	0.3	1.0	0.01	0.31	0.00	0.00	2
		GNDD134	17.70	15.30	0.80	7.5	0.07	0.92	0.00	0.11	2
		inc	19.00	10.00	1.04	9.9	0.08	1.2	0.01	0.12	
		and	47.00	39.75	0.26	0.5	0.10	0.31	0.00	0.04	2
		and	129.50	7.50	0.45	0.5	0.06	0.48	0.00	0.02	2
		and	161.00	20.00	0.29	3.6	0.23	0.44	0.01	0.03	2
		inc	177.50	0.50	3.79	29.8	5.23	6.4	0.16	0.10	
		and	196.00	4.00	5.3	86.2	10.60	11.0	0.24	0.57	
		and	240.00	2.00	6.2	1.3	0.02	6.2	0.00	0.00	
		and	272.00	50.00	0.22	0.5	0.14	0.28	0.00	0.00	2
		and	500.10	0.95	2.3	8.1	0.16	2.5	0.21	0.00	
		and	519.00	20.00	0.73	0.7	1.80	1.5	0.02	0.00	2
		inc	529.50	2.90	4.7	3.6	11.6	9.8	0.12	0.00	
		and	560.25	17.75	0.20	0.7	0.38	0.37	0.01	0.00	2
		inc	560.25	0.75	0.09	2.0	4.94	2.3	0.05	0.00	_
		inc	570.20	0.50	1.22	9.6	2.36	2.4	0.17	0.02	
		and	630.30	0.70	0.9	1.6	0.21	1.0	0.18	0.00	
		GNDD135	31.00	22.55	0.44	1.1	0.07	0.48	0.01	0.07	2
		inc	41.00	2.00	1.6	0.70	0.07	1.7	0.00	0.02	-
		and	78.00	27.20	0.52	2.6	0.37	0.72	0.01	0.07	2
		inc	79.60	3.40	1.4	3.9	0.29	1.6	0.00	0.05	-
		inc	95.00	2.00	1.9	2.0	0.23	2.0	0.01	0.09	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		inc	104.30	0.90	0.08	5.3	3.2	1.5	0.01	0.02	
		GNDD137	27.00	38.00	0.38	1.1	0.05	0.42	0.00	0.02	2
		inc	33.00	4.00	1.70	1.2	0.13	1.8	0.00	0.02	
		and	186.25	1.35	8.12	29.5	7.3	11.6	0.12	0.03	
		GNDD138	43.00	54.00	0.28	2.2	0.20	0.40	0.01	0.09	2
		GNDD139	80.00	207.50	0.75	1.7	0.10	0.82	0.00	0.02	2
		inc	80.00	32.00	1.6	2.5	0.06	1.6	0.00	0.03	
		inc	148.00	4.25	1.2	3.8	0.15	1.3	0.00	0.09	
		inc	167.00	14.00	1.5	0.32	0.01	1.5	0.00	0.01	
		inc	243.00	9.00	2.4	3.7	0.62	2.8	0.00	0.01	
		inc	266.00	6.00	1.6	0.61	0.01	1.6	0.00	0.00	
			243.00	29.00	1.2	1.6	0.24	1.3	0.00	0.00	4
		GNDD140	3.00	4.00	0.76	6.0	2.9	2.1	0.01	0.06	
		and	41.00	44.00	1.0	1.7	0.04	1.0	0.00	0.02	2
		inc	41.00	10.00	3.1	4.5	0.04	3.2	0.01	0.05	
		GNDD141	101.50	6.50	14.3	43.6	3.4	16.3	0.15	1.6	2
		inc	101.50	2.50	36.8	111	8.6	41.9	0.30	4.2	1
		GNDD142	55.8	0.7	0.7	13.3	4.0	2.7	0.05	0.03	
		and	81.5	27.5	2.4	11.1	0.9	2.9	0.03	0.06	2
		inc	92.0	11.5	5.4	19.9	2.0	6.5	0.08	0.13	
		inc	107.0	2.0	0.9	5.3	0.2	1.0	0.00	0.03	
		and	125.0	11.0	0.3	3.2	0.1	0.39	0.00	0.01	2
		inc	132.9	1.1	1.6	4.6	0.1	1.7	0.01	0.08	
		and	152.0	40.0	5.1	11.7	1.9	6.1	0.05	0.12	2
		inc	153.1	1.0	23.4	40.1	13.5	29.8	0.34	0.00	1
		inc	160.0	10.7	10.7	28.4	4.9	13.2	0.13	0.15	
		inc	166.2	4.5	23.9	41.3	11.0	29.2	0.29	0.27	1
		inc	177.2	12.8	5.2	9.3	0.7	5.6	0.02	0.24	
		inc	187.1	1.0	44.0	53.8	6.5	47.5	0.15	2.1	1
		and	237.0	0.5	1.1	2.7	0.1	1.2	0.01	0.17	
			81.5	110.5	2.5	7.4	0.9	3.0	0.03	0.06	3
		GNDD143	NSI								
		GNDD144	55.80	1.40	1.6	9.1	0.42	1.9	0.02	0.08	
		and	91.25	14.75	1.3	6.0	0.39	1.6	0.01	0.04	2
		inc	91.25	1.75	10.0	50	2.9	11.9	0.06	0.29	
		inc	91.25	0.60	28.6	143	4.8	32.5	0.16	0.83	1
		GNDD145	200.00	8.50	0.11	3.5	0.1	0.22	0.01	0.05	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		GNDD146	110.00	17.75	0.36	1.1	0.17	0.44	0.01	0.08	2
		inc	118.00	2.00	2.0	6.6	1.5	2.7	0.07	0.69	
		GNDD147	8.55	7.45	0.12	1.0	1.9	1.0	0.02	0.01	
		and	35.60	3.40	2.0	10.3	8.8	6.0	0.15	0.24	
		and	72.00	6.00	1.0	16.7	0.91	1.6	0.01	0.10	2
		inc	72.00	3.00	1.8	19.1	1.7	2.8	0.02	0.16	
		GNDD148	16.00	7.00	0.14	1.7	0.43	0.35	0.01	0.18	2
		and	59.00	2.00	0.00	1.0	2.7	1.2	0.01	0.01	
		GNDD149	8.00	4.00	0.63	1.5	0.28	0.77	0.01	0.07	
		GNDD150	40.00	22.00	0.29	0.91	0.08	0.33	0.00	0.07	2
		and	76.00	35.90	0.24	2.6	0.44	0.46	0.00	0.10	2
		and	180.29	1.31	16.8	26.1	2.9	18.4	0.10	0.27	
		GNDD151	379.75	0.50	0.71	18.6	8.9	4.8	0.17	0.17	
		GNDD152	23.50	4.10	0.5	2.7	0.1	0.55	0.00	0.03	2
		GNDD153	NSI								
		GNDD154	125.90	2.60	4.6	34.6	3.0	6.3	0.11	0.24	
		and	146.00	22.00	0.21	1.0	0.04	0.24	0.00	0.00	2
		inc	146.00	1.00	1.8	12.6	0.12	2.0	0.00	0.01	
		GNDD155	59.00	209.00	1.0	1.4	0.09	1.1	0.00	0.02	2
		inc	59.00	34.00	3.8	4.6	0.20	3.9	0.02	0.03	
		inc	81.00	4.00	13.4	10.5	0.06	13.5	0.05	0.02	
		inc	102.00	6.00	1.2	1.1	0.10	1.2	0.00	0.03	
			59.00	49.00	2.8	3.6	0.16	3.0	0.01	0.02	4
		inc	151.55	0.45	7.7	2.9	4.5	9.6	0.00	0.10	
		inc	182.00	1.00	8.8	17.1	2.2	10.0	0.07	0.89	
		inc	224.00	2.00	2.0	0.29	0.01	2.0	0.00	0.00	
		inc	244.00	11.00	1.1	0.56	0.04	1.1	0.00	0.00	
		inc	266.00	0.55	1.8	1.2	0.02	1.8	0.00	0.00	
		and	338.00	9.00	0.41	0.33	0.05	0.43	0.00	0.00	2
		GNDD156	5.00	7.00	0.68	3.0	0.70	1.0	0.02	0.15	_
		GNDD157	20.00	66.00	0.52	1.1	0.08	0.57	0.00	0.07	2
		inc	54.00	10.00	2.2	1.8	0.14	2.3	0.00	0.24	-
		and	132.90	10.00	0.18	6.6	0.52	0.48	0.01	0.08	2
		inc	132.90	0.50	0.88	13.1	1.4	1.6	0.03	0.67	_
		inc	142.30	0.60	1.0	29.1	6.6	4.2	0.11	0.33	
		and	237.20	130.80	2.3	1.6	0.37	2.5	0.00	0.01	2
		inc	237.20	0.80	1.7	59.1	5.6	4.9	0.18	1.2	-

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		inc	255.80	1.20	0.63	5.3	9.4	4.8	0.01	0.01	
		inc	289.00	12.00	20.4	4.8	1.0	20.9	0.00	0.00	
		inc	290.50	4.06	55.7	12.9	2.1	56.8	0.01	0.01	1
		inc	321.00	2.00	1.3	0.6	0.01	1.3	0.00	0.00	
		inc	331.00	6.00	2.5	1.9	0.61	2.8	0.01	0.01	
		inc	343.00	9.00	1.7	0.6	0.10	1.7	0.00	0.00	
		and	407.50	0.50	2.2	1.2	0.37	2.4	0.00	0.00	
		GNDD158	107.00	19.00	0.59	1.0	0.12	0.65	0.00	0.03	2
		inc	120.05	0.95	2.8	4.2	0.31	2.9	0.00	0.13	
		and	139.00	6.00	0.43	0.78	0.25	0.55	0.00	0.03	2
		GNDD159	NSI								
		GNDD160	24.00	2.00	1.0	4.1	1.3	1.7	0.02	0.06	
		and	46.00	1.10	2.3	6.4	0.30	2.5	0.04	0.09	
		and	83.60	4.95	0.44	1.1	0.04	0.47	0.00	0.00	2
		GNDD161	93.00	1.10	0.58	5.7	1.4	1.2	0.02	0.66	
		and	224.75	8.25	0.61	1.6	0.04	0.65	0.00	0.09	
		inc	230.00	1.20	2.6	3.5	0.02	2.6	0.00	0.19	
		and	245.65	1.35	1.1	0.54	0.05	1.1	0.00	0.03	
		GNDD162	98.00	14.80	2.0	3.5	0.29	2.2	0.01	0.09	
		inc	102.10	6.90	3.9	6.4	0.51	4.2	0.03	0.15	
		GNDD163	93.00	45.00	0.38	1.7	0.26	0.51	0.01	0.08	2
		inc	101.00	3.00	1.3	7.9	0.51	1.6	0.01	0.19	
		inc	125.20	1.65	1.7	3.7	0.88	2.2	0.02	0.13	
		GNDD164	136.00	22.00	0.38	0.8	0.14	0.45	0.00	0.03	2
		inc	141.50	0.50	1.1	1.1	0.29	1.2	0.00	0.03	
		inc	150.00	1.60	1.4	1.2	0.06	1.4	0.00	0.02	
		and	171.00	10.00	0.48	0.23	0.01	0.48	0.00	0.00	2
		inc	171.00	2.00	1.1	0.23	0.01	1.1	0.00	0.00	
		and	239.00	37.00	0.75	2.1	0.46	1.0	0.02	0.00	2
		inc	239.00	4.45	4.9	14.9	3.4	6.5	0.14	0.01	
		GNDD165	NSI								
		GNDD167	NSI								
		GNDD168	50.00	58.00	0.17	2.2	0.16	0.27	0.00	0.02	2
		and	139.70	0.60	1.5	9.5	0.94	2.0	0.01	0.29	
		and	164.00	27.75	0.15	1.4	0.10	0.21	0.00	0.02	2
		GNDD169	120.00	60.80	0.78	0.74	0.15	0.86	0.01	0.01	2
		inc	152.00	28.80	1.5	1.22	0.31	1.70	0.01	0.02	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Kna

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		inc	152.00	1.50	1.8	3.8	0.91	2.3	0.02	0.02	
		inc	176.00	4.80	8.4	5.3	1.5	9.2	0.05	0.09	
		inc	180.05	0.75	52.5	33.2	9.6	57.1	0.32	0.60	
		and	208.00	125.50	1.1	3.6	0.09	1.1	0.00	0.03	2
		inc	208.00	71.00	1.7	6.0	0.15	1.8	0.01	0.05	2
		inc	228.80	29.00	3.7	12.5	0.26	4.0	0.02	0.11	
		inc	302.50	9.00	0.92	0.46	0.02	0.94	0.00	0.00	2
		inc	307.70	1.30	4.7	0.80	0.01	4.7	0.00	0.00	
		inc	321.00	12.50	0.26	0.92	0.02	0.28	0.00	0.00	2
		GNDD170A	13.00	10.00	0.57	5.2	0.29	0.76	0.01	0.07	
		and	174.00	6.00	0.67	0.28	0.02	0.68	0.00	0.00	
		GNDD171	126.00	10.75	0.37	1.9	0.15	0.46	0.00	0.08	2
		inc	134.00	1.40	1.1	5.9	0.76	1.5	0.01	0.39	
		and	193.00	3.90	0.32	0.42	0.01	0.33	0.00	0.00	2
		and	270.00	0.50	1.3	2.5	0.65	1.6	0.01	0.01	
		and	327.00	2.60	1.9	6.1	1.1	2.4	0.04	0.09	
		GNDD172	0.00	3.50	0.48	4.8	0.03	0.56	0.01	0.10	2
		and	12.80	6.20	0.03	15.7	0.79	0.57	0.02	0.12	2
		GNDD173	83.00	66.00	0.54	3.1	0.07	0.61	0.00	0.04	2
		inc	87.00	6.00	2.0	18.8	0.28	2.4	0.02	0.23	
		inc	116.00	6.00	1.4	2.8	0.13	1.5	0.01	0.05	
		inc	130.40	0.60	8.9	23.9	0.07	9.3	0.00	0.04	
		GNDD174	24.00	76.00	1.0	31.0	0.91	1.8	0.04	0.13	2
		inc	60.90	11.25	6.4	64.1	5.3	9.5	0.23	0.58	
		inc	60.90	5.95	10.7	109	7.9	15.5	0.38	0.95	1
		inc	96.00	4.00	0.20	359	0.26	4.9	0.02	0.22	
		and	163.00	39.50	0.47	2.3	0.31	0.63	0.02	0.02	2
		inc	167.55	4.20	1.5	15.0	2.5	2.8	0.11	0.02	
		inc	199.00	2.00	1.5	0.17	0.01	1.5	0.00	0.00	
		GNDD175	176.00	6.00	0.34	6.3	0.12	0.47	0.00	0.07	2
		GNDD176	73.90	2.95	0.86	3.3	0.16	1.0	0.00	0.15	2
		inc	76.10	0.75	2.5	1.7	0.18	2.6	0.00	0.04	
		and	247.20	1.25	0.29	98.9	0.06	1.6	0.00	0.04	
		GNDD177	41.50	63.35	0.58	1.8	0.24	0.70	0.01	0.07	2
		inc	55.00	1.30	1.3	3.5	0.08	1.4	0.02	0.15	
		inc	60.00	2.00	1.0	1.2	0.19	1.1	0.01	0.01	
		inc	71.80	0.50	1.3	7.3	0.19	1.5	0.01	0.06	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		inc	86.00	11.20	2.1	3.0	0.64	2.4	0.01	0.14	
		GNDD178	14.00	28.00	0.22	17.5	0.26	0.56	0.01	0.04	2
		inc	20.00	2.00	0.20	118	0.11	1.7	0.01	0.11	
		inc	39.00	1.30	0.80	4.8	3.9	2.6	0.04	0.04	
		and	53.00	2.00	0.05	81.0	0.04	1.1	0.00	0.03	
		and	65.15	1.85	1.1	3.3	0.81	1.5	0.01	0.12	
		and	89.15	0.85	4.9	302	0.40	8.9	0.11	0.67	
		GNDD179	76.00	8.00	0.12	4.53	0.47	0.38	0.01	0.33	2
		GNDD180	80.00	1.00	1.3	4.78	0.49	1.5	0.02	0.02	
		and	218.75	3.25	1.0	6.6	0.56	1.4	0.02	0.37	2
		inc	218.75	1.25	1.6	11.0	1.09	2.2	0.03	0.70	
		GNDD181	7.70	3.60	0.66	22.2	1.0	1.4	0.03	0.19	2
		inc	7.70	1.45	1.1	45.3	1.5	2.3	0.07	0.36	
		and	180.60	7.40	0.46	0.54	0.03	0.48	0.00	0.00	2
		inc	180.60	0.55	1.2	0.83	0.07	1.2	0.00	0.00	
		GNDD182	92.00	34.00	0.28	1.1	0.09	0.33	0.00	0.01	2
		inc	92.00	19.00	0.37	1.0	0.07	0.41	0.00	0.01	2
		inc	96.00	2.00	2.0	1.9	0.01	2.0	0.01	0.01	
		and	148.70	4.30	31.8	96.5	8.1	36.6	0.55	5.3	
		inc	148.70	3.45	39.6	118	10.0	45.4	0.68	6.5	1
		GNDD183	35.00	55.50	1.0	1.5	0.43	1.2	0.01	0.10	2
		inc	37.00	2.00	1.1	1.0	0.09	1.1	0.00	0.11	
		inc	57.00	2.00	0.95	0.44	0.11	1.0	0.00	0.03	
		inc	72.00	15.00	3.2	3.5	0.88	3.6	0.02	0.21	
		and	112.00	24.00	0.16	6.8	1.1	0.71	0.02	0.01	2
		inc	119.00	1.20	2.6	95.1	17.1	11.3	0.34	0.20	
		GNDD184	NSI	55.50	1.0	1.5	0.43	1.2	0.01	0.10	
		GNDD185	59.00	60.00	0.59	1.5	0.27	0.73	0.01	0.08	2
		inc	67.00	4.45	1.8	3.3	0.37	2.0	0.02	0.08	
		inc	83.00	10.00	1.0	1.7	0.21	1.1	0.00	0.04	
		inc	114.00	5.00	1.4	2.0	1.09	1.9	0.01	0.12	
		and	138.00	7.10	1.0	8.9	1.08	1.6	0.02	0.12	
		GNDD186	104.00	2.00	0.92	0.55	0.00	0.92	0.00	0.00	2
		GNDD187	145.00	16.00	0.40	0.61	0.14	0.47	0.00	0.06	2
		inc	149.00	2.00	1.6	2.5	0.64	1.9	0.02	0.29	
		and	192.00	15.00	0.46	0.93	0.16	0.54	0.01	0.03	2
		and	302.50	5.50	1.7	26.0	0.69	2.4	0.03	0.36	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		inc	302.50	2.50	3.7	55.9	1.2	5.0	0.07	0.72	
		and	326.00	0.60	1.6	2.8	0.48	1.9	0.01	0.00	
		and	385.00	3.00	3.1	0.65	0.01	3.1	0.00	0.00	2
		inc	385.00	1.20	7.0	0.90	0.01	7.0	0.00	0.00	
		and	399.50	0.50	11.8	5.6	0.02	11.8	0.00	0.04	
		and	428.30	0.50	3.0	0.49	0.01	3.0	0.00	0.00	
		GNDD188	198.00	66.00	0.29	6.6	0.13	0.43	0.00	0.05	2
		inc	212.00	4.00	0.89	21.9	0.19	1.3	0.00	0.08	
		inc	252.00	4.55	1.1	4.5	0.38	1.3	0.01	0.03	
		GNDD189	58.60	5.20	16.7	129	6.1	21.0	0.23	1.05	
		inc	60.00	3.80	21.1	148	6.6	25.8	0.21	0.06	1
		and	174.00	6.65	0.15	2.0	0.22	0.27	0.01	0.00	2
		and	191.00	6.00	0.21	2.1	0.30	0.37	0.02	0.24	2
		GNDD190	47.30	7.70	0.12	4.6	4.9	2.3	0.26	0.02	
		and	161.10	1.90	0.19	5.7	0.2	0.35	0.01	0.02	2
		and	186.00	5.00	0.22	0.1	0.0	0.23	0.00	0.00	2
		and	200.00	4.00	0.31	0.1	0.01	0.31	0.00	0.00	2
		GNDD191	188.35	21.15	0.52	3.2	0.43	0.74	0.02	0.02	
		and	217.35	0.50	2.5	16.8	2.5	3.8	0.09	0.05	
		and	238.00	2.00	0.36	3.5	0.81	0.75	0.02	0.01	2
		GNDD192	15.00	50.00	0.28	0.60	0.06	0.31	0.00	0.01	2
		inc	28.00	20.00	0.44	0.59	0.06	0.47	0.00	0.01	2
		and	107.45	1.75	0.53	8.2	0.09	0.68	0.04	0.01	2
		and	176.00	0.60	1.2	24.8	7.0	4.6	0.24	0.01	
		GNDD193	96.30	83.45	0.66	1.3	0.20	0.77	0.01	0.03	2
		inc	96.30	9.50	1.51	2.7	0.14	1.6	0.03	0.05	
		inc	121.35	13.85	1.34	1.7	0.48	1.6	0.01	0.04	
		inc	147.75	1.20	0.85	1.8	1.9	1.7	0.01	0.06	
		inc	160.50	11.10	0.99	2.1	0.35	1.2	0.01	0.06	
		and	191.00	7.50	1.30	9.3	0.47	1.6	0.01	0.01	2
		inc	194.70	3.80	2.08	16.6	0.88	2.7	0.02	0.01	
		and	218.00	1.50	0.05	72.3	0.06	1.0	0.01	0.07	
		and	251.00	1.90	1.1	7.6	0.18	1.3	0.04	0.01	
		GNDD194	3.00	8.65	0.48	2.6	0.73	0.83	0.01	0.08	2
		inc	8.70	2.95	1.2	3.9	1.7	2.01	0.01	0.13	
		and	286.00	2.00	0.59	0.11	0.03	0.61	0.00	0.00	2
		GNDD195	29.00	2.55	1.3	1.1	0.02	1.4	0.00	0.01	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Dire

Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary										
		inc	30.00	1.55	1.6	1.4	0.02	1.7	0.00	0.01		
		and	60.00	3.85	5.3	48.6	8.0	9.4	0.14	0.15		
		inc	60.80	3.05	6.1	52.0	8.1	10.2	0.13	0.13	1	
		and	346.30	3.70	0.89	0.75	0.04	0.92	0.02	0.00	2	
		inc	346.30	0.50	5.2	1.3	0.01	5.2	0.08	0.00		
		GNDD196	9.00	69.20	3.3	4.8	0.10	3.4	0.01	0.07	2	
		inc	17.00	12.00	1.7	0.69	0.06	1.8	0.00	0.03		
		inc	69.00	9.20	21.9	16.0	0.38	22.2	0.03	0.38		
		inc	69.00	1.30	137	47.6	0.21	137.2	0.01	1.2	1	
		and	279.50	0.60	2.0	0.22	0.00	2.0	0.00	0.00		
		GNDD197	25.00	4.00	0.46	2.5	0.30	0.62	0.01	0.06	2	
		and	70.45	1.55	1.0	12.3	1.4	1.7	0.06	0.03		
		GNDD198	48.80	2.20	0.50	0.49	0.17	0.58	0.00	0.00	2	
		and	82.00	4.00	1.6	11.8	0.33	1.91	0.03	0.20	2	
		inc	84.00	2.00	2.7	22.4	0.44	3.20	0.04	0.38		
		and	99.00	2.00	0.54	0.39	0.09	0.58	0.00	0.03	2	
		and	111.00	2.00	1.2	1.0	0.06	1.27	0.01	0.04		
		and	157.00	1.00	0.01	68.1	0.09	0.91	0.00	0.08	2	
		GNDD199	26.00	146.00	0.40	1.1	0.23	0.51	0.01	0.07	2	
		inc	26.00	60.00	0.63	1.5	0.18	0.72	0.01	0.09	2	
		inc	36.00	2.00	1.6	1.3	0.06	1.6	0.01	0.06		
		inc	44.00	1.00	1.8	5.4	0.15	1.9	0.00	0.06		
		inc	58.00	10.00	1.4	1.2	0.23	1.5	0.00	0.10		
		inc	169.00	3.00	1.0	7.9	1.8	1.9	0.06	0.07		
		and	187.00	41.00	0.19	0.70	0.06	0.23	0.00	0.01	2	
		GNDD200	168.25	66.75	0.61	0.56	0.07	0.65	0.00	0.00	2	
		inc	176.45	7.15	1.0	0.59	0.03	1.1	0.00	0.00		
		inc	208.00	6.00	1.1	0.62	0.05	1.1	0.00	0.00		
		inc	232.00	1.00	4.7	5.6	1.3	5.3	0.05	0.00		
		GNDD201	99.00	3.00	0.48	7.9	0.17	0.66	0.04	0.07	2	
		and	130.20	0.60	1.4	2.6	0.07	1.5	0.01	0.03		
		GNDD202	33.00	110.00	0.26	3.1	0.12	0.35	0.00	0.01	2	
		inc	71.75	59.25	0.35	4.7	0.20	0.50	0.01	0.01	2	
		inc	98.00	10.00	1.0	21.7	0.70	1.6	0.03	0.02		
		inc	127.00	2.00	1.2	1.1	0.02	1.2	0.00	0.01		
		and	238.00	6.00	0.57	1.0	0.03	0.59	0.00	0.01	2	
		inc	240.55	1.45	1.5	0.57	0.05	1.5	0.00	0.01		

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		GNDD203	46.00	37.00	0.30	13.9	0.16	0.55	0.01	0.09	2
		inc	68.00	9.10	0.44	42.6	0.35	1.1	0.03	0.26	
		and	210.50	0.60	3.6	81.9	10.2	9.0	0.38	3.93	
		and	227.00	2.00	1.4	4.3	0.12	1.5	0.01	0.04	
		and	299.00	21.80	2.4	22.2	4.0	4.5	0.06	0.45	2
		inc	300.25	20.55	2.6	23.1	4.2	4.7	0.07	0.48	
		inc	300.25	3.55	9.3	96.8	13.1	16.2	0.31	2.0	2
		GNDD204	95.00	44.00	3.2	4.5	0.11	3.3	0.00	0.04	2
		inc	97.38	20.62	6.4	6.4	0.11	6.6	0.00	0.06	
		and	183.00	1.00	1.2	6.7	0.44	1.5	0.01	0.33	
		GNDD205	214.20	0.70	15.2	7.1	4.2	17.1	0.03	0.00	
		GNDD206	31.55	10.45	3.6	6.3	0.06	3.7	0.01	0.08	2
		inc	34.65	3.90	9.5	14.9	0.03	9.7	0.03	0.21	
		and	263.00	2.00	0.88	0.37	0.10	0.93	0.00	0.00	2
		and	277.00	4.00	0.54	0.65	0.01	0.55	0.00	0.00	2
		GNDD207	114.00	0.90	2.0	1.9	0.09	2.1	0.02	0.06	
		and	122.55	2.45	8.5	15.5	1.0	9.1	0.04	0.90	
		and	169.50	3.50	0.16	68.2	0.13	1.1	0.01	0.12	2
		inc	170.70	2.30	0.20	98.2	0.17	1.5	0.01	0.16	
		and	217.40	25.60	0.36	0.93	0.05	0.39	0.00	0.01	2
		inc	233.00	4.00	1.4	0.64	0.01	1.4	0.00	0.01	
		and	269.35	1.95	1.7	3.4	0.35	1.9	0.01	0.11	
		GNDD208	170.00	73.65	0.51	1.4	0.21	0.62	0.01	0.04	2
		inc	180.00	2.00	2.2	0.88	0.01	2.2	0.00	0.00	
		inc	208.00	35.65	0.85	2.6	0.41	1.1	0.01	0.07	2
		inc	212.00	13.00	1.9	5.0	0.78	2.3	0.03	0.20	
		GNDD209	33.60	4.40	0.18	14.2	0.08	0.40	0.00	0.06	2
		and	45.65	0.75	0.77	10.7	1.4	1.5	0.03	0.13	
		and	65.00	17.10	1.9	16.2	1.1	2.6	0.02	0.18	
		and	148.00	2.00	1.0	28.5	0.01	1.3	0.00	0.01	
		GNDD210	8.00	2.00	0.86	17.9	0.02	1.1	0.00	0.17	
		and	28.00	6.00	0.04	1.4	0.47	0.26	0.00	0.03	2
		and	308.00	2.00	1.3	3.8	0.71	1.6	0.02	0.02	
		GNDD211	168.80	23.20	0.51	0.82	0.12	0.57	0.00	0.02	2
		inc	177.10	4.35	1.5	2.0	0.27	1.6	0.00	0.00	
		GNDD212	15.00	1.80	0.5	1.1	0.12	0.53	0.00	0.01	2
		and	42.20	1.40	1.2	8.1	0.08	1.4	0.00	0.01	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

Criteria	JORC Code explanation	Commentary									
		GNDD213	45.00	11.85	0.03	1.2	1.2	0.56	0.01	0.03	2
		GNDD214	48.25	3.75	22.1	125	2.6	24.8	0.05	0.09	
		GNDD215	126.20	14.60	1.4	2.4	0.35	1.6	0.01	0.03	2
		inc	132.50	8.30	2.1	2.1	0.40	2.3	0.01	0.01	
		and	159.00	41.00	0.15	3.1	0.08	0.23	0.01	0.04	2
		GNDD216	81.00	4.00	0.30	0.29	0.0	0.30	0.00	0.00	2
		and	204.00	2.00	0.61	3.5	0.2	0.75	0.03	0.07	2
		GNDD217	111.00	21.00	5.7	32.1	3.4	7.6	0.03	0.16	2
		inc	114.65	11.70	10.1	54.8	5.9	13.3	0.06	0.26	
		inc	116.65	4.35	23.1	139	11.7	29.9	0.14	0.58	
		GNDD218	198.00	5.05	0.39	0.16	0.01	0.39	0.00	0.00	2
		GNDD219	12.00	8.00	0.13	0.46	0.02	0.15	0.00	0.01	2
		and	68.90	39.35	0.04	10.8	0.08	0.22	0.00	0.02	2
		GNDD220	86.00	108.00	0.38	1.6	0.05	0.42	0.01	0.00	2
		inc	88.00	2.00	1.1	10.5	0.50	1.4	0.01	0.03	
		inc	137.00	49.00	0.59	1.3	0.05	0.63	0.01	0.00	2
		inc	146.00	4.00	1.2	1.4	0.10	1.2	0.01	0.00	
		inc	158.30	3.70	1.8	1.9	0.02	1.8	0.01	0.01	
		inc	182.00	2.00	1.7	2.8	0.0	1.7	0.01	0.00	
		GNDD221	82.80	1.20	1.1	6.7	0.10	1.2	0.00	0.04	
		and	156.85	8.15	1.5	7.5	0.83	2.0	0.03	0.13	
		GNDD222	NSI								
		GNDD223	26.00	2.00	0.60	0.41	0.02	0.61	0.00	0.01	2
		GNDD224	134.00	38.00	0.28	0.94	0.02	0.30	0.00	0.01	2
		inc	134.00	1.00	6.7	1.4	0.06	6.7	0.00	0.00	
		and	313.00	1.25	0.91	4.9	0.39	1.1	0.00	0.04	
		GNDD225	79.00	9.15	0.19	0.79	0.02	0.21	0.00	0.01	2
		and	207.00	2.00	4.3	1.1	0.0	4.3	0.01	0.00	
		and	235.00	9.20	0.93	0.63	0.0	1.0	0.00	0.04	
		GNDD226	109.00	16.00	0.49	2.4	0.33	0.67	0.02	0.27	2
		inc	116.00	7.35	0.71	4.0	0.54	1.0	0.03	0.45	
		and	146.00	44.00	0.41	0.65	0.10	0.46	0.00	0.04	2
		inc	170.00	2.00	1.3	0.84	0.06	1.4	0.00	0.04	
		inc	188.00	2.00	3.8	1.1	0.17	3.9	0.01	0.06	
		GNDD227	81.00	2.00	0.77	0.52	0.0	0.78	0.00	0.00	2
		and	179.15	3.70	1.2	16.8	1.6	2.1	0.03	0.43	2
		inc	181.95	0.90	4.2	64.5	6.6	7.9	0.13	1.8	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		and	222.00	8.00	4.2	53.6	1.7	5.7	0.06	0.05	2
		inc	223.40	6.60	5.1	64.2	2.1	6.8	0.07	0.06	
		GNDD228	84.00	19.00	0.29	0.60	0.03	0.31	0.00	0.01	2
		inc	84.00	2.00	1.0	0.25	0.03	1.0	0.00	0.00	
		and	132.00	10.00	0.32	0.47	0.06	0.36	0.00	0.03	2
		and	279.00	42.00	0.27	0.85	0.07	0.31	0.00	0.03	2
		inc	280.00	1.65	1.9	10.1	0.82	2.4	0.05	0.67	
		inc	311.00	2.00	1.2	0.17	0.01	1.2	0.00	0.00	
		GNDD229	167.00	38.25	0.65	6.5	0.34	0.88	0.02	0.07	2
		inc	171.00	6.00	1.7	30.1	1.5	2.7	0.09	0.21	
		inc	204.50	0.75	4.8	5.9	0.34	5.0	0.02	0.05	
		GNDD230	211.00	6.00	0.18	2.5	0.04	0.23	0.00	0.00	2
		and	227.00	15.00	0.19	1.1	0.09	0.24	0.00	0.01	2
		and	256.00	4.00	0.48	0.72	0.05	0.51	0.00	0.02	2
		GNDD232	139.85	2.50	0.65	15.2	0.56	1.1	0.03	0.10	2
		and	174.00	4.00	1.7	45.3	0.21	2.4	0.02	0.11	2
		inc	176.00	2.00	2.9	71.1	0.38	4.0	0.04	0.20	
		GNDD233	113.00	2.00	0.52	0.60	0.09	0.56	0.00	0.01	2
		and	180.10	2.35	0.39	0.46	0.04	0.42	0.00	0.01	2
		GNDD235	65.00	2.00	0.28	9.8	1.5	1.0	0.05	0.05	
		and	79.00	4.00	0.31	5.6	0.22	0.48	0.01	0.10	2
		GNDD236	175.00	52.00	1.1	4.1	0.26	1.2	0.01	0.02	2
		inc	177.00	2.00	2.9	9.6	0.44	3.3	0.02	0.01	
		inc	201.00	2.00	1.0	5.6	1.9	1.9	0.02	0.29	
		inc	216.60	4.40	8.4	33.6	0.19	8.9	0.01	0.00	
		GNDD237	139.00	12.00	0.32	1.2	0.28	0.46	0.01	0.21	2
		and	201.55	155.45	0.61	2.1	0.11	0.69	0.00	0.01	2
		inc	201.55	72.45	0.55	3.8	0.16	0.66	0.01	0.01	2
		inc	234.00	9.00	1.2	14.2	0.24	1.5	0.01	0.02	
		inc	254.50	1.75	6.7	10.8	0.51	7.1	0.03	0.02	
		and	298.00	59.00	0.91	1.0	0.06	1.0	0.01	0.01	2
		inc	302.00	2.00	3.3	0.3	0.00	3.3	0.00	0.00	
		inc	336.00	2.00	1.3	11.4	1.5	2.1	0.13	0.10	
		inc	349.65	1.95	17.5	2.9	0.00	17.5	0.00	0.00	
		GNDD239	13.00	6.00	0.25	1.8	0.10	0.31	0.00	0.00	2
		and	26.40	0.85	3.3	54.7	2.5	5.1	0.05	0.07	
		and	47.00	2.35	1.9	7.3	1.5	2.6	0.02	0.22	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	48.30	1.05	4.2	16.2	0.71	4.7	0.03	0.50	
		GNDD240	114.00	2.00	1.4	0.31	0.01	1.5	0.00	0.00	
		and	167.00	3.45	2.7	50.2	2.9	4.6	0.07	0.86	2
		inc	169.20	1.25	6.6	116	7.6	11.3	0.19	2.3	1
		GNDD241	NSI								
		GNDD242	185.45	8.55	0.54	0.45	0.05	0.57	0.00	0.02	2
		inc	185.45	1.60	1.0	1.2	0.25	1.1	0.00	0.09	
		and	306.50	0.70	2.3	0.89	0.00	2.3	0.00	0.00	
		GNDD243	136.00	7.10	2.2	27.2	2.6	3.6	0.06	0.31	2
		inc	138.00	5.10	2.1	25.9	2.5	3.5	0.06	0.30	
		inc	142.00	1.10	9.0	126	14.0	16.7	0.33	1.8	1
		GNDD245	139.00	43.70	1.0	1.8	0.35	1.1	0.01	0.09	2
		inc	143.00	2.00	3.6	3.0	0.82	4.0	0.00	0.05	
		inc	181.27	1.43	18.7	38.0	6.8	22.1	0.18	1.8	1
		GNDD246	179.50	2.50	4.5	9.0	2.9	5.9	0.05	0.01	2
		inc	179.50	0.85	12.7	25.0	7.8	16.4	0.12	0.04	
		GNDD247	NSI								
		GNDD248	136.00	43.00	0.22	0.50	0.12	0.28	0.00	0.02	2
		and	199.00	83.00	0.46	2.5	0.09	0.53	0.00	0.01	2
		inc	213.00	2.00	1.3	0.45	0.02	1.3	0.00	0.00	
		inc	225.00	1.00	4.7	1.4	0.01	4.7	0.00	0.00	1
		inc	237.10	0.70	24.8	31.0	5.9	27.7	0.23	0.01	
		inc	254.00	1.40	0.44	114	0.76	2.2	0.04	0.09	
		GNDD249	207.00	15.30	0.68	1.5	0.16	0.77	0.01	0.13	2
		inc	207.00	2.60	3.0	7.9	0.87	3.5	0.05	0.75	
		and	237.00	14.60	1.1	1.3	0.14	1.2	0.01	0.04	2
		inc	251.00	0.60	21.9	16.0	2.2	23.1	0.05	0.68	
		GNDD250	80.00	30.00	0.26	3.5	0.17	0.38	0.01	0.07	2
		inc	98.00	5.00	0.88	9.2	0.63	1.3	0.02	0.22	
		GNDD251	19.65	3.35	0.22	7.1	0.47	0.51	0.02	0.01	2
		GNDD252	104.00	10.00	0.60	2.3	0.25	0.73	0.01	0.05	2
		inc	107.00	5.00	0.95	3.3	0.40	1.2	0.01	0.09	
		and	128.00	12.15	0.76	1.3	0.27	0.90	0.00	0.01	2
		inc	134.00	4.00	1.7	2.4	0.64	2.0	0.01	0.02	
		and	264.57	33.43	0.57	6.1	0.65	0.93	0.02	0.36	2
		inc	281.70	2.90	2.7	36.3	6.1	5.8	0.16	3.4	
		inc	290.00	2.00	1.1	4.6	0.14	1.2	0.01	0.08	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		GNDD253	112.00	2.00	1.0	1.1	0.1	1.0	0.01	0.0	
		and	133.00	50.00	1.8	1.0	0.1	1.9	0.00	0.0	2
		inc	139.00	38.00	2.2	1.2	0.2	2.3	0.01	0.0	
		inc	151.55	2.37	17.2	3.7	0.3	17.3	0.01	0.0	1
		and	201.40	25.13	0.8	0.3	0.0	0.9	0.00	0.0	2
		inc	211.00	3.64	2.4	1.3	0.1	2.4	0.01	0.1	
		inc	220.00	2.00	3.4	0.5	0.0	3.4	0.00	0.0	
		GNDD254	173.00	62.00	1.7	20.3	0.33	2.1	0.01	0.08	2
		inc	173.00	17.00	3.2	4.4	0.49	3.5	0.02	0.17	
		inc	197.00	4.00	9.4	292	2.6	14.3	0.09	0.43	
		and	249.00	18.00	0.80	4.3	0.27	1.0	0.02	0.06	2
		inc	255.45	1.00	6.5	19.0	1.4	7.3	0.06	0.01	
		inc	266.55	0.45	7.3	28.0	5.7	10.1	0.44	1.9	
		and	298.25	1.75	0.27	73.9	0.29	1.3	0.02	0.11	2
		and	312.00	12.00	0.82	0.07	0.00	0.82	0.00	0.00	2
		inc	314.00	6.00	1.0	0.05	0.00	1.0	0.00	0.00	
		and	363.00	26.75	1.7	2.8	0.44	1.9	0.02	0.01	2
		inc	363.00	6.00	4.6	1.9	0.19	4.7	0.01	0.00	
		inc	385.00	4.75	2.1	8.1	1.5	2.9	0.07	0.01	
		GNDD255	158	36.65	0.19	0.75	0.04	0.22	0.00	0.01	2
		inc	192	2.65	1.0	2.5	0.12	1.1	0.01	0.05	
		GNDD256	104.00	8.00	1.0	0.33	0.00	1.0	0.00	0.00	2
		inc	106.00	2.00	2.0	0.56	0.00	2.0	0.00	0.00	
		inc	110.00	2.00	1.4	0.17	0.00	1.4	0.00	0.00	
		GNDD257	233.00	44.25	0.32	2.5	0.17	0.43	0.01	0.07	2
		inc	259.00	2.00	2.4	3.5	0.18	2.6	0.00	0.07	
		inc	275.00	2.25	1.2	1.9	0.14	1.3	0.00	0.01	
		GNDD258	250.00	2.00	0.26	17.7	2.9	1.7	0.09	1.7	
		GNDD259	128.00	16.00	0.32	0.81	0.10	0.38	0.00	0.09	2
		inc	143.00	1.00	0.82	5.5	0.85	1.3	0.03	0.61	
		GNDD260	159.00	2.00	0.19	9.1	1.4	0.90	0.05	0.16	2
		GNDD261	22.00	4.00	1.1	5.2	0.56	1.4	0.01	0.00	2
		inc	22.00	0.50	7.5	17.6	4.2	9.6	0.11	0.10	
		GNDD262	183.00	39.00	0.19	1.2	0.06	0.23	0.00	0.02	2
		GNDD263	59.00	9.00	0.05	0.08	0.57	0.30	0.00	0.00	2
		and	110.00	2.00	1.3	0.56	0.00	1.32	0.00	0.00	
		GNDD264	70.00	2.40	0.16	6.1	1.0	0.66	0.03	0.47	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

Criteria	JORC Code explanation	Commentary									
		inc	71.50	0.90	0.36	12.0	2.0	1.4	0.04	1.0	
		and	104.95	22.05	1.4	16.7	1.7	2.3	0.05	0.43	
		GNDD265	56.00	4.00	0.57	1.3	0.08	0.63	0.01	0.04	2
		and	152.00	14.00	0.20	1.1	0.11	0.26	0.01	0.09	2
		and	237.00	1.00	8.97	19.7	2.48	10.30	0.04	0.38	1
		GNDD266	34.00	16.00	0.4	9.0	0.6	0.8	0.03	0.1	2
		inc	38.82	5.18	0.9	23.1	1.6	1.9	0.07	0.2	
		GNDD267	169.00	9.00	0.3	1.2	0.2	0.4	0.01	0.02	2
		GNDD268	NSI								
		GNDD269	6.00	6.00	1.1	12.2	0.1	1.3	0.01	0.2	2
		inc	10.00	2.00	2.8	34.4	0.3	3.4	0.01	0.5	
		and	48.00	2.00	0.2	87.3	0.4	1.5	0.01	0.0	
		and	86.00	10.00	0.3	1.1	0.0	0.3	0.00	0.0	2
		GNDD270	NSI								
		GNDD272	35.00	22.00	0.17	2.7	0.1	0.25	0.00	0.03	2
		and	96.50	51.60	3.9	11.8	1.0	4.5	0.04	0.19	2
		inc	137.00	11.10	17.4	51.1	4.5	20.0	0.15	0.79	
		inc	139.00	7.90	23.8	65.2	6.0	27.2	0.20	1.0	
		GNDD273	31.50	2.50	0.61	3.6	0.8	1.0	0.00	0.75	2
		inc	31.50	0.87	1.5	6.5	2.0	2.4	0.00	1.9	
		and	50.33	9.17	0.07	5.9	0.6	0.42	0.01	0.10	2
		GNDD274	298.00	19.00	0.74	9.6	0.5	1.1	0.01	0.2	2
		inc	305.00	2.00	6.58	48.8	3.5	8.7	0.11	2.2	
		GNDD275	55.00	2.00	1.1	1.9	0.05	1.1	0.01	0.01	
		GNDD276	49.00	1.45	0.76	9.1	0.48	1.1	0.02	0.26	
		and	112.15	2.85	0.38	0.57	0.02	0.39	0.00	0.01	2
		and	139.00	14.90	0.47	1.9	0.18	0.57	0.01	0.13	2
		inc	143.00	2.00	1.3	2.5	0.22	1.5	0.01	0.16	
		and	188.30	4.85	0.32	0.59	0.13	0.38	0.00	0.07	2
		and	212.00	4.00	0.46	1.8	0.25	0.60	0.01	0.22	2
		GNDD277	63.00	35.00	2.2	3.0	0.11	2.3	0.00	0.03	2
		inc	63.00	29.00	2.6	2.7	0.09	2.7	0.00	0.03	
		GNDD278	221.00	11.75	0.43	1.0	0.09	0.48	0.00	0.05	2
		inc	223.00	1.00	1.0	1.3	0.07	1.1	0.00	0.03	
		inc	228.00	1.00	1.4	1.9	0.19	1.5	0.01	0.12	
		GNDD279	49.00	10.30	0.66	1.7	0.08	0.71	0.00	0.02	2
		inc	50.65	1.35	1.04	0.6	0.0	1.1	0.00	0.0	-

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		inc	58.00	1.30	1.81	9.1	0.5	2.1	0.01	0.1	
		GNDD280	239.35	15.05	3.7	38.6	0.68	4.5	0.01	0.06	
		inc	242.25	2.75	18.4	29.8	0.66	19.1	0.03	0.03	1
		GNDD281	42.50	23.50	1.1	8.9	0.27	1.3	0.01	0.19	2
		inc	42.50	17.50	1.3	11.3	0.29	1.6	0.01	0.23	
		and	196.30	2.60	1.1	26.2	3.1	2.8	0.09	0.91	2
		inc	196.30	1.65	1.4	37.7	4.7	4.0	0.13	1.4	
		and	224.00	12.00	0.28	4.9	0.37	0.51	0.01	0.04	2
		inc	231.10	1.25	0.72	16.0	3.0	2.2	0.08	0.14	
		and	292.00	1.20	3.0	80.4	0.32	4.2	0.01	0.11	
		and	309.00	3.85	0.43	4.3	0.10	0.53	0.00	0.01	2
		and	426.00	1.55	0.27	24.6	1.6	1.3	0.03	0.03	
		GNDD282	11.00	8.00	0.20	1.7	0.07	0.25	0.00	0.03	2
		and	187.00	10.00	0.45	1.7	0.02	0.48	0.00	0.03	2
		and	216.50	7.50	0.20	2.7	0.11	0.28	0.01	0.08	2
		GNDD283	7.00	4.00	2.9	17.8	0.15	3.2	0.01	0.06	2
		inc	8.50	1.20	9.4	49.7	0.26	10.1	0.02	0.13	1
		GNDD284	69.55	17.05	2.4	4.7	0.66	2.7	0.02	0.14	2
		inc	75.00	5.20	7.4	13.9	2.0	8.5	0.06	0.45	
		inc	77.80	1.20	21.4	34.4	5.5	24.2	0.17	0.86	1
		GNDD285	173.60	1.65	1.0	1.5	0.50	1.2	0.02	0.03	
		and	312.00	11.30	3.0	11.4	1.38	3.7	0.06	0.03	
		and	362.40	10.60	0.6	1.2	0.05	0.6	0.01	0.01	2
		inc	362.40	1.15	3.7	8.8	0.42	4.0	0.05	0.04	
		and	393.00	2.00	6.7	12.1	0.09	6.9	0.07	0.01	
		GNDD286	95.00	6.00	0.22	1.5	0.27	0.36	0.01	0.06	2
		and	112.10	3.80	0.38	0.57	0.02	0.40	0.01	0.00	2
		and	169.00	10.20	4.2	52.5	3.0	6.2	0.10	0.09	2
		inc	169.00	7.45	5.8	71.4	4.0	8.4	0.13	0.12	
		inc	174.25	2.20	11.5	171	11.1	18.5	0.37	0.31	1
		GNDD287	26.00	126.00	0.37	2.1	0.17	0.47	0.00	0.01	2
		inc	67.00	5.50	1.8	6.6	0.35	2.0	0.01	0.01	
		inc	82.00	2.00	1.5	4.4	0.59	1.8	0.00	0.00	
		and	202.00	7.00	0.13	1.8	0.16	0.22	0.00	0.02	2
		GNDD288	13.00	96.00	1.8	2.9	0.31	2.0	0.01	0.04	2
		inc	65.00	44.00	3.7	4.6	0.63	4.1	0.01	0.07	
		inc	98.20	4.30	27.6	35.4	5.9	30.6	0.11	0.33	1

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		and	216.00	4.50	3.3	31.2	4.0	5.4	0.15	0.55	2
		inc	217.76	1.90	7.6	68.7	8.7	12.2	0.32	1.2	
		inc	218.55	1.11	11.7	101	12.5	18.4	0.48	2.1	1
		and	399.00	27.80	5.5	12.9	3.9	7.3	0.05	0.02	2
		inc	403.00	4.00	1.3	2.1	0.62	1.6	0.01	0.00	
		inc	410.00	14.20	10.1	20.6	7.3	13.6	0.09	0.04	
		GNDD289	23.00	39.20	0.23	2.1	0.13	0.31	0.00	0.01	2
		inc	27.00	2.00	1.0	16.9	0.07	1.3	0.00	0.04	
		inc	60.90	1.30	0.32	7.1	2.6	1.5	0.08	0.04	
		and	132.00	4.00	0.68	0.41	0.02	0.69	0.00	0.00	2
		and	165.00	14.00	0.27	1.6	0.03	0.30	0.00	0.01	2
		and	201.00	6.00	0.17	1.7	0.23	0.29	0.01	0.15	2
		GNDD290	27.45	8.55	0.20	6.0	0.07	0.30	0.01	0.00	2
		and	70.00	4.00	0.71	13.4	1.1	1.4	0.02	0.01	2
		inc	70.00	2.00	1.0	16.1	2.0	2.1	0.04	0.01	
		and	139.50	11.66	0.31	12.1	0.82	0.82	0.02	0.29	2
		inc	139.50	2.10	1.4	25.3	2.1	2.7	0.10	1.3	
		and	162.60	3.96	1.9	19.9	5.5	4.6	0.05	0.31	
		GNDD291	18.20	11.80	0.46	7.5	0.10	0.60	0.01	0.04	2
		inc	24.00	2.00	1.0	5.7	0.05	1.1	0.01	0.05	
		and	62.00	77.00	0.19	5.3	0.10	0.29	0.00	0.02	2
		and	165.00	25.00	0.13	3.5	0.06	0.20	0.00	0.02	2
		inc	179.00	2.00	0.81	6.3	0.34	1.0	0.00	0.09	
		GNDD292	69.00	12.50	0.25	1.7	0.03	0.29	0.00	0.01	2
		inc	69.00	1.00	1.0	3.2	0.04	1.0	0.00	0.04	
		and	99.00	42.00	0.22	1.5	0.07	0.26	0.00	0.01	2
		inc	110.80	2.00	1.0	7.7	0.25	1.2	0.00	0.00	
		and	159.00	63.00	0.61	8.6	0.75	1.0	0.01	0.26	2
		inc	196.75	1.05	1.5	187	16.9	11.2	0.20	0.12	
		inc	210.70	2.70	2.0	62.0	9.6	6.9	0.22	4.9	
		inv	219.05	2.95	2.2	1.8	0.01	2.2	0.00	0.00	
		GNDD293	130.00	66.00	0.48	1.0	0.09	0.53	0.00	0.02	2
		inc	130.00	5.50	1.4	3.4	0.19	1.5	0.01	0.03	
		inc	143.00	2.00	1.9	2.4	0.03	2.0	0.00	0.01	
		inc	179.50	9.35	0.79	1.8	0.23	0.91	0.01	0.03	
		GNDD294	35.83	9.17	0.29	4.1	0.18	0.42	0.04	0.24	2
		GNDD295	58.00	42.00	0.20	2.7	0.08	0.27	0.00	0.01	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		GNDD296	59.00	13.00	0.31	5.0	0.10	0.42	0.01	0.06	2
		inc	70.00	2.00	1.7	21.5	0.09	2.0	0.00	0.04	
		and	173.00	10.00	0.39	1.6	1.2	0.95	0.01	0.00	
		and	193.00	16.90	14.1	18.3	5.8	16.9	0.18	0.00	
		inc	194.20	7.10	28.1	36.1	8.3	32.2	0.31	0.00	
		inc	207.05	2.85	13.1	13.0	12.6	18.8	0.26	0.00	
		GNDD297	16.00	14.00	0.47	5.1	0.03	0.55	0.00	0.02	2
		inc	20.00	2.00	1.4	21.6	0.01	1.7	0.00	0.00	
		and	71.00	3.60	0.11	34.0	0.03	0.55	0.00	0.03	2
		GNDD298	148.00	21.00	0.63	1.1	0.23	0.75	0.01	0.13	2
		inc	148.00	7.00	1.1	2.3	0.39	1.3	0.02	0.26	
		and	205.00	2.00	1.5	0.15	0.01	1.5	0.00	0.00	
		and	230.50	1.70	0.60	4.2	0.42	0.83	0.01	0.01	2
		and	281.00	5.00	0.06	19.7	0.11	0.36	0.00	0.04	2
		and	300.00	9.00	0.57	2.6	0.47	0.80	0.01	0.00	2
		inc	308.00	1.00	3.1	17.9	3.87	5.0	0.12	0.01	
		GNDD299	141.00	1.00	1.1	9.5	0.88	1.6	0.03	0.09	
		and	147.50	9.85	3.4	44.0	5.3	6.2	0.11	0.20	
		GNDD300	27.00	18.00	0.36	2.0	0.13	0.44	0.00	0.00	2
		and	87.00	33.10	0.36	0.94	0.04	0.39	0.00	0.01	2
		inc	108.00	2.00	1.6	0.73	0.01	1.6	0.00	0.00	
		and	173.85	0.50	0.23	12.6	2.42	1.4	0.07	0.01	
		and	188.00	0.60	1.5	22.3	2.9	3.0	0.11	0.90	
		GNDD301	13.20	48.80	0.41	6.1	0.08	0.52	0.00	0.05	2
		inc	26.10	15.90	0.75	11.7	0.06	0.92	0.00	0.05	
		GNDD302	300.00	3.00	7.6	14.8	0.56	8.1	0.03	0.37	
		and	326.80	3.95	3.3	36.3	8.9	7.6	0.14	0.04	
		and	467.00	15.60	0.66	12.2	0.46	1.0	0.05	0.04	2
		inc	475.50	0.50	1.7	33.9	0.98	2.6	0.07	0.02	
		inc	480.90	1.70	4.1	68.4	3.1	6.4	0.36	0.02	
		and	510.75	4.25	3.3	37.3	0.63	4.0	0.19	0.01	
		inc	512.00	1.10	11.9	129	2.1	14.4	0.49	0.04	1
		GNDD303	139.00	4.00	0.42	1.3	0.01	0.44	0.00	0.01	2
		GNDD304	66.00	47.00	0.23	1.1	0.21	0.33	0.00	0.06	2
		inc	66.00	2.00	1.2	3.4	0.11	1.3	0.01	0.14	
		inc	94.00	2.00	0.72	1.7	0.99	1.2	0.00	0.34	
		GNDD305	128.00	48.00	0.22	1.4	0.02	0.25	0.00	0.01	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

Criteria	JORC Code explanation	Commentary									
		inc	175.00	1.00	1.2	14.2	0.00	1.3	0.09	0.00	
		and	226.70	12.10	0.37	1.9	0.11	0.44	0.00	0.10	2
		inc	237.50	1.30	0.93	7.4	0.50	1.2	0.02	0.54	
		GNDD306	78.00	25.00	0.49	5.8	0.08	0.60	0.02	0.04	2
		inc	84.00	8.00	1.0	13.9	0.20	1.2	0.04	0.09	
		and	213.25	28.75	0.45	8.2	0.30	0.69	0.02	0.03	2
		inc	213.25	1.75	1.0	18.1	0.03	1.2	0.00	0.02	
		inc	222.70	1.70	2.5	63.1	3.0	4.6	0.19	0.08	
		inc	234.00	2.00	1.7	21.5	1.0	2.4	0.04	0.03	
		GNDD307	0.00	23.00	0.33	4.8	0.05	0.41	0.00	0.02	2
		and	57.00	22.00	0.28	0.50	0.03	0.30	0.00	0.00	2
		inc	57.00	2.00	1.5	0.24	0.01	1.5	0.00	0.00	
		GNDD308	258.25	36.75	0.49	1.6	0.16	0.58	0.00	0.06	2
		inc	291.00	4.00	2.6	5.6	0.84	3.1	0.02	0.05	
		and	458.45	8.05	0.43	1.7	0.36	0.61	0.01	0.00	2
		inc	465.90	0.60	1.6	17.6	4.8	3.9	0.08	0.01	2
		and	640.00	45.00	0.33	1.2	0.15	0.41	0.00	0.01	
		inc	650.00	27.00	0.52	1.3	0.18	0.62	0.00	0.00	
		inc	650.00	2.00	2.5	5.2	0.12	2.6	0.00	0.02	
		inc	661.50	0.70	1.1	1.9	0.06	1.2	0.02	0.00	
		inc	668.00	1.00	4.0	3.4	3.0	5.3	0.02	0.00	
		and	1009.00	4.00	3.7	44.9	3.7	5.8	0.28	1.10	2
		inc	1010.00	3.00	4.8	58.9	4.9	7.7	0.37	1.44	
		GNDD309	185.00	23.10	0.62	1.6	0.12	0.70	0.00	0.04	2
		inc	191.00	2.00	1.0	11.9	0.11	1.2	0.00	0.11	
		inc	206.00	2.10	2.8	1.9	0.77	3.1	0.02	0.17	
		GNDD310	30.00	19.00	2.3	1.7	0.01	2.3	0.00	0.00	2
		inc	30.00	2.00	20.3	11.5	0.02	20.5	0.00	0.00	
		and	186.00	40.00	0.60	0.92	0.02	0.62	0.00	0.00	2
		inc	188.00	2.00	1.7	1.9	0.06	1.8	0.00	0.00	
		inc	204.00	8.00	1.1	1.0	0.00	1.1	0.00	0.00	
		inc	222.00	2.00	1.0	0.75	0.01	1.0	0.00	0.00	
		and	288.00	2.00	1.1	6.5	0.16	1.3	0.02	0.15	
		GNDD311	5.00	22.00	0.44	0.84	0.02	0.46	0.00	0.01	2
		inc	23.00	2.00	2.3	1.2	0.04	2.3	0.00	0.02	
		and	45.00	4.00	0.57	0.31	0.01	0.58	0.00	0.01	2
		and	176.00	21.00	0.20	3.2	0.13	0.29	0.01	0.01	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Kna

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		inc	191.00	4.50	0.31	6.5	0.44	0.59	0.02	0.01	
		GNDD312	NSI								
		GNDD313	97.00	24.00	0.53	12.4	0.02	0.70	0.00	0.00	2
		inc	109.00	2.00	2.2	14.1	0.01	2.4	0.00	0.00	
		and	143.00	14.80	0.86	2.3	0.07	0.92	0.01	0.03	2
		inc	148.50	2.50	4.3	7.9	0.24	4.5	0.01	0.11	
		GNDD314	102.00	4.00	0.34	11.8	0.22	0.58	0.01	0.06	2
		and	115.35	2.65	1.5	13.8	0.06	1.7	0.00	0.01	2
		inc	116.59	1.41	2.4	21.3	0.08	2.7	0.00	0.01	
		and	205.00	17.50	0.71	11.5	2.4	1.9	0.04	0.22	2
		inc	205.00	5.50	1.6	25.1	4.6	4.0	0.08	0.42	
		inc	205.00	2.15	3.7	33.6	11.4	9.1	0.18	0.88	
		inc	216.00	6.50	0.51	9.6	2.4	1.7	0.04	0.24	2
		inc	217.00	5.50	0.56	10.5	2.7	1.9	0.04	0.27	
		inc	217.00	3.00	0.83	14.3	3.9	2.7	0.06	0.32	
		and	284.00	2.00	0.83	0.2	0.01	0.84	0.00	0.00	2
		and	296.90	2.75	59.0	25.8	7.2	62.5	0.27	0.00	1
		GNDD315	219.00	2.00	0.95	0.75	0.01	1.0	0.00	0.01	2
		GNDD316	102.00	4.00	0.29	11.2	0.30	0.56	0.07	0.09	2
		and	286.00	34.00	0.32	4.7	0.10	0.42	0.01	0.03	2
		inc	286.00	2.00	1.3	28.0	0.05	1.7	0.00	0.00	
		inc	306.00	2.00	0.64	9.6	0.93	1.2	0.05	0.21	
		inc	316.00	2.00	1.4	4.4	0.03	1.5	0.01	0.01	
		GNDD318	221.00	7.17	0.29	2.4	0.29	0.45	0.01	0.09	2
		inc	226.66	1.51	0.75	8.2	1.1	1.4	0.05	0.27	
		and	245.00	3.78	0.33	7.1	0.36	0.57	0.01	0.10	2
		inc	248.28	0.50	0.42	10.5	1.9	1.4	0.03	0.47	
		GNDD319	108.00	104.00	0.48	1.1	0.03	0.51	0.00	0.01	2
		inc	128.00	2.00	1.7	1.2	0.02	1.7	0.00	0.00	
		inc	140.00	2.00	1.5	0.88	0.01	1.6	0.00	0.01	
		inc	154.00	2.00	1.3	3.7	0.00	1.3	0.00	0.00	
		inc	164.00	4.00	1.2	5.5	0.27	1.4	0.02	0.12	
		inc	196.00	12.00	1.3	0.53	0.01	1.3	0.00	0.00	
		GNDD320	181.75	36.25	0.4	2.52	0.25	0.55	0.01	0.03	2
		inc	197.00	7.85	1.0	5.77	0.61	1.4	0.03	0.04	
		inc	213.50	1.50	1.2	4.09	0.68	1.6	0.03	0.04	
		and	254.00	29.00	0.3	0.26	0.02	0.34	0.00	0.00	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		and	301.00	32.50	0.76	0.6	0.04	0.78	0.00	0.00	2
		inc	303.50	15.50	1.32	0.8	0.06	1.4	0.00	0.00	
		GNDD321	261.00	2.00	1.13	1.0	0.06	1.2	0.00	0.03	
		GNDD322	132.00	50.00	0.85	1.9	0.27	1.0	0.00	0.01	2
		inc	143.60	2.40	12.2	28.5	4.46	14.5	0.05	0.15	
		inc	159.40	1.40	1.1	1.1	0.21	1.2	0.01	0.03	
		inc	180.00	2.00	1.4	0.26	0.01	1.4	0.00	0.00	
		and	295.60	3.40	0.75	0.69	0.01	0.76	0.01	0.00	2
		inc	295.60	1.40	1.4	0.64	0.01	1.4	0.01	0.00	
		and	382.15	8.85	1.3	10.9	1.45	2.0	0.06	0.01	
		GNDD324	128.00	2.00	1.0	1.0	0.01	1.0	0.01	0.05	
		and	144.00	2.00	1.9	1.4	0.01	2.0	0.01	0.01	
		and	152.00	10.00	0.27	0.81	0.11	0.32	0.00	0.01	2
		GNDD325	32.00	17.00	0.34	18.4	0.06	0.60	0.00	0.02	2
		inc	41.00	4.00	1.0	52.8	0.09	1.7	0.01	0.06	
		GNDD326	288.00	2.00	7.5	1.4	0.02	7.5	0.00	0.00	
		GNDD327	229.00	28.00	0.25	0.20	0.01	0.25	0.00	0.01	2
		and	307.00	0.60	1.4	4.4	1.1	1.9	0.03	0.83	
		and	354.70	1.00	13.2	22.1	2.0	14.4	0.11	0.01	
		and	386.00	1.70	0.57	0.21	0.01	0.57	0.00	0.00	2
		and	459.00	3.00	0.34	1.1	0.01	0.36	0.00	0.00	2
		GNDD328	NSI								
		GNDD329	104.00	14.00	1.1	1.4	0.02	1.2	0.00	0.00	2
		inc	106.60	1.65	7.3	4.1	0.02	7.4	0.00	0.01	
		and	282.00	68.00	0.48	0.87	0.03	0.51	0.01	0.01	2
		inc	284.00	2.50	2.9	6.4	0.72	3.3	0.04	0.30	
		inc	312.00	1.10	3.0	2.0	0.00	3.1	0.00	0.00	
		inc	331.00	2.00	1.0	0.7	0.00	1.0	0.01	0.00	
		inc	337.00	2.00	1.2	1.1	0.00	1.2	0.00	0.00	
		inc	345.00	2.00	1.3	1.0	0.00	1.3	0.01	0.00	
		and	394.00	16.00	0.47	0.86	0.01	0.48	0.01	0.00	2
		inc	398.00	2.00	1.6	0.68	0.00	1.6	0.02	0.00	
		and	436.90	5.10	0.26	1.1	0.01	0.28	0.00	0.00	
		GNDD330	286	49.70	0.39	0.88	0.08	0.43	0.00	0.01	2
		inc	316	1.00	1.4	0.89	0.03	1.5	0.00	0.01	
		inc	329	6.70	1.3	1.5	0.06	1.3	0.00	0.00	
		and	375.2	1.80	0.41	2.6	3.7	2.1	0.03	0.01	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		inc	375.2	0.50	1.3	8.2	12.3	6.7	0.11	0.02	
		GNDD332	182.00	21.00	0.53	0.59	0.05	0.56	0.00	0.01	2
		inc	194.00	5.70	1.1	0.61	0.02	1.1	0.00	0.01	
		and	230.50	19.05	0.33	0.63	0.15	0.41	0.00	0.00	2
		inc	230.50	1.50	2.2	1.4	0.10	2.3	0.00	0.02	
		inc	249.00	0.55	2.2	11.3	3.5	3.9	0.04	0.01	
		and	263.50	16.67	0.32	2.9	0.39	0.53	0.02	0.02	2
		inc	263.50	0.65	1.5	5.7	2.0	2.5	0.05	0.01	
		inc	278.25	1.92	1.9	19.6	2.5	3.2	0.12	0.11	
		GNDD333	164.20	16.80	0.32	1.3	0.07	0.37	0.00	0.02	2
		and	224.00	5.00	0.50	9.1	0.31	0.75	0.01	0.13	
		and	248.00	1.45	1.2	3.8	0.43	1.4	0.02	0.19	
		and	262.00	10.30	0.17	2.6	0.65	0.49	0.01	0.03	2
		inc	265.80	1.20	0.68	3.0	0.73	1.0	0.02	0.04	
		inc	271.50	0.80	0.22	7.2	2.0	1.2	0.04	0.00	
		and	284.00	13.00	0.27	3.19	0.32	0.44	0.01	0.04	2
		and	358.50	2.50	0.41	9.7	1.79	1.3	0.05	0.01	2
		inc	358.50	0.50	1.8	43.1	7.48	5.5	0.21	0.05	
		and	373.90	1.80	0.33	13.1	3.08	1.8	0.08	0.02	2
		inc	373.90	0.60	0.85	31.7	6.92	4.3	0.20	0.03	
		GNDD334	220.00	29.00	0.33	0.19	0.02	0.34	0.00	0.00	2
		inc	222.00	1.50	1.2	0.43	0.01	1.2	0.00	0.00	
		inc	230.00	1.50	1.4	0.09	0.01	1.4	0.00	0.00	
		and	275.00	20.00	0.25	0.12	0.01	0.25	0.00	0.00	2
		and	317.00	18.65	0.25	0.74	0.06	0.29	0.00	0.03	2
		GNDD336	146.00	35.00	0.35	5.3	0.23	0.52	0.00	0.04	2
		inc	150.00	2.00	1.3	15.8	0.88	1.8	0.01	0.31	
		inc	174.00	1.00	2.2	26.8	1.68	3.2	0.03	0.08	
		and	282.00	3.00	0.40	0.61	0.04	0.42	0.00	0.05	2
		and	310.00	49.00	1.5	10.4	1.67	2.4	0.05	0.06	2
		inc	312.00	2.92	13.8	55.1	7.22	17.7	0.16	0.49	
		inc	327.45	2.40	0.20	6.9	1.16	0.79	0.03	0.09	
		inc	341.45	17.55	1.8	18.2	3.24	3.5	0.11	0.05	
		GNDD337	90.00	7.00	0.38	0.70	0.07	0.41	0.00	0.05	2
		inc	90.00	1.10	1.7	2.1	0.22	1.9	0.01	0.19	
		and	195.50	34.00	0.16	3.0	0.01	0.21	0.00	0.01	2
		and	258.60	13.90	2.0	6.0	0.74	2.4	0.02	0.04	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		inc	262.20	10.30	2.7	7.9	0.95	3.2	0.03	0.04	
		and	312.00	2.00	1.8	3.2	0.27	2.0	0.01	0.02	
		GNDD338	9.00	4.00	0.36	2.55	0.02	0.40	0.00	0.01	2
		and	190.00	20.00	0.40	6.12	0.08	0.51	0.01	0.02	2
		GNDD339	81.00	4.00	1.0	32.5	0.18	1.5	0.01	0.15	2
		inc	81.00	2.00	1.9	32.7	0.32	2.5	0.01	0.27	
		GNDD341	60.60	110.40	0.52	0.60	0.08	0.56	0.00	0.00	2
		inc	78.00	47.00	1.0	0.95	0.18	1.1	0.01	0.01	2
		inc	81.50	5.50	6.4	2.2	0.63	6.7	0.01	0.01	
		GNDD342	352.00	7.00	0.24	0.23	0.01	0.24	0.00	0.00	2
		GNDD343	190.00	55.00	0.51	6.2	0.16	0.66	0.01	0.03	2
		inc	190.00	2.00	1.1	9.2	0.07	1.2	0.02	0.00	
		inc	204.00	14.00	1.1	13.6	0.15	1.3	0.01	0.02	
		inc	224.00	1.50	1.4	18.8	1.38	2.2	0.08	0.13	
		GNDD344	15.00	74.00	0.34	1.2	0.02	0.36	0.00	0.00	2
		inc	19.00	4.00	1.4	2.7	0.05	1.5	0.00	0.01	
		inc	37.00	2.00	1.6	3.2	0.01	1.7	0.01	0.00	
		and	158.00	6.30	1.3	1.0	0.10	1.4	0.00	0.01	
		and	242.48	0.89	0.81	15.8	0.06	1.0	0.02	0.01	
		and	287.19	3.91	0.76	5.4	0.01	0.83	0.00	0.00	2
		inc	288.55	0.75	2.6	18.4	0.01	2.8	0.00	0.00	
		GNDD345	227.00	70.50	0.42	0.57	0.07	0.46	0.00	0.00	2
		inc	247.50	1.00	5.0	0.87	1.3	5.6	0.01	0.00	
		inc	256.00	2.00	1.3	0.21	0.01	1.3	0.00	0.00	
		inc	282.00	2.00	1.7	4.4	0.34	1.9	0.02	0.00	
		GNDD346	77.00	4.70	0.67	4.1	0.45	0.92	0.04	0.27	2
		inc	80.00	1.70	1.8	2.1	0.16	1.9	0.02	0.04	
		GNDD347	235.00	25.00	0.80	0.43	0.04	0.83	0.00	0.01	2
		inc	235.00	2.00	1.2	0.94	0.23	1.3	0.00	0.05	
		inc	245.70	1.30	9.2	1.2	0.21	9.3	0.00	0.01	
		and	277.00	4.00	0.37	2.2	0.34	0.55	0.01	0.04	2
		inc	277.00	0.50	2.4	10.1	2.2	3.5	0.09	0.12	
		GNDD348	227.00	53.70	0.37	4.8	0.11	0.48	0.01	0.02	2
		inc	227.00	3.40	1.2	28.2	0.42	1.7	0.01	0.00	
		inc	247.10	0.90	6.1	26.8	0.30	6.6	0.01	0.07	
		GNDD349	339.50	1.75	0.3	4.6	0.65	0.6	0.03	0.01	2
		GNDD350	273.00	0.62	4.3	8.7	1.20	4.9	0.02	0.14	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		GNDD351	62.00	4.00	0.26	17.4	0.03	0.49	0.00	0.00	2
		and	125.00	4.00	0.32	7.3	0.48	0.62	0.03	0.16	2
		and	164.50	6.00	0.17	1.1	0.04	0.21	0.00	0.02	2
		GNDD352	143.50	11.30	5.4	76.9	5.5	8.8	0.18	0.42	
		inc	146.00	4.00	10.6	141	11.7	17.4	0.27	0.43	1
		and	301.00	3.00	0.42	4.4	0.35	0.63	0.01	0.07	2
		inc	302.00	1.00	1.0	9.9	0.63	1.4	0.02	0.15	
		inc	325.00	1.00	8.9	5.4	3.0	10.3	0.10	0.00	1
		GNDD353	15.00	29.00	0.39	31.1	0.15	0.85	0.00	0.01	2
		inc	21.00	4.00	0.75	52.0	0.16	1.5	0.01	0.02	
		inc	37.00	5.60	0.56	68.3	0.30	1.6	0.01	0.03	
		and	95.00	3.00	0.12	3.4	0.36	0.32	0.02	0.20	2
		GNDD354	15.00	41.00	0.32	8.3	0.07	0.46	0.00	0.00	2
		inc	29.00	8.00	0.53	15.8	0.07	0.76	0.00	0.00	
		and	95.00	20.85	0.42	5.3	0.23	0.59	0.01	0.05	2
		inc	101.00	2.00	2.0	22.3	1.0	2.7	0.02	0.14	
		GNDD355	28.00	10.00	0.25	6.8	0.02	0.35	0.00	0.01	2
		and	50.00	18.00	0.27	0.9	0.03	0.30	0.00	0.01	2
		inc	56.00	2.00	1.13	3.9	0.06	1.2	0.00	0.02	
		inc	66.00	1.00	1.14	8.0	0.05	1.2	0.00	0.01	
		and	79.00	6.00	0.79	1.2	0.15	0.87	0.01	0.13	2
		inc	83.00	1.00	2.56	3.6	0.64	2.9	0.03	0.54	
		and	101.00	22.00	0.31	1.3	0.04	0.34	0.01	0.04	2
		inc	101.00	2.00	1.2	1.3	0.01	1.2	0.01	0.15	
		inc	109.00	2.00	1.02	1.85	0.02	1.1	0.01	0.03	
		GNDD356	263.00	27.00	0.47	0.88	0.06	0.51	0.00	0.05	2
		inc	268.00	1.00	1.3	1.9	0.30	1.4	0.04	0.22	
		inc	286.00	2.00	1.4	0.39	0.06	1.5	0.00	0.02	
		GNDD357	78.00	4.00	0.23	9.6	0.48	0.56	0.02	0.08	
		GNDD358	34.00	2.55	0.28	5.3	0.07	0.38	0.01	0.01	2
		and	137.00	20.00	0.26	2.0	0.11	0.33	0.00	0.04	2
		GNDD359	202.00	6.65	6.0	1.0	0.01	6.0	0.00	0.01	2
		inc	208.00	0.65	58.5	7.3	0.02	58.6	0.00	0.03	1
		and	234.00	2.00	0.87	2.4	0.40	1.1	0.02	0.00	
		and	270.00	23.00	0.32	1.0	0.05	0.35	0.00	0.01	2
		inc	272.00	1.50	1.0	5.4	0.23	1.1	0.02	0.11	
		and	369.00	8.00	0.26	0.21	0.01	0.27	0.00	0.00	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

Criteria	JORC Code explanation	Commentary									
		GNDD360	162.00	4.05	0.18	1.2	0.11	0.24	0.00	0.02	2
		GNDD361	189.00	7.00	0.31	0.41	0.01	0.32	0.00	0.00	2
		and	207.00	69.00	0.31	0.66	0.05	0.34	0.00	0.01	2
		inc	215.20	1.80	1.2	0.22	0.01	1.2	0.00	0.00	
		inc	221.00	1.50	1.2	1.7	0.01	1.2	0.00	0.00	
		inc	246.00	1.00	3.7	2.8	1.2	4.2	0.03	0.05	
		and	330.20	4.80	7.2	16.5	3.2	8.8	0.12	0.11	2
		inc	330.20	1.60	21.5	42.9	9.2	26.0	0.35	0.30	
		and	366.50	1.95	7.3	19.7	4.4	9.4	0.12	0.01	
		and	379.35	0.85	10.4	14.7	0.41	10.8	0.03	0.14	
		and	401.00	6.00	0.59	0.84	0.01	0.60	0.00	0.01	2
		GNDD362	191.00	17.00	0.19	8.3	0.04	0.31	0.00	0.01	2
		and	237.90	2.50	2.1	77.6	11.1	7.9	0.36	0.36	2
		inc	239.1	1.3	3.8	138	21.2	14.7	0.70	0.65	
		and	401.60	3.50	5.4	9.4	3.9	7.2	0.12	0.00	2
		inc	402.25	2.20	8.4	12.1	6.1	11.2	0.18	0.00	
		and	415.30	1.15	2.2	6.7	1.3	2.8	0.05	0.00	
		and	423.55	2.75	0.19	4.2	1.7	1.0	0.09	0.00	2
		inc	425.00	0.60	0.13	7.5	5.8	2.8	0.23	0.00	
		GNDD363	112.00	15.25	0.25	0.49	0.01	0.27	0.00	0.00	2
		and	188.00	21.85	0.53	5.9	0.34	0.76	0.01	0.04	2
		inc	188.00	1.50	1.4	19.5	2.35	2.6	0.03	0.29	
		inc	203.50	5.05	1.0	5.4	0.15	1.2	0.00	0.02	
		GNDD364	83.00	29.00	0.47	0.36	0.06	0.50	0.00	0.01	2
		inc	88.00	2.00	2.4	0.23	0.04	2.4	0.00	0.00	
		inc	98.00	1.50	1.9	1.7	0.32	2.1	0.02	0.02	
		GNDD365	62.60	3.80	0.58	5.7	0.59	0.91	0.04	0.23	2
		and	184.00	11.00	0.24	0.87	0.06	0.28	0.00	0.01	2
		inc	186.70	0.55	2.2	11.7	1.04	2.8	0.02	0.08	
		and	222.50	5.90	0.29	0.78	0.04	0.32	0.00	0.01	2
		inc	227.70	0.70	1.8	1.5	0.07	1.9	0.00	0.01	
		and	294.70	2.20	0.37	13.7	0.46	0.74	0.01	0.02	2
		and	334.15	0.70	1.1	9.7	1.10	1.7	0.04	0.11	
		GNDD366	209.00	23.00	0.70	0.64	0.11	0.76	0.01	0.03	2
		inc	209.00	2.00	3.0	0.35	0.01	3.0	0.00	0.00	
		inc	221.00	5.00	1.0	0.88	0.10	1.0	0.00	0.06	
		and	243.80	0.50	1.8	0.94	0.02	1.8	0.00	0.01	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Kna

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary										
		and	335.35	5.65	3.6	3.2	0.03	3.7	0.00	0.00		
		GNDD367	91.00	71.25	0.19	0.63	0.08	0.23	0.00	0.01	2	
		and	243.15	0.55	2.4	58.0	12.89	8.7	0.41	3.92		
		GNDD368	227.00	12.00	0.66	0.50	0.08	0.70	0.00	0.00	2	
		inc	227.00	0.50	1.3	1.9	0.01	1.3	0.00	0.00		
		inc	231.90	1.10	2.6	2.0	0.49	2.8	0.00	0.00		
		inc	236.00	1.20	1.5	0.42	0.01	1.5	0.00	0.00		
		and	264.10	7.90	0.36	0.46	0.01	0.37	0.00	0.01	2	
		and	288.00	4.00	0.45	1.2	0.01	0.46	0.00	0.00	2	
		and	313.75	56.25	0.78	2.2	0.11	0.86	0.00	0.00	2	
		inc	339.00	5.50	5.1	13.7	0.87	5.6	0.04	0.01		
		inc	354.00	2.00	1.5	1.0	0.02	1.5	0.00	0.00		
		inc	369.00	1.00	2.3	4.2	0.50	2.6	0.03	0.01		
		GNDD369	226.00	18.50	0.75	2.0	0.16	0.84	0.01	0.01	2	
		inc	232.00	5.35	1.6	2.7	0.01	1.7	0.00	0.00		
		inc	243.80	0.70	3.5	16.9	3.9	5.4	0.10	0.05		
		GNDD370	245.80	18.90	2.7	9.9	0.55	3.1	0.02	0.21	2	
		inc	247.00	6.60	5.8	17.9	1.3	6.6	0.05	0.46		
		inc	259.80	4.90	2.0	10.1	0.32	2.3	0.01	0.13		
		and	330.80	4.20	10.4	61.5	11.4	16.1	0.42	0.68		
		GNDD372	290.50	6.50	2.4	3.5	1.1	3.0	0.00	0.57		
		inc	291.60	1.50	9.0	13.5	4.7	11.2	0.01	2.41		
		GNDD373	97.00	5.00	1.2	1.6	0.06	1.3	0.00	0.02		
		and	324.00	15.00	0.30	2.2	0.17	0.40	0.00	0.06	2	
		and	376.90	53.65	0.46	1.8	0.13	0.54	0.01	0.05	2	
		inc	376.90	0.70	2.0	24.5	3.1	3.6	0.19	0.03		
		inc	403.50	2.00	1.1	3.7	0.21	1.2	0.01	0.07		
		inc	412.00	1.00	5.5	11.5	0.13	5.7	0.00	0.04		
		inc	422.00	2.00	2.5	2.6	0.02	2.6	0.00	0.02		
		inc	430.00	0.55	0.81	14.3	3.4	2.5	0.46	1.75		
		GNDD375	189.75	11.25	0.41	6.6	0.14	0.55	0.00	0.01	2	
		inc	195.00	2.00	1.1	16.3	0.55	1.6	0.00	0.04		
		and	235.24	6.46	0.82	3.1	0.12	0.92	0.00	0.00	2	
		inc	235.24	1.12	3.4	6.3	0.01	3.5	0.00	0.01		
		and	269.00	2.00	2.0	1.1	0.10	2.0	0.00	0.21		
		and	318.00	4.00	0.05	55.4	0.07	0.79	0.00	0.03	2	
		GNDD376	141.00	51.00	0.92	15.2	0.89	1.5	0.08	0.17	2	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		inc	170.20	1.80	0.87	1.5	0.38	1.0	0.01	0.13	
		inc	187.40	4.60	8.3	163	9.0	14.3	0.89	1.61	
		inc	187.40	2.60	13.8	282	15.6	24.2	1.54	2.70	1
		and	209.40	23.60	0.66	0.88	0.03	0.69	0.00	0.00	2
		inc	209.40	1.60	1.5	1.0	0.01	1.5	0.00	0.00	
		inc	227.00	2.00	4.2	1.8	0.02	4.2	0.02	0.00	
		GNDD377	NSI								
		GNDD378	108.30	63.30	8.5	7.6	2.8	9.8	0.05	0.00	
		inc	113.58	24.08	20.4	15.9	6.2	23.3	0.11	0.01	1
		inc	168.7	1.90	13.5	23.1	7.8	17.2	0.21	0.00	1
		and	317.5	1.10	0.39	7.2	1.6	1.2	0.07	0.04	
		GNDD379	232.80	11.60	0.21	0.88	0.07	0.25	0.01	0.08	2
		GNDD380	67.00	22.00	0.28	1.7	0.10	0.35	0.01	0.01	2
		inc	87.00	2.00	1.3	2.0	0.17	1.4	0.01	0.02	
		and	142.00	2.00	3.0	5.1	0.14	3.1	0.01	0.10	
		and	192.00	70.00	0.64	1.0	0.04	0.67	0.00	0.00	2
		inc	194.00	0.70	17.5	17.6	0.01	17.7	0.00	0.00	
		inc	214.50	1.35	9.6	3.5	0.00	9.6	0.00	0.00	
		inc	245.00	2.00	1.4	0.91	0.14	1.5	0.00	0.00	
		inc	257.00	2.00	4.5	0.39	0.01	4.5	0.00	0.00	
		GNDD381	76.25	2.10	1.5	1.1	0.13	1.6	0.01	0.03	2
		inc	77.00	1.35	2.2	1.3	0.20	2.3	0.01	0.01	
		and	270.50	14.90	0.34	4.7	0.03	0.41	0.01	0.04	2
		inc	270.50	1.50	2.2	5.1	0.03	2.3	0.00	0.02	
		GNDD382	200.00	0.50	1.7	0.46	0.06	1.7	0.00	0.01	
		and	330.00	3.60	0.06	2.3	1.7	0.81	0.01	0.00	2
		GNDD383	NSI								
		GNDD384	57.00	12.00	0.12	3.8	0.42	0.35	0.01	0.14	2
		GNDD385	231.00	20.00	0.65	5.4	0.27	0.83	0.01	0.19	2
		inc	232.60	1.10	4.5	15.6	0.88	5.0	0.05	0.92	
		inc	242.00	1.45	3.7	27.9	2.9	5.3	0.14	1.87	
		and	295.00	5.30	0.28	1.5	0.07	0.33	0.00	0.15	2
		and	318.50	12.50	0.34	0.4	0.01	0.35	0.00	0.01	2
		inc	329.20	1.80	1.5	0.2	0.00	1.5	0.00	0.00	
		GNDD386	64.60	31.90	0.56	6.4	0.09	0.68	0.00	0.02	2
		inc	67.00	2.00	6.3	2.7	0.01	6.4	0.00	0.01	
		inc	81.50	0.90	0.84	90.8	1.1	2.5	0.03	0.11	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

Criteria	JORC Code explanation	Commentary									
		GNDD387	177.05	3.80	0.41	3.8	0.11	0.51	0.01	0.08	2
		and	260.65	0.70	21.4	201	14.1	30.1	0.32	1.11	1
		GNDD389	32.70	8.30	0.35	1.9	0.52	0.60	0.00	0.01	2
		inc	32.70	2.00	0.72	2.5	0.94	1.2	0.01	0.02	
		and	62.00	1.00	0.93	8.7	1.0	1.5	0.03	0.06	
		GNDD390	238.00	2.00	0.4	15.0	1.3	1.1	0.07	0.61	
		GNDD391	278.00	5.00	1.1	2.2	0.70	1.4	0.00	0.23	2
		inc	281.00	2.00	2.0	5.3	1.6	2.7	0.01	0.55	
		and	294.85	0.80	0.88	18.9	2.9	2.4	0.11	0.47	
		GNDD392	61.00	6.00	0.37	0.21	0.01	0.38	0.00	0.00	2
		and	144.00	2.00	0.19	101	0.03	1.5	0.00	0.06	
		GNDD393	190.00	1.00	2.8	36.5	0.16	3.4	0.10	0.00	
		and	231.00	2.00	2.6	56.6	0.04	3.3	0.00	0.03	
		and	243.00	1.00	0.33	5.2	2.1	1.3	0.01	0.01	
		GNDD394	224.00	5.00	7.3	29.4	2.4	8.7	0.04	1.31	2
		inc	224.00	3.00	12.0	46.4	3.9	14.3	0.07	2.13	1
		GNDD397	15.00	5.00	17.3	30.1	5.1	19.9	0.08	0.14	
		inc	15.00	3.00	28.3	49.8	8.3	32.5	0.14	0.24	1
		and	50.00	4.00	0.25	9.4	0.12	0.42	0.01	0.14	2
		and	98.00	4.00	0.61	0.26	0.00	0.62	0.00	0.00	2
		GNDD399	5.00	17.50	0.30	2.5	0.20	0.42	0.01	0.14	2
		and	57.00	51.25	0.30	2.1	0.08	0.36	0.00	0.05	2
		and	277.00	14.00	0.32	1.4	0.04	0.36	0.00	0.00	2
		GNDD401	234.40	2.35	4.33	61.4	9.3	9.1	0.25	0.01	
		GNDD402	187.30	37.90	0.26	0.3	0.04	0.29	0.00	0.02	2
		inc	215.00	6.00	1.2	1.5	0.20	1.3	0.01	0.09	
		and	280.00	24.00	0.22	2.9	0.08	0.29	0.00	0.01	2
		GNDD403	16.80	0.90	0.01	0.78	9.4	4.1	0.05	0.02	
		and	47.15	7.85	0.10	7.0	0.04	0.20	0.00	0.01	3
		GNDD405	58.00	58.00	0.21	2.9	0.33	0.39	0.01	0.12	2
		inc	70.70	1.95	1.35	2.7	0.93	1.8	0.03	0.30	
		inc	95.00	2.00	0.52	7.7	2.51	1.7	0.01	1.11	
		inc	107.00	1.40	0.23	25.8	1.09	1.0	0.01	0.30	
		GNDD406	242.00	24.00	0.51	0.22	0.03	0.53	0.00	0.01	2
		and	317.70	9.30	0.28	1.1	0.01	0.3	0.00	0.01	
		and	349.45	0.50	78.8	86.3	24.0	90.3	1.47	0.54	1
		and	430.00	20.85	0.32	0.82	0.06	0.36	0.00	0.00	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

Criteria	JORC Code explanation	Commentary									
		inc	430.00	1.35	0.71	4.8	0.62	1.0	0.04	0.01	
		inc	448.85	0.90	1.9	1.3	0.12	2.0	0.01	0.00	
		and	527.85	5.30	1.4	1.7	0.15	1.5	0.01	0.04	2
		inc	532.45	0.70	9.4	12.1	1.1	10.0	0.05	0.28	
		GNDD407	95.00	14.50	0.34	3.5	0.12	0.44	0.01	0.07	2
		inc	95.00	2.00	1.4	2.4	0.05	1.5	0.00	0.03	
		and	155.00	16.00	0.48	3.4	0.79	0.86	0.01	0.00	2
		inc	160.00	1.00	1.0	7.0	1.3	1.6	0.01	0.00	
		inc	168.85	2.15	2.6	13.0	3.3	4.2	0.05	0.00	
		and	198.00	4.00	0.15	42.3	0.06	0.71	0.00	0.03	2
		GNDD408	13.00	21.70	0.88	9.3	0.18	1.1	0.01	0.19	2
		inc	23.00	4.00	3.9	15.7	0.22	4.1	0.03	0.39	
		and	47.00	63.00	0.38	2.8	0.22	0.51	0.00	0.12	2
		inc	86.00	1.40	3.1	43.3	1.6	4.4	0.10	0.07	
		inc	101.20	2.80	1.6	20.5	2.8	3.1	0.03	1.92	
		and	184.00	4.00	0.35	1.3	0.27	0.49	0.00	0.00	2
		and	248.90	8.10	0.35	0.78	0.16	0.43	0.00	0.00	2
		and	325.00	12.50	1.0	1.3	0.23	1.1	0.00	0.00	2
		inc	325.00	5.00	2.2	1.6	0.19	2.3	0.00	0.00	
		GNDD409	0.00	22.00	0.52	7.0	0.07	0.64	0.01	0.06	2
		inc	0.00	2.00	1.9	30.5	0.01	2.3	0.04	0.06	
		inc	12.00	2.00	1.7	6.8	0.05	1.8	0.01	0.09	
		and	83.00	22.00	1.3	1.6	0.02	1.3	0.00	0.02	2
		inc	89.00	10.00	2.4	2.2	0.02	2.5	0.00	0.03	
		GNDD411	0.00	14.00	0.21	5.0	0.1	0.33	0.00	0.01	2
		and	38.00	2.00	1.0	1.1	0.0	1.0	0.00	0.11	2
		GNDD412	132.00	28.00	0.47	6.0	0.13	0.61	0.00	0.06	2
		inc	134.00	4.00	1.7	31.1	0.84	2.5	0.02	0.36	
		and	228.00	4.00	0.73	9.0	0.12	0.90	0.01	0.01	2
		inc	228.00	0.55	3.3	48.9	0.28	4.0	0.01	0.05	
		and	256.50	27.50	0.34	1.0	0.04	0.37	0.00	0.02	2
		inc	259.35	1.65	0.83	6.9	0.41	1.1	0.01	0.30	
		inc	277.00	1.00	1.0	0.34	0.00	1.0	0.00	0.00	
		GNDD413	NSI								
		GNDD414	273.30	13.70	1.5	13.8	0.76	2.0	0.04	0.06	
		inc	273.30	4.20	3.7	43.9	2.45	5.4	0.11	0.19	
		and	427.50	13.30	0.09	8.6	0.40	0.37	0.03	0.07	2

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		and	509.00	12.00	0.16	24.9	0.25	0.59	0.01	0.02	2
		inc	509.00	1.00	0.95	9.1	2.5	2.2	0.07	0.00	
		inc	517.00	2.00	0.17	102	0.08	1.5	0.00	0.07	
		GNDD416A	61.00	6.00	0.26	0.49	0.02	0.28	0.00	0.00	2
		GNDD416B	226.20	2.30	0.55	2.1	0.16	0.64	0.01	0.05	2
		and	240.00	4.00	16.9	10.7	0.05	17.1	0.01	0.03	
		inc	242.00	2.00	32.7	8.8	0.08	32.8	0.02	0.04	1
		and	424.60	1.30	2.1	25.6	3.61	4.0	0.06	0.01	
		and	530.70	1.10	44.5	23.0	0.30	44.9	0.01	0.71	1
		GNDD417	55.00	1.80	2.3	0.77	0.03	2.3	0.00	0.00	
		and	182.00	3.00	1.1	1.3	0.01	1.2	0.00	0.00	
		and	310.35	0.55	0.08	10.5	4.2	2.0	0.01	0.27	
		and	336.15	0.55	0.24	7.4	2.8	1.5	0.05	0.14	
		and	496.00	9.10	1.1	12.2	1.3	1.8	0.08	0.02	
		GNDD418	NSI								
		GNDD420	96.00	6.00	0.22	0.65	0.15	0.29	0.00	0.04	2
		and	110.00	4.00	0.22	2.3	0.57	0.49	0.01	0.16	2
		and	155.00	14.00	0.30	0.94	0.11	0.36	0.00	0.12	2
		GNDD421	66.00	25.00	1.4	3.7	0.33	1.6	0.01	0.08	2
		inc	68.00	21.00	1.6	4.0	0.36	1.8	0.01	0.09	
		GNDD422	127.50	8.50	0.41	1.7	0.24	0.53	0.03	0.18	2
		inc	133.50	0.90	1.4	6.1	0.89	1.8	0.08	0.79	
		and	149.40	28.80	0.25	0.82	0.12	0.32	0.00	0.05	2
		inc	176.40	1.80	1.2	2.3	0.11	1.3	0.01	0.05	
		and	189.30	0.50	0.85	35.1	1.0	1.8	0.24	0.11	
		and	213.00	64.00	0.32	1.2	0.12	0.39	0.01	0.00	2
		inc	213.00	2.00	1.0	1.1	0.02	1.0	0.00	0.00	
		inc	266.50	0.80	8.8	48.9	7.6	12.7	0.38	0.07	
		GNDD423	2.00	2.00	1.5	1.3	0.0	1.5	0.00	0.01	
		and	18.00	5.60	1.7	2.5	0.09	1.8	0.01	0.08	3
		inc	20.60	3.00	2.8	2.6	0.09	2.9	0.01	0.08	
		GNDD424	74.00	27.20	0.52	3.3	0.38	0.73	0.01	0.20	2
		inc	92.75	8.45	1.3	8.0	1.1	1.9	0.03	0.59	
		and	126.75	11.25	0.40	3.3	0.06	0.46	0.00	0.05	2
		inc	136.00	2.00	1.3	4.1	0.17	1.4	0.01	0.18	
		GNDD425	19.80	50.40	0.26	3.7	0.09	0.35	0.00	0.01	2
		inc	23.00	5.00	1.2	6.3	0.04	1.3	0.01	0.05	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America Contact

Criteria	JORC Code explanation	Commentary									
		GNDD426	436.00	28.00	0.20	0.43	0.05	0.22	0.00	0.01	2
		GNDD427	113.00	17.00	0.24	1.0	0.09	0.30	0.00	0.05	2
		and	162.00	18.00	0.25	1.8	0.08	0.31	0.00	0.04	2
		and	197.00	2.00	0.72	3.1	0.07	0.79	0.01	0.11	2
		inc	198.00	1.00	1.1	1.4	0.08	1.1	0.00	0.03	
		GNDD429	62.30	39.70	0.47	1.3	0.08	0.52	0.00	0.02	2
		inc	62.30	1.70	5.9	2.3	0.09	6.0	0.02	0.08	
		inc	89.45	0.95	1.3	1.6	0.42	1.5	0.01	0.01	
		GNDD431	48.00	8.00	0.25	1.99	0.06	0.29	0.00	0.01	2
		GNDD432	50.00	48.00	0.36	7.9	0.06	0.48	0.00	0.02	2
		inc	54.60	3.40	2.7	15.0	0.22	3.0	0.01	0.15	
		inc	76.00	2.00	0.54	62.2	0.10	1.4	0.00	0.04	
		and	112.00	6.00	1.1	0.70	0.02	1.1	0.00	0.01	2
		inc	112.00	2.00	2.7	1.0	0.01	2.8	0.00	0.01	
		and	246.00	37.35	0.66	6.2	0.06	0.77	0.00	0.01	2
		inc	252.00	2.00	0.91	7.6	0.01	1.0	0.00	0.00	
		inc	264.00	1.30	3.5	25.5	0.04	3.8	0.00	0.00	
		inc	269.00	2.00	1.4	10.6	0.57	1.8	0.02	0.01	
		inc	282.10	1.25	6.7	7.4	0.28	7.0	0.02	0.08	
		GNDD433	105.00	3.00	0.4	1.0	0.24	0.48	0.01	0.11	2
		and	143.00	4.00	0.3	1.2	0.45	0.49	0.02	0.13	2
		and	178.00	22.00	0.4	4.3	0.52	0.72	0.03	0.35	2
		inc	186.00	4.00	1.9	8.4	1.00	2.5	0.04	0.63	
		and	301.00	12.00	0.35	0.36	0.02	0.36	0.00	0.02	2
		GNDD434	24.40	67.60	2.5	2.6	0.03	2.6	0.00	0.01	2
		inc	24.40	5.40	28.6	11.1	0.04	28.7	0.01	0.11	
		inc	26.00	2.40	60.0	20.4	0.03	60.2	0.00	0.14	1
		inc	62.00	2.00	2.4	0.72	0.01	2.4	0.00	0.00	
		and	120.00	2.30	0.56	0.13	0.01	0.57	0.00	0.00	2
		GNDD435	64.00	4.00	0.52	1.0	0.06	0.56	0.00	0.03	2
		and	76.00	4.00	0.34	3.0	0.39	0.55	0.02	0.10	2
		and	91.00	2.00	3.5	0.76	0.01	3.5	0.00	0.00	
		GNDD436	354.00	9.00	0.20	1.1	0.35	0.37	0.00	0.05	2
		and	468.00	12.00	0.91	0.33	0.01	0.92	0.00	0.00	2
		inc	468.00	2.00	4.7	0.92	0.01	4.7	0.00	0.00	
		GNDD437	52.50	1.65	1.8	2.5	0.02	1.8	0.00	0.00	
		and	173.00	2.00	6.8	0.53	0.01	6.8	0.00	0.00	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Kna

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		and	348.45	26.55	2.2	0.81	0.01	2.2	0.00	0.01	2
		inc	356.80	4.20	12.6	2.7	0.00	12.7	0.00	0.00	
		inc	356.80	1.10	40.3	7.3	0.00	40.4	0.00	0.00	1
		inc	373.00	2.00	1.7	0.39	0.00	1.7	0.00	0.00	
		GNDD438	65.00	10.00	0.16	1.9	0.21	0.27	0.00	0.01	2
		and	160.00	4.00	0.33	1.1	0.17	0.42	0.00	0.00	2
		and	191.60	0.55	1.0	6.3	0.03	1.1	0.00	0.11	
		and	218.20	17.80	1.2	0.55	0.02	1.2	0.00	0.01	
		and	258.00	13.00	0.52	0.42	0.00	0.53	0.00	0.00	2
		inc	258.00	1.50	1.5	1.3	0.00	1.5	0.00	0.02	
		GNDD439	50.00	26.00	0.58	1.0	0.10	0.64	0.01	0.06	2
		inc	56.00	2.00	3.2	1.3	0.04	3.2	0.02	0.02	
		inc	61.50	0.60	5.3	3.1	0.08	5.4	0.00	0.04	
		inc	68.20	0.80	1.6	1.6	0.15	1.7	0.00	0.14	
		and	94.00	37.75	0.90	2.0	0.15	1.0	0.01	0.11	2
		inc	106.00	9.00	2.9	4.9	0.45	3.2	0.02	0.40	
		inc	106.00	1.00	14.6	27.4	0.81	15.3	0.08	2.4	1
		inc	131.00	0.75	0.89	8.8	0.08	1.0	0.01	0.04	
		GNDD440	381.40	0.60	0.71	8.3	1.51	1.5	0.05	0.00	
		and	531.20	11.30	0.32	7.1	0.26	0.52	0.00	0.01	2
		inc	541.40	1.10	1.8	5.9	1.7	2.6	0.00	0.03	
		and	590.50	6.50	0.20	10.2	0.02	0.34	0.00	0.01	2
		and	647.90	5.10	0.07	23.2	0.10	0.41	0.01	0.04	2
		and	762.00	8.60	0.43	9.1	0.01	0.55	0.01	0.00	2
		inc	762.00	1.00	2.5	58.6	0.07	3.3	0.10	0.00	
		GNDD441	15.10	11.90	3.2	9.3	0.81	3.7	0.02	0.04	2
		inc	15.10	9.90	3.8	10.6	0.87	4.4	0.02	0.05	
		inc	20.50	1.20	13.3	45.3	0.62	14.1	0.09	0.18	1
		GNDD442	125.90	13.10	0.30	1.4	0.16	0.39	0.01	0.09	2
		and	229.00	1.00	1.8	4.0	0.04	1.8	0.00	0.21	
		and	250.00	2.85	1.8	1.9	0.13	1.9	0.01	0.13	2
		inc	251.40	1.45	2.9	2.7	0.16	3.0	0.02	0.16	
		and	306.00	29.00	3.2	44.6	3.6	5.3	0.06	0.38	2
		inc	308.00	27.00	3.4	47.6	3.8	5.7	0.06	0.40	=
		inc	329.00	2.60	17.6	218	10.1	24.7	0.18	0.21	1
		GNDD443	32.00	63.00	1.07	1.6	0.08	1.1	0.00	0.02	2
		inc	41.70	11.30	1.94	3.0	0.19	2.1	0.02	0.06	-

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		inc	63.00	4.00	7.18	0.85	0.04	7.2	0.00	0.03	
		GNDD444	NSI								
		GNDD445	14.00	53.00	0.30	1.7	0.06	0.35	0.00	0.01	2
		inc	24.60	1.40	1.4	4.6	0.43	1.7	0.01	0.03	
		and	91.00	5.00	0.56	0.55	0.07	0.60	0.01	0.01	2
		and	260.00	2.00	0.54	0.46	0.01	0.55	0.00	0.00	2
		and	278.00	4.00	0.53	2.3	0.32	0.70	0.02	0.06	2
		GNDD446	243.00	1.15	1.6	0.31	0.02	1.6	0.00	0.01	
		GNDD449	47.40	6.60	0.05	10.7	0.11	0.23	0.00	0.01	2
		and	62.00	6.00	0.13	6.1	0.02	0.22	0.00	0.01	2
		GNDD450	75.90	3.10	0.37	0.4	0.01	0.38	0.00	0.00	2
		and	138.00	23.00	0.24	1.2	0.01	0.26	0.00	0.00	2
		and	314.45	97.75	1.7	11.9	0.88	2.2	0.04	0.03	2
		inc	317.00	2.00	1.6	22.9	0.04	1.9	0.00	0.00	
		inc	328.40	1.60	1.5	7.2	0.07	1.6	0.00	0.01	
		inc	342.00	4.00	2.8	6.7	0.37	3.1	0.03	0.01	
		inc	360.10	0.55	10.0	51.8	8.4	14.3	0.18	0.04	1
		inc	376.20	16.80	7.1	50.7	4.4	9.7	0.22	0.08	
		inc	376.20	4.75	21.6	160	14.6	30.0	0.70	0.10	1
		inc	411.00	1.20	1.1	12.1	0.43	1.5	0.04	0.05	
		GNDD451	101.00	29.00	0.72	0.69	0.10	0.77	0.00	0.02	2
		inc	115.00	15.00	1.2	0.88	0.15	1.3	0.00	0.03	
		and	148.00	14.00	0.69	0.79	0.21	0.79	0.00	0.01	2
		GNDD452	242.55	3.45	0.53	0.80	0.03	0.56	0.00	0.03	2
		GNDD453	133.65	5.35	0.83	1.6	0.01	0.86	0.01	0.00	2
		inc	133.65	2.00	2.1	1.7	0.02	2.1	0.00	0.00	
		and	248.00	3.00	0.89	4.5	0.04	1.0	0.00	0.01	2
		inc	249.40	1.60	1.1	1.2	0.03	1.1	0.01	0.02	
		and	281.30	8.70	1.0	3.5	0.31	1.2	0.01	0.09	2
		inc	283.60	6.40	1.4	4.3	0.41	1.6	0.01	0.13	
		GNDD454	8.00	34.00	0.24	1.9	0.03	0.27	0.00	0.00	2
		GNDD455	130.00	4.00	0.45	0.94	0.13	0.52	0.02	0.09	2
		inc	130.00	1.20	1.1	2.0	0.39	1.3	0.06	0.24	
		and	153.00	4.00	0.57	0.60	0.07	0.60	0.00	0.03	2
		and	219.40	13.10	0.25	1.4	0.16	0.34	0.01	0.06	2
		inc	231.00	1.50	1.1	5.6	0.88	1.6	0.04	0.19	
		and	447.60	0.50	1.5	88.8	17.5	10.2	0.36	0.10	1

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO

Contact T: +61 8 6380 9235 Mr Scott Funston, Finance Director E: admin@challengerex.com Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		GNDD456	252.00	12.40	1.6	26.7	2.12	2.8	0.06	0.02	2
		inc	252.00	3.00	5.7	108	8.31	10.7	0.26	0.09	
		inc	252.00	1.70	9.8	189	14.13	18.3	0.45	0.15	1
		and	298.70	6.70	0.13	2.8	0.09	0.20	0.00	0.00	2
		GNDD457	3.75	17.25	0.20	1.1	0.07	0.25	0.00	0.01	2
		and	33.50	34.50	0.30	0.59	0.03	0.31	0.00	0.00	2
		inc	60.50	1.85	1.4	0.73	0.03	1.4	0.00	0.00	
		GNDD458	219.00	17.00	0.21	0.53	0.01	0.22	0.00	0.01	2
		and	300.35	67.65	7.3	5.7	0.60	7.7	0.02	0.02	2
		inc	335.90	32.10	15.2	10.9	1.22	15.9	0.04	0.02	
		inc	300.35	94.65	5.4	4.5	0.47	5.6	0.02	0.01	
		inc	335.90	0.50	833	104	0.04	834	0.00	0.04	1
		inc	362.90	1.35	21.0	84.7	5.39	24.4	0.43	0.03	1
		and	380.55	14.45	0.94	2.5	0.24	1.1	0.01	0.01	
		and	458.00	11.50	0.26	0.74	0.12	0.32	0.00	0.00	2
		inc	469.00	0.50	1.3	5.8	1.64	2.1	0.04	0.00	
		and	491.00	2.00	1.3	0.24	0.00	1.3	0.00	0.00	
		and	569.00	0.85	1.7	4.2	0.01	1.7	0.00	0.00	
		GNDD459	257.00	29.00	0.13	0.46	0.14	0.20	0.01	0.03	2
		and	339.00	43.00	0.39	0.82	0.16	0.48	0.01	0.05	2
		inc	342.50	1.50	1.0	0.43	0.05	1.0	0.00	0.02	
		inc	366.00	2.00	1.5	0.21	0.02	1.5	0.00	0.01	
		inc	380.00	2.00	1.0	11.3	2.82	2.4	0.08	0.88	
		and	420.00	6.00	0.58	0.27	0.00	0.58	0.00	0.00	2
		inc	424.00	2.00	1.0	0.03	0.01	1.0	0.00	0.00	
		GNDD460	335.00	4.00	0.25	0.72	0.13	0.32	0.00	0.03	2
		and	420.00	0.55	1.0	24.3	6.6	4.1	0.14	0.09	
		and	438.00	2.00	2.6	0.71	0.01	2.6	0.00	0.00	
		and	448.00	0.70	0.75	8.1	1.9	1.7	0.05	0.00	
		GNDD462	84.00	10.60	0.47	2.1	0.59	0.75	0.01	0.14	2
		inc	85.75	1.40	1.7	5.3	3.5	3.2	0.03	0.60	
		inc	93.65	0.95	2.2	8.1	0.42	2.5	0.02	0.22	
		GNDD463	227.50	12.50	0.13	0.69	0.15	0.20	0.00	0.04	2
		and	286.50	8.40	2.6	24.0	2.4	3.9	0.07	0.12	2
		inc	286.50	7.50	2.9	26.6	2.7	4.4	0.08	0.07	
		GNDD467	NSI		-						
		GNDD476	NSI								

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		GNDD479	67.00	12.00	0.70	15.0	0.27	1.0	0.01	0.08	2
		inc	69.00	2.00	3.8	11.7	0.21	4.1	0.03	0.24	
		GNDD481	63.60	18.50	0.16	3.7	0.04	0.23	0.00	0.02	2
		GNDD483	276.40	18.80	0.17	1.7	0.06	0.22	0.00	0.03	2
		and	330.50	1.40	4.1	48.2	8.6	8.4	0.19	0.16	
		and	341.00	2.00	0.45	6.3	0.18	0.61	0.01	0.10	2
		and	353.00	2.00	0.19	36.8	0.32	0.80	0.04	0.22	2
		GNDD486	154.00	13.00	0.33	0.28	0.01	0.34	0.00	0.00	2
		and	254.00	16.00	0.19	2.1	0.21	0.30	0.01	0.09	2
		inc	258.00	2.00	0.66	3.7	0.86	1.1	0.03	0.40	
		and	290.65	0.50	0.72	15.7	0.40	1.1	0.08	0.82	
		GNDD488	NSI								
		GNDD489	118.30	0.70	3.3	11.5	1.80	4.3	0.07	0.05	
		GNDD493	NSI								
		GNDD502	24.00	8.00	0.08	48.0	0.09	0.73	0.01	0.07	2
		inc	24.00	4.00	0.06	87.0	0.14	1.2	0.01	0.10	
		GNDD503	2.45	3.05	0.46	7.7	0.39	0.72	0.00	0.03	2
		inc	2.45	1.15	1.1	10.7	0.78	1.6	0.01	0.07	
		GNDD507	2.00	5.00	0.29	2.8	0.31	0.46	0.00	0.01	2
		GNDD517	50.00	2.00	0.64	12.7	0.11	0.84	0.00	0.03	2
		GNDD522	20.20	9.80	2.4	16.8	2.2	3.6	0.06	0.10	
		GNDD523	19.00	8.90	0.33	2.4	0.11	0.41	0.01	0.11	2
		inc	26.50	1.40	1.4	4.8	0.34	1.7	0.03	0.46	
		and	41.15	0.50	4.0	33.3	6.4	7.2	0.36	1.6	
		and	56.85	0.50	1.0	11.1	0.03	1.1	0.00	0.05	
		and	63.80	38.20	5.0	3.6	0.17	5.1	0.01	0.11	2
		inc	67.00	4.90	4.1	3.0	0.10	4.2	0.00	0.02	
		inc	79.00	2.00	2.0	0.73	0.01	2.0	0.00	0.00	
		inc	99.75	0.90	177	68.7	4.1	180	0.14	2.7	1
		GNDD524	17.10	7.10	7.5	25.5	2.0	8.7	0.12	1.19	
		inc	22.85	1.35	27.9	60.0	3.4	30.1	0.42	2.82	1
		and	34.00	2.00	0.15	21.5	0.4	0.59	0.01	0.16	2
		and	44.00	2.00	0.15	30.2	0.0	0.55	0.00	0.01	2
		Holes specifica	Illy drilled fo	r metallur	gical tes	t sample	material:				
		GMDD039	18.00	8.00	0.15	1.9	0.60	0.43	0.01	0.07	2
		and	67.60	1.00	24.5	58	3.9	26.9	0.27	1.8	1
		GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary									
		inc	122.50	2.90	11.8	24	4.2	14.0	0.14	0.00	1
		GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
		inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
		and	63.50	5.1	7.9	83	7.9	12.3	0.47	0.21	
		and	306.10	1.6	8.0	9.2	3.6	9.7	0.11	0.00	
		and	338.40	4.6	0.09	1.7	0.5	0.31	0.01	0.00	2
		GMDD043	18.00	10.00	0.09	1.7	0.48	0.32	0.01	0.10	2
		and	70.50	0.30	25.9	81	9.4	31.0	0.33	3.1	1
		(1) cut of	f 10 g/t Au ec	uivalent							

- (2) cut off 0.2 g/t Au equivalent
- (3) combined zones with 0.2 g/t Au cut off (grades include internal dilution from between zones)
- (4) combined zones with 1.0 g/t Au cut-off (grades include internal dilation from between zones)

NSI: no significant intersection

Channel Sample Significant Results:

Channel_id	from (m)	interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	Cu (%)	Pb (%)	Note
RNNV09-01	1.17	10.71	6.4	40.9	1.5	7.5	0.17	0.92	
RNNV09-01A	0.00	12.34	12.0	34.9	0.51	12.7	0.05	0.40	
inc	2.00	8.41	17.2	39.5	0.41	17.8	0.06	0.51	1
RNNV09-01B	0.00	13.94	3.5	29.8	0.80	4.2	0.04	0.53	
inc	10.04	1.95	15.0	84.0	2.5	17.2	0.16	2.3	1
RNNV09-01C	0.00	24.11	16.9	37.8	5.8	19.8	0.25	0.58	
inc	6.24	13.79	23.3	59.0	7.8	27.4	0.18	0.48	1
RNNV09-01D	0.00	8.16	10.0	23.3	0.68	10.6	0.30	0.13	
inc	0.00	6.56	12.4	21.9	0.8	13.0	0.33	0.15	1
RNNV09-02	0.00	4.77	0.84	15.5	3.1	2.4	0.44	1.0	
RNNV09-03	0.00	3.55	7.1	45.5	1.1	8.2	1.1	1.3	
RNNV10-01	NSI								
RNNV10_02	0.00	1.98	8.8	62.9	1.2	10.1	0.04	0.28	1
RNNV10_03A	0.00	3.21	1.0	39.1	12.6	7.0	0.52	0.25	
inc	1.60	1.60	2.0	54.8	20.7	11.7	0.65	0.50	1
RNNV10_03B	0.00	7.31	22.6	60.5	5.6	25.8	0.38	0.26	
inc	1.65	5.66	28.5	54.1	3.6	30.8	0.24	0.32	1
RNNV10_04A	2.25	29.73	19.5	22.8	5.9	22.4	0.10	0.09	2
inc	2.25	23.60	24.6	27.9	7.3	28.1	0.12	0.11	
inc	4.37	5.89	96.0	85.1	3.7	98.7	0.20	0.12	1
RNNV10_04B	99.56	4.32	0.05	2.5	2.8	1.3	0.06	0.03	2

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		inc	101.88	2.00	0.08	3.2	5.4	2.4	0.11	0.06	
		and	117.23	34.00	0.77	20.7	2.5	2.1	0.13	0.10	2
		inc	118.18	2.07	0.19	160	23.2	12.3	1.7	0.88	
		inc	124.86	2.08	0.36	1.0	2.8	1.6	0.06	0.00	
		inc	131.64	11.91	1.9	25.5	1.6	3.0	0.05	0.13	
		inc	146.46	0.92	0.72	6.2	2.6	1.9	0.04	0.03	
		and	168.53	0.96	0.85	14.6	0.48	1.2	0.0	0.41	
		and	215.15	6.45	0.30	6.2	0.80	0.73	0.02	0.17	2
		inc	218.81	1.76	0.60	7.9	1.8	1.5	0.06	0.28	
		RNNV10_04C	18.78	2.79	1.0	1.2	0.09	1.1	0.01	0.04	2
		inc	20.62	0.95	1.7	2.5	0.11	1.8	0.01	0.05	
		GN23-831	0.00	0.00	0.31	9.8	1.5	1.1	0.04	0.13	
		RNNV10_06	0.00	9.28	1.4	87.1	7.6	5.8	0.92	0.23	2
		inc	0.00	8.28	1.5	96.1	8.4	6.4	0.92	0.26	
		inc	6.33	1.06	0.05	36.5	30.0	13.5	0.17	0.18	1
		RNNV10_07	0.00	3.87	0.16	4.5	1.1	0.69	0.06	0.05	2
		inc	2.87	1.00	0.33	14.8	3.2	1.9	0.21	0.17	
		RNNV10_08	0.94	2.82	19.4	87.6	3.8	22.2	0.14	2.5	2
		inc	0.94	1.80	30.2	135	5.6	34.4	0.21	3.9	1
		RNNV10_09	NSI								
		RNNV10_10	0.00	1.13	0.20	3.3	0.31	0.38	0.00	0.04	2
		RNNV11-01	0.0	96.5	9.8	81.8	10.6	15.4	0.62	0.99	
		RNNV11-02	2.0	55.3	4.7	172	3.59	8.4	0.21	0.62	
		inc	3.9	20.6	7.9	352	3.29	13.8	0.30	0.99	1
		RNNV11-03	0.0	10.2	0.19	6.4	3.21	1.7	2.0	0.04	
		RNNV11-04	0.0	5.4	2.3	6.6	4.87	4.5	0.15	0.07	
		RNNV11-05	0.0	4.7	3.7	24.6	4.20	5.9	0.03	0.14	
		RNNV12-01	0.0	35.2	3.2	18.2	8.0	6.9	0.09	0.07	
		RNNV12-02	0.0	6.0	1.9	41.4	10.5	6.9	0.22	0.05	
		RNNV12-03	0.0	12.8	8.7	16.9	5.2	11.2	0.59	0.02	
		RNNV12-04	0.0	21.1	12.7	37.7	7.1	16.3	0.11	0.40	
		inc	0.0	5.2	13.4	41.0	18.2	21.8	0.18	0.43	1
		inc	14.7	6.5	29.1	51.3	4.7	31.8	0.19	0.89	1
		RNNV12-05	0.0	64.8	23.4	104	8.3	28.3	0.20	1.5	
		inc	7.6	8.8	45.2	88.7	6.8	49.3	0.34	0.68	1
		inc	20.1	26.5	29.3	114	8.2	34.4	0.24	2.9	1
		inc	49.7	3.1	13.3	337	13.1	23.3	0.24	0.80	1

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		inc	56.9	3.3	67.7	268	11.5	76.0	0.24	1.3	1
		RNNV12-06	0.0	5.0	1.3	156	7.5	6.6	0.08	0.21	
		RNNV12-07	0.0	3.1	10.9	19.4	4.8	13.3	0.09	0.30	
		RNNV12-08	0.0	3.5	17.6	37.3	0.31	18.2	0.02	0.10	
		RNNV12-09	0.0	5.4	30.9	83.9	8.4	35.6	0.34	1.8	1
		RNNV12-10	0.0	8.7	3.8	837	1.4	15.0	0.22	0.76	1
		RNNV12-11	0.0	2.3	29.7	70.8	0.86	30.9	0.07	0.14	1
		RNNV12-12	0.0	19.8	13.7	102	3.0	16.3	0.11	0.41	1
		MUNV10-01	0.00	15.28	0.19	9.0	0.12	0.35	0.02	0.16	2
		MUNV10-02	4.16	24.91	2.0	12.1	2.4	3.2	0.11	0.30	
		MUNV10-03	0.00	3.81	3.1	55.2	8.0	7.3	0.43	1.1	
		MUNV10-04	0.00	4.28	2.1	109	2.8	4.7	2.8	1.6	
		MGNV10-01	2.00	44.34	0.33	5.2	0.19	0.48	0.01	0.04	2
		inc	44.67	1.66	5.9	96.9	2.3	8.1	0.13	0.16	
		MGNV10-02	0.00	22.47	9.8	21.0	6.5	12.9	0.11	0.45	
		inc	0.00	4.21	34.7	29.4	22.1	44.7	0.32	1.9	1
		inc	8.39	2.54	14.1	93.7	0.67	15.6	0.13	0.29	1
		inc	15.92	2.77	8.2	18.1	0.15	8.5	0.03	0.25	1
		MGNV10-03	0.00	35.04	2.5	41.0	0.72	3.3	0.04	0.16	2
		inc	0.00	20.49	4.2	67.7	1.1	5.5	0.07	0.26	
		MGNV10-04	0.00	4.79	0.14	1.7	0.26	0.28	0.05	0.05	2
		MGNV10-05	0.00	12.00	13.8	105	3.0	16.5	0.05	0.21	
		inc	0.00	3.70	33.2	298	4.2	38.9	0.06	0.09	
		MGNV10-06	0.00	9.91	4.2	25.3	4.5	6.5	0.07	0.20	
		MGNV10-07	0.00	9.59	3.6	57.3	6.4	7.1	0.35	4.8	
		MGNV10-07	19.80	2.02	0.23	5.1	3.0	1.6	0.03	0.04	
		MGNV10-08	0.00	4.21	3.0	17.6	2.5	4.2	0.04	0.20	
		MGNV10-09	0.00	6.48	5.5	44.3	6.4	8.9	0.14	0.07	
		MGNV10-10	0.00	1.00	1.1	3.3	0.94	1.6	0.01	0.14	
		SZNV10-01	2.0	30.4	1.2	8.8	1.9	2.2	0.06	0.01	2
		inc	23.6	8.7	3.9	28.8	6.3	7.0	0.19	0.02	
		SZNV10-02	0.0	52.0	1.3	7.9	4.5	3.4	0.40	0.06	2
		inc	0.0	6.3	2.6	27.5	1.9	3.7	0.33	0.08	
		inc	11.3	25.7	2.0	8.1	7.7	5.5	0.48	0.07	
		inc	18.7	6.2	7.0	17.0	3.0	8.5	0.14	0.13	1
		inc	41.5	1.8	0.03	0.34	3.2	1.4	0.12	0.02	
		SZNV10-03	0.0	4.4	8.2	63.2	0.8	9.4	0.05	0.09	

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary										
		SZNV10-04	0.0	3.5	9.1	27.4	3.7	11.1	0.20	0.08		
		SZNV11-01	0.0	14.9	0.34	2.3	4.0	2.1	0.19	0.01	2	
		inc	0.0	11.2	0.43	2.3	5.0	2.6	0.25	0.01		
		SZNV11-02	0.0	3.4	4.0	27.5	2.5	5.4	0.37	0.04		
		SZNV11-03	0.0	9.3	2.1	34.1	2.4	3.6	0.53	0.07	2	
		inc	1.0	8.3	2.3	37.6	2.5	3.9	0.56	0.07		
		SZNV11-04	0.0	6.1	0.08	2.0	7.6	3.4	0.33	0.04	2	
		inc	0.0	4.3	0.06	1.4	10.3	4.6	0.24	0.02		
		SZNV11-05	0.0	3.3	0.53	20.1	4.0	2.5	0.68	0.15	2	
		inc	2.0	1.3	1.2	44.9	8.6	5.5	0.89	0.22		
		SZNV11-06	0.0	17.2	0.06	5.0	11.4	5.1	0.68	0.12		
		SZNV11-07	0.0	3.8	0.03	1.2	8.9	3.9	0.46	0.06		
		SZNV11-08	0.0	7.1	3.8	18.7	9.6	8.1	0.62	1.2		
		SZNV11-09	0.0	30.7	0.91	70.2	13.5	7.7	0.74	0.74		
		SZNV11-10	0.0	3.1	0.38	55.8	14.8	7.5	0.47	0.16		
		SZNV11-11	0.0	4.6	0.26	9.1	12.6	5.8	1.0	0.16		
		inc	0.0	3.6	0.32	11.2	15.9	7.4	1.3	0.21		
		SZNV11-12	0.0	12.0	8.3	28.9	1.4	9.3	0.11	0.13		
		L5NV10-01	8.55	9.40	0.26	5.5	0.10	0.38	0.01	0.04	2	
		L5NV10-02	0.00	6.30	1.7	32.8	0.48	2.3	0.01	0.08	2	
		inc	2.00	4.30	2.4	42.7	0.28	3.1	0.01	0.11		
		L5NV10-03	0.00	1.44	1.2	11.3	0.11	1.3	0.01	0.48	2	
		L5NV10-04	0.00	9.04	26.0	50.8	0.10	26.7	0.03	1.1		
		inc	2.20	6.85	33.1	60.9	0.13	34.0	0.03	1.2	1	
		L5NV10-05	0.00	2.69	20.1	268	0.08	23.5	0.02	1.0	1	
		L6NV10-01	0.00	5.21	10.4	19.1	0.18	10.7	0.02	0.48	2	
		inc	2.00	1.79	27.3	39.3	0.22	27.9	0.01	0.84		
		L6NV10-02	0.00	3.77	0.70	4.5	0.41	0.93	0.01	0.07	2	
		and	14.44	10.46	11.2	215	0.31	14.0	0.03	0.98	2	
		inc	18.10	6.81	17.0	329	0.16	21.3	0.03	1.5		
		BCNV10-02	2.82	1.92	0.32	2.2	0.43	0.54	0.01	0.00	2	
		FHNV10-01A	6.40	1.78	0.09	2.9	0.35	0.28	0.01	0.01	2	
		FHNV10-01B	0.00	9.21	3.0	89.6	2.2	5.1	0.13	3.5	2	
		inc	1.92	4.63	5.6	175	3.8	9.5	0.23	6.8		
		FHNV10-02	0.00	13.01	12.0	80.2	5.6	15.5	0.40	4.8		
		inc	0.00	8.49	17.8	114	6.2	21.9	0.53	6.9	1	
		FHNV10-03	0.00	12.71	2.1	64.2	3.5	4.4	0.28	1.6		

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary									
		FHNV10-04	0.00	4.24	3.1	136	7.7	8.1	0.57	7.0	
		FHNV10-05	0.00	1.67	6.4	360	12.7	16.4	0.69	9.7	
		FHNV10-06	0.00	3.83	3.8	156	20.2	14.6	0.61	4.2	
		FHNV10-07	3.45	1.03	0.08	1.3	0.50	0.31	0.01	0.02	2
		GN24-539	0.00	1.00	0.24	4.7	0.51	0.52	0.05	0.34	2
		CINV10-02	0.00	5.27	0.69	4.4	0.07	0.78	0.00	0.02	2
		inc	3.33	1.94	1.5	5.3	0.08	1.6	0.00	0.02	
		CIINV10-01A	1.80	6.96	0.90	17.9	0.26	1.24	0.02	0.18	2
		CIINV10-01B	0.00	7.02	1.45	79.3	0.23	2.55	0.02	0.34	2
		CIINV10-03	0.00	26.89	0.80	43.2	0.21	1.44	0.02	0.17	2
		inc	8.22	13.53	1.11	76.6	0.33	2.23	0.03	0.29	
		CIIIVN10-01	0.00	81.00	NSI						
		CHNV10-01A	0.00	9.94	8.0	6.6	0.38	8.3	0.12	0.80	
		inc	5.10	3.09	21.6	12.7	0.61	22.0	0.22	1.4	1
		CHNV10-01B	1.70	7.27	1.4	3.2	1.1	2.0	0.02	0.44	2
		inc	3.32	5.65	1.6	3.7	1.4	2.3	0.02	0.49	
		CHNV10-02	0.00	19.30	0.69	8.6	0.95	1.2	0.03	0.44	2
		inc	0.00	2.92	0.89	34.6	4.8	3.4	0.07	1.9	
		inc	9.16	3.21	0.87	4.2	0.55	1.2	0.02	0.29	
		inc	16.07	1.60	1.9	15.0	0.31	2.2	0.09	0.42	
		CHNV10-03	0.00	3.94	0.40	2.0	0.50	0.64	0.02	0.15	2
		inc	3.21	0.73	1.3	1.4	0.70	1.6	0.02	0.15	
		CHNV10-04	0.00	7.96	2.0	8.5	1.1	2.6	0.03	0.62	
		DJNV10-01A	0.00	59.54	2.2	11.2	5.1	4.5	0.23	0.07	
		inc	57.49	2.06	15.7	49.7	2.1	17.2	0.08	0.11	1
		DJNV10-01B	4.14	20.23	0.06	2.6	0.32	0.23	0.00	0.01	2
		SNV10-01	0.00	15.55	70.9	59.1	0.18	71.7	0.10	1.7	
		inc	0.00	4.00	202	172	0.07	203.8	0.03	2.3	1
		inc	8.19	6.30	43.7	22.6	0.15	44.0	0.06	2.1	1
		SNV10-02	0.00	12.52	2.3	12.3	1.36	3.0	0.14	0.55	
		• •	10 g/t Au equi								
		(2)	cut off 0.2		ivalent						
			ficant intersed								
Data aggregation methods	 In reporting Exploration Results weighting averaging techniques maximum and/or minimum grade truncations (eg cutting of high grades) 	grade of a 1.0 g/t	Au equivalen and 0.2 g/t Au	t and 10 g, u equivale	/t Au eq nt allow	uivalent ing up to	allowing fo 10m of in	or up to 2m ternal dilut	of internation betwe	al dilution l en sample	e reported to cut-off between samples abo s above the cut-off

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

	and cut-off grades are usually Material	/oz and Zn US\$ 2800 /t.
	 and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be 	Metallurgical recoveries for Au, Ag and Zn have been estimated from metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation of a combined metallurgical sample from 5 drill holes. Using data from the test results, and for the purposes of the AuEq calculation gold recovery is estimated at 89%, silver at 84% and zinc at 79%. Accordingly, the formula used is AuEq (g/t) = Au (g/t) + [Ag (g/t) \times (24/1780) \times (0.84/0.89)] + [Zn (%) \times (28.00*31.1/1780) \times (0.79/0.89)]. Metallurgical test work and geological and petrographic descriptions suggest all the elements included in the metal equivalents calculation have a reasonable potential of eventual economic recovery. While Cu and Pb are reported in the table above, these metals are not used in the Au equivalent calculation at this early stage of the Project.
	clearly stated.	No top cuts have been applied to the reported grades.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information to confidently establish the true width of the mineralized intersections at this stage of the exploration program. Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins. Representative cross section interpretations have been provided with release of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of reports released to the ASX.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available final data have been reported.

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Other substantive exploration data

 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances. Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report.

Specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates.

Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.

A ground magnetic survey and drone magnetic survey have been completed. The results of these data are being processed and interpreted with the geological information provided from surface and in the drilling and will be used to guide future exploration.

Further work

- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling).
- Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive.
- CEL Plans to undertake the following over the next 12 months
 - Additional data precision validation and drilling as required;
 - Detailed interpretation of known mineralized zones;
 - Geophysical tests for undercover areas.
 - Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation.
 - Field mapping program targeting extensions of known mineralisation.
 - Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements;
 - Further metallurgical test work on lower grade mineralisation in the intrusions and oxidised mineralisation.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs.
	its use for Mineral Resource estimation purposes.	Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
	 Data validation procedures used. 	The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	 assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally, under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of 	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.
	whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a saleable zinc concentrate.
	 by-products. Estimation of deleterious elements or other non-grade variables of economic significance 	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	(eg sulphur for acid mine drainage characterisation).In the case of block model interpolation the	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
	block size in relation to the average sample spacing and the search employed.	No assumptions were made regarding correlation between variables.
	 Any assumptions behind modelling of selective mining units. 	The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins
	 Any assumptions about correlation between variables. 	and skarn were taken and sampling was plotted and the blocks outlined considering this.

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
	 Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.	 The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; Metal prices: Au US\$550 Oz Ag US\$10 Oz Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil Operating cost: US\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where	 Historical metallurgical test-work assumptions were 80% recovery for Au, Ag and Zn. The most recent historic test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse based on petrography conducted by CEL which shows that the gold particles average 30-40 microns. Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% – 87.2%.

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

JORC Code explanation Criteria Commentary this is the case this should be reported with an Knelson concentrate tests with floatation of tailings were also completed. Applying a joint process explanation of the basis of the metallurgical Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery assumptions made. is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in concentrate expected with additional floatation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and ¾ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. More recently, CEL has completed initial metallurgical test work on a 147 kg composite sample of mineralised limestone drill core from GMDD039, GMDD040, GMDD041, GNDD043, GNDD003 and GNDD018 and a 55 kg composite sample of mineralised intrusion (dacite) drill core from GNDD113, GNDD113A, GNDD155 and GNDD157. The of skarn mineralisation in limestone that has a weighted average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn, 0.15 % Cu and 0.46 % Pb. The sample of mineralised dacite has a weighted average grade of 1.1 g/t Au, 7.0 g/t Ag and 0.1 % Zn. Separate tests on 2 kg sub-samples were done with differing grinding times, Knelson and Mosley table gravity separation techniques and floatation techniques to provide a series of gravity and floatation concentrates. Key results are: Combined gravity and floatation concentration process resulted in recoveries 85-95% for Au, 82-87% for silver and 77-80% for zinc. Cu had similar recoveries to Ag and Pb had similar recoveries to Zn. A simple gravity separation followed by a sulfide flotation process when re-combined produced a single product with a median grade of 47 g/t Au, 120 g/t Ag and 13% Zn with a recovered weight of 24-33% of the sample weight. Tailings fragment analysis indicates a grind of (p_{80}) 72-106 μm . Generally, a coarser grind resulted in a higher % weight recovered to the concentrate with a corresponding lower grade without significantly impacting recovery. QEMSCAN analysis of the sample indicates much of the Zn not recovered is due to the presence of Zn oxide (franklinite) and silicates (hemimorphite). Sulphides present are dominated by pyrite and sphalerite. Also present are chalcopyrite, pyrrhotite, chalcocite, bornite and galena.

West Perth WA 6005

Further test work is planned.

Criteria	JORC Code explanation	Commentary
Environmental factors or assumptions	- Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available. The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project. CEL is collecting specific gravity measurements from drill core, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is also able to be used as a measure of the bulk density.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). 	The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling. The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut.

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria JORC Code explanation Commentary Whether the result appropriately reflects the The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project Competent Person's view of the deposit. is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) – See Table 1. The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate attributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category. The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported. The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 tonnes grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha resources Toronto Stock Exchange Release May 14 2003 -Independent Report on Gold Resource Estimate) - See Table 1. The 2003 Mineral Resource classification and results appropriately reflect the Competent Person's view of the deposit and the current level of risk associated with the project to date. Historic 2003 NI43-101 (non-JORC Code compliant): **CATEGORY** TONNES Au (g/t) Ag(g/t)Zn% Measured 299.578 14.2 Indicated 145.001 14.6 Inferred 976,539 13.4 Historic 2006 NI43-101 (non-JORC Code compliant) **CATEGORY TONNES** Au (g/t) Ag(g/t)Zn% Measured 164,294 12.5 52.1 2.5

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary					
		Indicated	51,022	12.4	36.2	2.6	
		Inferred	213,952	11.7	46.6	2.3	
Audits or reviews	- The results of any audits or reviews of Mineral Resource estimates.	The historic resource	estimate has not been audite	ed.			
		independent report v	l 2000) Mineral Resource Estir was done to NI-43-101 standa t "Detailed resource calculatio	rd and the resul	ts of this repo	rt were released to the TSX.	This
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. 	There is sufficient coupon. The available given the confidence cut. Grade continuity is vispaced drilling is requise noted that the resurrepeatability. The deposit contains arbitrary grade reduced the continuity is vispaced to the contains arbitrary grade reduced the confidence cut.	nfidence in the data quality dreelogy and assay data correlations. The main two factors of a similar to the main two factors of a similar to the main two factors of a similar to the style of the similar to the factor of the similar to factor of 10% has already a savailable for comparison	rilling methods a ate well. The app which could affe of deposit and ha anding of the gra e holes by La Ma a potential need	ind analytical proach or proceed or relative accommodate as not been deduced to the continuity inchalare encommodate of the use of the the use of the continuity and the the use of the continuity of the use of	results that they can be relied edure are deemed approprious or an approprious of grade continuity and emonstrated to date and cloin both strike and dip direct ouraging in terms of grade of a top cut. It is noted that a	ed iate d top oser cions. It
	Documentation should include assumptions made and the procedures used. - These statements of relative accuracy and confidence of the estimate should be compared with production data where available.						

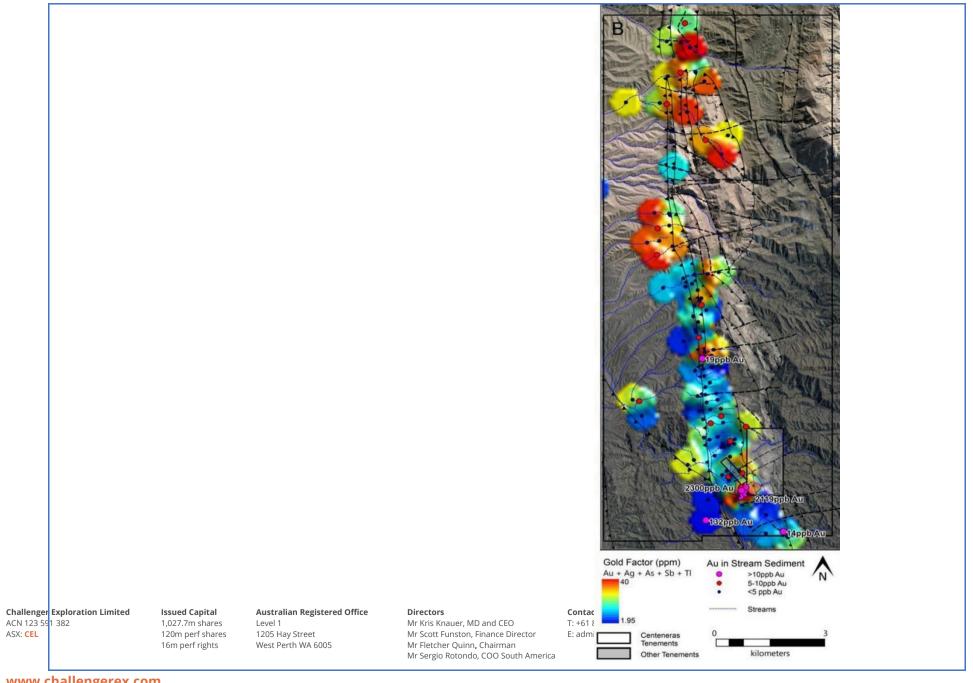
West Perth WA 6005

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Committee Bay Resources (CBR) 2004 - 2006: reportedly collected 85 stream sediment samples. CEL has no information on how the samples were taken, the location or the assay techniques that were used. Cardero Resource Corporation (Cardero) - 2007: No samples were taken Centenera Mining Corporation (Centenera) – 2016-2017: 110 stream sediment samples and 26 rock chip samples were collected. CEL has no information on how the samples were taken, the precise location or the assay techniques that were used.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	- No drilling has been reported by previous explorers
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	- No drilling has been reported by previous explorers


Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	No rock chip sample or stream sediment sample logs have been found.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No details of the sampling techniques, sample sizes and sample preparation has been found.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including 	 No details of the assay data and laboratory tests have been found. Centenera: Report samples were prepared and analysed by SGS Laboratory in Peru and that blanks, standards and duplicate samples were included in the samples sent for

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Contact

Criteria	JORC Code explanation	Commentary
	 instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	analysis. No data has been found to check the QAQC.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	- No information on sample verification has been found.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 No information on sample location surveys or the grid reference system has been found. Centenera: a plan of the combined stream sediment and rock chip samples without geographic reference was provided in a TSX release dated 21 March 2017

ASX: CEL

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	- No information on the data spacing has been found.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 There has been no exploration data that has been taken relative to the orientation of the geological controls.
Sample security	- The measures taken to ensure sample security.	 No detailed sample security information has been found Centenera: State that their samples were under supervision of their geologists in accordance with standard industry practice.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- No audits have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Comme	ntary				
Mineral tenement and land tenure	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, 	 The Cordon del Peñon is composed of six Minas (Mining Leases) and one Cateo (Exploration Licence): 					
status			File No.	Area (Ha)	Name	Owner	
Status	historical sites, wilderness or national park and environmental	Cateo	414-998-M-05	721.90		Armando J. Sanchez	
	settings.	Mine	1124-045-S-19	2,921.05	Guillermina	Armando J. Sanchez	
	- The security of the tenure held at the time of reporting along	Mine	1124-114-S-14	1,500.00	Agu 3	Armando J. Sanchez	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary				
	with any known impediments to obtaining a licence to operate in	Mine	1124-343-S-14	1443.50	Agu 5	Armando J. Sanchez
	the area.	Mine	1124-623-S-17	1500.00	Agu 6	Armando J. Sanchez
	the area.	Mine	1124-622-S-17	1459.00	Agu 7	Armando J. Sanchez
		Mine	2478-C-71	18.00	El Petiso	Armando J. Sanchez &
						Carlos Ocampo
<i>Evaluation</i>		 The licences are currently held in good standing. CEL has an option to acquire the Cordon del Peñon within 4 years of the date of the agreement for US\$250,000 cash and US\$ 200,000 in cash or shares at 10 day VAWP prior to notifying the Vendor of the intention to acquire the project. CEL will make annual payments of US\$5,000 for the first 4 years. There are no known impediments to operating within the Cordon del Peñon 				
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	 Previous exploration has been completed by Committee Bay Resources (CBR), Cardero Resource Corporation and Centenera Mining Corporation (Centenera). CEL have not been able to appraise the results of previous exploration as there has been no data provided in which to base an appraisal. CEL only has public releases hade to the TSX provided by Centenera dated 9 November 2016 and 21 March 2017 				
Geology	- Deposit type, geological setting and style of mineralisation.	style basi stre and CEL mine	e sediment ho s of the anom am sediment W). are keeping a eralisation wh	sted repla alous eler and rock o n open mi iich may b	ncement min ment assem thip samples and on the some present a	lisation may be Carlin- neralisation on the blage from the s (Au-Ag-As-Sb, Th, Te tyle/s of t the Cordon del eralisation has not

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
		been identified and the anomalous mineral assemblage indicate multiple mineralisation styles are possible.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	- There are no drill holes reported on the Cordon del Peñon
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	- No weighted average or aggregate results are reported
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, 	- No information is known of mineralisation widths

Issued Capital 1,027.7m shares 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman
Mr Sergio Rotondo, COO South America

Criteria	JORC Code explanation	Commentary
intercept lengths	there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A plan of the Centenera stream sediment sample results is provided above which was published by Centenera in a release dated 21 March 2017
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 CEL believes the information provided is representative of the known data for the Cordon del Peñon
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Cardero Resources Corporation completed ASTER satellite alteration mapping and a structural study. The results of this work are not available to CEL
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The following initial exploration program is indented to be undertaken by CEL: Ground magnetic survey on E-W survey lines spaced 80 – 100m apart, covering as much of the Cordon del Peñon as possible with a ground based survey. Surface geological mapping (stream and creek traverses) over key areas identified by previous stream sediment and roc chip sample surveys with the intention of identifying and sampling possible sources for past stream sediment anomalies.