

71 Furniss Rd, Landsdale Western Australia 6065 ASX: CLZ | ABN 77119 484 016 contact@classicminerals.com.au

03 August 2022

ASX Announcement

INFILL DRILLING RETURNS HIGH GRADE GOLD INTERCEPTS AT KAT GAP

Highlights:

- The first 10 holes from a 109-hole infill RC drilling program at Kat Gap have returned **high-grade gold intercepts**. Better results include:
 - 3m @ 13.23 g/t Au from 32m including 1m @ 17.00 g/t Au from 34m.
 - 5m @ 7.36 g/t Au from 42m including 2m @ 14.20 g/t Au from 42m.
 - 3m @ 7.04 g/t Au from 43m including 1m @ 19.40 g/t Au from 44m.
 - 3m @ 4.22 g/t Au from 38m.
- Infill RC drilling at Kat Gap conducted over 200m of strike north of the cross cutting Proterozoic dyke.
- Some ninety-nine RC drill holes totalling 6555 metres remain to be drilled.
- Infill RC holes conducted on 10m x 10m and 10m x 5m spacings to provide more accurate resource model data for final pit design work.
- RC infill drilling program is a direct result from the recent bulk sample mining operation.

INTRODUCTION

WA-focused gold exploration and development company Classic Minerals Limited (ASX. CLZ) ("Classic", or "the Company") is pleased to announce that it has started receiving assay results from its extensive infill RC drilling program at its Kat Gap Gold Project in Western Australia. **The Company completed a total of 10 holes for 555 metres at Kat Gap.**

Significant results from the latest drilling program are tabled below.

71 Furniss Rd, Landsdale Western Australia 6065 ASX:CLZ|ABN 77119 484 016 <u>contact@classicminerals.com.au</u>

Hole	Northing	Easting	From (m)	To (m)	Width (m)	Grade (g/t)
FKGRC390	6372403	764571	17	20	3	1.09 g/t Au
FKGRC391	6372411	764579	32	35	3	13.23 g/t Au
	incluc	ling	34	35	1	17.00 g/t Au
FKGRC392	6372427	764592	50	54	4	1.81 g/t Au
FKGRC393	6372432	764594	55	56	1	1.78 g/t Au
FKGRC396	6372405	764585	31	35	4	2.47 g/t Au
			43	47	3	7.04 g/t Au
FKGRC397	6372411	764591	42	47	5	7.36 g/t Au
Thenes / I	incluc	ling	42	44	2	14.20 g/t Au
FKGRC398	6372395	764590	30	42	12	1.36 g/t Au
FKGRC399	6372404	764596	38	41	3	4.22 g/t Au

Classic drilled 10 holes for 555m at Kat Gap during July as part of a much larger 109-hole infill drilling campaign. This announcement covers the first 10 RC holes (FKGRC390 – 399) of the 109-hole program. Subsequent holes will be reported on in due course when assays become available.

Infill RC holes FKGRC390 – 399 are located approximately 200m north along strike from the cross cutting Proterozoic dyke and form part of the much larger infill drilling pattern. The holes have been drilled on 10m x 10m and 10m x 5m grid spacings to bring the near surface parts of the inferred resource to indicated status prior to final pit design work. The total 109-hole infill RC drilling program covers an area 300m along strike to the north of the Proterozoic dyke and 200m north along strike from the recent bulk sample mining operation.

The need for closer spaced infill drilling has eventuated from the recent bulk sample mining operation. The pit was centred on an area of the resource block model, drilled on a 10m x 5m drill pattern, which came closest to the surface. The ore zone exposed during the bulk sample mining showed evidence of slight pinch and swell over relatively short wavelengths of around 10-15m. To gain a higher level of confidence in the overall status of the current resource block model drilling needs to be conducted on a minimum of 10m spaced sections and 10m spaced holes on the section. This spacing will permit an upgrade from the current inferred status to indicated. It will also aid greatly in final pit design work.

Most of the infill drilling will consist of relatively shallow holes down to depths of 40-70m. However deeper holes down to 100-140m will also be drilled to extend the known gold mineralisation to greater

71 Furniss Rd, Landsdale Western Australia 6065 ASX: CLZ | ABN 77119 484 016 contact@classicminerals.com.au

depths down dip. This work will hopefully add additional mineable ounces and a potentially larger final open pit design.

The overall infill RC drilling program consists of 109 holes for 7,110m and should take approximately 4-6 weeks to complete weather permitting. Assay results will be released to the market as they become available.

Figure 1: Drilling Rig at Kat Gap

71 Furniss Rd, Landsdale Western Australia 6065 ASX: CLZ | ABN 77119 484 016 <u>contact@classicminerals.com.au</u>

Figure 2: Ore stock-pile(in fore ground) from Bulk Sample pit at Kat Gap

Figure 2: Classic Minerals Team at Kat Gap

71 Furniss Rd, Landsdale Western Australia 6065 ASX: CLZ | ABN 77119 484 016 <u>contact@classicminerals.com.au</u>

ABOUT THE FORRESTANIA GOLD PROJECT

The FGP Tenements (excluding Kat Gap) are registered in the name of Reed Exploration Pty Ltd, a wholly owned subsidiary of ASX listed Hannans Ltd (ASX: HNR). Classic has acquired 80% of the gold rights on the FGP Tenements from a third party, whilst Hannans has maintained its 20% interest in the gold rights. For the avoidance of doubt Classic Ltd owns a 100% interest in the gold rights on the Kat Gap Tenements and also non-gold rights including but not limited to nickel, lithium and other metals.

Classic has a Global Mineral Resource of **8.24 Mt at 1.52 g/t for 403,906 ounces of gold**, classified and reported in accordance with the JORC Code (2012), with a recent Scoping Study (see ASX Announcement released 2nd May 2017) suggesting both the technical and financial viability of the project. The current post- mining Mineral Resource for Lady Ada, Lady Magdalene and Kat Gap is tabulated below.

Additional technical detail on the Mineral Resource estimation is provided, further in the text below and in the JORC Table 1 as attached to ASX announcements dated 18th December 2019, 21st January 2020, and 20 April 2020.

	Ι	ndicated			Inferred			Tot al	
Prospect	Tonnes	Grade (Au g/t)	Ounces Au	Tonnes	Grade (Au g/t)	Ounces Au	Tonnes	Grade (au)	Ounces
Lady Ada	257,300	2.01	16,600	1,090,800	1.23	43,100	1,348,100	1.38	59,700
Lady Magdalene				5,922,700	1.32	251,350	5,922,700	1.32	251,350
Kat Gap				975,722	2.96	92,856	975,722	2.96	92,856
Total	257,300	2.01	16,600	7,989,222	1.50	387,306	8,246,522	1.52	403,906

Notes:

1. The Mineral Resource is classified in accordance with JORC, 2012 edition

2. The effective date of the mineral resource estimate is 20 April 2020.

3. The mineral resource is contained within FGP tenements

4. Estimates are rounded to reflect the level of confidence in these resources at the present time.

5. The mineral resource is reported at 0.5 g/t Au cut-off grade

6. Depletion of the resource from historic open pit mining has been considered

On behalf of the board,

Dean Goodwin CEO

71 Furniss Rd, Landsdale Western Australia 6065 ASX: CLZ | ABN 77119 484 016 <u>contact@classicminerals.com.au</u>

Forward Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have reasonable basis. However, forward looking statements are subjected to risks, uncertainties, assumptions and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements. Such risks include, but are not limited to Resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the Countries and States in which we operate or sell product to, and governmental regulation and judicial outcomes. For a more detailed discussion of such risks and other factors, see the Company's annual reports, as well as the Company's other filings. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward-looking statements" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

Competent Persons Statement

The information contained in this report that relates to Mineral resources and Exploration Results is based on information compiled by Dean Goodwin, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG). Mr Goodwin is a consultant exploration geologist with Reliant Resources Pty Ltd and consults to Classic Minerals Ltd. Mr. Goodwin has sufficient experience that is relevant to the style of mineralisation and the type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Goodwin consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

71 Furniss Rd, Landsdale Western Australia 6065 ASX: CLZ | ABN 77119 484 016 contact@classicminerals.com.au

Drill Hole Details:

HOLE ID	Northing	Easting	Dip	Azi	Depth
FKGRC390	6372403	764571	-60	222	45
FKGRC391	6372411	764579	-60	222	50
FKGRC392	6372427	764592	-60	222	60
FKGRC393	6372432	764594	-60	222	65
FKGRC394	6372390	764570	-60	222	45
FKGRC395	6372398	764577	-60	222	55
FKGRC396	6372405	764585	-60	222	60
FKGRC397	6372411	764591	-60	222	65
FKGRC398	6372395	764590	-60	222	45
FKGRC399	6372404	764596	-60	222	65

71 Furniss Rd, Landsdale Western Australia 6065 ASX: CLZ | ABN 77119 484 016 <u>contact@classicminerals.com.au</u>

Drill Samples Grading >0.80 g/t

Sample No	HoleID	N (MGA94Z50)	E (MGA94Z50)	From	То	Sample Type	Au_ppm
486018	FKGRC390	6372403	764571	17	18	1m samples	1.84
486020	FKGRC390			19	20	1m samples	1.35
486022	FKGRC390			21	22	1m samples	0.96
486024	FKGRC390			23	24	1m samples	1.04
486082	FKGRC391	6372411	764579	32	33	1m samples	11.30
486083	FKGRC391			33	34	1m samples	11.40
486084	FKGRC391			34	35	1m samples	17.00
486050	FKGRC391					standard 245	26.00
486148	FKGRC392	6372427	764592	44	45	1m samples	0.82
486155	FKGRC392			50	51	1m samples	5.31
486158	FKGRC392			53	54	1m samples	1.49
486163	FKGRC392			58	59	1m samples	1.44
486150	FKGRC392					standard 245	26.80
486223	FKGRC393	6372432	764594	55	56	1m samples	1.78
486265	FKGRC394	6372390	764570	29	30	1m samples	0.97
486250	FKGRC394					standard 245	25.30
486323	FKGRC395	6372398	764577	39	40	1m samples	1.06
486324	FKGRC395			40	41	1m samples	0.74

486373	FKGRC396	6372405	764585	31	32	1m samples	5.50
486374	FKGRC396			32	33	1m samples	1.81
486376	FKGRC396			33	34	1m samples	1.20
486377	FKGRC396			34	35	1m samples	1.36
486378	FKGRC396			35	36	1m samples	0.82
486386	FKGRC396			43	44	1m samples	0.88
486387	FKGRC396			44	45	1m samples	19.40
486388	FKGRC396			45	46	1m samples	0.83
486350	FKGRC396					standard 245	26.30
486375	FKGRC396					duplicate	1.40
486441	FKGRC397	6372411	764591	34	35	1m samples	0.99
486449	FKGRC397			42	43	1m samples	14.50
486451	FKGRC397			43	44	1m samples	13.90
486452	FKGRC397			44	45	1m samples	4.70
486453	FKGRC397			45	46	1m samples	2.57
486454	FKGRC397			46	47	1m samples	1.11
486458	FKGRC397			50	51	1m samples	1.27
486450	FKGRC397					standard 245	25.50
486502	FKGRC398	6372395	764590	26	27	1m samples	0.94
486504	FKGRC398			28	29	1m samples	3.44
486506	FKGRC398			30	31	1m samples	1.66
486507	FKGRC398			31	32	1m samples	1.60
486510	FKGRC398			34	35	1m samples	2.67
486511	FKGRC398			35	36	1m samples	1.21
486512	FKGRC398			36	37	1m samples	1.41
486515	FKGRC398			39	40	1m samples	2.87
486562	FKGRC399	6372404	764596	38	39	1m samples	2.10
486563	FKGRC399			39	40	1m samples	6.51
486564	FKGRC399			40	41	1m samples	4.04
486568	FKGRC399			44	45	1m samples	1.60
486570	FKGRC399			46	47	1m samples	0.94
486573	FKGRC399			49	50	1m samples	1.25
486576	FKGRC399			51	52	1m samples	1.87
486550							

71 Furniss Rd, Landsdale Western Australia 6065 ASX: CLZ | ABN 77119 484 016 <u>contact@classicminerals.com.au</u>

Appendix 1: JORC (2012) Table1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The samples were taken by a RC face sampling hammer drill. All RC holes were sampled at one-metre intervals. Care was taken to control metre delineation, and loss of fines. The determination of mineralisation was done via industry standard methods, including RC drilling, followed by splitting, crushing and fire assaying
Drilling techniques	• Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 All drilling was completed using reverse circulation method, using a Schramm 645 model rig and 6m Remet Harlsen 4 ½ inch rods. The rig mounted Airtruck has 1150 cfm 500 psi auxiliary couples with a hurricane 7t Booster 2400 cfm /1000 psi booster. The bit size was 5 5/8,
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recoveries from the drilling are not known, as sample weights were not recorded at this stage of exploration, but visual inspection of samples in the field indicate that recoveries were sufficient. The shroud tolerance was monitored, and metre delineation

Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the metaneous interactions have been been appropriate to a standard details. 	 was kept in check. Loss of fines was controlled through mist injection. It is not clear whether a relationship between recovery and grade occurs as recovery data was not collected (e.g. bag weights). Core and chips were logged to a level of detail to support the Mineral Resource estimation. Logging was qualitative in nature. All intersections were logged
Sub-sampling techniques and sample preparation	 relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The nature and quality of the sampling suits the purpose, being exploration. The laboratory preparation is standard practice and has not been further refined to match the ore. QC in the lab prep stage was limited to taking pulp duplicates (e.g. no coarse crush duplicates were submitted) The sample split sizes (4-5 kg are regarded as more than adequate for the nature and type of material sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Standard 50g fire assays with an AAS finish were used to get assay results. This is a total technique, and considered appropriate for this level of exploration. Quality control was carried out by inserting blanks and standards into the sampling chain and 5% intervals. These all showed acceptable levels of accuracy and precision.

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have not been validated by independent or alternative personnel. No twin holes were included in this programme, as it is not relevant to the stage of exploration and purpose of this drilling. All primary data was collected on spread sheets which have been validated for errors and included into an Access database. Assay data has not been adjusted
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole locations were determined by GPS in the field in UTM zone 50. Topographic control is available through a detailed satellite-derived DTM.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes were not drilled on a pattern and there was no specific drill hole spacing. In general holes are drilled within 50m from previous intersections. The data spacing is considered sufficient to demonstrate geological and grade continuity for estimation procedures. Samples were not composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of sampling has achieved unbiased sampling of structures, with drilling perpendicular to the dip and strike of the mineralised zones The relationship between the drilling orientation and the orientation of key mineralised structures is not considered to have introduced a sampling bias.
Sample security	• The measures taken to ensure sample security.	 Samples were immediately dispatched to the laboratory and have at all times been in possession of CLM or its designated contractors. Chain of custody was maintained throughout.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data	• No audits of any of the data have been carried out.

71 Furniss Rd, Landsdale Western Australia 6065 ASX: CLZ | ABN 77119 484 016 <u>contact@classicminerals.com.au</u>

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The FGP Tenements (containing the Van Uden West prospect) are registered in the name of Reed Exploration Pty Ltd, which is a wholly owned subsidiary of ASX-listed Hannans Ltd (ASX code: HNR). Classic has acquired 80% of the gold rights only, with the remaining 20% of the gold rights held free-carried by Hannans Ltd until a decision to mine. Hannans Ltd also holds all of the non-gold rights on the FGP tenements including but not limited to nickel, lithium and other metals The acquisition includes 80% of the gold rights (other mineral rights retained by tenement holder) in the following granted tenements: E77/2207; E77/2219; E77/2303; E77/2200. Lady Lila is situated upon 100% owned CLZ tenements P77/4325 and P77/4326 (details in announcement dated 21 March 2017) Kat Gap is situated upon E74/467, held by Sulphide Resources Pty Ltd. CLZ has an option to acquire 100% of this tenement (details in announcement dated 13 July 2017)
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 All exploration was carried out by previous owners of the tenements (Aztec Mining, Forrestania Gold NL, Viceroy Australia, Sons of Gwalia, Sulphide Resources Pty Ltd)

Geology	Deposit type, geological setting and style of mineralisation.	 The deposit is a Archean shear-zone hosted gold deposit. Geological interpretation indicates that the general stratigraphy consists of metasediments, BIF's and cherts to the east of the tenement, overlying an older sequence of metamorphosed komatiitic and high-magnesian basalts to the west. Black shales/pelites occur as small interbedded units throughout the stratigraphy, which dips gently to the east (10-35°) and strikes N-S, bending in a NNW direction in the far north of the tenement. An Archaean-aged quartz dolerite unit (informally the 'Wattle Rocks Dolerite') is emplaced along a contact between high-MgO basalt to the west and low-MgO ultramafic to the east, in the western part of the tenement and is the host rock for the Lady Ada (and Lady Magdalene) mineralisation. Strongly magnetic Proterozoic dolerite dykes cross-cut the stratigraphy in an east-west direction, splaying to the ENE, following fault directions interpreted from the aeromagnetics. A number of narrow shear zones lie subparallel to the shallow-dipping metasediment-mafic contact within the host stratigraphy and are important sites and conduits for the observed mineralisation.
		are important sites and conduits

		 Magdalene area. Approximately 8- 12 metres of transported sands and a gold depleted weathering profile of saprolitic clays overly the Lady Ada and Lady Magdalene mineralisation. Structurally, the Wattle Rocks area is quite complex and is positioned near the intersection of several major breakages and flexures in the regional stratigraphy in this part of the Forrestania Greenstone belt. Numerous shear zones are evident throughout the area, particularly at changes of rock stratigraphy where there are rheological differences. Narrow, stacked, flat- dipping shear zones are evident within the quartz dolerite unit and may have resulted from thrusting of the younger sedimentary sequence over the mafic package from east to west. A similar model is predicted for Van Uden (10 km northwards) where mineralised quartz veins appear to 'stack' through a host ferruginous metasediment.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the 	This information is provided in attached tables

Data aggregation methods	 report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly 	 High grades were not cut in the reporting of weighted averages in this Report. Summary drill hole results as reported in figures and in the appendix 2 to this Report are reported on a 2m internal dilution and 0.5 g/t Au cuto-off.
Relationship between mineralisation widths and intercept lengths	 stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• In almost all cases, the drill holes are perpendicular to the mineralisation. The true width is not expected to deviate much from intersection width.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Appropriate images have been provided in the Report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Figures represent specific selected drill intervals to demonstrate the general trend of high grade trends. Cross sections show all relevant result in a balanced way.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; 	• No other relevant data is reported

	potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further RC drilling is being considered. Figures clearly demonstrate the areas of possible extensions