

EXCELLENT DRILLING RESULTS EXPAND RARE EARTH MINERALISATION FOOTPRINT AT THE MT RIDLEY PROJECT

2 August 2022

Mount Ridley Mines Limited (ASX: **MRD**), ("**the Company**") is pleased to provide an update following the receipt of the first group of assay results from its inaugural drilling programme specifically targeting clay-hosted rare earth element (**REE**) mineralisation.

Highlights

Central zone of REE targets extended to 30 kilometres long by 11 kilometres wide, with regional drilling identifying 2 new targets, the Jules and Vincent Prospects, which flank previously reported mineralisation at Winston's and Keith's.

Standout results from this first group of assays include:

Winston's Extensions

- MRAC0872: 14m at 812 ppm TREO from 27m
- MRAC0893: 17m at 1043 ppm TREO from 40m
- MRAC0894: 11m at 1080 ppm TREO from 1m
- MRAC0895: 11m at 940 ppm TREO from 34m
- MRAC0896: 18m at 834 ppm TREO from 31m
- MRAC0898: 5m at 1027 ppm TREO from 52m
- MRAC1200: 12m at 938 ppm TREO from 6m
- MRAC1201: 9m at 1386ppm TREO from 24m

Vincent

- MRAC0920: 22m at 886ppm TREO from 24m including 12m at 1346 ppm TREO from 33m
- MRAC0927: 7m at 1525 ppm TREO from 60m
- MRAC0930: 9m at 1203 ppm TREO from surface
- MRAC0931: 7m at 1205 ppm TREO from 30m
- MRAC0932: 8m at 1055 ppm TREO from 21m
- MRAC0935: 7m at 1711 ppm TREO from 30m
- MRAC0942: 13m at 1620 ppm TREO from 22m
- MRAC0939: 7m at 1336 ppm TREO from 33m
- MRAC0980: 9m at 1393 ppm TREO from 48m

Jules

- MRAC0995: 8m at 1493 ppm TREO from 18m
- MRAC1003: 22m at 822ppm TREO from 36m including 12m at 1180 ppm TREO from 36m

Mount Ridley's Chairman Mr. Peter Christie commented:

"With 30% of the assays received, we have confirmed that the REE mineralisation is very widespread within the Company's tenements, and new targets with thick intervals of REE mineralisation grading above 800 ppm TREO, and in some cases with TREO at more than 10,000ppm.metres, have been intersected at Vincent's and Jules' Prospects.

"Winter rain has halted drilling, however the next phase of Regional Drilling, in the order of 20,000m of aircore, is permitted and will proceed when ground conditions improve over the coming months.

"In the meantime, we are looking forward to receiving the assays for the remaining 70% of our drill holes over the next few months that are likely to generate more targets for follow up as the broader regional picture unfolds."

AIRCORE DRILLING EXTENDS ALREADY EXTENSIVE REE MINERATION

The Mount Ridley REE Project is located approximately 50km north of the Port of Esperance Western Australia with an area covering approximately 3,400km² (Figure 1).

Commencing in March 2022¹, the Company undertook drilling adjacent to known REE mineralisation at the Winston's Prospect and first-pass Regional Drilling throughout the Project where accessible tracks were available, using two aircore drilling rigs for much of the duration of the programme.

The Company's aircore programme saw:

- 409 holes (MRAC0862-MRAC1114, MRAC1200-MRAC1355) drilled for 18,927m; and
- from these, 8,497 samples were submitted to a commercial laboratory.

By stage, the work completed to date is as follows:

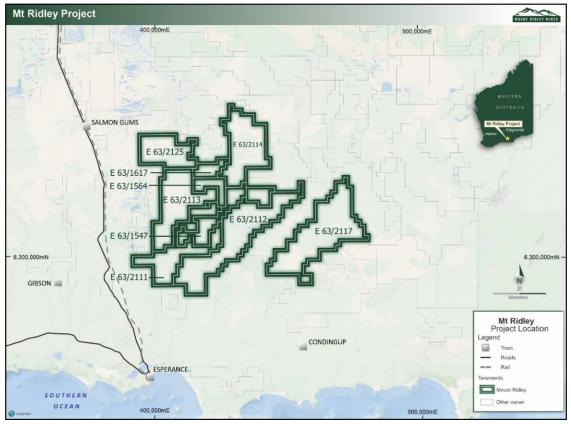
- 1. **Stage 1 Primary Target Infill Drilling**: 64 aircore holes drilled for 3,168m along the north-western flank of known mineralisation at the Winston's Prospect; and
- 2. **Stage 2 Regional Drilling**: 345 aircore holes drilled for 15,759m, spaced 400m apart along existing tracks, to locate previously unrecognised zones of REE mineralisation. It is likely that REE mineralisation will be deposited in anastomosing channels within the greater Eocene-aged Bremmer Basin.

30% OF DRILL HOLES NOW ASSAYED

To date, 3,059 assays of samples from 118 holes² have been received (collar locations listed in Table 2). Other samples remain at various stages of analytical processing, with the laboratory continuing to experience major delays in assay turn-around time.

The new drill results have:

- significantly extended mineralisation along the north-western flank of Winston's and added at least 2 km in a north-easterly direction, making the Winston's Prospect now at least 11 km long and over 2 km wide;
- identified new mineralisation targets for further drilling, including the new Vincent's and Jules' Prospects, located southwest and northeast of previously known mineralisation; and


¹ Mount Ridley Mines Limited announcement to ASX Drilling Underway at the Mt Ridley Rare Earth Deposit 16 March 2022

² MRAC0862 to MRAC0901, MRAC0914 to MRAC0949, MRAC0978 to MRAC1010 and MRAC1200 to MRAC1208

• extended the overall central REE corridor, which includes Winston's, Keith's, Marcellus', Jules' and Vincent's, with mineralisation identified in a zone that is 30 kilometres long and up to 11 kilometres wide - confirming the extensive distribution of REE mineralisation within the Project. (Figures 2-17).

The grade, thickness, and wide-spread nature of the REE mineralisation intersected to date and in particular, the proportion of total rare earth oxides (**TREO**³) made up of heavy rare earth oxides (**HREO**⁴ **40%**) and magnet rare earths (**MREO**⁵ 34%) is very encouraging. (Table 1).

Figure 1: The Mount Ridley REE Project comprises 9 granted exploration licences in south-west Western Australia with an area of approximately 3,400km².

DRILLING TO RESUME AFTER WINTER RAIN

Drilling will resume when dry soil conditions prevail later this year. Two phases will then be undertaken:

Stage 2 – Regional Drilling (continued): Very encouraging results have been returned in the samples analysed to date. Ongoing work will include:

- avoiding cultivated land, drilling will continue along existing cleared, dry tracks.
- mineralised holes currently spaced 400m apart will be infilled to 200m spacings. Emphasis will be placed on following up high grade **TREO**, high proportion of critical rare earth oxides (**CREO**⁶) and areas of shallow cover.

⁵ MREO means magnet rare earth oxides; the sum of Dy2O3, Nd2O3, Dy2O3 and Tb4O7

³ TREO means the sum of the 14 REE+Y, each converted to its respective element oxide equivalent using the formulae in Table 4 (See references).

⁴ Heavy REO or HREO means Heavy Rare Earth Oxides; the sum of Gd₂O₃, Tb₄O₇, Dy₂O₃Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, Y₂O₃.

⁶ Critical or CREO means Critical Rare Earth Oxides; the sum of Dy2O3, Eu2O3, Nd2O3, Tb4O7 and Y2O3

Stage 3 – Primary Target Expansion:

A programme of works ("POW") has been approved for Stage 3 - Primary Target expansion drilling, which provides for another 20,000m of aircore drilling within an area of 250 km² to further expand on the Keith's, Marcellus', Winston's, Jules' and Vincent's Prospects.

This will include up to 8 drill traverses of drilling totalling of 75km, with each drill traverse spaced at approximately 2km intervals, and with holes spaced at 200 or 400m apart along each traverse. (Figure 3).

The Company is implementing an Aboriginal Heritage Management Plan with the Esperance Tjaltjraak Native Title Aboriginal Corporation ("RNTBC") and has developed an Exploration Environment Management Plan in conjunction with Government environmental bodies to facilitate new access for this drilling programme.

Se	elected	Rare E	arth Oxide	e Interse	Table <>> ctions		REO) and	Group Distr	ribution	
Hole_ID	From	То	Interval	TREO	HREO	H/TREO	MREO	M/TREO	CREO	LREO
	(m)	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(%)	(ppm)	(ppm)
MRAC0865	0	9	9	560	256	43%	173	31%	298	304
MRAC0866	46	49	3	1346	894	65%	300	22%	850	453
MRAC0870	24	39	15	406	142	37%	75	18%	146	265
MRAC0871	29	40	11	416	211	53%	134	32%	225	205
MRAC0872	25	41	16	767	292	39%	271	35%	364	476
MRAC0877	17	30	13	454	116	26%	121	27%	159	337
MRAC0890	36	49	13	453	187	42%	121	27%	213	266
MRAC0893	40	57	17	1043	96	9%	174	17%	181	947
MRAC0894	1	12	11	1080	131	13%	274	25%	277	949
MRAC0895	34	45	11	940	363	38%	345	37%	479	577
MRAC0896	31	49	18	834	387	46%	256	31%	445	447
MRAC0898	51	57	6	927	238	26%	215	23%	307	689
MRAC0917	39	48	9	459	161	34%	107	23%	180	299
MRAC0919	48	56	8	798	460	56%	195	24%	462	337
MRAC0920	24	46	22	886	499	46%	217	24%	502	387
MRAC0923	54	62	8	823	535	61%	174	21%	517	288
MRAC0924	45	55	10	745	383	50%	201	27%	403	362
MRAC0925	21	61	40	380	112	29%	92	24%	133	268
MRAC0926	18	30	12	477	72	15%	130	27%	131	404
MRAC0927	60	67	7	1525	889	58%	463	30%	922	636
MRAC0928	26	44	18	351	138	38%	77	22%	145	213
MRAC0929	0	9	9	488	282	57%	92	19%	270	205
MRAC0929	27	33	6	1309	677	52%	365	28%	716	632
MRAC0930	0	9	9	1203	648	54%	313	26%	670	555
MRAC0931	30	37	7	1205	576	46%	369	31%	628	629
MRAC0932	21	29	8	1055	391	36%	339	32%	485	663
MRAC0933	18	35	17	353	130	35%	93	26%	153	223
MRAC0933	0	9	9	814	341	42%	248	30%	404	472
MRAC0935	30	37	7	1711	821	46%	476	28%	876	890

Se	ected	Rare F	arth Oxide	Interse	Table		RFO) and	Group Disti	ibution	
Hole ID	From	To	Interval	TREO	HREO	H/TREO	MREO	M/TREO	CREO	LREO
	(m)	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(%)	(ppm)	(ppm)
MRAC0937	24	33	9	785	383	44%	199	25%	401	401
MRAC0938	0	9	9	512	245	48%	149	29%	265	267
MRAC0939	33	40	7	1336	526	41%	366	27%	591	810
MRAC0942	22	35	13	1620	832	33%	469	29%	896	787
MRAC0943	42	48	6	845	482	58%	175	21%	468	363
MRAC0947	36	51	15	334	100	30%	85	25%	121	234
MRAC0980	48	57	9	1393	936	56%	243	17%	866	457
MRAC0982	45	51	6	737	478	49%	125	17%	429	259
MRAC0983	27	48	21	513	164	33%	115	22%	190	350
MRAC0985	44	55	11	676	323	48%	199	29%	355	353
MRAC0989	42	47	5	878	442	50%	222	25%	463	436
MRAC0992	14	20	6	749	409	55%	176	23%	415	340
MRAC0993	15	32	17	554	218	40%	123	22%	235	336
MRAC0994	30	43	13	516	134	27%	126	24%	174	382
MRAC0995	18	26	8	1493	850	55%	338	23%	859	644
MRAC1001	48	60	12	612	265	40%	160	26%	290	347
MRAC1003	36	58	22	822	365	42%	238	29%	405	457
MRAC1004	24	36	12	484	81	17%	91	19%	116	403
MRAC1006	21	37	16	519	54	11%	124	24%	119	465
MRAC1007	30	51	21	527	62	12%	111	21%	114	466
MRAC1008	30	45	15	546	87	16%	99	18%	124	459
MRAC1200	6	18	12	938	80	9%	169	18%	167	858
MRAC1201	24	33	9	1386	325	21%	346	25%	468	1061
MRAC1202	15	24	9	510	129	25%	137	27%	180	381
MRAC1203	15	27	12	621	187	31%	161	26%	239	434
MRAC1204	12	21	9	686	292	44%	173	25%	324	394
MRAC1205	12	21	9	611	346	52%	120	20%	335	264
MRAC1208	30	37	7	599	277	47%	123	21%	281	322

This drilling programme is designed to test an expanded area surrounding the intersections listed in Table 1 and shown in Figures 2-16.

ORE GENESIS PETROGRAPHY AND METALLURGY COMMENCES

All bottom-of-hole samples, which are reasonably fresh samples of the basement rocks, will be scanned and component minerology determined using a Bruker M4 Tornado microXRF. Through this technology primary and secondary REE-containing minerals can be identified if present. 344 samples have previously been scanned.

20 samples from 10 drill holes distributed throughout the Project are to be submitted to ANSTO for sighter REE extraction work.

ABOUT THE MOUNT RIDLEY REE PROJECT

The Company announced on 1 July 2021 that laterally extensive REE mineralisation had been identified at its namesake Mount Ridley Project⁷, near Esperance. REE mineralisation is thought to occur within Eocene-aged sediments of the Bremmer Basin (See Project Geology below). Drill holes that have returned elevated REE extend over an area measuring 30 kilometres long and 11 kilometres wide, and mineralisation is 'open' in all directions (Figures 2 - 16).

Work undertaken to date

- Initially, composite samples from over 3,500m of drilling were analysed for REE using a 'total digest' fusion technique ("Fusion"), designed to report the total amount of REE in each sample.
- A second analysis of higher grade REE samples was completed using a 'partial digest' weak aqua regia digestion technique ("AR⁸") which would take into solution only the most soluble or loosely bound REE, a feature of ionic adsorption clay REE deposits. This test indicated that at a grade of approximately 800ppm TREO, 80% of light REO⁹, 76% of heavy REO¹⁰ and 80% of CREO were taken into solution under the conditions trialled.
- 880 drill pulps have been analysed using a short wave infra-red ("SWIR") instrument to help map clay mineral distribution as a component of an ongoing Research and Development project studying the REE mineralisation genesis.
- 344 samples were scanned using a Bruker M4 Tornado micro-XRF analyser. Samples were of near fresh rock stubs from the bottom of aircore holes drilled in 2014. Results are also a component of the Research and Development project.
- Drilling statistics for the 2022 programme to date include a total of 409 aircore holes for 18,927m with 8,497 samples submitted for analysis. Results have been received for 3,059 samples from 119 drill holes.

Photograph 1: Aircore drilling at the Mount Ridley Project.

⁷ Mount Ridley Mines Limited announcements to ASX 1 July 2021,2 August 2021, 13 September 2021

⁸ AR means Weak aqua regia acid, a mix of 1 molar hydrochloric acid (HCl) and 1 molar nitric acid (HNO3).

⁹ Light REO or LREO means Light Rare Earth Oxides; the sum of La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃.

¹⁰ Heavy REO or HREO means Heavy Rare Earth Oxides; the sum of Gd₂O₃, Tb₄O₇, Dy₂O₃Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, Y₂O₃.

Project Geology

Archaean to Meso-Proterozoic Basement

- Geological Survey of Western Australia mapping¹¹ shows that basement rocks are interpreted to be Archaean to Meso-Proterozoic-aged gneisses and granites, in parts intermixed with mafic and ultramafic rocks.
- Basement rocks protrude through younger sediments, forming northeast trending ridges and inselbergs (figure 2). Basement ridges likely control the size and shape of the overlying, REE-mineralised, Eocene-aged basins.
- Certain ultramafic rocks remain prospective for nickel mineralisation.

Eocene

- Eocene-aged sediments fill the onshore Bremmer Basin, infilling depressions in the Meso-Proterozoic-aged basement.
- The Eocene sediments comprise siltstone, sandstone, spongolite, limestone and lignite. Early indications suggest that unconsolidated kaolin- or montmorillonite- rich clays host the Mt Ridley rare earth mineralisation (refer to figures 4 and 6).

Recent

• The current land surface is dominated by deposits of sand and gypsum dunes around numerous ephemeral lakes.

^{11 (}DMIRS) Department of Mines, Industry Regulation and Safety 1:250,000 Interpreted Bedrock Geology (2020)

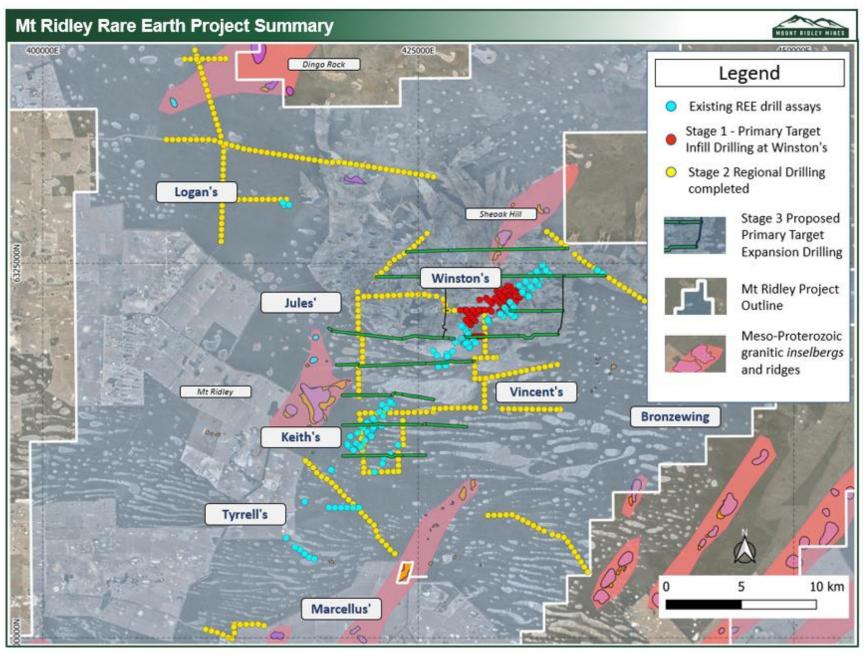


Figure 2: Drill Hole Location Status Plan by Drilling Stage.

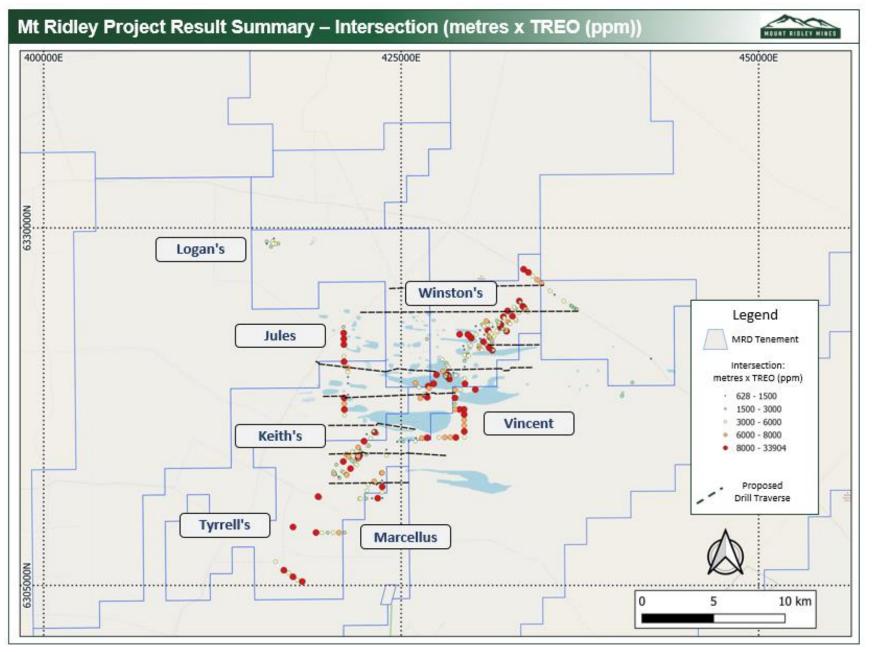


Figure 3: Summary of Mineralised Drill Holes

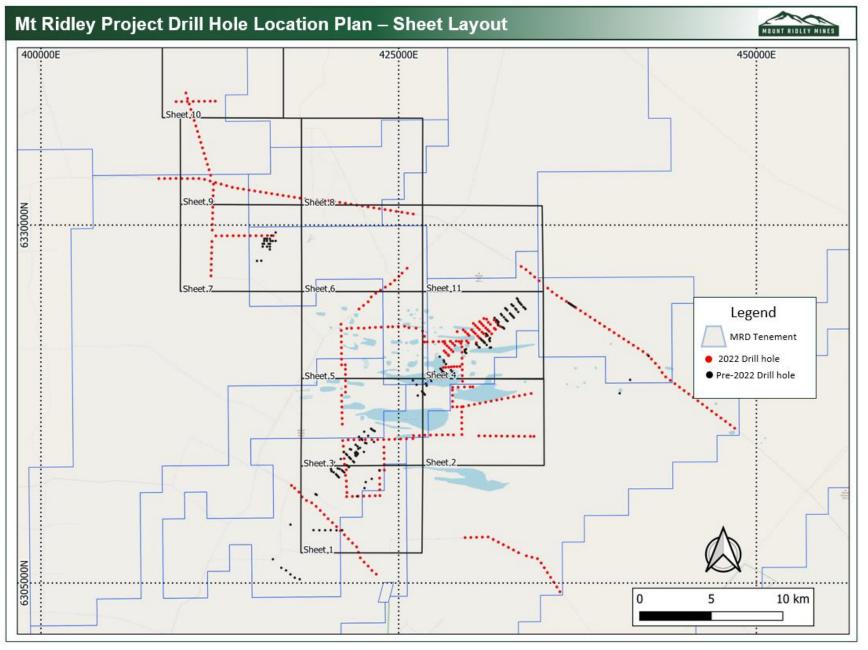


Figure 4: Drill Hole Location and Results: Sheet Index

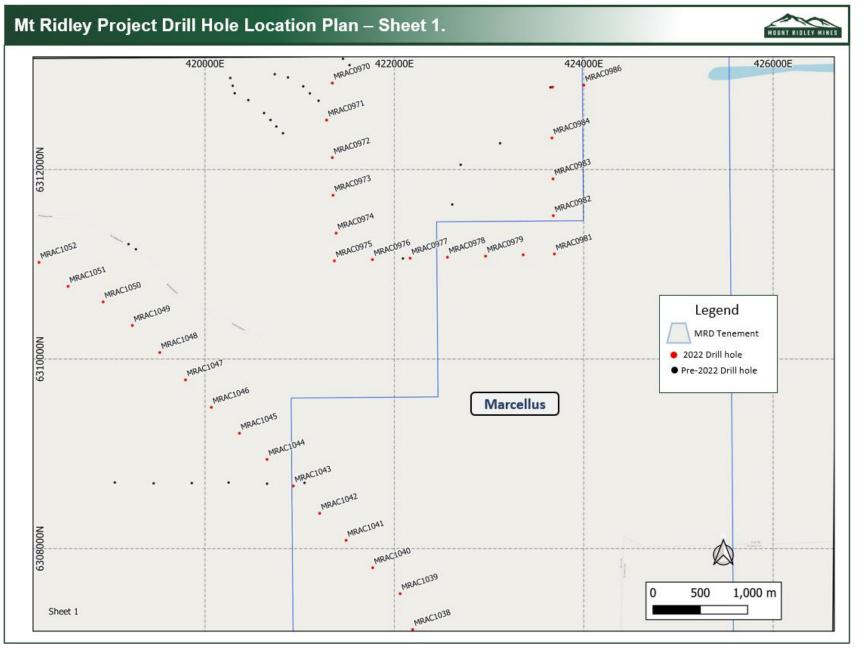


Figure 5: Sheet 1 Drill Hole ID and Location

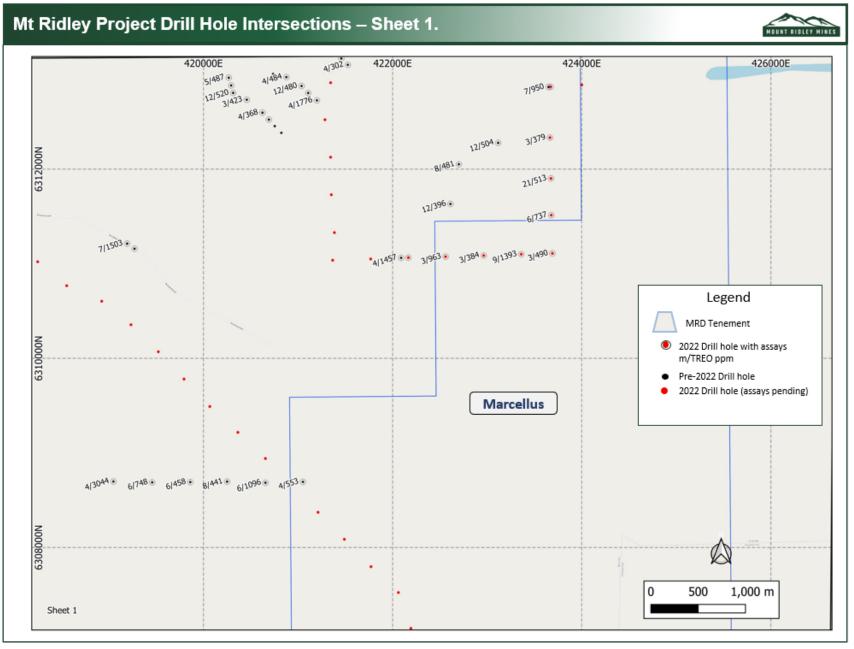


Figure 6: Sheet 1 Drill Hole Locations with TREO Intersections.

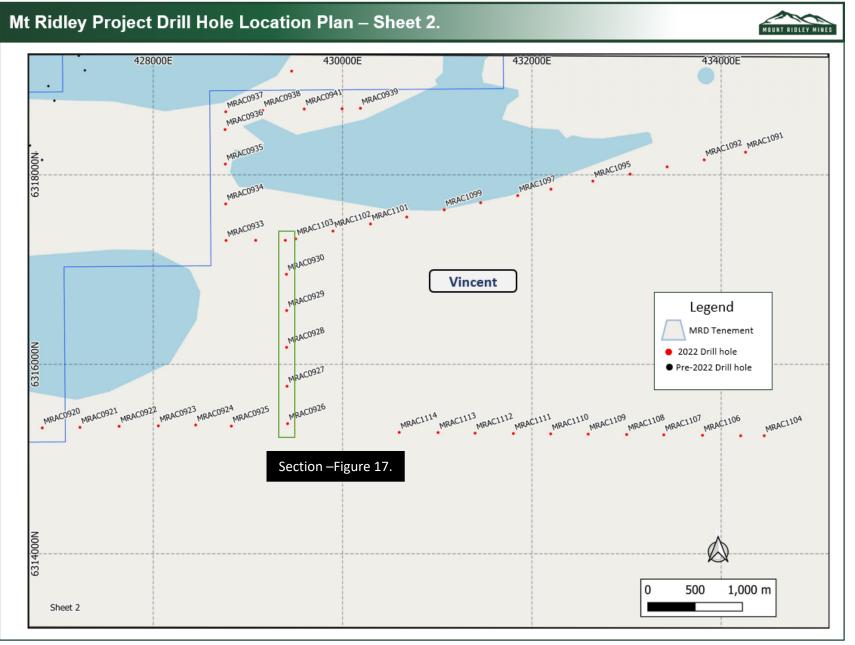


Figure 7: Sheet 2 Drill Hole ID and Location

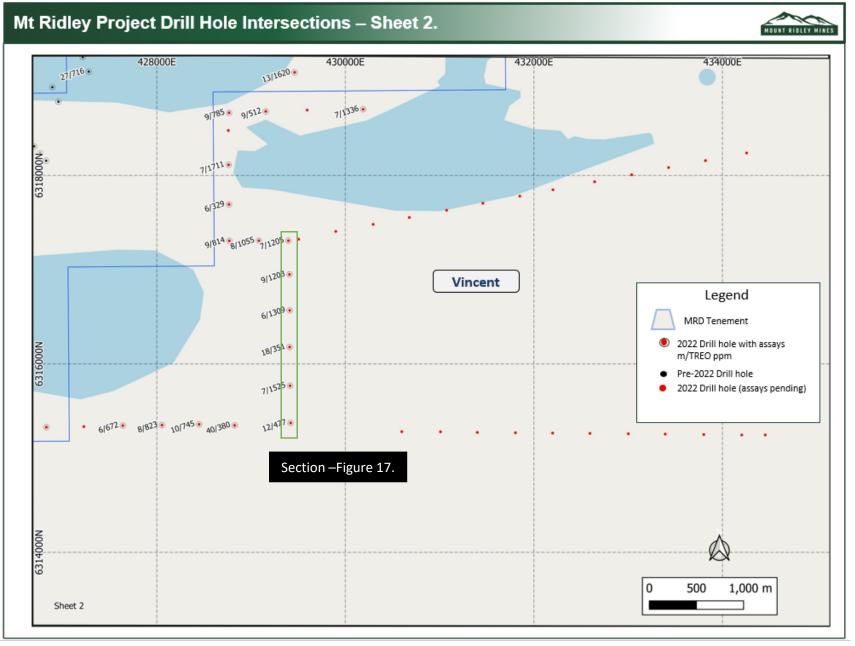


Figure 8: Sheet 2 Drill Hole Locations with TREO Intersections.

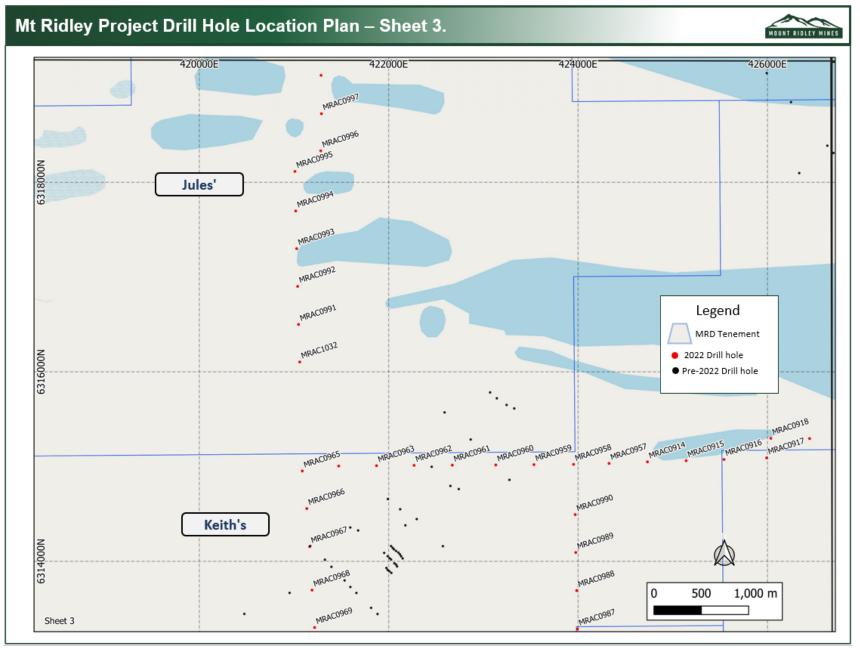


Figure 9: Sheet 3 Drill Hole ID and Location

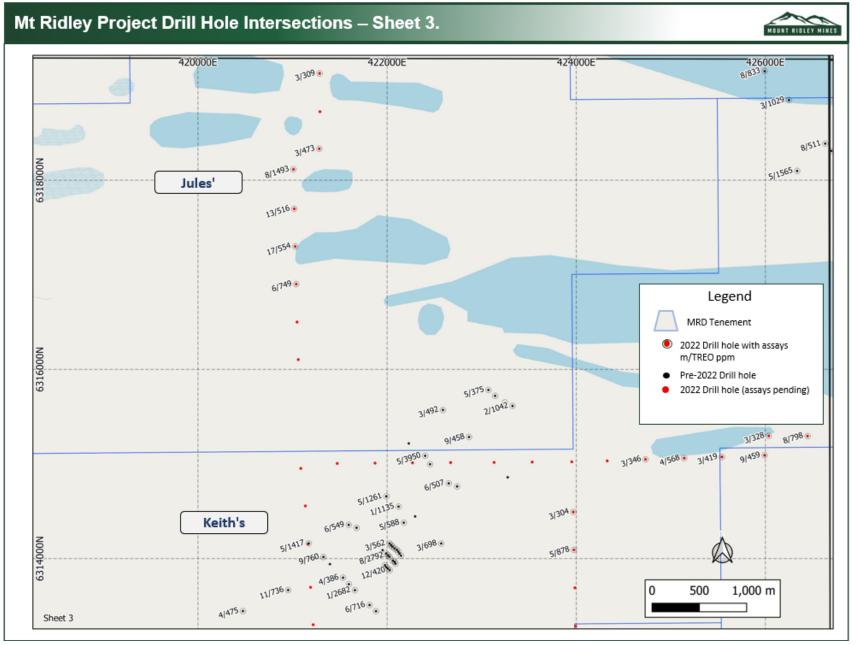


Figure 10: Sheet 3 Drill Hole Locations with TREO Intersections.

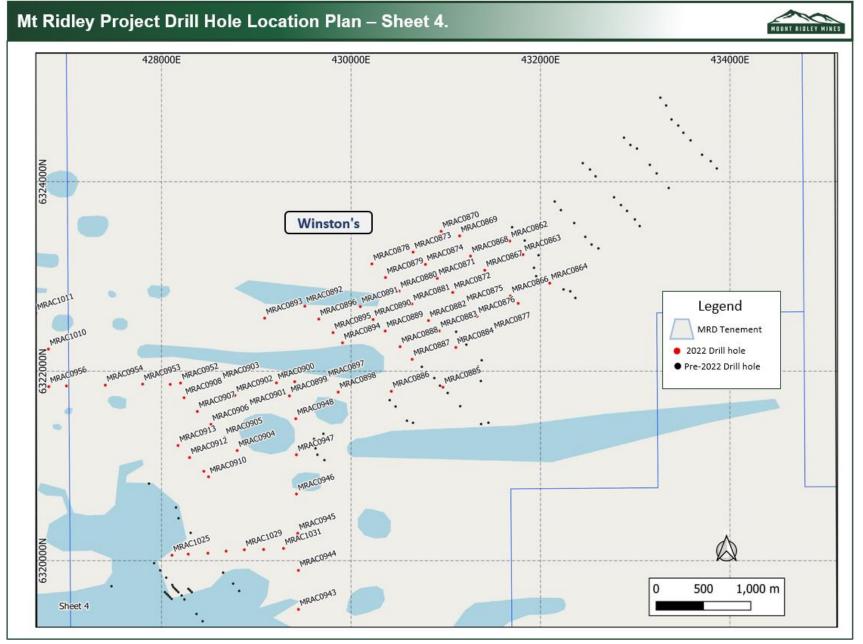


Figure 11: Sheet 4 Drill Hole ID and Location

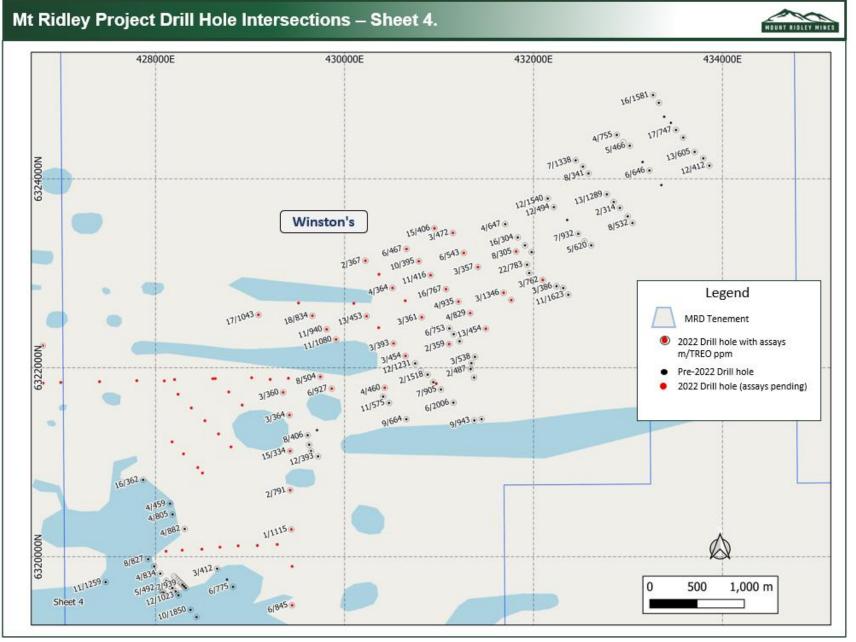


Figure 12: Sheet 4 Drill Hole Locations with TREO Intersections.

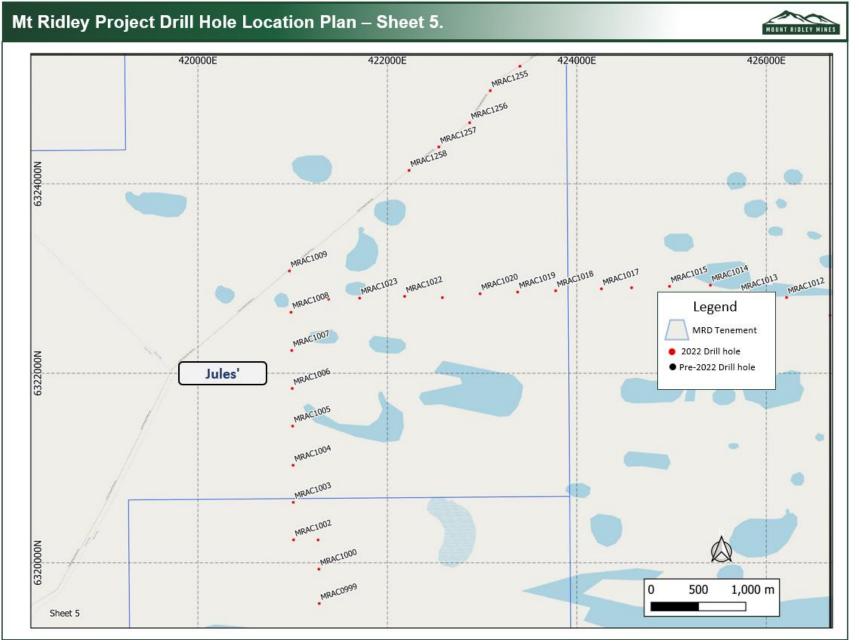


Figure 13: Sheet 5 Drill Hole ID and Location

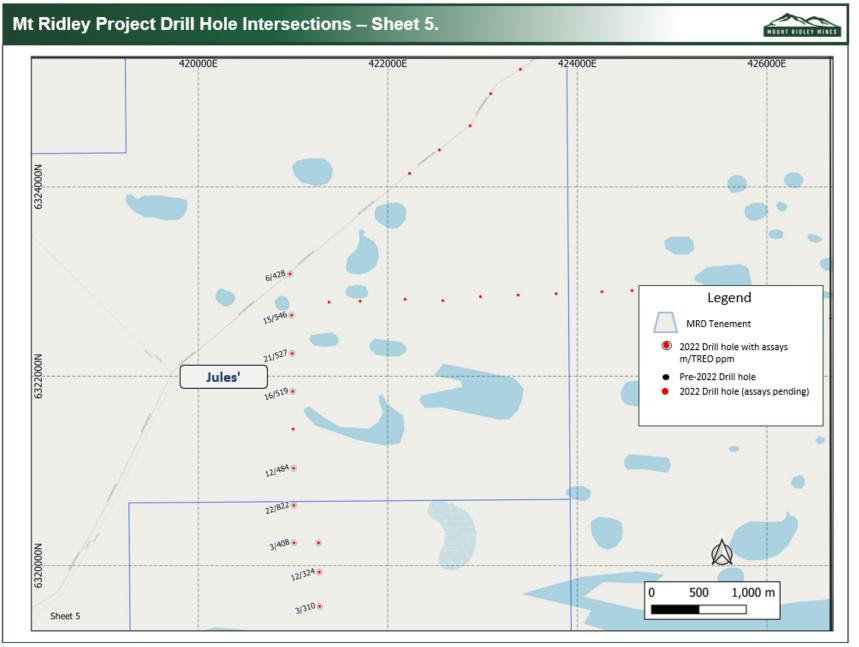


Figure 14: Sheet 5 Drill Hole Locations with TREO Intersections.

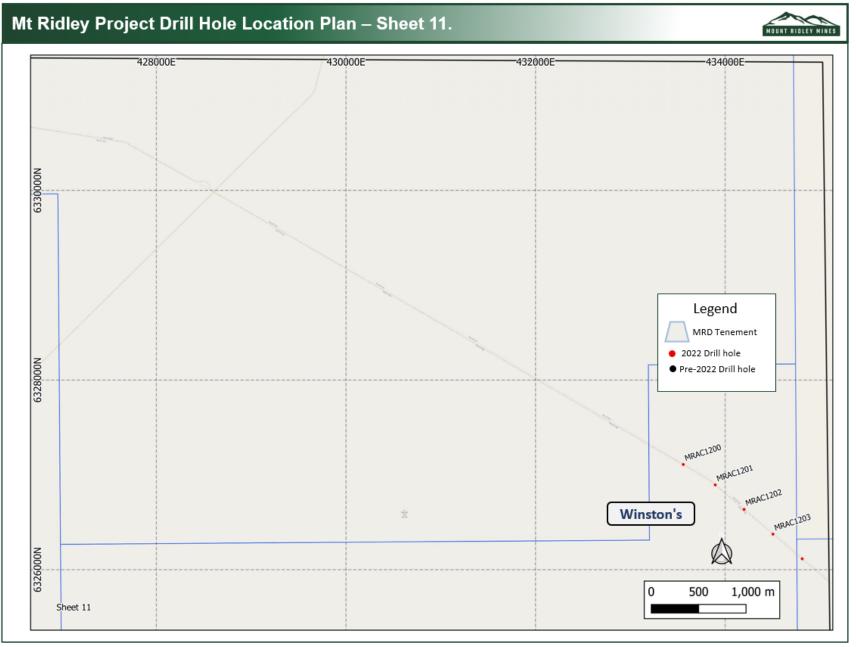


Figure 15: Sheet 11 Drill Hole ID and Location

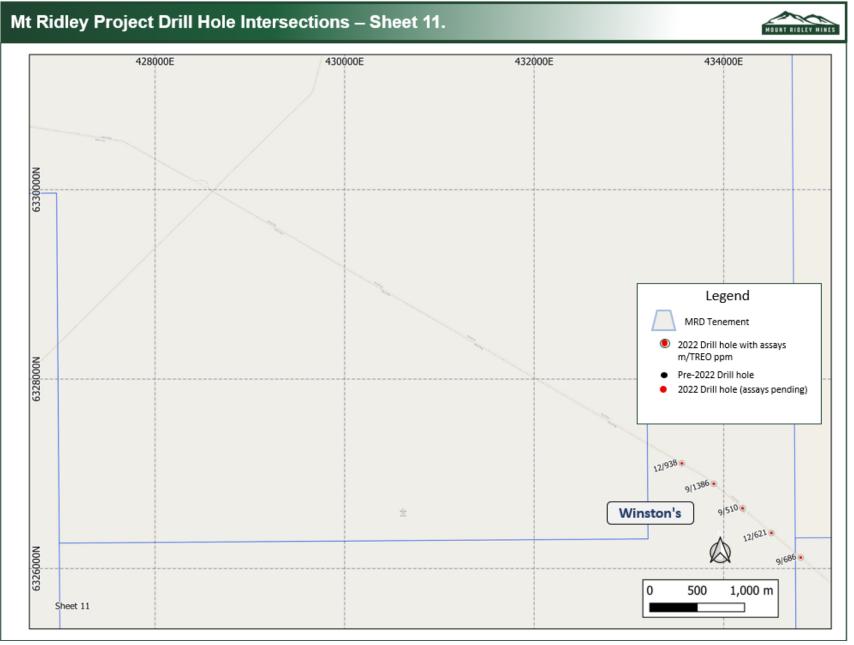


Figure 16: Sheet 11 Drill Hole Locations with TREO Intersections.

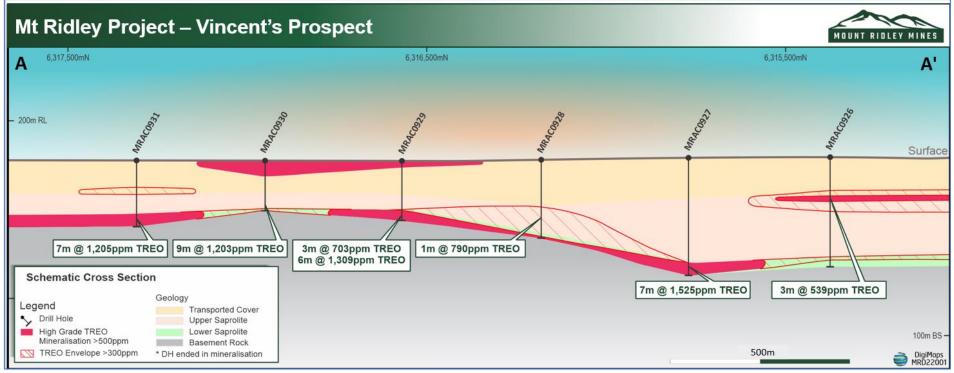


Figure 17: N-S Cross Section of Regional Drilling through the newly discovered Vincent's Prospect. Drill holes are nominally 400m apart.

The Company acknowledges the Esperance Nyungar People, custodians of the Project area.

This announcement has been authorised for release by the Company's board of directors.

For further information, please contact:

Peter Christie Chairman +61 8 6165 8858 David Crook Technical Manager +61 8 6165 8858

ABOUT MOUNT RIDLEY MINES LIMITED

Mount Ridley is a company targeting demand driven metals in Western Australia.

Its namesake Mount Ridley Project, located within a Fraser Range sub-basin, was initially acquired for its nickel and copper sulphides potential, and is now recognised as being prospective for clay hosted REE deposits.

The Company also holds approximately 18% of the Weld Ranges in the mid-west of Western Australia. Areas of the tenements are prospective iron and gold.

Competent Person

The information in this report that relates to exploration strategy and results is based on information supplied to and compiled by Mr David Crook. Mr Crook is a consulting geologist retained by Mount Ridley Limited. Mr Crook is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the exploration processes undertaken to qualify as a Competent Person as defined in the 2012 Editions of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

With respect to JORC Table 1 included in MRD announcements to ASX dated:

- 2 August 2021. "REE Potential Unveiled at Mount Ridley."
- 13 September 2021. "REE Targets Extended."
- 21 October 2021. "Encouraging Rare Earth Extraction Results."

Mount Ridley confirms that it is not aware of any new information or data that materially affects the information included in these announcements and that all material assumptions and technical parameters underpinning the exploration results continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Caution Regarding Forward Looking Information

This announcement may contain forward-looking statements that may involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

References

"REO" means the rare earth element converted to its element oxide equivalent using the factors provided at <u>Element-to-stoichiometric oxide conversion factors - JCU Australia</u>. TREO means the sum of the 14 REO+ Y₂O₃.

Table 4: Conve	rsions from elen	nents to oxides
Ce_ppm	1.2284	CeO2_ppm
Dy_ppm	1.1477	Dy ₂ O ₃ _ppm
Er_ppm	1.1435	$Er_2O_3_ppm$
Eu_ppm	1.1579	Eu ₂ O ₃ _ppm
Gd_ppm	1.1526	Gd ₂ O ₃ _ppm
Ho_ppm	1.1455	Ho ₂ O ₃ _ppm
La_ppm	1.1728	La ₂ O ₃ _ppm
Lu_ppm	1.1372	Lu ₂ O ₃ _ppm
Nd_ppm	1.1664	$Nd_2O_3_ppm$
Pr_ppm	1.2082	Pr ₆ O ₁₁ _ppm
Sm_ppm	1.1596	Sm ₂ O ₃ _ppm
Tb_ppm	1.1762	Tb ₄ O ₇ _ppm
Tm_ppm	1.1421	$Tm_2O_3_ppm$
Y_ppm	1.2695	Y ₂ O ₃ _ppm
Yb_ppm	1.1387	Yb ₂ O ₃ _ppm

J. D. A. Clarke (1994) Evolution of the Lefroy and Cowan palaeodrainage channels, Western Australia, Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, 41:1, 55-68

Appendix 1

A. Drill Hole Collar Locations for Reported Holes.

A. Driif	Tak			r Locations		
Project	Hole ID	Drill	Depth	East	North	RL
			(m)	(m)	(m)	(m)
Mt_Ridley	MRAC0862	AC	54	431,676	6,323,374	186
Mt_Ridley	MRAC0863	AC	43	431,816	6,323,231	185
Mt_Ridley	MRAC0864	AC	31	432,098	6,322,929	185
Mt_Ridley	MRAC0865	AC	52	431,765	6,322,716	185
Mt_Ridley	MRAC0866	AC	51	431,684	6,322,794	185
Mt_Ridley	MRAC0867	AC	51	431,412	6,323,065	187
Mt_Ridley	MRAC0868	AC	45	431,262	6,323,215	187
Mt_Ridley	MRAC0869	AC	32	431,147	6,323,428	188
Mt_Ridley	MRAC0870	AC	39	430,952	6,323,476	189
Mt_Ridley	MRAC0871	AC	59	430,911	6,322,980	185
Mt_Ridley	MRAC0872	AC	41	431,074	6,322,831	185
Mt_Ridley	MRAC0873	AC	30	430,656	6,323,257	185
Mt_Ridley	MRAC0874	AC	41	430,786	6,323,127	185
Mt_Ridley	MRAC0875	AC	64	431,206	6,322,699	185
Mt_Ridley	MRAC0876	AC	27	431,331	6,322,578	186
Mt_Ridley	MRAC0877	AC	30	431,495	6,322,413	186
Mt_Ridley	MRAC0878	AC	36	430,221	6,323,132	185
Mt_Ridley	MRAC0879	AC	16	430,365	6,322,989	185
Mt_Ridley	MRAC0880	AC	25	430,509	6,322,844	185
Mt_Ridley	MRAC0881	AC	65	430,643	6,322,710	185
Mt_Ridley	MRAC0882	AC	50	430,818	6,322,534	183
Mt_Ridley	MRAC0883	AC	31	430,931	6,322,425	183
Mt_Ridley	MRAC0884	AC	43	431,107	6,322,250	185
Mt_Ridley	MRAC0885	AC	39	430,971	6,321,831	188
Mt_Ridley	MRAC0886	AC	58	430,426	6,321,788	186
Mt_Ridley	MRAC0887	AC	34	430,646	6,322,125	183
Mt_Ridley	MRAC0888	AC	51	430,519	6,322,258	186
Mt_Ridley	MRAC0889	AC	43	430,362	6,322,424	188
Mt_Ridley	MRAC0890	AC	50	430,234	6,322,545	187
Mt_Ridley	MRAC0891	AC	33	430,099	6,322,682	185
Mt_Ridley	MRAC0892	AC	21	429,513	6,322,686	185
Mt_Ridley	MRAC0893	AC	57	429,089	6,322,560	185
Mt_Ridley	MRAC0894	AC	52	429,911	6,322,299	185
Mt_Ridley	MRAC0895	AC	45	429,811	6,322,407	185
Mt_Ridley	MRAC0896	AC	49	429,660	6,322,550	185
Mt_Ridley	MRAC0897	AC	59	429,745	6,321,905	184
Mt_Ridley	MRAC0898	AC	57	429,865	6,321,779	185
Mt_Ridley	MRAC0899	AC	61	429,350	6,321,739	183
Mt_Ridley	MRAC0900	AC	58	429,214	6,321,876	183
Mt_Ridley	MRAC0901	AC	67	428,916	6,321,605	186

	Tak	ole 2: Drill	Hole Colla	r Locations		
Project	Hole ID	Drill	Depth	East	North	RL
-			(m)	(m)	(m)	(m)
Mt_Ridley	MRAC0914	AC	45	424,734	6,315,049	181
Mt_Ridley	MRAC0915	AC	49	425,143	6,315,061	180
Mt_Ridley	MRAC0916	AC	50	425,542	6,315,074	180
Mt_Ridley	MRAC0917	AC	48	425,993	6,315,091	179
Mt_Ridley	MRAC0918	AC	42	426,037	6,315,297	178
Mt_Ridley	MRAC0919	AC	56	426,447	6,315,295	178
Mt_Ridley	MRAC0920	AC	46	426,828	6,315,328	178
Mt_Ridley	MRAC0921	AC	34	427,226	6,315,334	179
Mt_Ridley	MRAC0922	AC	39	427,640	6,315,345	182
Mt_Ridley	MRAC0923	AC	62	428,055	6,315,350	184
Mt_Ridley	MRAC0924	AC	55	428,449	6,315,359	182
Mt_Ridley	MRAC0925	AC	61	428,826	6,315,348	180
Mt_Ridley	MRAC0926	AC	61	429,420	6,315,373	179
Mt_Ridley	MRAC0927	AC	67	429,413	6,315,768	180
Mt_Ridley	MRAC0928	AC	44	429,409	6,316,179	178
Mt_Ridley	MRAC0929	AC	33	429,410	6,316,568	177
Mt_Ridley	MRAC0930	AC	28	429,407	6,316,950	178
Mt_Ridley	MRAC0931	AC	37	429,396	6,317,308	178
Mt_Ridley	MRAC0932	AC	29	429,083	6,317,308	180
Mt_Ridley	MRAC0933	AC	35	428,769	6,317,307	180
Mt_Ridley	MRAC0934	AC	18	428,766	6,317,693	181
Mt_Ridley	MRAC0935	AC	37	428,762	6,318,114	180
Mt_Ridley	MRAC0936	AC	43	428,759	6,318,478	181
Mt_Ridley	MRAC0937	AC	33	428,767	6,318,666	182
Mt_Ridley	MRAC0938	AC	33	429,156	6,318,680	182
Mt_Ridley	MRAC0939	AC	40	430,189	6,318,703	179
Mt_Ridley	MRAC0940	AC	46	429,995	6,318,697	180
Mt_Ridley	MRAC0941	AC	12	429,596	6,318,695	180
Mt_Ridley	MRAC0942	AC	43	429,462	6,319,095	182
Mt_Ridley	MRAC0943	AC	48	429,446	6,319,485	182
Mt_Ridley	MRAC0944	AC	53	429,445	6,319,897	182
Mt_Ridley	MRAC0945	AC	53	429,438	6,320,288	182
Mt_Ridley	MRAC0946	AC	41	429,425	6,320,703	183
Mt_Ridley	MRAC0947	AC	57	429,424	6,321,117	185
Mt_Ridley	MRAC0948	AC	51	429,417	6,321,498	184
Mt_Ridley	MRAC0949	AC	69	429,406	6,321,889	183
Mt_Ridley	MRAC0978	AC	51	422,561	6,311,075	175
Mt_Ridley	MRAC0979	AC	53	422,964	6,311,086	177
Mt_Ridley	MRAC0980	AC	70	423,361	6,311,100	179
Mt_Ridley	MRAC0981	AC	66	423,691	6,311,109	180
Mt_Ridley	MRAC0982	AC	51	423,679	6,311,513	178
Mt_Ridley	MRAC0983	AC	50	423,676	6,311,902	174

	I al	ne z: Drill	Hole Colla	r Locations		
Project	Hole ID	Drill	Depth	East	North	RL
			(m)	(m)	(m)	(m)
Mt_Ridley	MRAC0984	AC	45	423,665	6,312,334	175
Mt_Ridley	MRAC0985	AC	55	423,672	6,312,871	175
Mt_Ridley	MRAC0986	AC	49	424,001	6,312,890	175
Mt_Ridley	MRAC0987	AC	55	423,994	6,313,284	177
Mt_Ridley	MRAC0988	AC	51	423,986	6,313,690	176
Mt_Ridley	MRAC0989	AC	47	423,977	6,314,092	177
Mt_Ridley	MRAC0990	AC	42	423,970	6,314,492	176
Mt_Ridley	MRAC0991	AC	16	421,048	6,316,500	184
Mt_Ridley	MRAC0992	AC	20	421,039	6,316,902	183
Mt_Ridley	MRAC0993	AC	32	421,029	6,317,300	181
Mt_Ridley	MRAC0994	AC	43	421,019	6,317,698	183
Mt_Ridley	MRAC0995	AC	26	421,011	6,318,115	183
Mt_Ridley	MRAC0996	AC	38	421,283	6,318,333	183
Mt_Ridley	MRAC0997	AC	32	421,290	6,318,725	183
Mt_Ridley	MRAC0998	AC	51	421,286	6,319,130	183
Mt_Ridley	MRAC0999	AC	31	421,281	6,319,569	186
Mt_Ridley	MRAC1000	AC	54	421,278	6,319,932	187
Mt_Ridley	MRAC1001	AC	60	421,269	6,320,240	188
Mt_Ridley	MRAC1002	AC	25	421,010	6,320,241	188
Mt_Ridley	MRAC1003	AC	58	421,007	6,320,637	189
Mt_Ridley	MRAC1004	AC	53	421,005	6,321,029	189
Mt_Ridley	MRAC1005	AC	32	421,001	6,321,442	193
Mt_Ridley	MRAC1006	AC	37	420,996	6,321,840	191
Mt_Ridley	MRAC1007	AC	51	420,991	6,322,241	190
Mt_Ridley	MRAC1008	AC	45	420,984	6,322,644	194
Mt_Ridley	MRAC1009	AC	76	420,966	6,323,080	195
Mt_Ridley	MRAC1010	AC	53	426,806	6,322,233	188
Mt_Ridley	MRAC1200	AC	22	433,559	6,327,110	194
Mt_Ridley	MRAC1201	AC	41	433,896	6,326,894	193
Mt_Ridley	MRAC1202	AC	24	434,201	6,326,636	191
Mt_Ridley	MRAC1203	AC	27	434,505	6,326,375	191
Mt_Ridley	MRAC1204	AC	31	434,814	6,326,115	189
Mt_Ridley	MRAC1205	AC	28	435,419	6,325,596	187
Mt_Ridley	MRAC1206	AC	27	435,726	6,325,335	186
Mt_Ridley	MRAC1207	AC	35	436,049	6,325,103	187
Mt_Ridley	MRAC1208	AC	37	436,386	6,324,884	188

• Grid is GDA94-51

• Coordinates by hand-held GPS with a presumed accuracy within +-5m

• All holes drilled vertically (dip = -90° , azimuth = 0°)

Appendix 1

B. Assay Results.

							ults for Sam	nles with T	Table 3.	arth Elemen	+ (TREE) >2	50 nnm						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0862	21	22	MR18022	106.0	6.1	2.7	4.0	8.7	1.0	48.4	0.3	56.7	14.1	11.6	1.1	0.3	19.3	2.4
MRAC0862	32	33	MR18034	157.5	5.7	3.8	1.9	5.1	1.1	15.4	0.6	18.7	4.5	4.9	0.8	0.5	26.3	4.2
MRAC0862	40	41	MR18042	56.8	19.7	10.7	6.3	20.8	3.8	44.5	1.2	69.1	14.8	17.4	3.1	1.3	111.5	8.3
MRAC0863	30	31	MR18087	103.0	4.3	2.2	1.4	5.1	0.8	56.0	0.3	38.3	11.3	6.7	0.8	0.3	20.2	2.0
MRAC0863	31	32	MR18088	137.5	6.5	3.3	2.2	7.6	1.2	77.2	0.4	53.3	15.6	9.3	1.1	0.5	29.8	2.9
MRAC0863	32	33	MR18089	117.0	5.5	2.7	1.9	6.4	1.0	68.2	0.4	45.9	13.3	8.1	0.9	0.5	25.1	2.4
MRAC0863	35	36	MR18092	75.5	9.7	5.1	2.7	11.0	1.8	41.8	0.6	44.6	10.3	10.5	1.6	0.7	50.1	4.0
MRAC0863	36	37	MR18093	61.1	10.2	5.6	3.0	11.2	2.0	35.0	0.7	41.7	9.1	9.8	1.7	0.8	55.7	4.6
MRAC0863	37	38	MR18094	51.7	16.6	10.2	4.0	15.8	3.4	26.0	1.3	42.6	8.6	11.9	2.4	1.4	99.7	9.0
MRAC0864	0	1	MR18101	57.3	14.8	8.6	4.1	14.8	2.9	27.8	1.1	45.5	9.2	12.1	2.3	1.2	83.1	7.4
MRAC0864	16	17	MR18117	49.9	9.9	3.0	9.2	16.6	1.4	290.0	0.3	160.5	47.0	26.1	2.0	0.4	25.2	2.1
MRAC0864	17	18	MR18118	29.0	6.0	2.7	4.5	8.7	1.0	128.0	0.3	75.9	21.9	12.6	1.1	0.5	20.4	2.3
MRAC0864	18	19	MR18119	76.7	15.0	4.8	14.3	25.5	2.1	431.0	0.4	247.0	74.5	41.5	3.0	0.5	38.7	3.0
MRAC0864	28	29	MR18129	112.0	15.4	9.3	5.3	15.0	3.1	41.0	1.2	52.1	11.2	12.6	2.3	1.4	83.5	7.9
MRAC0864	29	30	MR18130	105.0	19.5	11.6	6.6	18.8	3.9	46.2	1.4	60.1	12.6	15.0	2.9	1.5	109.5	9.6
MRAC0865	0	1	MR18131	106.0	24.0	13.8	8.8	24.8	4.7	62.5	1.6	84.6	17.3	20.0	3.7	1.7	124.0	11.1
MRAC0865	3	4	MR18135	60.9	29.8	14.0	14.6	40.4	5.5	130.5	1.4	167.0	35.3	35.4	5.2	1.7	178.0	10.0
MRAC0865	4	5	MR18136	62.9	29.5	14.1	14.3	39.6	5.4	129.5	1.4	170.0	35.3	36.3	5.1	1.6	176.0	9.8
MRAC0865	5	6	MR18137	51.6	19.2	9.1	9.2	25.6	3.5	84.4	0.9	110.0	22.8	23.5	3.4	1.1	111.5	6.7
MRAC0865	6	7	MR18138	53.7	22.9	10.7	11.8	31.2	4.3	103.5	1.3	133.5	27.8	28.3	4.1	1.3	133.5	7.7
MRAC0865	7	8	MR18139	55.9	26.9	13.1	13.4	36.5	5.0	119.0	1.3	156.0	31.9	33.4	4.8	1.5	162.0	9.3
MRAC0865	8	9	MR18140	32.8	14.8	7.1	7.6	19.8	2.8	65.3	0.8	83.3	17.7	17.7	2.8	0.9	86.5	5.5
MRAC0865	51	52	MR18184	70.6	14.7	8.4	5.6	15.8	2.8	35.1	1.0	59.0	11.7	14.6	2.4	1.1	69.0	7.3
MRAC0866	46	47	MR18232	98.0	76.1	49.4	16.5	68.7	17.3	108.5	6.7	189.0	40.2	52.1	11.2	7.1	504.0	44.6
MRAC0866	47	48	MR18234	69.2	41.4	25.3	9.9	38.7	9.0	70.4	3.5	118.5	25.9	32.4	6.5	3.7	229.0	24.7
MRAC0866	48	49	MR18235	102.5	65.0	44.0	12.7	64.9	16.0	136.0	4.4	154.5	31.9	37.6	9.8	5.5	624.0	28.8
MRAC0867	39	40	MR18268	85.2	9.2	6.3	3.1	9.1	2.1	33.8	0.9	34.7	8.5	8.0	1.4	0.9	56.9	5.7
MRAC0867	40	41	MR18269	106.5	13.7	9.6	4.5	12.8	3.1	43.1	1.4	45.9	11.1	10.9	2.1	1.3	96.7	8.4
MRAC0867	41	42	MR18270	78.6	8.9	5.6	3.4	9.1	1.9	30.2	0.8	33.9	8.0	8.3	1.4	0.8	54.5	4.8
MRAC0868	27	28	MR18318	104.0	4.5	2.7	1.4	5.5	1.0	77.8	0.4	34.8	10.0	5.6	0.8	0.5	28.6	2.4
MRAC0868	39	40	MR18330	45.6	33.1	20.6	8.8	36.9	7.1	142.5	2.3	126.0	27.8	25.7	5.1	2.6	277.0	14.5
MRAC0868	40	41	MR18331	22.8	24.1	16.9	5.0	23.4	5.6	83.4	1.9	66.3	14.6	13.8	3.4	2.1	257.0	12.5
MRAC0868	41	42	MR18332	27.4	16.7	11.0	3.9	17.4	3.7	65.8	1.3	55.2	11.9	11.6	2.4	1.4	157.0	8.1
MRAC0868	42	43	MR18334	36.6	15.5	9.6	3.9	16.6	3.3	61.2	1.1	53.5	11.6	11.3	2.3	1.2	132.0	7.0
MRAC0868	43	44	MR18335	68.5	12.5	7.0	3.6	13.9	2.6	43.9	0.7	51.8	10.9	11.4	2.0	0.9	87.7	5.0

						Assay Resu	Its for Sam	ples with T	Table 3. otal Rare Ea	arth Flemen	t (TRFF) >2	50 ppm.						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_			•	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0868	44	45	MR18336	39.1	11.4	7.1	3.1	12.1	2.4	44.5	0.8	44.0	9.5	9.5	1.8	0.9	90.0	5.4
MRAC0869	28	29	MR18365	67.5	20.0	11.7	5.9	20.7	4.1	64.7	1.4	75.9	16.1	17.6	3.1	1.6	123.0	9.9
MRAC0869	29	30	MR18367	61.0	19.3	11.8	5.4	19.4	4.1	59.2	1.5	69.8	15.0	16.8	2.9	1.6	124.5	9.9
MRAC0869	30	31	MR18368	51.0	14.1	8.5	3.7	14.2	2.9	41.9	1.1	50.4	10.7	12.0	2.2	1.2	90.1	7.5
MRAC0870	24	25	MR18394	240.0	14.0	9.7	3.3	10.3	3.1	26.6	1.8	40.2	9.7	10.8	2.0	1.8	66.2	12.1
MRAC0870	25	26	MR18395	371.0	17.1	10.4	5.3	15.3	3.7	59.1	1.7	85.7	21.4	19.2	2.7	1.8	71.4	11.8
MRAC0870	26	27	MR18396	353.0	13.1	8.5	3.4	10.3	2.8	32.5	1.5	49.6	11.8	12.1	1.9	1.4	56.0	10.0
MRAC0870	27	28	MR18397	219.0	10.3	6.2	2.6	7.6	2.1	19.8	1.1	30.8	7.2	8.5	1.6	1.1	39.6	7.5
MRAC0870	28	29	MR18398	168.5	10.9	6.9	2.7	8.0	2.2	18.7	1.2	30.1	7.0	8.9	1.6	1.2	42.6	8.4
MRAC0870	29	30	MR18400	137.0	7.5	4.7	2.0	6.2	1.6	22.8	0.8	26.5	6.5	6.7	1.1	0.8	32.6	5.6
MRAC0870	33	34	MR18404	57.1	12.9	7.5	3.7	13.4	2.8	41.3	1.0	48.9	11.0	11.5	2.1	1.1	88.8	7.0
MRAC0870	34	35	MR18405	52.3	12.0	7.2	3.3	11.9	2.6	35.6	1.0	42.5	9.5	10.5	1.9	1.1	84.7	6.5
MRAC0870	35	36	MR18406	60.1	10.9	6.8	3.1	11.0	2.5	28.7	0.9	38.2	8.3	9.6	1.7	1.1	74.3	6.4
MRAC0870	36	37	MR18407	58.5	13.6	8.6	3.6	14.1	3.0	35.1	1.0	49.4	10.1	11.1	2.1	1.2	92.4	7.3
MRAC0870	37	38	MR18408	61.6	13.4	8.6	3.6	13.3	3.0	35.7	1.1	47.4	10.1	11.6	2.1	1.2	97.2	6.8
MRAC0870	38	39	MR18409	113.5	16.4	9.8	5.0	16.5	3.5	46.4	1.3	67.8	14.3	16.4	2.7	1.4	103.5	8.4
MRAC0871	29	30	MR18440	40.1	16.4	11.9	4.0	12.6	3.9	23.2	1.6	33.5	7.7	9.4	2.5	1.7	123.5	9.8
MRAC0871	32	33	MR18443	21.1	22.0	11.9	8.9	23.4	4.5	54.1	1.8	94.5	21.6	23.7	3.7	1.8	97.4	11.6
MRAC0871	33	34	MR18444	33.6	30.7	15.5	15.0	35.4	5.8	97.4	2.4	174.0	40.6	42.4	5.5	2.5	118.0	15.8
MRAC0871	34	35	MR18445	41.9	43.4	22.9	19.2	48.8	8.2	122.0	3.1	216.0	49.1	55.4	7.4	3.1	174.5	20.8
MRAC0871	35	36	MR18446	36.7	27.6	14.8	11.5	28.6	5.5	79.3	2.3	130.5	30.3	31.7	4.7	2.4	122.0	15.3
MRAC0871	39	40	MR18450	94.6	8.3	4.4	3.8	9.3	1.6	32.8	0.7	49.1	11.4	10.8	1.5	0.7	33.7	4.2
MRAC0871	57	58	MR18469	52.2	10.9	5.7	4.6	13.9	2.1	67.7	0.6	65.5	14.9	14.1	1.9	0.7	59.3	4.4
MRAC0872	25	26	MR18496	46.4	19.5	12.1	7.5	16.9	3.8	46.5	2.2	74.1	17.8	18.9	3.0	1.9	80.6	14.7
MRAC0872	26	27	MR18497	67.5	17.2	10.2	7.9	16.2	3.2	59.6	1.9	90.1	21.9	20.8	2.7	1.7	65.0	13.1
MRAC0872	27	28	MR18498	41.1	24.9	14.3	10.4	23.8	4.7	78.3	2.3	115.5	28.5	27.0	3.8	2.1	105.5	15.1
MRAC0872	28	29	MR18500	49.3	28.6	15.7	13.0	32.1	5.5	114.5	2.0	152.0	37.1	32.6	4.8	2.2	147.5	13.7
MRAC0872	29	30	MR19001	54.0	24.3	14.1	10.7	25.1	4.6	89.8	2.2	127.5	30.8	28.6	3.9	2.0	112.0	14.7
MRAC0872	30	31	MR19002	79.4	23.2	12.9	11.9	24.8	4.3	95.1	2.3	146.5	36.5	32.7	3.9	2.0	88.9	15.2
MRAC0872	31	32	MR19003	145.5	32.8	17.0	19.0	36.9	5.8	169.0	3.1	261.0	66.7	56.3	5.6	2.7	108.5	20.0
MRAC0872	32	33	MR19004	145.5	32.1	17.2	17.8	33.7	5.7	145.5	3.2	237.0	60.7	52.2	5.5	2.8	103.5	21.2
MRAC0872	33	34	MR19005	125.0	29.3	16.0	15.6	31.0	5.3	145.5	3.0	211.0	53.6	45.8	5.0	2.6	95.8	19.0
MRAC0872	34	35	MR19006	122.5	33.3	17.7	17.6	35.1	6.0	151.0	3.3	231.0	58.1	50.4	5.6	2.8	106.5	20.8
MRAC0872	35	36	MR19007	120.0	32.6	17.5	16.5	32.5	5.7	138.5	3.1	216.0	54.4	47.7	5.4	2.8	104.0	20.5
MRAC0872	36	37	MR19008	55.0	20.7	12.1	9.2	20.1	3.9	87.6	2.1	115.0	28.6	24.7	3.4	1.9	74.6	13.0
MRAC0872	37	38	MR19009	53.3	22.6	13.0	9.4	21.6	4.3	102.5	2.1	119.5	29.4	24.8	3.6	2.0	83.5	13.2
MRAC0872	38	39	MR19010	67.0	25.3	13.6	12.3	28.3	4.7	150.5	2.0	169.0	41.0	33.4	4.2	2.0	96.1	12.6
MRAC0872	39	40	MR19011	86.8	23.6	12.3	13.0	33.0	4.5	187.5	1.2	187.5	43.0	34.2	4.2	1.6	113.0	8.2

						Assav Resu	ults for Sam	nles with T	Table 3. otal Rare Ea	arth Flemen	t (TRFF) >2	50 ppm.						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_			•	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0872	40	41	MR19012	58.6	20.4	10.8	10.3	27.4	3.9	124.5	1.1	131.0	29.5	26.1	3.5	1.4	112.5	7.1
MRAC0873	3	4	MR19016	58.2	14.5	7.8	7.3	19.7	2.8	91.6	0.8	98.0	22.5	20.0	2.5	1.1	74.7	5.5
MRAC0873	4	5	MR19017	57.0	13.9	7.3	7.0	19.2	2.7	90.8	0.8	95.3	21.6	18.6	2.5	1.0	72.4	5.1
MRAC0873	5	6	MR19018	47.2	11.2	5.9	5.7	14.6	2.1	71.8	0.6	76.1	17.4	15.1	1.9	0.8	55.8	4.2
MRAC0873	6	7	MR19019	40.5	11.3	6.0	5.3	14.5	2.2	67.2	0.6	70.1	15.9	14.0	1.9	0.8	57.9	4.2
MRAC0873	24	25	MR19038	114.0	15.6	8.1	8.5	20.5	2.8	83.7	1.3	123.0	28.8	28.0	2.7	1.3	55.5	8.9
MRAC0873	26	27	MR19040	65.8	12.3	7.1	4.9	13.0	2.3	44.8	1.2	62.3	14.3	15.4	1.9	1.2	46.0	8.0
MRAC0873	27	28	MR19041	76.5	15.6	8.7	6.0	16.8	3.0	53.1	1.3	72.5	16.4	18.6	2.5	1.5	64.5	9.2
MRAC0873	28	29	MR19042	71.8	22.2	12.4	8.4	24.9	4.3	73.8	1.6	101.0	22.5	25.3	3.7	1.8	116.0	11.1
MRAC0873	29	30	MR19043	71.6	21.8	12.1	8.0	24.4	4.2	72.0	1.6	96.7	21.4	24.2	3.5	1.7	119.5	10.8
MRAC0874	2	3	MR19046	48.6	15.3	8.4	5.3	16.7	2.9	46.1	1.0	59.5	13.6	15.3	2.5	1.3	79.6	7.0
MRAC0874	20	21	MR19064	67.1	8.1	5.2	3.5	8.4	1.8	44.6	0.8	49.3	12.5	10.9	1.4	0.7	48.3	4.8
MRAC0874	31	32	MR19076	15.5	18.5	14.6	2.8	11.7	4.8	11.1	2.0	17.5	3.6	6.0	2.5	1.9	168.5	12.4
MRAC0874	32	33	MR19077	12.1	21.1	15.8	3.2	13.6	5.3	9.0	2.1	14.4	3.0	5.9	2.7	2.2	214.0	13.3
MRAC0874	34	35	MR19079	26.0	13.1	9.0	3.4	11.4	2.9	27.9	1.1	34.6	7.8	8.4	1.9	1.3	107.0	7.4
MRAC0874	35	36	MR19080	21.5	20.3	14.8	3.7	13.8	4.7	22.0	2.1	28.9	6.3	8.1	2.6	2.2	176.5	13.2
MRAC0874	36	37	MR19081	52.1	21.0	11.3	8.4	28.8	4.1	69.8	1.2	101.5	20.4	22.0	3.8	1.3	133.0	7.8
MRAC0874	37	38	MR19082	45.5	17.6	8.7	7.3	23.0	3.3	59.2	1.0	80.1	17.0	19.0	3.0	1.3	103.0	6.7
MRAC0874	38	39	MR19083	59.8	16.8	8.5	7.1	22.6	3.4	66.4	1.0	85.3	18.5	20.0	3.1	1.0	103.0	6.8
MRAC0874	39	40	MR19084	30.0	13.6	7.5	4.6	15.5	2.7	35.0	0.9	51.4	10.8	12.1	2.2	1.0	89.9	5.9
MRAC0874	40	41	MR19085	35.3	11.0	6.0	4.2	15.0	2.2	37.9	0.7	48.0	9.9	11.2	1.9	0.8	79.9	4.3
MRAC0875	60	61	MR19148	162.5	40.7	27.3	11.8	37.9	9.2	215.0	3.1	221.0	60.1	43.0	6.3	3.5	357.0	20.7
MRAC0875	61	62	MR19149	37.7	11.4	7.8	2.7	9.4	2.6	47.8	1.1	46.5	12.6	10.5	1.6	1.1	89.7	7.1
MRAC0875	62	63	MR19150	61.5	21.3	13.6	5.2	19.0	4.6	83.5	1.7	77.7	19.8	17.4	3.2	1.8	149.0	11.0
MRAC0875	63	64	MR19151	58.9	40.4	23.5	13.0	45.3	8.4	271.0	2.6	230.0	58.1	46.6	6.5	3.1	284.0	17.8
MRAC0876	23	24	MR19176	108.0	13.1	6.6	5.9	16.5	2.3	50.7	1.0	77.4	18.4	18.8	2.3	1.0	51.8	6.6
MRAC0876	24	25	MR19177	184.5	28.2	13.4	13.6	36.4	5.3	105.5	1.8	186.5	38.7	43.4	5.4	1.9	126.5	12.0
MRAC0876	25	26	MR19178	287.0	44.0	21.0	21.0	59.1	8.0	151.5	2.6	265.0	56.8	63.8	8.1	2.9	199.5	17.7
MRAC0876	26	27	MR19179	88.3	13.3	6.3	6.5	16.7	2.4	51.4	0.9	83.2	17.7	19.6	2.4	0.9	60.4	5.7
MRAC0877	1	2	MR19181	107.0	18.9	9.7	7.6	22.7	3.5	57.6	1.2	90.4	20.0	22.7	3.3	1.5	93.2	8.3
MRAC0877	2	3	MR19182	92.6	16.4	8.5	6.2	19.7	3.1	50.7	1.1	82.5	17.1	20.1	2.8	1.2	82.0	7.6
MRAC0877	17	18	MR19197	328.0	6.1	3.4	3.3	7.4	1.2	173.5	0.8	72.4	23.5	10.9	1.1	0.6	27.9	4.2
MRAC0877	18	19	MR19198	125.5	5.9	2.8	4.8	8.1	1.0	68.2	0.4	71.6	18.2	12.2	1.1	0.5	23.5	2.3
MRAC0877	19	20	MR19200	97.8	5.3	2.5	5.1	7.5	1.0	56.7	0.4	68.1	16.5	12.2	1.0	0.4	20.2	2.3
MRAC0877	21	22	MR19202	102.5	6.2	2.8	6.0	8.4	1.1	49.5	0.5	62.5	14.1	12.2	1.2	0.5	24.4	2.8
MRAC0877	22	23	MR19203	98.3	8.3	3.6	8.3	11.9	1.5	52.6	0.6	74.5	15.2	15.6	1.5	0.6	31.3	3.5
MRAC0877	23	24	MR19204	110.5	13.0	5.5	13.0	19.4	2.0	66.6	0.7	105.0	19.9	23.5	2.3	0.7	44.8	4.9
MRAC0877	24	25	MR19205	109.5	12.7	6.0	10.6	17.4	2.3	63.2	0.9	89.6	18.3	20.0	2.2	0.9	52.9	5.4

						Assay Resu	ilts for Sam	ples with T	Table 3. otal Rare Ea	arth Flemen	t (TRFF) >2	50 ppm.						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_			•	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0877	25	26	MR19206	93.5	8.7	4.2	7.2	12.2	1.7	49.0	0.7	67.6	14.0	14.2	1.7	0.7	39.0	4.4
MRAC0877	26	27	MR19207	182.5	20.6	8.8	14.0	27.5	3.6	83.3	1.1	130.0	26.1	29.9	3.7	1.3	78.0	7.3
MRAC0877	27	28	MR19208	109.5	7.3	3.6	6.8	10.3	1.3	46.2	0.6	64.9	13.8	13.9	1.4	0.5	29.5	3.6
MRAC0877	28	29	MR19209	99.6	9.3	4.9	7.1	11.7	1.8	46.6	0.8	60.6	12.8	14.1	1.6	0.8	40.7	5.1
MRAC0877	29	30	MR19210	92.4	13.6	7.6	7.2	15.4	2.8	40.2	1.1	64.6	12.8	15.2	2.2	1.1	72.5	7.1
MRAC0878	32	33	MR19245	45.2	12.6	7.6	4.2	14.4	2.8	49.5	0.8	46.9	10.7	10.2	2.1	1.0	117.0	5.0
MRAC0878	33	34	MR19246	32.5	11.2	6.9	3.2	11.7	2.6	36.1	0.7	34.4	7.6	7.6	1.8	0.9	112.5	4.5
MRAC0880	20	21	MR19286	55.7	10.2	5.3	5.1	11.5	2.1	49.2	0.8	62.0	15.1	13.9	1.8	0.8	43.1	5.1
MRAC0880	21	22	MR19287	54.6	14.5	7.1	6.7	16.3	2.8	56.6	0.9	74.7	17.4	17.6	2.6	1.0	64.8	6.4
MRAC0880	22	23	MR19288	53.7	14.6	7.1	6.9	16.5	2.8	52.9	0.9	70.5	16.7	17.0	2.6	1.0	64.1	6.1
MRAC0880	23	24	MR19289	43.4	11.6	5.3	5.2	12.5	2.3	40.1	0.7	53.2	12.5	13.1	2.0	0.8	50.0	4.9
MRAC0882	33	34	MR19396	130.0	6.8	4.3	2.3	7.0	1.3	70.8	0.8	54.5	16.5	10.7	1.1	0.6	31.3	5.0
MRAC0882	34	35	MR19397	118.0	5.5	3.4	1.6	5.3	1.1	47.7	0.7	36.2	11.0	7.3	0.9	0.5	25.0	4.1
MRAC0882	35	36	MR19398	117.0	5.8	3.7	1.9	6.1	1.2	55.5	0.7	43.5	13.0	8.7	1.0	0.6	27.2	4.3
MRAC0884	41	42	MR19491	47.7	13.0	8.1	3.2	14.5	2.8	35.2	1.0	45.2	9.8	11.2	2.1	1.1	95.7	6.7
MRAC0884	42	43	MR19492	47.0	13.3	8.4	3.3	13.8	3.0	33.7	1.1	43.6	9.4	10.6	2.1	1.1	98.9	7.1
MRAC0885	26	27	MR19520	197.5	4.8	2.9	1.9	5.1	1.0	96.6	0.6	34.5	13.2	5.5	0.8	0.4	22.3	3.3
MRAC0886	54	55	MR19592	65.6	16.4	10.7	5.3	16.1	3.6	28.4	1.5	48.1	10.4	13.6	2.6	1.6	87.4	10.4
MRAC0886	55	56	MR19593	56.0	21.2	13.5	7.2	22.2	4.6	45.5	1.7	70.4	15.5	18.8	3.4	2.0	130.5	11.7
MRAC0886	56	57	MR19594	42.6	16.0	10.2	5.8	17.5	3.4	38.8	1.3	56.4	12.3	14.8	2.6	1.5	96.2	8.9
MRAC0886	57	58	MR19595	54.4	21.6	14.8	7.0	22.3	4.9	52.1	1.9	68.3	15.1	17.8	3.5	2.1	155.0	12.5
MRAC0887	31	32	MR19628	228.0	8.3	4.8	2.2	6.7	1.7	17.8	0.9	22.1	5.6	6.4	1.3	0.7	32.9	5.9
MRAC0887	32	33	MR19629	223.0	13.6	7.8	3.4	10.5	2.7	23.5	1.5	34.7	8.0	9.8	2.0	1.3	55.0	10.0
MRAC0887	33	34	MR19631	95.8	15.6	7.9	5.6	17.5	3.0	47.4	1.1	69.3	16.1	16.7	2.6	1.2	67.7	7.9
MRAC0888	27	28	MR19661	113.0	5.9	3.5	1.7	6.6	1.2	50.5	0.5	41.0	11.5	7.6	1.0	0.4	29.3	3.2
MRAC0888	28	29	MR19662	113.0	4.7	2.7	1.6	5.7	1.0	47.3	0.4	38.5	10.7	7.3	0.8	0.5	25.6	2.3
MRAC0888	39	40	MR19674	110.5	13.7	8.0	5.8	15.7	2.8	45.8	0.9	76.4	16.0	15.9	2.3	1.0	76.4	7.0
MRAC0888	40	41	MR19675	66.2	9.2	6.1	3.6	9.6	2.2	29.3	0.8	41.9	8.8	9.4	1.5	0.8	63.7	5.4
MRAC0888	41	42	MR19676	80.0	8.9	6.6	3.1	9.8	2.2	41.8	0.8	43.3	9.5	8.3	1.3	0.7	98.3	5.0
MRAC0890	36	37	MR19771	78.2	10.8	6.5	4.1	12.0	2.2	83.5	0.8	67.6	17.9	12.8	1.8	0.9	70.2	5.3
MRAC0890	37	38	MR19772	72.0	15.8	9.0	6.7	18.8	3.1	123.5	1.1	104.5	27.6	18.9	2.7	1.2	88.7	7.2
MRAC0890	38	39	MR19773	54.2	10.3	6.4	3.9	11.2	2.1	72.3	0.7	57.9	15.7	10.9	1.7	0.8	61.6	5.0
MRAC0890	39	40	MR19774	44.1	19.7	12.9	5.6	17.5	4.1	77.8	1.4	70.0	17.4	14.7	2.9	1.6	119.0	10.1
MRAC0890	40	41	MR19775	46.6	12.7	8.0	3.9	12.3	2.7	59.4	1.1	52.2	14.2	11.7	1.9	1.1	82.7	6.9
MRAC0890	41	42	MR19776	35.8	16.0	9.9	5.6	16.8	3.4	74.9	1.1	73.4	18.4	15.9	2.6	1.2	95.7	7.8
MRAC0890	42	43	MR19777	36.0	11.6	6.6	4.6	14.9	2.3	77.8	0.7	69.4	17.1	13.1	2.1	0.8	64.0	4.9
MRAC0890	43	44	MR19778	28.4	14.6	8.2	5.4	17.4	2.8	93.2	0.8	75.2	18.5	14.5	2.5	1.0	83.2	6.1
MRAC0890	44	45	MR19779	38.7	16.2	8.9	5.9	20.1	3.2	114.5	0.9	89.0	21.8	16.9	2.7	1.1	93.5	6.4

						Assay Resu	Its for Sam	ples with T	Table 3. otal Rare Fa	arth Flemen	t (TRFF) >2	50 ppm.						
Hole_ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_			-	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0890	45	46	MR19780	35.5	14.2	7.8	5.2	18.0	3.0	96.9	0.8	74.8	18.7	14.7	2.3	1.0	85.9	5.7
MRAC0890	46	47	MR19781	47.9	11.5	6.4	3.9	14.1	2.4	91.5	0.7	58.4	14.9	11.0	1.9	0.8	74.3	4.9
MRAC0890	47	48	MR19782	83.3	14.3	8.7	4.0	15.9	3.1	105.5	1.0	68.3	18.0	12.1	2.2	1.1	106.5	6.7
MRAC0890	48	49	MR19783	47.6	11.1	6.9	3.1	11.8	2.4	61.2	0.7	43.9	11.0	9.1	1.7	0.9	78.9	4.6
MRAC0891	1	2	MR19786	52.3	9.4	6.2	2.3	10.1	2.1	56.6	0.6	36.4	9.5	7.2	1.4	0.7	81.3	4.3
MRAC0891	7	8	MR19793	118.0	6.6	4.5	0.6	6.8	1.4	60.2	0.6	43.5	12.6	7.4	1.0	0.6	44.5	4.3
MRAC0893	34	35	MR19879	149.0	5.8	2.9	2.3	7.8	1.2	54.1	0.4	64.4	17.9	11.2	1.1	0.5	27.3	3.0
MRAC0893	40	41	MR19885	106.0	2.4	1.5	0.9	2.8	0.5	84.6	0.3	30.6	10.2	4.2	0.4	0.2	12.0	1.5
MRAC0893	41	42	MR19886	168.0	2.2	1.3	0.8	2.6	0.5	65.8	0.2	26.8	8.9	3.6	0.3	0.2	11.1	1.4
MRAC0893	42	43	MR19887	198.5	3.6	1.8	1.4	4.9	0.6	113.0	0.3	45.0	14.4	6.1	0.6	0.2	14.6	1.7
MRAC0893	43	44	MR19888	578.0	12.3	4.7	5.0	17.9	2.0	247.0	0.4	138.5	40.0	21.0	2.4	0.5	47.7	2.8
MRAC0893	44	45	MR19889	889.0	26.7	8.9	12.5	43.6	4.2	492.0	0.5	336.0	89.7	53.7	5.5	0.9	91.3	4.5
MRAC0893	45	46	MR19891	362.0	12.4	4.6	5.6	18.7	1.9	283.0	0.4	146.5	41.7	22.5	2.4	0.5	46.4	2.8
MRAC0893	46	47	MR19892	305.0	10.6	3.9	4.9	15.7	1.7	272.0	0.3	135.5	38.1	20.0	2.0	0.5	40.3	2.6
MRAC0893	47	48	MR19893	231.0	5.8	2.3	2.5	8.2	1.0	164.5	0.2	72.1	21.0	11.4	1.0	0.3	20.9	1.8
MRAC0893	48	49	MR19894	267.0	7.4	2.5	3.3	10.9	1.2	172.5	0.3	87.5	26.8	14.5	1.5	0.4	27.6	2.1
MRAC0893	49	50	MR19895	322.0	6.7	2.7	3.1	10.2	1.1	194.5	0.3	92.9	26.5	13.1	1.3	0.3	26.1	1.9
MRAC0893	50	51	MR19896	179.5	3.4	1.7	1.5	4.5	0.7	92.0	0.3	46.2	14.2	6.9	0.6	0.3	17.4	1.8
MRAC0893	51	52	MR19897	638.0	3.3	1.7	1.3	4.1	0.6	70.5	0.3	35.8	10.8	5.6	0.6	0.2	14.6	1.9
MRAC0893	52	53	MR19898	882.0	3.1	1.9	1.2	3.8	0.6	62.2	0.3	32.4	9.9	5.3	0.5	0.3	14.8	2.0
MRAC0893	53	54	MR19900	654.0	3.3	1.9	1.4	4.3	0.7	75.8	0.3	39.1	12.0	6.2	0.5	0.3	15.2	2.0
MRAC0893	54	55	MR19901	619.0	8.2	4.0	3.8	11.8	1.5	218.0	0.5	137.5	40.6	19.3	1.5	0.5	38.0	3.4
MRAC0893	55	56	MR19902	692.0	11.2	5.5	5.6	17.5	2.0	326.0	0.7	217.0	64.7	30.2	2.2	0.7	52.2	4.4
MRAC0893	56	57	MR19903	657.0	11.2	5.4	5.5	16.7	2.0	307.0	0.6	209.0	61.4	28.9	2.1	0.7	51.2	4.1
MRAC0894	1	2	MR19905	433.0	11.7	5.6	5.8	18.1	2.1	313.0	0.6	227.0	64.0	31.7	2.2	0.7	56.6	4.4
MRAC0894	2	3	MR19906	562.0	15.4	7.2	7.7	23.5	2.7	407.0	0.8	295.0	84.4	41.8	2.9	0.9	73.6	5.7
MRAC0894	3	4	MR19907	482.0	12.8	6.2	6.5	19.9	2.3	341.0	0.7	249.0	71.3	36.2	2.5	0.8	62.7	4.8
MRAC0894	4	5	MR19908	488.0	13.4	6.5	6.8	21.0	2.4	351.0	0.7	257.0	73.1	36.4	2.5	0.8	65.3	4.9
MRAC0894	5	6	MR19909	453.0	12.2	6.0	6.2	18.5	2.1	322.0	0.6	239.0	67.7	32.5	2.3	0.8	60.3	4.5
MRAC0894	6	7	MR19910	418.0	11.1	5.4	5.6	17.0	2.0	302.0	0.6	217.0	62.0	29.9	2.1	0.7	54.7	4.0
MRAC0894	7	8	MR19911	285.0	8.8	4.3	4.1	13.3	1.5	206.0	0.5	154.0	43.3	22.3	1.6	0.5	40.5	3.4
MRAC0894	8	9	MR19912	223.0	6.4	3.2	3.2	9.6	1.2	161.0	0.4	118.5	34.1	17.2	1.2	0.4	32.2	2.7
MRAC0894	9	10	MR19913	108.0	3.2	1.4	1.5	4.4	0.6	75.2	0.2	57.6	16.4	8.5	0.7	0.2	16.0	1.5
MRAC0894	10	11	MR19914	98.6	2.8	1.4	1.2	4.1	0.5	65.2	0.2	42.7	12.2	6.3	0.5	0.2	15.3	1.2
MRAC0894	11	12	MR19915	108.0	3.0	1.6	1.3	4.4	0.6	68.7	0.2	47.7	13.4	6.5	0.5	0.2	17.0	1.3
MRAC0894	26	27	MR19931	131.0	3.2	1.9	1.2	3.7	0.6	49.7	0.3	34.8	10.3	5.2	0.5	0.3	16.0	2.2
MRAC0894	50	51	MR19956	82.3	4.0	2.1	1.9	6.4	0.7	70.7	0.3	53.7	15.8	8.5	0.7	0.3	22.0	1.6
MRAC0894	51	52	MR19957	110.0	4.2	2.1	1.8	5.9	0.8	88.3	0.3	55.3	16.6	7.8	0.8	0.3	29.4	1.8

						Assav Resu	ults for Sam	nles with T	Table 3. otal Rare Ea	orth Flemen	t (TRFF) >2	50 nnm.						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_			•	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0895	34	35	MR19995	24.2	9.9	5.3	4.4	11.8	2.0	79.7	0.7	74.9	19.8	13.6	1.8	0.7	52.2	4.5
MRAC0895	35	36	MR19996	20.9	16.2	8.6	8.0	19.1	3.2	126.0	1.2	138.5	37.4	26.4	2.8	1.2	69.2	8.2
MRAC0895	36	37	MR19997	21.8	22.3	12.0	10.9	27.5	4.5	178.5	1.6	179.5	47.6	35.0	4.0	1.7	102.0	10.9
MRAC0895	37	38	MR19998	14.7	20.0	9.3	9.8	27.7	3.7	156.0	1.2	160.5	40.1	31.5	3.8	1.3	84.2	8.3
MRAC0895	38	39	MR20000	21.0	33.3	15.1	16.9	46.1	6.2	268.0	1.7	279.0	69.0	53.7	6.5	2.1	141.0	12.7
MRAC0895	39	40	MR20501	16.9	21.4	10.7	8.9	28.1	3.8	171.0	1.0	157.5	36.6	28.2	4.0	1.2	111.0	7.5
MRAC0895	40	41	MR20502	14.7	26.1	14.3	9.2	33.9	5.2	205.0	1.3	153.5	35.8	28.1	4.4	1.6	184.5	8.7
MRAC0895	41	42	MR20503	13.4	42.3	24.6	14.1	46.4	8.7	247.0	2.9	224.0	52.9	43.0	6.6	3.2	262.0	19.2
MRAC0895	42	43	MR20504	17.9	51.3	25.5	23.0	63.9	9.3	405.0	3.2	425.0	107.5	77.5	8.7	3.5	232.0	21.9
MRAC0895	43	44	MR20505	13.1	37.8	21.5	14.5	41.9	7.4	256.0	3.3	257.0	64.9	48.0	6.2	3.1	183.0	20.9
MRAC0895	44	45	MR20506	13.8	34.1	18.5	13.8	39.3	6.5	245.0	2.8	245.0	62.0	44.6	5.6	2.6	160.0	17.8
MRAC0896	1	2	MR20508	23.5	21.4	11.9	9.0	25.5	4.4	164.0	1.9	153.5	40.0	29.9	3.7	1.7	110.0	11.9
MRAC0896	2	3	MR20509	27.0	14.2	8.2	6.3	17.8	3.0	116.0	1.3	109.5	29.0	21.0	2.6	1.2	71.8	7.9
MRAC0896	3	4	MR20510	31.3	13.1	7.6	5.6	15.8	2.7	99.0	1.1	95.8	24.4	18.1	2.3	1.1	64.6	7.4
MRAC0896	31	32	MR20540	110.0	29.3	14.5	12.9	40.7	5.9	160.0	1.0	162.5	37.4	31.3	5.1	1.6	229.0	7.5
MRAC0896	32	33	MR20541	85.0	37.7	19.5	14.4	43.7	7.4	155.0	1.8	172.0	39.9	36.2	6.1	2.5	244.0	12.9
MRAC0896	33	34	MR20542	98.4	38.3	20.0	15.4	45.9	7.8	172.0	1.8	187.0	43.5	38.6	6.4	2.5	265.0	12.0
MRAC0896	34	35	MR20543	94.9	50.4	26.1	20.0	60.5	9.7	216.0	2.1	241.0	55.5	51.4	8.4	3.1	325.0	15.0
MRAC0896	35	36	MR20544	50.0	31.7	16.9	12.8	33.2	6.0	123.5	1.8	156.0	36.6	32.2	5.2	2.2	161.5	11.9
MRAC0896	36	37	MR20545	51.6	35.8	18.8	13.7	39.2	7.0	137.0	1.8	164.5	38.8	35.3	5.8	2.5	196.5	12.5
MRAC0896	37	38	MR20546	44.0	31.3	16.9	12.3	33.5	6.2	115.5	1.6	147.0	32.8	32.1	4.9	2.1	166.0	11.7
MRAC0896	38	39	MR20547	29.5	20.8	11.2	8.1	22.8	4.0	91.5	1.2	102.0	24.4	21.8	3.3	1.4	113.5	7.7
MRAC0896	39	40	MR20548	49.6	31.6	16.9	14.1	35.2	5.9	137.5	1.8	175.5	41.8	36.9	5.2	2.2	148.0	11.8
MRAC0896	40	41	MR20549	42.0	29.3	16.5	11.6	31.6	6.0	119.0	1.7	141.5	32.1	31.5	4.6	2.4	156.5	12.9
MRAC0896	41	42	MR20550	41.8	22.2	12.6	8.8	23.8	4.4	97.1	1.6	111.5	26.7	22.7	3.6	1.7	118.5	10.0
MRAC0896	42	43	MR20551	45.5	19.9	10.8	7.9	21.1	3.8	87.7	1.4	99.7	23.4	20.8	3.2	1.5	97.2	8.9
MRAC0896	43	44	MR20552	43.4	17.2	9.9	6.8	18.2	3.4	75.8	1.2	82.3	19.6	17.1	2.7	1.3	85.3	7.9
MRAC0896	44	45	MR20553	47.9	25.3	12.8	9.8	30.1	5.0	136.0	1.2	137.5	30.6	25.9	4.1	1.6	138.0	9.0
MRAC0896	45	46	MR20554	53.1	27.7	14.5	12.0	34.2	5.3	158.0	1.6	151.5	35.4	30.3	4.7	1.9	149.0	10.4
MRAC0896	46	47	MR20555	56.5	29.6	15.4	11.8	36.3	5.8	151.0	1.5	154.0	33.6	34.1	4.8	1.9	165.0	9.9
MRAC0896	47	48	MR20556	53.1	26.8	14.5	11.5	33.0	5.1	140.5	1.6	141.0	32.5	27.7	4.5	1.9	147.5	9.9
MRAC0896	48	49	MR20557	63.6	30.4	16.3	13.0	37.7	5.8	163.0	1.7	160.0	36.2	31.9	5.2	2.0	166.0	10.9
MRAC0897	1	2	MR20559	57.1	27.7	14.6	11.7	34.4	5.3	150.0	1.6	140.0	32.0	28.3	4.6	1.9	152.0	10.1
MRAC0897	2	3	MR20561	58.5	28.8	15.2	12.2	36.7	5.6	160.0	1.6	147.5	33.9	28.9	4.9	1.9	158.0	10.4
MRAC0897	3	4	MR20562	35.8	16.0	8.9	6.8	20.2	3.2	87.8	0.9	81.7	18.5	16.2	2.7	1.1	90.4	6.0
MRAC0897	4	5	MR20563	36.3	16.2	8.9	7.1	20.3	3.1	90.9	0.9	77.2	18.8	16.9	2.7	1.0	93.1	6.4
MRAC0897	5	6	MR20564	34.6	16.5	8.5	6.8	20.9	3.3	90.0	0.9	83.9	19.0	17.3	2.9	1.1	92.5	6.1
MRAC0897	6	7	MR20565	26.5	10.4	5.5	3.9	12.7	2.1	54.6	0.6	52.7	12.2	10.7	1.7	0.7	58.4	3.8

Table 3. Assay Results for Samples with Total Rare Earth Element (TREE) >250 ppm.																		
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0897	8	9	MR20568	38.7	13.7	7.2	5.4	17.0	2.8	75.6	0.7	72.6	16.1	14.9	2.3	0.9	78.9	5.3
MRAC0898	32	33	MR20655	197.5	1.8	0.9	0.8	2.7	0.3	69.1	0.2	46.0	16.1	5.1	0.4	0.1	7.0	1.0
MRAC0898	51	52	MR20676	125.5	7.8	4.6	3.1	8.6	1.5	64.0	0.7	65.5	16.6	11.5	1.3	0.6	38.5	4.5
MRAC0898	52	53	MR20677	305.0	16.3	8.2	7.7	20.5	3.0	144.0	1.0	143.5	36.1	26.7	2.8	1.1	65.3	7.5
MRAC0898	53	54	MR20678	473.0	27.5	16.0	11.1	32.2	5.4	232.0	2.1	219.0	55.3	39.0	4.4	2.3	142.0	14.9
MRAC0898	54	55	MR20679	257.0	17.1	10.4	6.5	19.6	3.6	129.0	1.4	117.0	30.4	22.1	2.9	1.5	103.5	9.6
MRAC0898	55	56	MR20680	262.0	21.1	13.5	7.1	22.7	4.4	135.0	1.9	124.0	30.9	23.2	3.2	1.8	127.5	12.5
MRAC0898	56	57	MR20681	229.0	18.3	11.4	6.1	19.2	3.8	115.0	1.6	109.0	27.0	20.6	2.8	1.6	107.5	10.7
MRAC0899	57	58	MR20743	71.1	11.3	5.8	4.0	13.0	2.1	70.5	0.8	73.0	17.3	13.9	1.9	0.8	52.8	5.6
MRAC0899	58	59	MR20744	61.8	10.5	5.6	3.4	11.8	2.0	52.9	0.7	54.3	12.4	11.2	1.7	0.7	53.6	4.9
MRAC0899	59	60	MR20745	70.3	9.3	5.0	3.1	10.4	1.8	45.6	0.6	50.2	11.7	10.4	1.5	0.7	45.5	4.5
MRAC0914	33	36	MRM001643	130.5	3.9	2.0	1.3	4.9	0.7	66.1	0.3	37.9	11.3	6.7	0.7	0.3	19.2	1.8
MRAC0915	45	48	MRM001665	107.5	17.5	9.2	5.8	18.8	3.4	46.0	1.2	83.7	18.2	21.8	2.9	1.3	84.8	8.8
MRAC0915	48	49	MRM001667	120.5	28.9	16.8	7.8	28.3	5.7	57.6	2.1	95.6	19.7	25.5	4.4	2.4	165.5	14.6
MRAC0916	30	33	MRM001678	155.5	6.4	3.3	2.0	7.2	1.2	57.7	0.4	55.7	15.3	10.1	1.0	0.5	28.8	2.9
MRAC0917	39	42	MRM001703	108.5	9.0	5.4	3.3	9.4	1.8	45.0	0.8	46.4	11.2	9.5	1.4	0.8	45.5	5.0
MRAC0917	42	45	MRM001704	122.5	15.6	9.5	5.2	16.7	3.1	65.6	1.3	73.1	16.9	14.9	2.4	1.4	84.5	8.3
MRAC0917	45	47	MRM001705	119.0	14.5	8.6	5.0	15.0	2.8	64.0	1.2	67.7	16.3	14.3	2.2	1.3	76.7	7.2
MRAC0917	47	48	MRM001706	107.5	12.8	7.7	4.6	14.1	2.5	58.7	1.1	60.7	14.2	12.2	2.0	1.2	68.1	6.7
MRAC0918	27	30	MRM001716	119.5	4.2	2.4	1.6	5.7	0.8	49.8	0.3	45.8	12.7	7.5	0.7	0.4	19.6	2.1
MRAC0919	48	51	MRM001741	57.1	19.6	10.7	6.2	22.0	3.8	71.5	1.2	88.2	19.7	20.5	3.3	1.4	99.2	8.8
MRAC0919	51	54	MRM001742	73.8	44.6	27.6	10.0	43.2	9.7	105.0	3.2	122.0	27.4	29.0	6.8	3.5	327.0	21.3
MRAC0919	54	55	MRM001743	69.5	37.1	23.1	8.7	36.4	8.1	93.0	2.7	107.5	23.8	25.4	5.5	3.0	263.0	17.0
MRAC0919	55	56	MRM001744	69.3	34.6	22.3	8.2	34.2	7.7	89.1	2.5	104.0	23.5	25.2	5.4	2.7	258.0	16.2
MRAC0920	24	27	MRM001753	158.0	4.0	1.7	1.6	4.6	0.7	64.9	0.3	46.7	15.3	7.0	0.7	0.2	12.2	2.0
MRAC0920	30	33	MRM001755	91.6	12.7	7.2	3.5	11.4	2.4	26.4	1.8	53.3	12.0	14.2	1.9	1.4	43.5	11.0
MRAC0920	33	36	MRM001756	91.0	46.2	29.2	12.1	41.0	9.6	68.2	3.7	148.5	32.4	39.6	6.7	4.0	256.0	25.6
MRAC0920	36	39	MRM001757	95.9	59.7	33.4	18.0	64.8	11.8	120.0	3.4	222.0	47.0	56.1	9.5	4.2	342.0	24.6
MRAC0920	39	42	MRM001758	128.5	90.9	57.3	21.0	92.1	20.1	182.0	5.9	246.0	50.0	62.0	13.7	6.8	734.0	38.2
MRAC0920	42	45	MRM001759	73.5	39.9	24.2	8.6	38.6	8.5	89.7	2.7	107.0	22.8	28.9	5.8	3.1	310.0	17.8
MRAC0920	45	46	MRM001761	51.7	19.2	10.8	4.5	18.8	4.2	48.2	1.3	57.0	12.5	13.9	2.9	1.6	144.5	8.8
MRAC0922	15	18	MRM001781	109.0	5.9	1.7	4.2	11.2	0.8	52.9	0.1	66.9	15.3	14.2	1.4	0.2	12.0	1.1
MRAC0922	18	21	MRM001782	153.0	9.4	2.4	6.2	17.4	1.2	74.9	0.2	91.8	22.0	21.5	2.2	0.3	17.8	1.4
MRAC0922	21	24	MRM001783	111.5	6.8	1.9	4.3	12.0	0.9	55.1	0.2	66.5	15.8	14.2	1.5	0.2	14.0	1.4
MRAC0922	33	36	MRM001787	122.0	7.1	4.7	2.5	8.2	1.5	42.6	0.8	40.4	10.5	7.7	1.3	0.7	33.4	5.1
MRAC0922	36	38	MRM001788	196.5	27.8	15.6	9.6	32.9	5.7	72.0	2.2	117.5	25.6	28.2	5.0	2.3	153.5	13.8
MRAC0922	38	39	MRM001789	153.0	54.4	35.3	13.5	55.2	12.2	87.9	4.2	130.0	27.4	35.7	8.9	4.5	407.0	25.8
MRAC0923	0	3	MRM001791	72.8	25.5	17.1	6.4	27.2	5.9	47.4	1.9	65.4	14.0	16.8	4.4	2.1	194.5	12.8

						Assav Resu	ilts for Sam	nles with T	Table 3. otal Bare Fa	arth Elemen	t (TRFF) >2	50 nnm.						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0923	54	57	MRM001811	47.9	16.4	10.1	5.1	16.3	3.4	35.2	1.3	56.2	11.6	13.9	2.6	1.4	99.3	8.7
MRAC0923	57	60	MRM001812	86.1	58.6	40.9	13.4	55.2	14.2	103.5	4.5	142.5	28.2	36.6	8.4	5.2	538.0	30.6
MRAC0923	60	61	MRM001813	60.3	17.9	11.6	5.0	17.7	3.9	44.3	1.5	55.1	11.6	14.2	2.7	1.5	141.0	9.9
MRAC0923	61	62	MRM001814	67.6	25.6	16.0	7.3	25.5	5.5	61.1	1.9	86.7	17.6	22.7	3.8	1.9	184.5	12.9
MRAC0924	45	48	MRM001830	86.8	23.2	13.1	9.1	25.9	4.7	58.4	1.7	108.5	22.9	28.0	4.0	1.8	119.5	11.6
MRAC0924	48	51	MRM001831	102.5	43.3	26.5	13.6	44.9	9.2	96.1	3.0	157.0	31.7	39.1	6.9	3.4	285.0	21.9
MRAC0924	51	54	MRM001832	86.5	20.6	12.6	7.7	23.6	4.4	67.7	1.5	93.6	20.3	23.4	3.5	1.6	134.0	10.2
MRAC0924	54	55	MRM001835	89.3	16.9	10.3	6.5	19.8	3.4	64.0	1.1	76.6	18.1	17.8	3.0	1.2	110.0	7.7
MRAC0925	21	24	MRM001844	130.5	6.6	2.4	4.9	10.9	1.0	48.9	0.2	59.4	14.5	12.9	1.4	0.3	21.9	1.6
MRAC0925	24	27	MRM001845	120.0	10.1	3.7	7.1	17.1	1.6	52.0	0.4	66.1	15.7	16.0	2.2	0.4	31.0	2.3
MRAC0925	27	30	MRM001846	103.0	9.9	3.6	6.0	16.1	1.4	45.4	0.4	58.9	13.6	13.6	2.0	0.4	30.6	2.7
MRAC0925	30	33	MRM001847	151.0	10.6	4.0	7.1	18.5	1.7	54.4	0.4	68.2	16.4	16.2	2.3	0.5	34.6	3.1
MRAC0925	33	36	MRM001848	136.5	9.7	3.7	6.3	16.4	1.6	48.2	0.4	61.1	14.6	14.5	2.1	0.5	31.5	2.7
MRAC0925	36	39	MRM001849	102.0	8.0	3.4	4.4	12.4	1.4	37.3	0.5	44.6	11.0	10.1	1.6	0.5	27.9	2.9
MRAC0925	39	42	MRM001850	103.5	9.3	4.6	4.9	12.4	1.7	42.4	0.7	51.8	12.1	11.7	1.8	0.7	34.0	4.2
MRAC0925	42	45	MRM001851	101.0	10.0	5.2	4.6	13.5	1.9	40.8	0.6	49.1	11.9	11.1	1.9	0.6	44.5	4.3
MRAC0925	45	48	MRM001852	102.5	8.1	4.1	4.1	11.1	1.4	41.4	0.5	47.0	11.6	10.6	1.5	0.5	34.8	3.5
MRAC0925	51	54	MRM001854	99.2	8.6	4.2	3.6	9.9	1.6	40.0	0.5	43.6	11.0	9.6	1.5	0.5	32.7	3.6
MRAC0925	54	57	MRM001855	104.0	8.2	4.4	3.6	9.8	1.6	44.5	0.5	54.0	12.8	11.2	1.4	0.6	34.8	3.6
MRAC0925	57	60	MRM001856	105.5	15.0	11.1	5.0	16.1	3.5	51.7	1.3	63.2	15.3	15.1	2.4	1.4	120.0	8.5
MRAC0925	60	61	MRM001857	94.3	11.3	7.8	4.1	12.8	2.5	44.3	1.0	54.8	13.0	11.6	1.8	1.0	91.1	6.2
MRAC0926	18	21	MRM001865	155.5	6.6	2.4	4.4	11.3	1.1	90.7	0.2	73.4	19.8	14.0	1.4	0.3	20.4	1.5
MRAC0926	21	24	MRM001867	172.0	6.5	2.2	5.1	11.9	0.9	99.3	0.2	89.4	25.1	16.8	1.5	0.2	17.6	1.4
MRAC0926	24	27	MRM001868	147.0	6.2	2.4	4.6	11.3	1.0	92.6	0.2	84.1	24.1	15.3	1.4	0.3	18.6	1.5
MRAC0926	27	30	MRM001869	100.0	5.3	2.1	3.3	8.9	0.8	82.9	0.2	74.1	20.4	12.5	1.1	0.3	16.6	1.7
MRAC0926	54	57	MRM001878	67.2	13.1	9.5	3.4	11.3	3.0	25.5	1.2	35.1	7.7	10.0	1.9	1.3	122.0	7.8
MRAC0927	60	63	MRM001904	75.4	78.3	44.2	24.1	86.8	15.1	186.5	5.6	314.0	65.0	82.3	12.5	5.3	445.0	33.8
MRAC0927	63	66	MRM001905	48.2	71.5	39.4	23.5	78.1	14.0	169.0	4.9	256.0	54.0	69.4	11.4	5.0	406.0	31.6
MRAC0927	66	67	MRM001906	35.1	31.7	17.7	10.4	35.9	6.5	87.5	2.2	123.0	26.5	29.9	5.5	2.5	199.0	14.2
MRAC0928	0	3	MRM001907	38.3	11.4	6.6	3.4	12.8	2.4	41.4	0.8	47.1	10.7	10.9	2.0	0.9	76.4	5.3
MRAC0928	26	27	MRM001916	116.0	5.4	2.7	2.4	6.4	1.0	81.0	0.5	36.0	10.6	8.2	1.0	0.4	16.4	3.0
MRAC0928	27	30	MRM001917	160.0	9.0	5.2	3.3	10.3	1.8	34.9	0.8	64.2	16.2	12.8	1.6	0.8	37.3	5.0
MRAC0928	30	33	MRM001918	115.0	7.9	4.9	2.3	8.1	1.6	23.7	0.8	35.7	8.9	7.9	1.3	0.8	35.9	5.0
MRAC0928	33	36	MRM001919	79.4	8.7	5.4	2.9	9.4	1.9	40.4	0.9	37.3	8.8	8.9	1.5	0.9	50.0	5.3
MRAC0928	39	42	MRM001921	54.3	15.8	10.1	4.5	15.8	3.4	26.8	1.5	49.0	10.2	13.0	2.6	1.5	96.8	9.2
MRAC0928	42	43	MRM001922	70.1	17.9	11.8	4.9	18.0	4.0	35.7	1.6	52.4	11.2	13.1	3.0	1.7	121.5	10.4
MRAC0928	43	44	MRM001923	114.5	30.4	19.5	7.2	29.9	7.0	69.8	2.7	83.0	17.5	20.8	4.9	2.9	226.0	16.6
MRAC0929	0	3	MRM001924	90.0	26.2	18.6	5.8	25.8	6.2	57.6	2.5	65.9	14.0	16.3	4.1	2.6	228.0	15.0

							ulto for Sam	ploc with T	Table 3.	arth Elemen	+ (TREE) >2	50 nnm						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0929	3	6	MRM001925	65.0	14.9	10.3	3.3	14.8	3.4	38.2	1.4	41.6	9.4	10.4	2.4	1.4	121.0	8.5
MRAC0929	6	9	MRM001926	56.5	11.7	7.9	2.7	11.9	2.7	33.0	1.1	35.7	7.9	8.5	1.8	1.1	91.8	6.5
MRAC0929	27	30	MRM001935	83.3	36.9	21.6	11.5	39.1	7.5	109.0	2.7	153.0	34.2	37.7	5.8	2.9	217.0	18.3
MRAC0929	30	32	MRM001936	129.5	53.3	30.5	16.1	58.6	10.9	169.5	3.8	221.0	51.3	52.3	9.2	4.4	324.0	25.4
MRAC0929	32	33	MRM001937	225.0	84.3	50.2	24.0	93.1	17.7	276.0	6.2	337.0	76.9	77.5	14.2	7.1	547.0	39.9
MRAC0930	0	3	MRM001938	144.5	62.0	37.4	15.9	66.1	12.9	179.5	4.4	229.0	51.9	54.7	9.4	4.9	388.0	27.8
MRAC0930	3	6	MRM001939	136.0	54.8	35.1	14.9	61.6	12.1	170.5	4.1	210.0	47.4	44.4	8.9	4.4	380.0	27.2
MRAC0930	6	9	MRM001940	59.5	22.0	14.0	6.1	23.5	4.9	70.9	1.7	84.0	18.8	19.1	3.7	1.9	156.0	11.3
MRAC0930	27	28	MRM001947	50.9	13.2	8.3	3.7	14.1	2.9	53.4	1.1	53.4	12.6	11.9	2.1	1.1	90.6	6.6
MRAC0931	15	18	MRM001953	39.2	2.9	1.2	2.3	4.7	0.4	128.0	0.2	79.2	27.5	10.9	0.6	0.2	10.2	1.0
MRAC0931	18	19	MRM001954	27.0	2.1	0.8	2.1	3.9	0.3	113.5	0.1	69.1	23.5	9.9	0.5	0.1	7.5	0.8
MRAC0931	30	33	MRM001959	70.9	23.6	11.7	9.8	28.2	4.2	71.5	1.8	127.5	28.4	31.7	4.2	1.7	87.0	11.9
MRAC0931	33	36	MRM001961	196.5	73.0	40.1	24.6	82.7	14.6	212.0	5.7	315.0	68.8	75.2	12.6	5.8	374.0	36.1
MRAC0931	36	37	MRM001962	120.0	40.7	23.4	12.9	45.7	8.5	118.0	2.9	164.0	35.4	39.0	7.1	3.2	250.0	18.2
MRAC0932	0	3	MRM001963	71.6	16.3	9.9	4.3	17.8	3.5	53.6	1.0	60.2	13.8	13.5	2.6	1.3	116.5	6.9
MRAC0932	3	6	MRM001964	63.1	12.4	7.5	3.3	13.4	2.7	43.7	0.8	48.2	11.3	10.6	2.0	1.0	90.7	5.1
MRAC0932	6	9	MRM001965	49.4	10.5	6.7	2.8	11.2	2.3	36.1	0.7	39.2	8.9	8.8	1.7	0.8	77.4	4.4
MRAC0932	21	24	MRM001972	203.0	20.8	7.1	13.5	30.0	3.1	128.0	0.6	214.0	53.3	49.6	4.3	1.0	41.7	5.5
MRAC0932	24	27	MRM001973	155.0	40.5	21.6	14.8	48.6	8.0	158.5	2.4	209.0	48.3	48.3	7.4	3.0	226.0	17.3
MRAC0932	27	28	MRM001974	127.5	36.0	20.0	12.1	41.6	7.0	123.5	2.1	172.0	38.9	42.4	6.1	2.5	203.0	14.5
MRAC0932	28	29	MRM001975	137.5	37.9	17.9	12.7	42.3	6.7	128.5	1.9	185.5	40.9	43.9	6.4	2.4	178.0	14.3
MRAC0933	0	3	MRM001976	140.0	33.6	16.6	12.7	39.2	6.6	130.0	2.0	188.5	41.5	41.2	6.3	2.1	176.5	13.3
MRAC0933	3	6	MRM001977	106.5	24.7	12.4	8.9	28.4	4.8	96.8	1.4	137.0	30.3	29.9	4.5	1.6	136.0	9.9
MRAC0933	6	9	MRM001978	92.6	21.7	10.7	7.8	24.7	4.2	84.2	1.3	118.5	26.1	25.9	4.1	1.4	120.5	8.8
MRAC0933	18	21	MRM001983	39.9	6.4	3.2	2.5	6.8	1.2	99.1	0.5	50.4	15.5	8.8	1.1	0.4	32.7	3.1
MRAC0933	24	27	MRM001985	74.6	8.5	4.4	2.7	9.1	1.5	48.8	0.7	45.2	10.7	10.3	1.3	0.6	38.8	4.1
MRAC0933	27	30	MRM001986	74.0	9.2	5.0	3.9	10.3	1.9	40.9	0.8	60.6	13.4	13.1	1.7	0.7	42.6	5.0
MRAC0933	30	33	MRM001987	58.1	14.3	8.8	5.1	15.2	3.2	54.2	1.3	68.5	15.3	15.2	2.5	1.3	96.6	7.7
MRAC0933	33	34	MRM001988	71.2	15.4	9.3	5.2	16.5	3.4	58.1	1.1	70.8	15.5	15.3	2.7	1.2	110.0	7.1
MRAC0933	34	35	MRM001989	76.4	15.9	9.4	5.3	17.1	3.4	61.9	1.1	78.1	16.7	16.3	2.8	1.2	113.5	6.9
MRAC0934	12	15	MRM001995	94.2	4.1	2.1	1.9	5.3	0.8	56.8	0.3	42.0	10.6	7.0	0.7	0.3	22.7	1.7
MRAC0934	15	17	MRM001996	123.0	4.0	2.7	2.2	5.7	0.9	68.5	0.4	47.2	12.4	7.5	0.7	0.4	34.8	2.7
MRAC0934	17	18	MRM001997	92.6	4.6	3.1	2.0	5.9	1.0	54.8	0.4	42.0	10.6	7.1	0.9	0.5	34.2	2.6
MRAC0935	30	33	MRM002509	233.0	102.5	63.7	23.5	96.3	21.6	329.0	7.3	366.0	86.7	87.3	16.1	8.5	601.0	46.8
MRAC0935	33	36	MRM002510	150.0	43.7	23.0	13.1	49.4	8.2	198.5	2.6	214.0	50.9	51.5	7.5	3.1	197.5	17.1
MRAC0935	36	37	MRM002511	94.7	27.1	14.4	8.0	30.3	5.2	117.0	1.9	125.0	29.3	29.4	4.7	2.0	123.5	11.3
MRAC0937	24	27	MRM002552	83.3	7.6	5.6	2.2	5.8	1.6	57.8	0.9	36.2	11.8	6.2	1.0	0.8	44.8	5.3
MRAC0937	27	30	MRM002553	102.5	20.4	15.5	5.8	17.6	4.7	69.0	2.2	75.7	18.9	16.6	3.1	2.0	143.0	13.1

						Assay Resu	Its for Sam	ples with T	Table 3. otal Rare Fa	arth Flemen	t (TRFF) >2	50 ppm.						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0937	30	32	MRM002554	157.0	64.1	36.7	22.6	71.0	13.1	148.5	4.3	239.0	49.3	56.6	10.1	4.7	371.0	27.6
MRAC0937	32	33	MRM002555	129.5	47.6	27.0	17.1	51.8	9.5	119.5	3.2	190.0	39.4	44.8	7.7	3.5	262.0	21.2
MRAC0938	0	3	MRM002528	49.8	13.6	7.6	5.0	15.7	2.7	41.7	1.0	60.9	13.3	14.6	2.3	1.0	72.7	6.2
MRAC0938	3	6	MRM002529	78.4	24.6	13.9	9.4	29.1	5.0	72.1	1.8	110.0	23.8	26.4	4.3	1.8	132.0	11.4
MRAC0938	6	9	MRM002531	60.1	19.7	11.0	7.3	22.6	3.9	57.5	1.4	87.6	18.8	20.7	3.4	1.5	103.5	9.0
MRAC0939	33	36	MRM002570	358.0	57.2	26.8	20.2	63.4	10.2	169.0	3.1	271.0	58.7	64.9	9.2	3.5	236.0	21.5
MRAC0939	36	39	MRM002571	259.0	47.7	24.3	15.8	53.3	8.8	152.0	2.8	206.0	44.7	47.1	7.8	3.2	208.0	18.9
MRAC0939	39	40	MRM002572	75.4	16.9	10.6	4.1	15.8	3.6	45.2	1.3	52.0	11.6	13.3	2.5	1.4	110.5	8.8
MRAC0940	45	46	MRM002588	127.0	8.3	3.7	3.8	10.2	1.4	31.7	0.5	54.1	11.7	12.5	1.4	0.5	30.1	3.2
MRAC0942	22	24	MRM002604	174.0	3.1	1.6	2.3	4.2	0.5	116.0	0.3	61.5	21.3	8.9	0.6	0.2	10.5	1.7
MRAC0942	27	30	MRM002606	76.3	8.3	3.5	4.8	11.9	1.4	52.9	0.4	74.7	18.6	16.9	1.6	0.5	26.0	3.2
MRAC0942	30	33	MRM002607	175.5	172.5	103.0	55.4	176.0	35.4	500.0	11.2	657.0	145.0	156.0	26.3	12.9	1060.0	74.5
MRAC0942	33	35	MRM002608	166.5	135.0	77.2	44.0	139.0	27.4	401.0	8.8	539.0	120.0	131.5	21.0	9.9	783.0	59.0
MRAC0943	0	3	MRM002609	44.3	17.4	10.1	5.5	18.0	3.5	60.1	1.1	69.4	15.7	16.7	2.6	1.2	104.5	7.7
MRAC0943	42	45	MRM002624	66.8	19.0	12.8	3.4	17.0	4.3	38.9	1.3	42.6	10.4	11.8	2.6	1.6	152.5	8.6
MRAC0943	45	47	MRM002625	129.0	52.3	29.1	12.1	55.9	10.8	167.0	2.5	144.5	32.1	38.2	8.1	3.5	351.0	18.4
MRAC0943	47	48	MRM002626	112.5	44.4	25.4	10.2	47.1	9.0	142.0	2.3	123.0	27.7	32.4	6.8	3.0	300.0	15.8
MRAC0945	52	53	MRM002670	173.5	45.4	25.2	14.3	46.7	8.8	101.5	3.0	160.5	33.2	40.1	7.0	3.3	243.0	20.7
MRAC0946	0	3	MRM002671	62.2	14.1	7.9	4.6	14.7	2.8	34.8	0.9	50.9	10.8	12.6	2.2	1.0	72.7	6.6
MRAC0946	39	40	MRM002685	151.0	28.7	16.1	23.8	33.2	5.7	66.1	2.1	126.5	24.8	31.7	4.6	2.3	149.5	14.5
MRAC0946	40	41	MRM002686	134.0	25.7	16.8	19.1	27.3	5.5	65.2	2.3	102.5	21.3	25.1	4.1	2.3	168.0	14.2
MRAC0947	0	3	MRM002687	126.0	28.1	19.7	17.9	28.6	6.4	63.1	2.5	96.1	19.5	23.0	4.3	2.6	217.0	15.8
MRAC0947	36	39	MRM002701	98.6	8.2	3.6	3.3	10.2	1.3	49.1	0.5	56.3	13.0	11.4	1.4	0.5	30.4	2.9
MRAC0947	39	42	MRM002702	104.5	9.9	4.5	4.4	12.5	1.6	48.7	0.5	59.2	13.8	12.5	1.8	0.5	33.6	3.3
MRAC0947	45	48	MRM002704	102.0	8.8	4.2	4.5	11.1	1.7	46.6	0.5	52.3	12.8	11.4	1.5	0.6	34.0	3.6
MRAC0947	48	51	MRM002705	83.9	11.0	6.7	3.9	12.1	2.2	37.8	0.9	48.9	11.3	11.7	1.8	0.8	59.3	6.2
MRAC0948	48	50	MRM002725	106.5	8.3	3.9	4.3	10.9	1.5	55.8	0.5	62.0	15.1	13.6	1.4	0.5	32.2	3.3
MRAC0948	50	51	MRM002726	89.0	7.0	3.4	3.4	8.9	1.3	49.0	0.4	52.7	12.8	10.7	1.2	0.5	28.5	2.9
MRAC0977	36	39	MRM003206	93.7	15.1	9.3	4.0	15.0	3.3	40.4	0.9	44.2	10.1	12.3	2.3	1.2	110.5	6.4
MRAC0977	39	42	MRM003207	124.5	8.9	4.8	2.4	8.0	1.7	22.8	0.6	28.5	6.7	8.0	1.4	0.7	29.1	4.3
MRAC0977	48	51	MRM003210	73.3	28.4	16.8	8.4	28.8	5.9	57.4	2.1	98.8	21.5	27.7	4.8	2.3	154.5	15.0
MRAC0977	51	54	MRM003211	51.6	19.1	11.7	5.2	18.3	4.1	36.7	1.5	58.6	13.1	16.6	3.0	1.6	105.0	10.0
MRAC0978	33	36	MRM003225	133.0	6.9	3.9	2.0	7.7	1.4	41.4	0.5	53.7	14.8	9.7	1.1	0.6	30.1	3.5
MRAC0978	48	50	MRM003231	158.5	39.5	22.3	12.8	41.9	8.0	95.8	2.6	147.0	31.8	38.0	6.5	3.0	189.5	18.4
MRAC0978	50	51	MRM003232	151.0	35.6	20.6	11.8	38.2	7.3	93.0	2.5	136.5	29.5	35.2	5.9	2.9	185.0	17.6
MRAC0979	39	42	MRM003247	113.5	7.5	5.0	2.3	8.1	1.5	52.6	0.6	52.8	14.2	9.3	1.1	0.6	45.9	4.2
MRAC0979	48	51	MRM003250	81.7	8.2	5.2	2.1	8.1	1.7	36.3	0.8	34.4	8.5	7.2	1.2	0.7	56.3	4.6
MRAC0980	0	3	MRM003253	113.0	12.7	7.3	4.4	13.7	2.4	49.8	0.8	61.1	13.4	12.8	2.0	0.9	70.5	6.1

						Assay Resu	Its for Sam	nles with T	Table 3. otal Bare Fa	urth Flemen	t (TRFF) >2	50 ppm.						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0980	39	42	MRM003269	178.0	8.7	3.3	5.0	11.6	1.4	82.6	0.3	82.3	20.3	17.0	1.6	0.4	22.4	2.3
MRAC0980	48	51	MRM003272	109.0	12.5	8.0	4.7	13.0	2.6	41.2	1.1	62.1	13.8	12.9	1.8	1.0	73.7	6.8
MRAC0980	51	54	MRM003273	318.0	144.0	114.0	26.5	119.0	34.9	165.5	14.7	261.0	49.9	68.1	19.2	14.9	1335.0	92.7
MRAC0980	54	57	MRM003274	57.0	13.5	9.8	3.1	11.8	3.1	25.0	1.4	37.5	7.5	9.3	1.8	1.2	99.4	8.4
MRAC0981	27	30	MRM003291	115.0	5.3	1.6	4.2	9.5	0.7	45.6	0.2	58.7	12.8	12.7	1.2	0.2	11.7	1.0
MRAC0981	63	65	MRM003304	63.3	18.2	9.4	6.3	21.4	3.4	64.7	1.2	94.3	20.0	22.4	2.9	1.3	95.9	7.7
MRAC0981	65	66	MRM003305	61.3	14.0	7.9	4.4	16.3	2.7	54.8	0.9	71.6	15.5	17.1	2.3	1.0	86.1	6.4
MRAC0982	45	48	MRM003322	101.5	6.4	3.2	2.9	7.5	1.2	36.5	0.5	44.4	10.8	9.5	1.1	0.5	21.9	2.9
MRAC0982	48	50	MRM003323	108.0	58.7	45.9	9.7	41.2	14.9	41.4	6.7	70.5	14.6	22.8	8.0	6.7	471.0	41.6
MRAC0982	50	51	MRM003324	115.5	56.6	44.1	9.3	41.0	14.6	44.5	6.2	72.4	14.9	22.1	7.7	6.3	465.0	39.3
MRAC0983	0	3	MRM003325	87.7	16.1	12.2	3.2	13.2	4.0	34.4	1.6	39.8	9.9	9.6	2.4	1.8	129.0	10.7
MRAC0983	3	6	MRM003326	90.6	26.3	20.1	4.6	20.2	6.7	32.4	2.8	41.9	9.7	11.6	3.7	3.0	217.0	18.1
MRAC0983	27	30	MRM003336	232.0	10.3	5.5	3.6	12.4	1.9	94.5	0.8	92.4	26.5	17.7	1.9	0.8	49.5	4.8
MRAC0983	30	33	MRM003337	240.0	13.5	7.8	4.2	15.3	2.8	68.7	1.0	109.0	26.3	20.7	2.3	1.3	65.2	7.6
MRAC0983	33	36	MRM003338	129.5	8.2	5.2	2.2	9.1	1.7	37.7	0.9	62.0	14.9	11.9	1.3	0.8	45.9	5.0
MRAC0983	37	39	MRM003340	122.0	12.5	6.4	3.8	12.9	2.4	49.6	0.8	58.6	14.7	13.0	2.1	0.9	61.2	5.5
MRAC0983	39	42	MRM003341	168.0	17.0	10.8	4.5	17.6	3.9	78.8	1.4	70.7	17.9	14.7	2.8	1.5	118.5	9.2
MRAC0983	42	45	MRM003342	90.8	13.6	8.8	3.6	12.9	3.1	45.0	1.3	46.9	11.2	11.1	2.2	1.3	92.9	8.1
MRAC0983	45	48	MRM003343	89.2	12.6	8.4	3.3	12.1	2.7	40.5	1.1	44.9	10.1	11.6	1.8	1.2	82.1	7.8
MRAC0984	42	44	MRM003361	66.9	13.4	7.0	5.0	15.0	2.5	30.6	0.9	60.1	12.6	16.9	2.2	0.9	50.3	6.4
MRAC0984	44	45	MRM003362	73.0	19.6	9.5	7.4	21.3	3.4	38.4	1.1	75.7	16.0	21.5	3.3	1.2	68.7	8.2
MRAC0985	44	45	MRM003379	109.0	43.4	20.1	18.3	51.8	7.4	123.5	2.2	250.0	51.8	64.3	7.7	2.6	161.5	17.0
MRAC0985	45	48	MRM003380	93.3	36.0	19.5	11.8	38.8	6.8	104.5	2.2	162.5	33.3	39.5	5.8	2.5	200.0	16.1
MRAC0985	48	51	MRM003381	71.8	19.9	11.7	6.2	22.1	3.9	66.2	1.3	85.1	18.3	20.8	3.2	1.5	120.5	9.5
MRAC0985	51	54	MRM003382	67.0	18.0	10.2	5.5	18.4	3.7	56.3	1.4	74.5	16.0	18.0	2.7	1.4	110.5	9.3
MRAC0985	54	55	MRM003383	60.7	13.5	7.6	4.3	15.0	2.6	47.9	0.9	63.5	13.7	15.3	2.1	0.9	70.8	6.1
MRAC0989	42	45	MRM003459	113.5	36.2	20.9	10.5	40.5	7.1	134.5	2.2	148.5	33.2	36.0	5.7	2.5	230.0	14.7
MRAC0989	45	46	MRM003461	80.9	25.6	16.0	6.7	27.0	5.3	86.8	1.8	92.3	20.0	22.8	4.1	1.9	176.5	11.7
MRAC0989	46	47	MRM003462	78.4	26.0	15.6	6.5	26.3	5.1	81.2	1.9	86.5	18.9	20.9	3.8	2.0	174.5	11.6
MRAC0990	0	3	MRM003463	46.0	10.1	6.4	2.6	10.8	2.4	37.1	0.8	38.7	8.5	8.3	1.6	0.9	72.5	5.0
MRAC0992	14	15	MRM003491	181.5	60.6	30.1	21.5	68.6	10.9	154.5	3.4	280.0	58.9	67.4	9.8	3.8	271.0	24.3
MRAC0992	15	18	MRM003492	102.0	25.5	20.1	5.6	23.5	6.3	49.4	2.5	62.3	13.7	15.1	3.6	2.4	257.0	14.8
MRAC0992	19	20	MRM003494	83.8	21.7	11.9	6.8	23.3	4.3	53.0	1.5	91.0	18.5	20.2	3.5	1.6	114.0	9.1
MRAC0993	15	18	MRM003501	127.5	15.5	9.1	4.7	15.6	3.0	63.6	1.1	75.5	17.5	15.6	2.3	1.1	82.3	7.5
MRAC0993	18	19	MRM003502	167.5	25.1	14.2	7.9	25.7	4.7	78.6	1.8	108.0	24.4	24.9	3.8	1.8	127.0	12.4
MRAC0993	19	21	MRM003503	127.5	21.2	12.4	6.0	22.6	4.3	66.2	1.6	81.9	18.2	18.6	3.2	1.6	110.5	11.3
MRAC0993	21	24	MRM003504	91.4	21.8	14.3	5.0	19.8	4.6	48.3	1.9	62.0	12.7	14.6	3.1	1.9	135.5	12.2
MRAC0993	24	27	MRM003505	87.2	17.7	13.3	3.6	15.8	4.0	46.9	1.6	51.1	11.9	10.6	2.4	1.7	135.5	11.1

						Assay Resu	Its for Sam	ples with T	Table 3. otal Rare Fa	arth Flemen	t (TRFF) >2	50 ppm.						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd	Ho	La	Lu	Nd	Pr	Sm	Tb	Tm	Y	Yb
_				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0993	27	30	MRM003506	187.5	9.9	6.3	3.6	11.6	2.0	90.9	0.9	76.4	21.9	12.9	1.6	0.9	60.8	5.8
MRAC0993	30	31	MRM003507	150.5	8.7	5.4	2.9	9.6	1.9	71.4	0.8	62.4	18.1	11.2	1.3	0.8	50.4	5.1
MRAC0993	31	32	MRM003508	139.5	8.2	5.5	2.6	9.3	1.9	66.4	0.8	56.9	16.8	10.3	1.3	0.8	49.9	4.8
MRAC0994	30	33	MRM003520	107.0	9.3	6.9	2.4	7.8	2.2	34.2	1.1	32.0	8.0	7.6	1.4	1.1	57.7	7.5
MRAC0994	33	36	MRM003521	145.5	12.6	6.5	5.9	15.9	2.4	118.0	0.8	108.5	28.5	21.5	2.4	0.9	50.6	6.1
MRAC0994	36	39	MRM003522	88.7	7.4	3.8	3.6	10.7	1.5	60.3	0.5	60.8	14.7	12.9	1.4	0.5	33.0	3.3
MRAC0994	39	42	MRM003523	215.0	10.4	7.3	5.2	14.1	2.3	105.0	1.0	103.0	25.4	18.5	1.9	1.0	65.2	6.5
MRAC0994	42	43	MRM003524	179.5	8.8	5.6	4.3	12.5	1.8	89.7	0.9	88.6	21.4	17.0	1.7	0.8	55.7	5.8
MRAC0995	18	21	MRM003534	133.5	18.1	13.7	3.4	17.6	4.3	43.5	1.6	50.0	10.4	13.2	3.0	1.9	149.5	10.4
MRAC0995	21	24	MRM003535	129.0	68.0	46.0	15.0	79.0	15.8	252.0	4.1	239.0	48.3	55.0	11.4	5.2	627.0	28.2
MRAC0995	24	25	MRM003536	124.0	110.0	63.1	27.0	127.5	23.5	419.0	5.8	410.0	101.5	98.6	18.1	7.4	755.0	39.3
MRAC0995	25	26	MRM003537	87.9	59.2	34.1	14.0	67.1	12.4	224.0	3.2	207.0	50.1	47.5	9.2	4.0	422.0	21.3
MRAC0996	0	3	MRM003538	37.5	16.9	9.9	4.8	20.3	3.6	69.8	0.9	74.8	16.3	17.4	2.9	1.2	111.0	6.6
MRAC0996	9	12	MRM003542	113.0	4.2	2.7	1.7	6.3	0.9	50.2	0.4	50.3	12.4	9.2	0.8	0.4	19.2	2.7
MRAC0998	15	18	MRM003572	162.0	3.8	2.6	0.7	3.8	0.8	23.9	0.4	22.6	6.1	4.4	0.6	0.4	19.9	2.8
MRAC0998	48	50	MRM003583	99.9	8.6	5.8	2.3	10.6	1.8	95.7	0.7	64.2	19.4	11.2	1.3	0.7	51.3	4.4
MRAC0998	50	51	MRM003584	106.0	9.7	6.3	2.8	11.5	2.0	103.0	0.7	78.2	20.9	12.7	1.6	0.8	60.0	5.1
MRAC0999	0	3	MRM003585	78.8	5.0	3.2	1.4	6.3	1.1	64.3	0.4	43.4	13.3	7.6	0.9	0.4	29.6	2.5
MRAC1000	42	43	MRM003612	232.0	8.2	4.7	2.4	8.8	1.5	32.2	0.5	43.4	9.4	9.9	1.2	0.6	35.8	4.1
MRAC1000	43	45	MRM003613	39.7	13.9	7.2	3.8	14.2	2.4	39.5	0.9	61.7	13.3	14.4	2.1	1.0	63.9	6.5
MRAC1000	51	53	MRM003616	129.0	10.9	6.0	3.0	10.6	2.1	41.3	0.8	49.3	11.0	12.1	1.6	0.9	47.1	5.9
MRAC1000	53	54	MRM003617	111.0	10.5	5.9	2.8	10.7	2.0	41.2	0.8	50.9	11.3	11.9	1.5	0.8	46.0	5.5
MRAC1001	48	51	MRM003637	137.0	15.5	8.2	4.0	16.7	3.0	72.6	1.1	86.0	20.6	19.5	2.6	1.2	77.5	7.7
MRAC1001	51	54	MRM003638	118.0	16.3	8.3	3.9	17.3	3.2	66.1	1.1	81.4	19.5	18.4	2.6	1.3	87.7	7.8
MRAC1001	54	57	MRM003639	91.4	11.7	6.0	3.0	12.6	2.3	49.4	0.9	59.7	14.0	12.9	2.0	0.9	58.4	5.9
MRAC1001	57	59	MRM003640	78.6	42.6	23.8	9.3	39.8	8.5	109.5	2.6	142.0	33.1	35.6	6.5	2.8	257.0	17.0
MRAC1001	59	60	MRM003641	62.8	37.4	21.5	8.2	35.7	7.5	94.4	2.2	127.5	29.2	31.6	5.9	2.6	234.0	16.0
MRAC1002	0	3	MRM003642	46.9	14.9	7.7	3.4	15.9	3.1	51.9	0.9	58.9	14.0	13.3	2.4	1.1	98.5	6.1
MRAC1002	21	24	MRM003650	88.7	6.5	3.7	2.3	8.0	1.3	51.4	0.5	49.1	12.6	9.5	1.1	0.5	38.5	3.3
MRAC1003	36	39	MRM003667	141.5	12.9	7.0	5.0	15.3	2.4	54.8	1.0	78.2	18.8	17.1	2.2	1.0	55.9	6.7
MRAC1003	39	42	MRM003668	192.0	86.3	44.9	30.6	103.0	16.1	313.0	5.3	446.0	103.0	96.2	15.0	5.7	407.0	38.6
MRAC1003	42	45	MRM003669	99.1	56.9	32.9	15.8	60.4	11.1	196.0	3.8	221.0	50.7	49.0	9.4	4.1	309.0	27.8
MRAC1003	45	48	MRM003670	81.1	20.9	11.8	5.6	22.5	4.3	69.6	1.6	79.6	18.3	17.4	3.3	1.6	124.0	10.5
MRAC1003	48	51	MRM003671	86.9	11.2	6.6	3.3	11.5	2.2	42.4	0.9	50.7	11.7	12.1	1.8	0.8	60.5	5.6
MRAC1003	51	54	MRM003672	84.2	10.3	5.6	3.2	11.6	1.9	45.7	0.7	51.2	12.3	11.5	1.6	0.8	55.0	4.8
MRAC1003	54	57	MRM003673	80.7	15.8	9.3	4.3	15.7	3.1	54.7	1.1	61.3	14.3	15.0	2.5	1.2	84.0	7.7
MRAC1003	57	58	MRM003674	71.5	12.5	7.8	3.7	14.1	2.7	46.6	1.0	51.4	12.2	11.9	2.0	1.0	74.3	6.8
MRAC1004	24	27	MRM003778	223.0	5.4	3.0	1.2	7.0	1.1	83.2	0.4	53.5	16.2	9.1	0.9	0.4	31.0	2.8

							lts for Sam	nles with T	Table 3.	arth Elemen	+ (TREE) >2	50 nnm						
Hole_ID	From	То	Sample	Ce	Dy	Er	Eu	Gd Gd	Ho	La		Nd	Pr	Sm	Tb	Tm	Y	Yb
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC1004	27	30	MRM003779	200.0	6.1	3.5	1.7	7.9	1.2	74.5	0.5	57.1	16.5	10.4	1.1	0.5	34.5	3.3
MRAC1004	30	33	MRM003780	135.5	6.0	3.5	1.6	6.9	1.2	57.0	0.5	51.7	13.1	9.7	1.0	0.5	34.1	3.0
MRAC1004	33	36	MRM003781	191.5	5.8	3.3	1.7	7.2	1.1	91.1	0.5	58.0	17.8	9.1	1.0	0.5	32.5	3.1
MRAC1004	48	51	MRM003786	91.4	8.3	5.3	2.1	8.5	1.7	50.9	0.8	41.8	11.1	8.5	1.3	0.8	54.1	5.1
MRAC1005	31	32	MRM003768	114.0	3.4	1.4	1.7	5.1	0.6	75.3	0.2	50.7	15.3	8.3	0.7	0.2	12.8	1.2
MRAC1006	0	3	MRM003740	106.0	3.8	1.4	1.6	5.1	0.6	62.8	0.2	48.2	13.3	8.1	0.7	0.2	13.9	1.2
MRAC1006	21	24	MRM003747	83.2	3.1	1.4	1.4	5.0	0.6	86.3	0.2	45.6	14.1	8.0	0.6	0.2	12.4	1.1
MRAC1006	24	27	MRM003748	104.5	3.1	1.1	1.5	5.0	0.4	125.0	0.1	62.0	20.5	9.3	0.6	0.1	10.7	0.8
MRAC1006	27	28	MRM003749	110.0	3.8	1.3	1.9	6.3	0.6	135.0	0.1	74.8	23.3	11.0	0.8	0.2	13.9	0.8
MRAC1006	28	30	MRM003750	151.5	4.2	1.4	1.8	6.9	0.6	157.0	0.1	79.4	25.5	11.2	0.8	0.1	15.2	0.9
MRAC1006	30	33	MRM003751	147.5	4.3	1.8	2.1	7.9	0.8	147.0	0.2	92.0	27.6	12.9	1.0	0.2	20.1	1.3
MRAC1006	33	36	MRM003752	250.0	5.5	2.2	2.5	8.3	0.9	151.0	0.2	101.0	29.0	14.0	1.0	0.3	22.4	1.5
MRAC1006	36	37	MRM003753	329.0	4.8	2.1	2.5	8.3	0.8	142.0	0.2	95.5	27.7	14.1	1.0	0.3	22.4	1.8
MRAC1007	30	31	MRM003729	185.5	2.0	1.3	0.5	2.5	0.4	41.3	0.2	25.5	7.6	3.9	0.4	0.2	9.8	1.3
MRAC1007	31	33	MRM003731	224.0	3.6	1.4	1.7	5.8	0.6	95.3	0.2	66.7	19.6	10.8	0.7	0.2	11.5	1.4
MRAC1007	33	36	MRM003732	340.0	8.0	2.9	3.5	13.0	1.2	127.0	0.2	109.0	28.8	19.8	1.7	0.4	24.2	2.0
MRAC1007	36	39	MRM003734	200.0	4.4	1.9	2.0	6.7	0.8	90.5	0.2	65.8	18.2	10.4	0.8	0.3	19.3	1.5
MRAC1007	39	42	MRM003735	225.0	6.3	2.3	2.8	9.7	1.0	104.0	0.3	83.1	22.7	15.6	1.2	0.3	23.6	2.1
MRAC1007	42	45	MRM003736	164.5	4.8	2.0	2.2	7.0	0.8	82.4	0.2	61.0	17.3	10.1	0.9	0.3	19.8	1.8
MRAC1007	45	48	MRM003737	128.0	3.7	1.7	1.9	5.5	0.6	68.3	0.2	48.6	13.8	8.2	0.7	0.2	16.0	1.2
MRAC1007	48	50	MRM003738	166.0	4.4	2.0	1.9	6.7	0.7	82.6	0.2	59.1	16.4	9.9	0.8	0.2	19.3	1.6
MRAC1007	50	51	MRM003739	196.0	4.3	1.9	2.2	7.3	0.7	114.0	0.2	76.5	21.6	11.8	0.9	0.2	19.4	1.3
MRAC1008	0	3	MRM003703	168.5	4.4	1.9	2.0	7.2	0.8	94.6	0.2	64.9	17.8	9.8	0.9	0.3	20.0	1.6
MRAC1008	3	6	MRM003704	118.5	3.2	1.5	1.5	4.9	0.5	61.2	0.2	43.0	11.9	7.3	0.6	0.3	13.0	1.3
MRAC1008	30	33	MRM003713	345.0	4.4	2.5	1.3	5.4	0.8	63.1	0.4	41.5	12.3	6.7	0.8	0.3	18.3	2.4
MRAC1008	33	36	MRM003714	279.0	8.7	4.6	2.6	11.6	1.6	94.3	0.6	75.3	20.1	13.3	1.6	0.6	36.7	4.2
MRAC1008	36	39	MRM003715	203.0	8.6	4.6	2.2	11.5	1.7	102.5	0.7	75.4	20.2	12.5	1.5	0.7	43.0	4.5
MRAC1008	39	42	MRM003716	174.0	6.9	3.9	1.7	9.1	1.3	86.9	0.5	62.5	16.9	10.5	1.3	0.5	36.8	3.7
MRAC1008	42	44	MRM003717	113.5	5.9	3.4	1.1	7.3	1.1	62.9	0.4	46.0	12.9	7.8	0.9	0.5	31.3	3.3
MRAC1008	44	45	MRM003718	105.5	6.3	3.7	1.3	7.4	1.3	57.6	0.6	44.2	12.3	8.1	1.1	0.6	34.8	3.8
MRAC1009	45	48	MRM003691	75.0	4.7	2.1	1.1	6.3	0.8	78.7	0.2	49.7	15.3	8.2	0.9	0.3	18.4	1.6
MRAC1009	69	72	MRM003700	73.6	12.5	7.7	3.2	14.0	2.6	49.2	0.9	53.3	12.8	12.3	2.1	1.0	86.4	6.6
MRAC1009	72	75	MRM003701	61.7	14.7	9.2	3.6	17.6	2.9	57.9	1.0	64.7	14.6	14.5	2.5	1.2	98.6	7.3
MRAC1010	48	50	MRM003917	187.0	5.4	2.8	4.3	8.4	1.0	90.8	0.4	82.0	21.0	12.2	1.0	0.4	27.6	2.4
MRAC1010	50	51	MRM003918	361.0	8.5	4.2	7.5	15.3	1.5	179.5	0.5	159.0	41.0	23.4	1.7	0.5	41.5	3.1
MRAC1200	6	9	MRM003792	322.0	0.9	0.3	0.5	1.3	0.2	179.0	0.1	30.3	14.5	2.9	0.2	0.1	3.3	0.4
MRAC1200	9	12	MRM003793	566.0	4.0	1.2	2.6	7.2	0.6	269.0	0.1	126.5	42.7	14.6	0.8	0.2	13.4	1.0
MRAC1200	12	15	MRM003794	381.0	8.2	3.5	4.3	12.5	1.4	190.5	0.3	143.0	43.2	20.3	1.7	0.5	35.1	2.4

							Its for Sam	nles with T	Table 3.	arth Elemen	+ (TREE) >2	50 ppm						
Hole ID	From	То	Sample	Ce	Dy	Er	Eu	Gd Gd	Ho	La		Nd	Pr	Sm	Tb	Tm	Y	Yb
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC1200	15	18	MRM003795	265.0	11.0	5.5	4.1	14.3	2.2	133.5	0.6	114.0	32.2	18.9	2.0	0.7	56.9	4.1
MRAC1201	24	27	MRM003808	469.0	47.5	23.7	15.6	56.1	9.4	199.5	2.8	311.0	66.6	59.1	7.9	3.2	263.0	19.3
MRAC1201	27	30	MRM003809	396.0	12.8	7.1	6.3	17.8	2.7	188.5	0.9	171.5	43.6	25.7	2.1	1.0	89.9	5.8
MRAC1201	30	33	MRM003810	399.0	9.1	4.7	5.2	14.3	1.9	197.5	0.8	167.0	43.9	24.0	1.7	0.7	57.5	3.9
MRAC1202	15	18	MRM003820	210.0	2.9	0.8	2.0	4.9	0.4	89.5	0.1	100.5	28.6	9.5	0.6	0.1	6.5	0.7
MRAC1202	18	21	MRM003821	137.0	9.0	4.0	3.9	11.2	1.6	54.4	0.4	78.6	20.5	16.1	1.8	0.5	32.3	2.9
MRAC1202	21	23	MRM003822	124.5	24.6	14.6	5.5	23.6	5.0	55.4	1.7	82.6	19.0	20.4	4.1	1.9	136.0	11.9
MRAC1202	23	24	MRM003823	62.3	12.0	7.6	2.7	11.4	2.6	27.0	0.9	38.5	8.4	9.8	1.8	1.0	72.8	6.5
MRAC1203	15	18	MRM003829	56.1	5.8	3.4	5.1	8.0	1.1	80.2	0.5	55.4	15.0	10.2	1.1	0.5	30.5	2.9
MRAC1203	18	21	MRM003831	214.0	16.8	8.9	11.9	22.8	3.3	114.0	1.1	121.5	29.6	24.3	3.1	1.1	98.0	6.6
MRAC1203	21	24	MRM003832	237.0	18.5	8.9	10.5	25.1	3.4	118.0	0.9	149.5	36.9	29.0	3.4	1.1	89.0	6.1
MRAC1203	24	26	MRM003834	106.5	15.0	8.4	5.4	15.2	3.1	46.6	1.1	72.4	14.9	15.9	2.5	1.2	102.5	6.2
MRAC1203	26	27	MRM003835	87.7	9.9	5.9	4.4	10.5	2.0	41.6	0.8	48.8	11.6	11.8	1.6	0.8	59.6	5.0
MRAC1204	12	15	MRM003841	264.0	13.6	7.1	5.3	19.0	2.7	86.6	1.1	125.0	30.3	20.9	2.5	1.0	64.8	6.5
MRAC1204	15	18	MRM003842	84.5	23.4	14.5	7.5	24.0	4.8	55.3	2.1	88.1	19.2	22.5	3.7	2.0	133.0	12.9
MRAC1204	18	21	MRM003843	58.4	25.2	15.4	6.8	28.4	5.7	69.5	2.0	90.5	17.5	20.3	4.0	2.0	205.0	10.6
MRAC1204	27	30	MRM003846	237.0	7.8	5.4	2.8	9.8	1.7	114.0	0.9	85.0	24.6	14.3	1.3	0.8	48.3	4.9
MRAC1204	30	31	MRM003847	89.5	7.7	5.1	3.4	8.7	1.6	45.3	0.8	45.2	11.3	9.2	1.3	0.7	44.4	4.5
MRAC1205	12	13	MRM003852	120.0	12.0	6.8	6.9	15.9	2.3	49.2	0.8	84.3	19.5	18.5	2.1	0.9	62.0	5.6
MRAC1205	13	15	MRM003853	107.0	17.6	10.7	8.1	20.2	3.7	44.8	1.3	85.4	17.8	19.9	2.9	1.4	109.0	8.9
MRAC1205	15	18	MRM003854	72.6	37.8	32.8	6.7	24.3	9.7	36.9	4.9	45.2	10.1	12.9	4.8	4.5	353.0	29.6
MRAC1205	18	21	MRM003855	110.0	12.1	7.9	4.2	13.1	2.7	53.6	1.0	59.4	14.2	12.3	1.9	1.0	85.4	6.4
MRAC1206	12	15	MRM003864	82.8	14.5	8.2	3.8	13.8	2.9	50.5	1.1	63.2	13.4	14.9	2.4	1.2	95.2	7.7
MRAC1208	30	31	MRM003896	129.0	17.3	11.6	4.3	15.6	3.7	65.8	1.7	66.7	17.2	14.9	2.5	1.6	111.5	10.8
MRAC1208	31	33	MRM003897	163.0	21.9	14.4	5.5	21.2	4.9	72.4	2.1	83.3	19.7	17.8	3.3	2.1	156.0	12.6
MRAC1208	33	36	MRM003898	120.0	20.9	13.2	4.6	18.8	4.4	56.5	1.9	65.5	14.6	14.3	3.0	1.9	145.5	11.3
MRAC1208	36	37	MRM003900	72.9	12.5	8.6	2.8	11.9	2.7	33.3	1.3	40.3	9.0	8.6	1.8	1.2	88.4	7.3

Appendix 2 JORC Code, 2012 Edition – Table 1 Report for the Mount Ridley Project Section 1 Sampling Techniques and Data: Aircore Drilling

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Mount Ridley Mines Limited (ASX: MRD) has completed 409 air core holes (MRAC0862- MRAC1114, MRAC1200-MRAC1355) drilled for 18,927m). Samples of drill chips were collected through a cyclone as 1m piles laid out consecutively on the ground then sampled as 1m or 3m composite spear samples. Drill hole collar locations reported herein were picked-up using a Garmin hand-held GPS with approximately +-3m accuracy. No downhole surveying was undertaken
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Aircore drilling to deliver Im interval sample piles. Samples of between 1 metre and 3 composited metres taken for analysis. The size of the sample submitted to the laboratory was 2-4kg in weight, which was dried, pulverized and packaged in a computer-coded packet. A sub-sample was analysed and the coded packed then stored. Analyses reported herein by ALS Laboratory's ME-MS81, a lithium borate fusion with ICP-MS finish. Selected samples were also analysed by the ALS ME-ICP06 whole rock package.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Aircore. A type of reverse circulation drilling using slim rods and a 100mm blade bit drilled to refusal (saprock to fresh rock).
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Recovery was visually assessed, recorded on drill logs, and considered to be acceptable within industry standards.
	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether	Samples were visually checked for recovery, moisture, and contamination. A cyclone was used to deliver the sample into buckets. Not assessed.
	sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geological logging appropriate for this style of drilling and the stage of the project. All holes chipped for the entire hole for a complete chip tray record.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Geological logging is inherently qualitative. More specific logging may be undertaken if chemical analyses warrant it.
	The total length and percentage of the relevant intersections logged.	All holes were logged for the entire length of the hole.
	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable, no core drilling was complete.

	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Original aircore samples were collected via a cyclone into a bucket and laid out in rows as single 1m piles. 1m samples or up to 3m composite samples were 'speared' from the sample piles for an approximately 2.5 - 3.5kg sample. Sample composite size determined by geology.
Sub-sampling	For all sample types, the nature, quality, and appropriateness of the sample preparation technique.	Sampling technique is appropriate for the drilling method and stage of the project.
techniques and sample	Quality control procedures adopted for all sub-sampling stages to maximize representivity of samples.	Duplicates and certified reference material (CRM) were routinely inserted within the sampling sequence approximately one in every thirty samples.
preparation	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Field QAQC procedures included the insertion of field duplicates and CRM's at pre-specified intervals at the time of drilling. All duplicate samples were speared for single metre samples and composite sampling, the size/quantity of the samples were kept consistent. This is considered fit for purpose at this stage of the project.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample size is considered appropriate for the grainsize of the sampled material and is considered fit for purpose.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Analyses reported herein by ALS Laboratory's ME-MS81, a lithium borate fusion with ICP-MS finish. Selected samples were also analysed by the ALS ME-ICP06 whole rock package. A suite of 15 Rare Earth Elements was targeted, plus whole rock analysis to assist with identifying the underlying geological units. The analytical techniques were recommended by the Company's geochemical consultant and considered appropriate when discussed with an ALS Laboratory chemist.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None used, not applicable.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Standards and laboratory checks have been assessed and show results within acceptable limits of accuracy, with good precision in most cases. ALS analysed 6 different standards, which were predominantly manufactured by an independent 3 rd party.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections are calculated by experienced geologists with methodology verified by an independent consultant.
assaying	The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	None, not applicable. All collected data stored in a commercially managed database.
	Discuss any adjustment to assay data.	Raw assays are stored in the commercially managed database with each rare earth elemental value converted to the respective rare earth element oxide value, calculated using the stoichiometric conversion factor in "Section 2 – Data Aggregation Methods" below.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collar locations noted in Table 6 were surveyed using a hand-held GPS with an accuracy within+- 5m. This is considered fit for purpose.
	Specification of the grid system used.	GDA94-51

	Quality and adequacy of topographic control.	RL's estimated from a digital elevation model with points gained as a component of an aeromagnetic survey. The datum may have some error, but RL of holes should be relative to each other and fit for purpose on a hole to hole basis.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Variable, generally 400 x 200m or 200m x 200m within areas of defined mineralisation. Regional traverse drillholes spaced 400m apart on a network of existing exploration tracks of various orientations.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	There is insufficient data collected for a Mineral Resource Estimate.
	Whether sample compositing has been applied.	Samples were of 1m intervals when confirming mineralisation and 3m composites for "Regional" drill holes.
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Not determined yet. Likely unbiased as vertical holes are sampling a horizontal mineralized feature.
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Unlikely to be biased.
Sample security	The measures taken to ensure sample security.	Standard industry practice is used when collecting, transporting and storing samples for analysis. Drilling pulps are retained and stored off site in a designated storage facility.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques are consistent with industry standards. A third-party geochemical specialist is reviewing the data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Tenements E 63/1547, E 63/1564, E 63/1564, E 63/1564, E 63/1564, E 63/1617, E 63/2111, E 63/2112, E 63/2113, E 63/2114, E 63/2117 and E 63/2125 located from 35km northwest of Esperance, Western Australia. Registered Holder is Mount Ridley Mines Limited (Company) (100%). Odette One Pty Ltd has a 15% free-carried beneficial interest in E 63/2117. The Project is subject to a Full Determination of Native Title: which is held by the Esperance Nyungars NNTT Number: WC2004/010, Federal Court Number: WAD28/2019.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	The tenements are in good standing, and there are no impediments to operating in the targeted areas other than requirements of the DMIRS, DBCA and Heritage Protection Agreements, all of which are industry-standard.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Many parties, including Government organisations, private and public companies, have explored the area. A substantial compilation of work prior to Mount Ridley was by Bishop who was the first to research and champion the potential of Grass Patch, interpreted as a large, crudely layered, amphibolite-gabbro complex beneath shallow cover sediments. The mafic complex is considered to have the potential to host nickel-copper sulphide deposits and PGE deposits. completed detailed litho-geochemistry interpretation from 'best available' end of hole assays, development of a geological map based on this information. Additional drilling tested the models but didn't return assays of commercial consequence. Mount Ridley has completed a large complement of geophysical surveys and drilling, aimed at nickel sulphides and gold. The samples reported herein were generated during the search for nickel sulphides. Nearby, Salazar Gold Pty Ltd were the first company to search for REE in the Great Southern, identifying the Splinter REE deposit. Work started in 2010 and continues now.
Geology	Deposit type, geological setting, and style of mineralisation.	Ionic Adsorption Clay or clay-hosted rare earth deposit.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All relevant data for the drilling conducted is tabulated in Appendix 1 of this announcement. It should be noted that RL is estimated from a digital elevation model gained during an aeromagnetic survey.

Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	thickness, mir dilution. No metal equi Conversions fr Ce_ppm Dy_ppm Er_ppm Er_ppm Gd_ppm Ho_ppm La_ppm La_ppm Lu_ppm Nd_ppm Pr_ppm Tb_ppm Tb_ppm Tb_ppm Yb_ppm Yb_ppm Source: Elem TREO: the sum Yb_O_3, Ce_O_3, La TREO-Ce: TREO- HREO: the sum of Yb_O_3.	nimum 300ppm ivalent values h rom elements t 1.2284 1.1477 1.1435 1.1579 1.1526 1.1455 1.1526 1.1455 1.1728 1.1372 1.1664 1.2082 1.1596 1.1762 1.1421 1.2695 1.1387 nent-to-stoichic of Sm ₂ O ₃ , Dy ₂ O ₃ of Sm ₂ O ₃ , Dy ₂ O ₃	n TREO cut-off, max nave been used. o oxides: <u>CeO2_ppm</u> Dy2O3_ppm Er2O3_ppm Er2O3_ppm Gd2O3_ppm Ho2O3_ppm La2O3_ppm La2O3_ppm Lu2O3_ppm Nd2O3_ppm Pr6O11_ppm Sm2O3_ppm Tb4O7_ppm Tb4O7_ppm Tb4O7_ppm Yb2O3_ppm Yb2O3_ppm Yb2O3_ppm Yb2O3_ppm Onetric oxide conver D3, Er2O3, Eu2O3, Gd2C	rsion factors - JCU Australia. d2O3, Ho2O3, Lu2O3, Tb4O7, Tm2O3, Y2O3, and
		CREO: the sum o	of Dy ₂ O ₃ , Eu ₂ O ₃	Nd_2O_3 , and Pr_2O_3 . , Nd_2O_3 , Tb_4O_7 , and	
Relationship	These relationships are particularly important in the reporting of Exploration			Nd2O3, Dy2O3 and ⁻ alisation width and	l length has not been established. To date
between mineralisation widths and	Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	-			ing sheet, so vertical drilling suggests true rgins have not been determined.
intercept lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').				
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to maps, ta	-	·	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Assay results wh	nere TREE > 250	ppm are reported	in Table 3.

Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All new, meaningful, and material exploration data has been reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Analysis of additional samples is progressing and will be reported when received. 3D geological modelling and mineralisation studies are being carried out. Additional drilling is planned.