

17 August 2022

FURTHER WIDE HIGH-GRADE COPPER INTERSECTIONS REPORTED FROM LANA CORINA PROJECT, CHILE

Culpeo Minerals Limited (**Culpeo** or the **Company**) (**ASX:CPO**) is pleased to announce further significant high-grade copper intersections from drilling at its Lana Corina Project in Chile (the **Project**) and confirmation of near-surface targets for the Phase 2 program.

Highlights

- O CMLCD009 intersects wide zones of high-grade copper mineralisation including:
 - o 19m @ 0.75% Cu and 110ppm Mo (331m to 350m);
 - o 11m @ 0.83% Cu and 197ppm Mo (405m to 416.1m); and
 - Within 113m @ 0.60% Cu and 122ppm Mo (331m to 444m)
- O Phase 1 Drilling complete with large copper bearing body defined by 7 holes intercepting significant copper and molybdenum mineralisation including:
 - CMLCD002 257m @ 0.95% Cu, 81ppm Mo from 170m²;
 - o CMLCD003 173m @ 1.05% Cu, 50ppm Mo from 313m³;
 - o CMLCD005 81m @ 1.06% Cu, 145ppm Mo from 302m⁴;
- O 3D inversion modelling of the recently acquired **ground magnetic data**¹ **shows a large magnetic low below the outcropping breccia hosted mineralisation** confirming its correlation between significant widths of copper mineralisation encountered in deeper drilling, refer Figure 1.
- O A significant portion of this large anomaly remains untested with mineralisation defined over 200m x 300m x 400m deep and open in all directions, refer Figures 1 and 2.
- O Surface mapping in progress to prioritise the **13 high priority breccia targets identified** over an area of 800m by 1,000m, indicative of a large copper porphyry system.

Figure 1: Schematic section A-A' (+/- 25m) looking north showing position of drillholes and geophysical targets (background image is the VOXI 3D inversion model of the recently acquired ground magnetic data¹, cold colours representing magnetic lows and hot colours representing magnetic highs)

¹Refer ASX announcement 18 May 2022. ²Refer ASX announcement 11 May 2022. ³ Refer ASX announcement 6 June 2022 ⁴ Refer ASX announcement 20 June 2022.

Culpeo Minerals' Managing Director, Max Tuesley, commented:

"The Phase 1 diamond drilling program at Lana Corina has been very successful, with 7 of the 9 holes hitting substantial copper and molybdenum. Significant, thick, high-grade, copper-molybdenum mineralisation has been confirmed, extending from the outcropping surface breccia pipes to over 400m vertical depth.

The high-grade zone hosted within the breccia pipes, has an ideal geometry for open-pit mining and the potential of discovering additional near surface mineralisation is high. Ground magnetic data shows a strong correlation between a large magnetic low and where deeper drilling has intersected significant widths of high-grade copper and molybdenum mineralisation, this provides an important tool for target generation.

Surface mapping and the integration of geology, geophysical and geochemical data is progressing well, with this information being integral to the planning of the Phase 2 drilling program which will target the 13 near surface targets (refer Figure 3) including the deeper copper-molybdenum mineralisation."

Figure 2: Plan view showing position of drillholes and targeted breccia units (Datum PSAD56 / UTM 19S)

Completion of Successful Maiden Drilling Program

Hole CMLCD009 has returned multiple copper and molybdenum downhole intersections including 19m @ 0.75% Cu and 110ppm Mo (331m to 350m) and 11m @ 0.83% Cu and 197ppm Mo (405m to 416.1m), all within 113m @ 0.60% Cu and 122ppm Mo from 331m which it consistent with the exploration model and supports the Company's belief the Lana Corina mineralised system has substantial size and grade.

Figure 3. Plan view of high-resolution ground magnetic data (high pass TMIRTP), showing position of Lana Corina prospect and high priority targets identified from geophysical data (refer ASX announcement 18 May 2022).

Significantly, 3D inversion modelling of the recently acquired ground magnetic data shows a large magnetic low below the outcropping breccia hosted mineralisation, correlating closely with significant widths of copper/molybdenum mineralisation encountered in deeper drilling. A significant portion of this large anomaly remains untested, and mineralisation is open to the west, south and at depth.

Hole CMLCD008 was drilled to the north of the main mineralised zone and intersected high-grade near surface mineralisation (3m @ 1.15% Cu and 10ppm Mo from 104m) hosted within a crackle breccia (Figure 4). This mineralisation is 50m northwest of the recent breccia discovery report in drillhole CMLCD005⁴ and highlights the potential for additional mineralisation at surface and depth in this area.

Figure 4: High-grade near surface Cu mineralisation, CMLCD008.

The Lana Corina Phase 1 diamond drilling program is now complete with significant results reported for 7 of the 9 holes completed.

⁵ Refer ASX announcement 19 July 2022

Highlights include:

- o CMLCD001 104m @ 0.74% Cu, 73ppm Mo from 155m¹;
- o CMLCD002 **257m @ 0.95% Cu, 81ppm Mo from 170m²**;
- o CMLCD003 173m @ 1.05% Cu, 50ppm Mo from 313m³;
- o CMLCD005 **81m @ 1.06% Cu, 145ppm Mo from 302m**⁴;
- o CMLCD007 34.7m @ 0.91% Cu, 71ppm Mo from 515m⁵;
- o CMLCD008 3m @ 1.15% Cu, 10ppm Mo from 104m; and
- o CMLCD009 **19m @ 0.75% Cu, 110ppm Mo from 331m.**

Increased understanding of copper mineralisation and geometry demonstrates that the Project has strong potential to host large scale, near surface, high-grade copper and molybdenum mineralisation.

The Company is awaiting assay results for holes CMLCD001A, CMLCD004 and CMLCD005A which intersected old workings and channel sampling of the 13 recently identified high resolution ground magnetic targets; these results will be released as they come to hand.

¹ Refer ASX announcement 2 May 2022. ²Refer ASX announcement 11 May 2022. ³ Refer ASX announcement 6 June 2022 ⁴ Refer ASX announcement 20 June 2022. ⁵ Refer ASX announcement 19 July 2022

Lana Corina Drilling Program

Immediately after securing rights for up to 80% of the Project, Culpeo began a maiden drilling program at Lana Corina to test high-grade copper mineralisation which outcrops at surface. Lana Corina is associated with a structural zone orientated in a northeast-southwest direction with >1km of strike and up to 400m wide. The initial 5,000m diamond drilling program comprised 9 holes targeting breccia and porphyry hosted high-grade copper mineralised zones.

Assay results have now been reported for diamond drillholes CMLCD001, CMLCD002, CMLCD003 CMLCD005, CMLCD006, CMLCD007, CMLCD008 and CMLCD009. The mineralisation encountered in the drillholes to date is associated with shallow high-grade breccia hosted mineralisation near surface and deeper high-grade porphyry hosted mineralisation at depth. Significant potential exists to expand the mineralised zone to the northwest and at depth to the south given the results of recent drilling.

The Phase 2 drilling program is currently being planned, with a review of geological, geophysical and geochemical data in progress. A detailed geological mapping program is currently underway at Lana Corina and results of this work will be communicated in due course.

This announcement has been authorised by the Board of Directors of Culpeo Minerals Limited.

COMPANY

Max Tuesley
Managing Director
E: max.tuesley@culpeominerals.com.au

P: +61 (08) 9322 1587

MEDIA/INVESTORS

Evan Smith
Advisir.
E: evan.smith@advisir.com.au

P: +61 (0) 431 176 607

About Culpeo Minerals Limited

Culpeo Minerals is a copper exploration and development company with assets in Chile, the world's number one copper producer. The Company is exploring and developing high grade copper systems in the coastal Cordillera region of Chile.

The Company has recently acquired the Lana Corina Project situated in the Coquimbo region of Chile, where near surface breccia hosted high-grade copper mineralisation offers walk up drilling targets and early resource definition potential.

The Company has two additional assets, the Las Petacas Project, located in the Atacama Fault System near the world-class Candelaria Mine. Historic exploration has identified significant surface mineralisation with numerous outcrops of high-grade copper mineralisation which provide multiple compelling exploration targets. The Quelon Project located 240km north of Santiago and 20km north of the regional centre of Illapel, in the Province of Illapel, Region of Coquimbo. Historical artisanal mining has taken place within the Quelon Project area, but modern exploration in the project area is limited to rock chip sampling and geophysical surveys.

Culpeo Minerals has a strong board and management team with significant Chilean country expertise and has an excellent in-country network. All these elements enable the company to gain access to quality assets in a non-competitive environment. We leverage the experience and relationships developed over 10 years in-country to deliver low cost and effective discovery and resource growth. We aim to create value for our shareholders through exposure to the acquisition, discovery and development of mineral properties which feature high grade, near surface copper mineralisation.

Competent Persons' Statements

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Maxwell Donald Tuesley, BSc (Hons) Economic Geology, MAusIMM (No 111470). Mr Tuesley is a member of the Australian Institute of Mining and Metallurgy and is a shareholder and Director of the Company. Mr Tuesley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Tuesley consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to Geophysical Results is based on information compiled by Nigel Cantwell. Mr Cantwell is a Member of the Australian Institute of Geoscientists (AIG) and the Australian Society of Exploration Geophysics (ASEG). Mr Cantwell is a consultant to Culpeo Minerals Limited. Mr Cantwell has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources & Ore Reserves. The Company confirms that it is not aware of any new information or data that materially affects the historical geophysical results included in the original reports.

Appendix A JORC Code Table 1 – Lana Corina Project SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure	2022 drillcore samples are collected usually at 1m sample intervals, some smaller intervals if geology warranted it. Assayed routinely for Cu, Mo, Ag and Au by ALS laboratories in Chile. Historic Drill core has been routinely assayed for Cu, and to a lesser
	sample representivity and the appropriate calibration of any measurement tools or systems used.	extent Mo, Ag and Au. • Historic Drill samples were collected as either 1 m or 2 m samples.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., troverse circulation) drilling.	Half core sampling was undertaken for both the 2022 program and the historic drilling.
	be relatively simple (e.g. 'reverse circulation' drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of	Ground Magnetic Data was collected using a GEM GSM-19W Magnetometer, data were quality checked by Quantec and geophysical consultants in Perth, Australia, and were considered to be of excellent quality.
	detailed information.	Geochemical sampling was undertaken in an area of 800 x 700 m for a sample spacing of 50 x 50 m and sometimes 25 x 25 m. 192 samples were extracted and 192 copper analyses and 70 molybdenum analyses were performed.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The 2022 drill program uses diamond core drill techniques. 17 historic drillholes have been completed at the Project for a total of approximately 6,000 m by previous operators.
		All the drillholes have been undertaken using diamond core drilling techniques.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	For the 2022 drilling program core recoveries have exceeded 95%.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	For the 2022 program all HQ3 drilling is oriented, with bottom of hole marked.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The historic drill samples were taken before Culpeo's involvement, and no records are available detailing drill core recovery.
		Core from 5 historic drillholes has been preserved and these have been inspected by the Company's geologist, core recoveries appear on the order of +90%.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	For the 2022 drilling program, logging is undertaken for Lithology, Alteration, Mineralisation and Structural Controls.

Criteria	JORC Code explanation	Commentary
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	Partial records exist for the historic drill core logs.
Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary	For the 2022 program half core is sampled. No records available for the historic
and sample preparation	split, etc. and whether sampled wet or dry.	drilling.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	For the 2022 drilling program standards and blanks are routinely inserted in sample batches and a QAQC program is in place.
16313	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 The sample preparation techniques for historical drilling are unknown. Historical analysis has focussed on Cu, but some of the samples were also analysed for Mo, Ag and Au.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Magnetic surveys were ground- based surveys, measuring Total Magnetic Intensity, with a 1s recording interval.
		 Data units were nanotesla (nT). Data was collected by Quantec Geoscience (Chile), covering 150 line kms at a 25m spacing. The Magnetometer was a GEM GSM-19W with a Overhauser Effect Sensor Type, mounted on a 2m staff.
		o The control point location was 296647 E, 6555150 N (PSAD56, Zone 19S) (repeated at beginning and end of survey each day)
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	For the 2022 drilling program, a high- quality database is maintained, and
assaying	The use of twinned holes.	protocols are in place to ensure this data is checked by both the Senior
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Geologist and Geology Manager. Previous company staff reviewed the historic intersections. Due to the
	Discuss any adjustment to assay data.	early nature of the Project, Culpeo staff have not independently verified the sampling and assaying.
		No twin holes have been completed due to the early stage of the

Criteria	JORC Code explanation	Commentary
		 project. Company geologists have verified the visible copper mineralisation present in stockpiles at the project site.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 For the 2022 drilling program, hole collars are established using a hand held GPS, downhole surveys are undertaken using a north seeking gyroscope. Historic Location of drillhole collars and surface samples were recorded by handheld GPS. Accuracy is not known but is considered reasonable for early-stage exploration.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied Whether sample compositing has been applied.	The 2022 drilling program is being undertaken on approximately a 50m x 60m grid where drilling is focused on the Lana-Corina mineralised zone. The historical drilling and surface sampling are widely spaced and no systematic sampling/drilling grid has been implemented. In general, the mineralisation strikes in a north-east direction and drilling has been undertaken perpendicular to that.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling orientations are not considered to be biased with several drilling orientations used.
Sample security	The measures taken to ensure sample security.	For the 2022 drilling program, samples are delivered to the laboratory and chain of custody protocols are followed. No records available for the historic samples.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No records are available for the historic sampling, but it is assumed no audits have been completed.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The project area comprises nine exploitation concessions, which cover a total area of approximately 550 Hectares. Culpeo Minerals has agreements in place to earn up to 80%.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historically three companies have undertaken exploration in the project area. These include: Minera Centinela (1982 to 1985) Antofagasta Minerals (2005) SCM Antares (2010 to 2018)
Geology	Deposit type, geological setting and style of mineralisation.	The prospect is associated with a structural belt orientated in a NE-SW direction, about 1,000m long and 400m wide. The near surface part of the mineralised system is associated with three breccia pipes and below this a mineralised copper / molybdenum porphyry. Around the edges of the main mineralisation are a series of gold, gold-copper and barite veins.
Drillhole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: • easting and northing of the drillhole collar • elevation or RL (elevation above sea level in metres) of the drillhole collar • dip and azimuth of the hole	A summary of the historic drillholes is provided in Appendix C. A summary of the 2022 drilling program is provided in Appendix E.
Data aggregation methods	down hole length and interception depth hole length In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and chould be stated.	No sample weighting or metal equivalent values have been used in reporting. Only raw assay results have been reported.
Relationship between mineralisation widths and intercept lengths	Material and should be stated. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Only down hole lengths have been reported with respect to drilling intercepts, true width of mineralisation is unknown.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagrams are included in the main body of the report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Results have been reported for the main elements targeted (Cu and Mo). All drillhole locations are reported for context.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 A ground magnetic survey has recently been completed, covering 150 line kms at a 25m spacing. Historic geochemical survey undertaken in an area of 800 x 700 m for a sample spacing of 50 x 50 m and sometimes 25 x 25 m. 192 samples were taken (192

Criteria	JORC Code explanation	Commentary
		 copper and 70 molybdenum analyses Two programs of geophysics have been undertaken over the project area. In 2015 an IP survey was undertaken by Geodatos, where data was collection over 7.6 line km. A second IP survey was carried out in 2018, also by Geodatos with data being collected over 12.2 line km.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling).	 The Phase 1 drill program to test the near surface breccia pipe hosted mineralisation and deeper porphyry style mineralisation is now complete. The recently acquired ground magnetic data is now being modelled and target ranking will be undertaken. A detailed mapping program is currently underway.

Appendix B – Significant Downhole Intersections (CMLCD008 and CMLCD009)

Hole_ID	From (m)	To (m)	Interval	Cu (%)	Mo (ppm)	Ag (g/t)	Au (g/t)
CMLCD008	104	107	3	1.15	10	6	0.050
CMLCD009	31.2	34.7	3.5	0.27	27	3	0.007
CMLCD009	289.5	324	34.5	0.46	90	2	0.012
CMLCD009	331	444	113	0.60	122	4	0.010
CMLCD009	464	467.5	3.5	0.57	16	4	1.010
CMLCD009	536	539	3	0.48	12	3	0.003

Notes: No top cut has been applied, grade intersections are generally calculated over intervals >0.2% Cu where zones of internal dilution are not weaker than 2m < 0.1% Cu. Bulked thicker intercepts may have more internal dilution between high-grade zones.

Appendix C - Historical Drilling Summary – Lana Corina Project

Hole #	Northing	Easting	Azimuth	Dip	Hole Depth (m)
COR-1	6,554,938	298,424	40	-60	Unknown
COR-2	6,554,937	298,425	85	-60	71
LAN-1	6,555,003	298,496	103	-70	80
LC-1	6,555,000	298,507	228	-45	160
LCO-1	6,554,776	298,605	321	-50	545.3
LCO-2	6,555,118	298,297	140	-60	596.35
LCO-3	6,555,360	298,537	130	-60	300
LCO-4	6,555,409	298,560	123	-50	300
LCD-11	6,554,949	298,586	315	-70	518.7
LCD-12	6,554,634	298,778	315	-61	1028.75
LCD-13	6,554,710	298,516	315	-55	675.80
LCD-14	6,555,003	298,791	315	-60	486.95
LCD-15	6,554,676	298,375	315	-55	401.30

Appendix D - Historical Significant Intercept Table — Lana Corina Project

Hole #	Significant Intercept Width (m)	Cu %	Mo ppm	From	То
COR-2	70	1.23	-	0	70
LAN-1	80	0.67	-	0	80
LC-1	154	0.70	-	0	154
LCO-1	132	0.56	51	324	456
LCO-2	178	0.72	284	356	534
LCO-3	4	0.18	75	228	232
LCO-4	6	0.25	17	232	238
LCD-11	3	0.69	16	312	315
LCD-12	4	0.55	59	759	763
LCD-13	207	0.41	124	274	481
LCD-14	3	0.47	10	416	419

Notes: No top cut has been applied, grade intersections are generally calculated over intervals >0.2% Cu where zones of internal dilution are not weaker than 2m < 0.1% Cu. Bulked thicker intercepts may have more internal dilution between high-grade zones.

Appendix E - Recent Drillhole Locations and Significant Intercepts

Table E1: Drill Hole Locations

Prospect	Hole No.	Easting	Northing	Elevation	Azimuth	Inclination	Total depth
Lana Corina	CMLCD001	298380	6554936	873	124	-75	456
Lana Corina	CMLCD002	298418	6554934	872	135	-85	534
Lana Corina	CMLCD003	298613	6555007	850	244	-60	654
Lana Corina	CMLCD004	298452	6554958	865	135	-80	102 (void)
Lana Corina	CMLCD005	298413	6555026	863	135	-70	555
Lana Corina	CMLCD006	298364	6554953	869	150	-60	530.7
Lana Corina	CMLCD007	298478	6554832	855	318	-71	651
Lana Corina	CMLCD008	298472	6555060	875	160	-70	500
Lana Corina	CMLCD009	298323	6554993	875	130	-70	550

Table E2: Significant Downhole Intersections 2022 Drilling Program

Hole_ID	From (m)	To (m)	Interval	Cu (%)	Mo (ppm)	Ag (g/t)	Au (g/t)
CMLCD001	52	52.4	0.4	0.347	10	1	0.0025
CMLCD001	64	65	1	0.232	20	3	0.01
CMLCD001	65	66	1	0.847	10	5	0.09
CMLCD001	66	66.3	0.3	0.553	40	3	0.06
CMLCD001	105.2	106	0.8	0.231	20	1	0.01
CMLCD001	128	129	1	0.219	10	1	0.01

CMLCD001	129	130	1	0.396	20	3	0.05
CMLCD001	130	131	1	0.279	20	2	0.03
CMLCD001	131	132	1	3.514	20	23	0.23
CMLCD001	132	133	1	0.924	20	6	0.05
CMLCD001	155	259	104	0.74	73	4.8	0.02
CMLCD001	265	266	1	1.297	20	10	0.02
CMLCD001	266	267	1	0.162	20	0.05	0.01
CMLCD001	269	270	1	0.23	10	1	0.01
CMLCD001	277	278	1	0.241	10	1	0.02
CMLCD001	278	279	1	0.265	20	1	0.01
CMLCD001	280	281	1	0.262	20	1	0.0025
CMLCD001	284	285	1	0.332	40	4	0.01
CMLCD001	288	289	1	0.228	20	1	0.01
CMLCD001	289	290	1	0.446	10	2	0.01
CMLCD001	291	292	1	0.245	10	3	0.01
CMLCD001	296.8	384	87.2	0.57	51	2.34	0.02
CMLCD001	393	394	1	0.753	10	4	0.02
CMLCD001	394	395	1	0.367	10	1	0.02
CMLCD001	406	407	1	0.309	10	2	0.01
CMLCD002	90.85	91.4	0.55	0.60	20	6	0.0025
CMLCD002	94	95	1	0.32	10	4	0.005
CMLCD002	96	97	1	0.39	10	3	0.0025
CMLCD002	106	107	1	1.44	20	9	0.006
CMLCD002	123.2	125	1.8	1.92	10	11.22	0.03
CMLCD002	127	128	1	0.77	20	8	0.011
CMLCD002	156.3	157	0.7	0.45	170	106	0.015
CMLCD002	161	162	1	1.61	10	13	0.14
CMLCD002	170	427	257	0.95	81	3.70	0.02
CMLCD002	434	435	1	0.61	30	4	0.025
CMLCD002	436.7	437.4	0.7	0.29	20	3	0.0025
CMLCD002	440	441	1	0.28	10	3	0.0025
CMLCD002	443	444	1	0.35	10	2	0.011
CMLCD002	444	444.5	0.5	0.55	5	3	0.01
CMLCD002	469	470	1	0.71	20	2	0.0025
CMLCD002	473	474	1	0.40	10	2	0.007
CMLCD002	474	474.5	0.5	0.30	20	1	0.006
CMLCD002	508	509	1	0.39	20	2	0.012
CMLCD002	518	518.5	0.5	0.59	20	3	0.012
CMLCD003	30	30.6	0.6	0.38	20	5	0.04

			100	The same of the sa	The state of the s		THE REAL PROPERTY AND ADDRESS OF THE PARTY AND
CMLCD003	260	261	1	0.27	10	1	0.02
CMLCD003	271.5	272.06	0.56	0.52	50	5	0.03
CMLCD003	281	281.91	0.91	0.67	10	5	0.03
CMLCD003	307	308	1	0.23	20	0.1	0.02
CMLCD003	308	309	1	0.24	20	3	0.03
CMLCD003	313	486	173	1.05	50	3	0.01
CMLCD003	486	571	85	0.07	1367	0.5	0.003
CMLCD005	125	126	1	0.38	10	3	0.02
CMLCD005	152	153	1	0.60	5	13	0.04
CMLCD005	187.32	189.5	2.18	0.66	10	2.3	0.03
CMLCD005	194	196	2.0	1.39	10	4	0.03
CMLCD005	201	212	11	0.83	63	2.3	0.02
CMLCD005	216	265	49	0.83	41	4.2	0.03
CMLCD005	302.13	383	80.87	1.06	145	5.3	0.02
CMLCD005	487.4	488	0.6	0.35	20	1	0.02
CMLCD005	125	126	1	0.38	10	3	0.02
CMLCD005	152	153	1	0.60	5	13	0.04
CMLCD005	187.32	189.5	2.18	0.66	10	2.3	0.03
CMLCD005	194	196	2.0	1.39	10	4	0.03
CMLCD005	201	212	11	0.83	63	2.3	0.02
CMLCD005	216	265	49	0.83	41	4.2	0.03
CMLCD005	302.13	383	80.87	1.06	145	5.3	0.02
CMLCD005	487.4	488	0.6	0.35	20	1	0.02
CMLCD007	276.1	369	92.9	0.39	183	3.04	0.006
CMLCD007	376	390	14	0.45	168	2.57	0.015
CMLCD007	405	455	50	0.34	206	2.88	0.010
CMLCD007	458.4	549.7	91.3	0.63	79	2.90	0.011
CMLCD007	565	571	6	0.28	22	1.50	0.004
CMLCD007	573.4	590.7	17.3	0.35	21	3.23	0.007
CMLCD007	612	628	16	0.33	62	1.18	0.004

Notes: No top cut has been applied, grade intersections are generally calculated over intervals >0.2% Cu where zones of internal dilution are not weaker than 2m < 0.1% Cu. Bulked thicker intercepts may have more internal dilution between high-grade zones