

26 August 2022

ASX:AUN

ABOUT AURUMIN

Aurumin Limited (ACN 639 427 099) (Aurumin or Company) is an Australian exploration company with advanced projects.

AURUMIN BOARD

Piers Lewis Non Executive Chairman

Brad Valiukas Managing Director

Shaun Day Non Executive Director

Darren Holden Non Executive Director

CAPITAL STRUCTURE

155.3 million shares17.8 million listed options34.5 million unlisted options

PROJECTS

Central Sandstone Mt Dimer Mt Palmer Johnson Range Karramindie

CONTACT US

T: +61 8 6555 2950

E: admin@aurumin.com.au

- W www.aurumin.com.au
- P: PO Box 446, Subiaco WA 6904

CENTRAL SANDSTONE EXPLORATION UPDATE

SHILLINGTON RC DRILL RESULTS RETURNED

Aurumin Limited (ASX: AUN) ("Aurumin" or "the Company") is pleased to announce assay results have been returned for the recently completed Reverse Circulation (**RC**) drilling programme at its 100% owned **Central Sandstone Gold Project**.

Drilling was seeking to test for geological linkages between the Shillington and Two Mile Hill deposits and the potential for higher-grade mineralisation along a structurally controlled corridor to both improve and extend the existing Shillington Resource.¹

The RC programme consisted of 9 holes and 1,245m were drilled. Drilling occurred in conjunction with the pre-collars for diamond drilling at the Two Mile Hill deposit. Highlights include:

	• and	4m @ 4.54g/t Au from 101m
٠	SN_SH_RC_22_0006	7m @ 1.64g/t Au from 90m
٠	SN_SH_RC_22_0007	8m @ 4.99g/t Au from 80m
٠	SN_SH_RC_22_0004	6m @ 5.40g/t Au from 96m
•	SN_SH_RC_22_0003	7m @ 5.78g/t Au from 137m

Holes **SN_TM_RC_22_0002 and SN_TM_RC_22_0009** were stopped before planned target depths were reached due to water affecting drilling and sample quality. These holes remain open and holes may be extended with diamond drilling tails at a later date.

Aurumin's Managing Director, Brad Valiukas, commented:

"These are some great results from Shillington, indicating a structurally related higher-grade corridor and continuity of grade connecting to the Two Mile Hill deposit.

"Along with the recently completed diamond drilling at Two Mile Hill, this sets us up to now model the Shillington and Two Mile Hill deposits as a single geological complex, with known grade in the banded iron formation, mafic and tonalite.

"We anticipate results for the final two diamond holes, that were drilled at Two Mile Hill, shortly. We look forward to releasing those results and commencing an updated resource model directly after."

Figure 1 – Plan view showing targeted higher-grade corridor.

DRILLING AND GEOLOGY SUMMARY

The Shillington open pit is located approximately 400m to the south of the Two Mile Hill deposit and historical open pit. Gold mineralisation is associated with zones of brecciation and quartz veining within a series of stacked, northwest trending and shallow northeast dipping banded iron formation (**BIF**) units, known as the Shillington BIF package. The BIF units are hosted within a sequence of tholeiitic and komatiitic basalts, with minor sediment and chert. Intensive folding is evident at all scales of observation in the Shillington BIF, parasitic folds are common, as are sudden changes in strike and dip and tight, recumbent, isoclinal folding. The general bedding planes observed in the Shillington BIF are mostly orientated northwest - southeast and west northwest – east southeast with a moderate easterly dip. The BIF hosting mineralisation comprises an upper and middle unit and is about 45m thick, thought to be tapering to 25m thick towards the Two Mile Hill tonalite contact. Mineralisation occurs as semi continuous lenses within the Shillington BIF package.

At Two Mile Hill, the BIF hosted mineralisation occurs adjacent to the contact between the tonalite and the BIF unit, hosting localised high-grade mineralisation. The structure hosting the tonalite is interpreted to project through the Shillington BIF sequence and may have acted as a structural focus for the mineralisation within the Shillington system. The RC drill programme was designed to test the potential for a structurally controlled higher-grade corridor down plunge from the historical Shillington open pit, and to test potential mineralised positions linking the two adjacent deposits (*see Figure 1*).

Results were positive and in line with the exploration model. Drill intersections from the most northerly section effectively tested returned 6m @ 5.40g/t Au from 96m in SN_SH_RC_22_0004, and 7m @ 5.78g/t Au from 137m in SN_SH_RC_22_0003 and are largely outside the existing Shillington Resource (*see Figure 2*).

Other drilling highlights include 8m @ 4.99g/t Au from 80m in SN_SH_RC_22_0007, which represents a local upgrade to the surrounding drilling with the intercept occupying the same targeted structural position as the extensional holes discussed above.

Holes SN_SH_RC_22_0002 and SN_SH_RC_22_0009 further to the north failed to reach their planned target depths due to water and rig capacity. These holes remain open, and will potentially be re-entered and completed with diamond drilling tails.

Review of historical drilling programmes and data at other Sandstone BIF hosted deposits and targets, including the Ridge, McIntyre and McClaren deposits, is being undertaken to identify opportunities for potential extensions or stratigraphic repetitions using a structural focussed model.

Figure 2 – Cross Section showing SN_SH_RC_22_0003 and SN_SH_RC_22_0004.

26 August 2022

ASX:AUN

Authorisation for release

The Aurumin Board has authorised this announcement for release.

For further information, please contact

Brad Valiukas Managing Director T: +61 (8) 6555 2950 E admin@aurumin.com.au W www.aurumin.com.au

Competent Person Statements

The information in this announcement that relates to exploration results, data quality, geological interpretations and mineral resources for the Central Sandstone Project and Greater Sandstone Project were first released in the Company's announcements 16 December 2021, 25 March 2022, 28 April 2022, 2 May 2022, 9 June 2022, 21 June 2022, 11 July 2022 and 11 August 2022. The Company confirms that it is not aware of any new information or data that materially affects the information included in the announcement and confirms that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

The information in this announcement that relates to new exploration results, data quality and geological interpretations for the Central Sandstone Project is based on information compiled by Peter Aldridge, a Competent Person who is a Member of the Australian Institute of Geoscientists and a full-time employee of Aurumin Limited. Mr Aldridge has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Aldridge consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

About Aurumin Limited

Aurumin Limited is an ASX-listed mineral exploration company focused on two project areas in Western Australia.

The **Sandstone Gold Operations** were cornerstoned by the acquisition of the **Central Sandstone Project** by the Company in early 2022.

- The **Central Sandstone Project** comprises a **784,000 ounce gold mineral resource** and significant project infrastructure that the Company aims to use to support a gold mining operation in the future.
- The Company's Johnson Range Project has a Mineral Resource of 64,700 ounces at a grade of 2.51g/t Au, located midway between Southern Cross and Sandstone.

In addition to the Sandstone Gold Operations, the Company has a significant landholding at its **Southern Cross Operations**, including two historical high-grade production centres, Mt Dimer and Mt Palmer.

- The **Mt Dimer Project** produced over 125,000 ounces of gold from open pit and underground production of approximately 600,000 tonnes @ 6.4 g/t, and has a substantial tenure footprint.
- The historical **Mt Palmer Project** produced via open pit and underground methods, generating approximately 158,000 ounces of gold at an average grade of 15.9 g/t.

The Company is actively exploring its tenements and pursuing further acquisitions that complement its existing focus and create additional Shareholder value.

Subscribe for Announcements

To keep abreast of the Company's latest announcements and developments available to investors please subscribe to our mailing list at https://aurumin.com.au/contact/.

References – Previous ASX Announcements

1	16-Dec-21	Aurumin To Acquire 784,000oz Au Sandstone	Gold Project
---	-----------	---	--------------

2 25-Aug-21 64,700oz Johnson Range Mineral Resource Estimate

Annexure A – Mineral Resource Table

Central Sandstone Project¹

Sandstone Mineral Resources, 16 December 2021									
		Indicated			Inferred			Total	
Deposit	Tonnes	Grade	Au	Tonnes	Grade	Au	Tonnes	Grade	Au
	(kt)	(g/t Au)	(oz)	(kt)	(g/t Au)	(oz)	(kt)	(g/t Au)	(oz)
Sandstone Open Pit Deposits – Summary Mineral Resource Estimates (2012 JORC Code) at 0.5g/t cut-off									
Two Mile Hill	1,901	1.1	66,000	178	0.8	5,000	2,078	1.1	71,000
Shillington	1,440	1.2	57,200	830	1.1	29,300	2,270	1.2	86,500
Wirraminna	300	1.3	12,100	280	1.1	9,700	580	1.2	21,800
Old Town Well	282	1.0	8,800	68	0.6	1,400	351	0.9	10,100
Plum Pudding	384	1.1	13,100	35	0.9	1,000	419	1.1	14,100
Eureka	340	0.9	9,700	221	0.9	6,500	561	0.9	16,200
Twin Shafts	149	1.0	4,700	37	0.7	900	186	0.9	5,600
Goat Farm				398	1.0	13,200	398	1	13,200
McIntyre	496	1.2	19,400	67	0.9	1,900	562	1.2	21,300
Ridge	173	1.2	6,700	67	1.9	4,000	240	1.4	10,700
McClaren	236	1.4	10,600	60	1.7	3,200	296	1.5	13,800
Open Pit Subtotal	5,701	1.1	208,300	2,241	1.0	76,100	7,941	1.1	284,300
Sands	stone Unde	rground Dep	osits – Sumi	mary Miner	al Resource	Estimates (2	012 JORC C	ode)	
Two Mile Hill Deeps – Tonalite				14,000	1.1	480,000	14,000	1.1	480,000
Two Mile Hill Deeps – BIF				200	3.1	20,000	200	3.1	20,000
Underground Subtotal				14,200	1.1	500,000	14,200	1.1	500,000
TOTAL	5,701	1.1	208,300	16,220	1.2	569,600	22,141	1.1	784,300

Data has been rounded to the nearest 1,000 tonnes, 0.1g/t and 100 ounces. Rounding variations may occur.

Johnson Range Project²

Johnson Range Mineral Resources, 25 August 2021								
	Inferred							
Deposit	Tonnes	Grade	Au					
	(kt)	(g/t Au)	(oz)					
Johnson Range Open Pit Deposits – Summary Mineral Resource Estimates								
Gwendolyn 803 2.51 64,700								

Data has been rounded to the nearest 1,000 tonnes, 0.01g/t and 100 ounces. Rounding variations may occur.

Annexure D – Central Sandstone Project Map and Resources

Annexure E – Aurumin 2022 Reverse Circulation and Diamond Drilling Collar Location Plan

Annexure F – JORC Tables

Sandstone Project RC and Diamond Drilling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information of interaction disclosure of detailed information interaction interaction disclosure of detailed information interaction interacti	 Drilling was completed using Reverse Circulation (RC) drilling. RC drilling samples were collected as 1m intervals. The 1m samples were collected from a cone splitter via the cyclone directly into pre-numbered calico bags, creating a nominal 2.5kg sample. RC Sample rejects are also placed on the ground in sequence at 1m intervals to indicate metres drilled for the hole, for geological logging, and for composite sampling Samples were submitted to ALS Laboratories, as either 1m interval samples or 4m composite samples, for drying and pulverising to produce a nominal 50g charge for gold by fire assay analysis.
Drilling techniques	<i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube,</i>	 RC Drilling using Hydco RC70 mounted on an 8x4 Mitsubishi truck with onboard auxiliary air 1800 cfm by 700psi and Hurricane 900x600 Hurricane booster. Drilling was conducted using a 5¼ inch face sampling hammer
	depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC holes were surveyed downhole using an Axis Champ Gyro north seeking survey tool at 15m intervals.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the	 Recovery of RC drill cutting material was monitored via sample bag and reject pile size. Recoveries were considered adequate. The cyclone was regularly checked and cleaned. Based on the sampling method and sample weight no

Criteria	JORC Code explanation	Commentary
	samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material	 bias in the 1m sampling process has been identified. There is no known relationship between recovery and grade in RC sampling.
Logging	Whether core and chip sampleshave been geologically andgeotechnically logged to a level ofdetail to support appropriateMineral Resource estimation,mining studies and metallurgicalstudies.Whether logging is qualitative orquantitative in nature. Core (orcostean, channel, etc) photography.The total length and percentage ofthe relevant intersections logged.	 All RC drilling was geologically logged by a geologist at the time of drilling. Logging was qualitative in nature. All holes are geologically logged in full. Geotechnical logging has not been carried out.
Sub- sampling techniques and sample preparatio n	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 The 1m samples were collected from a cone splitter via the cyclone directly into pre-numbered calico bags, creating a nominal 2.5kg sample. Composite samples were created using a PVC spear to collect sample from the reject 1m intervals. These were placed into pre-numbered calico bags. All samples were submitted to ALS laboratories in Perth. Most samples were dry with some moisture present at depth in some holes. Sample preparation for drill samples involved drying the whole sample, pulverising to 85% passing 75 microns. A 50g sample charge was then used for the fire assay. Field Duplicate samples were taken as per Aurumin's QAQC sample procedure at a rate of 1:20. Sample sizes are considered appropriate for the grain size of material sample.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external	 A 50g sample was used to analyse gold by fire assay. The fire assay analysis undertaken is considered to be a total analysis method. Aurumin QAQC procedures collect field duplicates and insert certified reference materials (CRMs). Standards were inserted at a rate of 1:20 while blanks were inserted at 1:50. Duplicate samples are taken every 1:20. Laboratory CRMs and repeats have been received and used to assess laboratory reproducibility and accuracy. The assaying techniques and quality control protocols used are considered appropriate for the material tested and for the data to be used for reporting exploration drilling results.

Criteria	JORC Code explanation	Commentary				
	<i>laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i>	 No geophysical tools were used in determining element concentrations. 				
<i>Verificatio n of sampling and assaying</i>	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 No independent verification of results has been conducted. All sampling and assay data were stored in a secure database with restricted access. Twinned holes are not considered necessary at this stage. Field data were collected digitally into Expedio's OCRIS logging software at the time of logging. Logging data was validated by geological staff and then imported into the Aurumin database. All data is stored by Expedio and backed up to a cloud-based storage system. 				
<i>Location of data points</i>	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Drill collars were located using a Differential GPS by Mine Survey Plus. Accuracy is sub 10cm. The grid system used is GDA94/MGA94 Zone 50. The difference between magnetic north (MN) and true north (TN) is 0.53°. The difference between TN and GDA is 1.07°. 				
Data spacing and distributio n	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	 Drill holes were spaced variably to allow for best drilling of the target areas. Hole locations were also influenced by the pit location. Data density is appropriately indicated in the presentation with all sample positions shown in the plans provided. No Resources or Ore Reserve estimations are presented. 				
<i>Orientation of data in relation to geological structure</i>	Whether the orientation ofsampling achieves unbiasedsampling of possible structures andthe extent to which this is known,considering the deposit type.If the relationship between thedrilling orientation and theorientation of key mineralisedstructures is considered to haveintroduced a sampling bias, thisshould be assessed and reported ifmaterial.	 At Shillington the mineralisation is modelled as broadly bedding conformable although local heterogeneities exist due to the folded and deformed nature of the stratigraphy. The orientation of drilling is generally on a high angle to the dominant stratigraphic control bedding in BIF (~dipping 35° towards 052°) No sampling bias from the orientation of the drilling is believed to exist. Assay results are reported as downhole widths. 				
Sample security	<i>The measures taken to ensure sample security.</i>	 All samples were collected by Aurumin stored onsite in a secure location before being transported to Perth by consignment in sealed bags. 				

Criteria	JORC Code explanation	Commentary	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have been completed to date 	е.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary				
<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Central Sandstone project is located on granted tenements M57/128, M57/129 and P57/1395. Drilling reported is on M57/128. These tenements are wholly owned by Aurumin. The project is located in the Sandstone Shire, approximately 10 kilometres south of Sandstone. The historical town site of Nungarra is located on M57/128 but does not impede or encroach on any known resources. No impediments are known at the time of reporting. 				
<i>Exploration done by other parties</i>	Acknowledgment and appraisal of exploration by other parties.	 Gold exploration in the Sandstone area has occurred since the late 1800s Modern production commenced in 1993 from laterite material. Subsequently, in 1994, Herald constructed a CIP processing plant and began open pit mining. Mining continued at various deposits until 2010 Middle Island Resources acquired the project in 2016 and completed substantial exploration drilling, resource drilling and mining pre-feasibility work. Aurumin acquired the project in 2022 and has started exploration 				
Geology	Deposit type, geological setting and style of mineralisation.	 Gold mineralisation at Shillington is associated with zones of brecciation and quartz veining within a series of stacked, northwest trending and shallow northeast dipping banded iron formation (BIF) units. The BIF units are hosted within a sequence of tholeiitic and komatiitic basalts, with minor sediment and chert. Intensive folding is evident at all scales of observation in the Shillington BIF, parasitic folds are common as is tight, recumbent, isoclinal folding. The general bedding planes observed in the Shillington BIF are mostly orientated northwest - southeast and west northwest – east southeast with a moderate easterly dip. The BIF hosting mineralisation comprises an upper and middle unit and is about 45m thick, thought to be tapering to 25m thick towards the Two Mile Hill tonalite contact. Mineralisation is modelled as semi continuous lenses within the Shillington BIF package. 				
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill	• A drill hole information summary for drilling associate with the announcement is available in Annexures.				

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
	hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Lithology is aggregated based on the primary lithological unit logged. Reported intercepts are compiled intervals with a minimum weighted grade of 1g/t Au and containing a maximum of 2m of waste (waste defined as <0.5g/t Au). Reported mineralised intervals are reported as downhole weighted averages. No grade truncations or lower cut-offs are used.
Relationship between mineralisatio n widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length true width pot known')	 The orientation of mineralisation is locally heterogeneous but broadly bedding conformable. Drilling is designed to be at a high angle to the dominant stratigraphic orientations. (~dipping 35° towards 052°). Down hole lengths are reported but are believed to be approximately equivalent to true width of the mineralised zones.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Refer to figures in body for spatial context of the drilling. A plan view and sectional view is provided. Significant results are tabulated in the annexures.

26 August 2022

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All relevant data to targets is discussed and included on plans, sections and tables.
<i>Other substantive exploration data</i>	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other information is considered material for this presentation.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further assay results are awaited Compilation and assessment of results

Annexure G – Drillhole Table

Prospect	Hole #	Easting (GDA94)	Northing (GDA94)	RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
Shillington	SN_SH_RC_22_0001	723152	6892186	511	-61	242	132	75.0	82.0	7.0	1.37	RC
Shillington	SN_SH_RC_22_0002	723088	6892419	514	-66	242	145	51.0	53.0	2.0	1.45	RC
Shillington	SN_SH_RC_22_0003	723148	6892371	516	-60	244	157	118.0	119.0	1.0	3.26	RC
							and	129.0	130.0	1.0	1.90	
							and	132.0	133.0	1.0	1.10	
							and	137.0	144.0	7.0	5.78	
							including	137.0	139.0	2.0	15.63	
Shillington	SN_SH_RC_22_0004	723120	6892357	516	-59	244	144	83.0	87.0	4.0	1.05	RC
							and	96.0	102.0	6.0	5.40	
							including	96.0	97.0	1.0	26.40	
							and	107.0	112.0	5.0	1.36	
							and	123.0	127.0	4.0	1.02	
Shillington	SN_SH_RC_22_0005	723148	6892308	515	-59	249	144	101.0	106.0	5.0	1.09	RC
							and	110.0	118.0	8.0	1.17	
Shillington	SN_SH_RC_22_0006	723108	6892284	512	-59	250	114	54.0	60.0	6.0	1.30	RC
							and	67.0	68.0	1.0	3.31	
							and	82.0	83.0	1.0	2.49	
							and	90.0	97.0	7.0	1.64	
							and	101.0	105.0	4.0	4.54	RC
							including	103.0	104.0	1.0	15.95	
Shillington	SN_SH_RC_22_0007	723139	6892254	512	-60	245	144	55.0	56.0	1.0	1.61	RC
							and	59.0	60.0	1.0	3.11	
							and	80.0	88.0	8.0	4.99	RC
							including	82.0	86.0	4.0	8.06	
							and	91.0	93.0	2.0	1.19	
Shillington	SN_SH_RC_22_0008	723117	6892243	511	-60	243	114	69.0	71.0	2.0	1.86	RC
Shillington	SN_SH_RC_22_0009	723146	6892450	516	-59	240	151				NSA	