

Historical Samples at the Mt Surprise Lithium Project Identify Significant Copper Mineralisation over 5km Strike

HIGHLIGHTS

- Historic rock chip sampling at the Company's Mt Surprise Lithium project has identified significant high-grade copper mineralisation at surface.
- *Of the 161 historical rock chip samples collected in 1988 see Appendix 2, the following were identified:
 - 1 sample returned a copper grade above 25% Cu;
 - \circ 5 samples returned copper grades above 1% Cu; and
 - also present were samples containing anomalous assay grades for gold and other base metals.
- The samples indicate at least a 5km strike of potential mineralisation on a north south trending system.
- Metalicity recently secured the Mt Surprise Lithium Project, where historic rock chip samples returned <u>3.55% Li₂O</u>, 125ppm tantalum, 0.25% caesium and 1.26% rubidium¹.
- The tenure remains sparsely explored and is considered prospective for various lithium minerals and now also prospective for copper, gold and other base metals.
- Metalicity to be on site at Mt Surprise in the next two weeks for follow up exploration works.

Metalicity Limited (ASX: MCT) ("MCT" or "Company") is pleased to announce that work undertaken to collate historical data on the recently acquired Mt Surprise Lithium Project, has revealed significant copper mineralisation at surface over a 5km strike. The mineralisation includes a rock chip sample containing **27.5% copper** and gold mineralisation of up to 1.32 g/t. Mt Surprise was secured for its significant lithium potential with high grade rock chips up to 3.55% Li₂O, and positively now is also highly prospective for copper and other metals in tenure that remains sparsely explored.

Historic rock chip sampling results on the Mt Surprise tenure has indicated high-grade and anomalous copper, gold and base metal mineralisation within the EPM 28052 tenement boundary². Some of the more significant copper and gold results are shown below (see Figure 2 and Appendix 2).

- 27.5% Cu
- 6.73% Cu
- 4.04% Cu
- 3.67% Cu
- 1.62% Cu
- 1.32 g/t Au
- 1.21 g/t Au
- 1.11 g/t Au
- 18.8% Pb

Metalicity Limited ASX Code: MCT ABN: 92 086 839 992

¹ ASX Announcement "Metalicity Secures Highly Prospective Lithium Project" dated 18 August 2022.

² <u>CR 17571</u>. 4633M (Whistler), 4634M (Sundown), Barwidgi Project, combined final report, area surrendered June 1988. Combined Final Report, area surrendered June 1988. R.G. Finch and C.A. Towsey. Department of Natural Resources, Mines and Energy, Queensland.

^{*}Cautionary Note: Confidence in the precise location of historical surface samples collected is low as an older, superseded coordinate system was utilised. The location of the samples can be approximated using georeferenced features relative to current information available on the GSQ Open Data Portal System. More exploration sampling and confirmation geological mapping is required to establish what is representative of the true extent and sample grade of all types of mineralisation within the Project area.

The information presented is open to the public via the GSQ Open Data Portal System (formerly the QDEX system)³, and we are using this information, along with planned fieldwork in the very near future to assist the Company in our exploration efforts over the Mt Surprise Project. A full list of results from the original statutory report located in Appendix 2.

Commenting on the data and interpretation, Metalicity Managing Director, Justin Barton said:

"We secured the Mt Surprise Project due to the significant lithium potential demonstrated by rock chips up to 3.55% Lithium. On the back of this information we are collating, it is clear that the opportunity at Mt Surprise is now much larger than what we thought it could be. Rock chips up to 27.5% copper are extremely high grade and we plan to follow up immediately. We will be on site in circa 2 weeks to start pushing forward work programs on this highly prospective ground. Into this effort we will be incorporating followup fieldwork, with further mapping and targeted rock chip and soil sampling. While lithium is our primary focus, it's a great position to be in to know The Project is also prospective for copper, gold and other base metals."

The Mt Surprise Lithium Project

The Mount Surprise Project covers a large area approximately 165km from the city of Cairns, Queensland and 57 km northeast of the town of Mt Surprise (Figure 2). The geology of the area is characterised by the Silurian-aged Blackman Gap Complex, a medium to coarse-grained biotite-muscovite granodiorite and granite and pegmatite¹. The granite is overlain by various Carboniferous-aged volcanics including the Double Barrel andesite and tuff as well as the Gingerella rhyolites and ignimbrites¹. A historic rock chip sample returned 3.55% Li2O, 125ppm tantalum, 0.25% caesium and 1.26% Rubidium highlighting the significant potential of the ground, which remains sparsely explored.

High grade copper results from historic rock chip samples were collected from several locations. Copper appears to occur as malachite-azurite-fluorite mineralisation and occurs within 30cm wide quartz-stockworked or vein contacts between a rhyolite dyke and early Silurian granite of the Blackman Gap Complex. Many of these veins were exposed in historical costeans across a 1 - 1.5 kilometre long, north-south trending, quartz-fluorite vein system hosted by altered and greisenised granites (Dargalong Metamorphics)^{2, 4}. Historic gold samples were collected from gossanous epithermal quartz veins or structures hosted within granites from a number of locations across the tenement.

Approximate locations of all surface rock chip samples highlighted in figure 1 and Appendix 3.

⁴ CR 99948. Tenement EPM26053 Gingerella. Annual, Final & Relinquishment Reports 24th February, 2017. K. Hughes and J. Belcher. Department of Natural Resources, Mines and Energy, Queensland.

³ To access GSQ Open Data Portal System for public reports, please visit <u>https://geoscience.data.qld.gov.au/dataset</u> and use the search function quoting the GSQ Open Data Portal report Reference Number

Figure 1 – Mt Surprise Project EPM28052 tenement showing mineral occurrences by Geological Survey of Qld. Historic exploration permits represented as blue polygons and shaded yellow. Current granted exploration permit EPM 28052 represented as a red polygon. Green polygons are approximate locations of historic rock chip samples². Green dots are approximate locations of significant results. (see Appendix 2 and 3)

A significant regional program of bulk cyanide leach (BCL), panned concentrate and -80# (micron) stream silt samples was undertaken by Battle Mountain (Australia) Incorporated in 1987 across the Barwadgi Project area of EPM 4633 and EPM 4634 at a density of about one sample site per 4 km², and only assayed for gold⁵. Peak gold assays from this program were 1.1 ppb Au and did not identify any significant areas of gold mineralisation or anomalism and therefore not deemed material for this announcement⁴.

⁵ <u>CR 17691</u>. EPM 4633, 4634, Barwidgi Project, combined six monthly report for period ending September 1987. I.N. Bruce. Department of Natural Resources, Mines and Energy, Queensland.

Next Steps

As part of the initial field review to collect information and explore for Lithium-Caeisum-Tantalum (LCT) bearing pegmatites, Metalicity will also take the opportunity to explore for base metals, including copper and base metals as well as gold mineralisation occurrences and prospectivity identified from the desktop historical review. Information collated from the desktop review will assist in accelerating exploration targets for further investigation over a large tenement area. The field review of the Mt Surprise area including an expanded detailed mapping and collection of rock chip samples targeting new pegmatites, potential lithium mineralisation, base metals and gold across the extensive land holding will commence in mid to late September 2022.

Figure 2 – Location of Application EPM 28052 Mt Surprise Project - North Queensland.

ENQUIRIES

Justin Barton Managing Director & CEO +61 (0)8 6500 0202 jbarton@metalicity.com.au

Metalicity confirms that the Company is not aware of any new information or data that materially affects the information included in the relevant market announcement and, in the case of "exploration results" that all material assumptions and technical parameters underpinning the "exploration results" in the relevant announcements referenced apply and have not materially changed.

Competent Person Statement

The information in this announcement that relates to previous Exploration Results based on and fairly represents information and supporting documentation prepared by Mr Stephen Guy. Mr Guy is a **consultant for Metalicity** and a member of the Australian Institute of Geoscientists. Mr Guy has sufficient experience relevant to the styles of mineralisation and types of deposits that are covered in this announcement and to the activity that they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code"). Mr Guy consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Forward Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have reasonable basis. However, forward-looking statements:

(a) are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies;

(b) involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such risks include, without limitation, resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which the Company operates or supplies or sells product to, and governmental regulation and judicial outcomes; and

(c) may include, among other things, statements regarding estimates and assumptions in respect of prices, costs, results and capital expenditure, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions.

The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward-looking statements.

All forward-looking statements contained in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward-looking statements are not guarantees of future performance and accordingly recipients are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

The Company disclaims any intent or obligation to publicly update any forward-looking statements, whether as a result of new information, future events or results or otherwise.

Appendix One – JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Historical reports state the data discussed in the announcement is rock chip sampling undertaken by Battle Mountain (Australia) inc. The grades reported correlate with stated exploration reporting and subsequent exploration reports by other companies after 1988. The author is unaware of any QAQC protocols that were in place at the time of the rock chip sampling between 1987 and 1988.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No drilling is discussed. surface rock chip samples were described in historical reports along mapped structures, veins and areas of anomalism. Size and weights of the samples were not recorded The Author understands that surface rock chip sampling was conducted throughout the historical exploration permit EPM 4633 and EPM 4634 which underlies the current granted exploration permit EPM 28052.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and 	 No drilling discussed in this announcement.

	 <i>Neasures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Surface rock chip samples were geologically logged with descriptions presented in the tables the statutory report 4633M (Whistler), 4634M (Sundown), Barwidgi Project, combined final report, area surrendered June 1988. Combined Final Report, area surrendered June 1988. R.G. Finch and C.A. Towsey ².
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The Author is unaware of any sub sampling or sample preparation techniques employed for the surface rock chip sampling between 1987 and 1988.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make 	 The data presented is to support modern day exploration efforts and confirm the presence and trends of mineralisation observed within the Mt Surprise Lithium project area of EPM 28052. Whilst the information presented is historical in nature and cannot be verified to JORC 2012 guidelines, it does provide a vector to direct modern-day exploration efforts

 and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	to delineate and understand the controls mineralisation within the Mt Surprise Project area of EPM 28052.
 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The Author is unaware if any umpire analysis has been performed. The data was taken from statutory reports supplied to Queensland Department of Resources and accessed through the GSQ Open Data Portal System noted in the references in the body of the announcement. No drilling is discussed in this announcement.
	• The Author is unaware of any adjustment to the assay data presented in Appendix 2 except where some assay results are clearly stated as percent instead of ppm.
 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• The location of rock chip data points have been digitised from historical maps utilising key georeferencing features such as tenement boundaries, mineral occurrence locations and other key geographic features such as landforms, creeks, rivers and roads. Therefore, the Author assumes that the digitisation is a fair and accurate representation of the location of the surface rock chip samples detailed in the statutory reports supplied to Queensland Department of Resources and accessed through the GSQ Open Data Portal System noted in the references in the body of the announcement.
 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications 	 The Author is unaware of any reference to specific data spacing of exploration results. Surface rock chip samples for geochemical analysis are collected where geological features are significant to warrant sample collection. The data is not sufficient to be used in a minoral parameters and the second sec
	 and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications and classific

	applied.Whether sample compositing has been applied.	being used to vector mineralisation and plan further work to verify and confirm.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The Author believes, and from the reports and maps open to the public, the surface rock chip sampling was unbiased.
Sample security	• The measures taken to ensure sample security.	 As this report is publishing historical data, the Author cannot verify the sample security.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 As this report is publishing historical data, the Author cannot verify if any external audits of the results have taken place. The Author is relying on historical information from 1988. However, the reliance is solely based to understand mineralisation occurrence and location geometry with regards to exploration targeting. The premise is to apply these learnings across the entire Mt Surprise Project area of EPM 28052 to better effect exploration efforts in delineating mineralisation.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 EPM 28052 has been granted (please refer to ASX Announcement "Highly Prospective Mt Surprise Lithium Project Now Granted; Fieldwork to Commence" dated 23rd August 2022. As part of the heads of agreement, once the licenses are granted, ownership of the licenses will transfer over to Metalicity. The EPM 28052 is free of any known impediments.

Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• The historical work completed requires further field verification via confirmation mapping and rock chip sampling where mineralisation or sample locations can be confidently identified. These samples will then be assayed and results compared to historic reporting.
Geology	 Deposit type, geological setting and style of mineralisation. 	• EPM 28052 covers much of the Barwidgi Volcanic Fissure, a rhyolite dome and rhyolitic eruption breccia system. The volcanic system includes numerous felsic rhyolitic dykes that intrude the Early Silurian Blackman's Gap Supersuite granites.
		 Multiple styles of copper, base metal and gold mineralisation have been identified in the Mt Surprise region. These styles include epithermal veins, broad stockwork veining within structures hosted within granite and associated areas of alteration with volcanic intrusives.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 No drilling discussed in this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) 	 The Author believes that no metal equivalents are discussed or reported. The Author believes that no bottom or

	 and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	top cuts were applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 No drilling discussed in this announcement.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Please see main body of the announcement for the relevant figures. All data has been presented using appropriate scales and using industry standard compilation methods for the presentation of exploration data. Geological and mineralisation/anomalism interpretations are based on current knowledge of Metalicity geologists and associated consultants. Interpretations may change with further exploration.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All results have been presented. Please refer to Appendix 2. The Author references key Statutory Reports that discuss the exploration undertaken in 1988 on historic tenements EPM 4633 and EPM 4634 that's underly the area of the current granted tenement EPM 28052.

Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The area has had historical production from recorded mines and mineral occurrences and is publicly accessible via the GSQ Open Data Portal System.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further reconnaissance fieldwork including mapping, rock chip, other surface sampling and mineral analysis is required to verify the presence, continuity and scale of mineralisation at the Mt Surprise Project. This program of mapping and sampling will inform future exploration programs to assist in further target identification and definition. The premise of this announcement is so that this information is in the public domain to show the market the tools at our disposal, and so we can discuss them in an open and transparent format.

Appendix Two – Sampling Details²

				A	NALYSIS (ppm unles	ss other	wise sta	ted)		
SAMPLE NO.	Northing	Easting	Au	Ag	Cu	Pb	Zn	As	Sb	Ва	Hg
Q24046	8045000N	235500E	0.01	<1	15	30	65	15			
Q24047	8045000N	235500E	<.01	<1	5	35	20	10			
Q24048	8045000N	235500E	0.01	<1	10	10	2	<5			
Q24049	8045000N	235500E	0.01	<1	10	5	<2	<5			
Q24050	8045000N	235500E	<.01	<1	10	15	<2	<5			
Q24051	8045000N	235500E	0.07	<1	50	25	5	110			
Q24052	8026400N	244000E	0.01	1	30	3950	115	1550			
Q24053	8026350N	244000E	0.02	2	30	1800	95	740			
Q24054	8027700N	241850E	0.02	<1	10	65	25	25			
Q24055	8027750N	241800E	0.01	<1	15	145	30	15			
Q24056	8027900N	241750E	<.01	<1	5	10	<2	5			
Q24057	8027750N	240600E	<.01	6	80	980	4700	140			
Q24058	8027200N	243200E	0.31	12	20	1650	145	3200			
Q24059	8027200N	243200E	1.32	13	25	3000	45	1.46%			
Q24060	8027750N	242750E	0.05	<1	5	55	85	95			
Q24061	8027750N	242750E	0.07	2	5	310	30	480			
Q24062	8033200N	248700E	0.1	50	4000	1.95%	2050	50			
Q24063	8033200N	248700E	0.02	13	3200	4300	3150	70			
Q24064	8033750N	248500E	0.1	6	3.67%	160	1750	2100			
Q24065	8033750N	248500E	0.29	40	4.04%	95	1450	1.30%			
Q24066	8033750N	248500E	0.53	15	6.73%	730	250	5.32%			
Q24067	8033750N	248500E	0.04	10	6300	100	120	6350			
Q24068	8033750N	248500E	0.2	56	27.50%	240	600	1650			
Q24069	8033750N	248500E	0.04	8	1.62%	350	460	8400			
Q24070	8033750N	248500E	0.09	1	490	40	30	1450			
Q24071	8033750N	248500E	0.01	<1	140	35	10	230			
Q24072	8033500N	242500E	0.01	<1	70	15	15	15			
Q24073	8033500N	242500E	<.01	<1	35	15	15	10			
Q24074	8033500N	242500E	<.01	<1	35	10	5	10			
Q24075	8033500N	242500E	<.01	<1	25	5	2	10			
Q24076	8033500N	242500E	0.01	<1	15	5	2	5			
Q24077	8033500N	242500E	0.02	<1	15	10	5	5		<u> </u>	
Q24078	8033500N	242500E	0.01	<1	15	5	5	5			
Q24079	8033500N	242500E	0.01	<1	15	15	10	5			
Q24080	8033500N	242500E	0.02	<1	25	85	105	10			
Q24081	8033500N	242500E	0.01	5	450	3250	1750	3000			
Q24082	8033500N	242500E	0.01	6	170	3300	1400	230		İ	

metalicity

Q24083	8033500N	242500E	0.01	77	760	18.80%	5350	5200		
Q24084	8033500N	242500E	<0.01	13	350	12.91%	5600	9700		
Q24085	8033500N	242500E	<0.01	22	440	7750	3450	1350		
Q24086	8033500N	242500E	0.01	1	40	165	210	30		
Q24087	8033500N	242500E	0.02	2	55	1450	240	35		
Q24088	8033500N	242500E	0.01	<1	10	80	45	10		
Q24089	8033500N	242500E	0.04	<1	10	25	20	5		
Q24090	8033400N	242850E	0.04	<1	5	25	20	5		
Q24091	8027100N	240300E	0.01	<1	15	20	2	10		
Q24092	8024900N	240400E	0.01	<1	35	30	20	10		
Q24093	8025600N	240400E	0.03	<1	15	15	10	10		
Q24094	8026600N	253700E	<0.01	2	30	780	160	5		
Q24095	8026100N	254300E	<0.01	1	10	55	25	<5		
Q24096	8020100N	255500E	<0.01	<1	10	15	5	<5		
Q24097	8020000N	255500E	0.02	<1	30	25	25	5		
Q24098	8027000N	243200E	<0.01	2	10	140	25	40		
Q24099	8027000N	243200E	<0.01	3	40	630	45	4350		
Q24100	8027000N	243200E	0.09	1	15	240	15	320		
Q24101	8030700N	241100E	0.04	<1	10	10	2	5		
Q24102	8029100N	239000E	0.03	<1	15	15	15	5		
Q24103	8029100N	239000E	0.02	<1	10	10	<2	5		
Q24104	8029150N	239150E	0.02	<1	5	10	<2	5		
Q24105	8028800N	239300E	0.02	<1	5	15	10	5		
Q24106	8031600N	239100E	0.17	<1	20	35	10	5		
Q24107	8031500N	239550E	0.08	<1	20	15	<2	10		
Q24108	8031700N	239900E	0.07	<1	25	20	2	10		
Q24109	8033700N	242400E	0.02	<1	10	15	5	5		
Q24110	8033800N	242400E	0.04	<1	10	10	5	5		
Q24111	8033300N	242500E	0.05	<1	10	40	15	10		
Q24112	8033050N	242800E	0.03	<1	5	15	5	5		
Q24113	8035600N	237900E	0.04	<1	15	50	35	20		
Q24114	8034600N	237600E	0.04	<1	15	25	55	10		
Q24115	8034250N	237400E	0.03	<1	10	55	75	10		
Q24116	8034200N	237150E	0.02	<1	10	15	2	10		
Q24117	8034050N	237400E	0.02	<1	10	10	<2	5		
Q24118	8032800N	236700E	0.01	2	20	40	20	85		
Q24119	8032400N	236200E	<0.01	<1	5	10	<2	5		
Q24120	8032600N	236300E	0.01	<1	20	20	10	10		
Q24121	8032700N	236400E	0.37	<1	300	300	210	15		
Q24122	8032700N	236400E	0.02	<1	30	20	25	10		
Q24123	8032050N	236100E	0.01	<1	20	25	5	10		
Q24124	8032050N	236100E	0.01	<1	10	10	<2	5		
Q24125	8032050N	236100E	0.01	<1	10	15	20	5		
Q24126	8032200N	236200E	0.01	<1	25	15	5	10		

metalicity

Q24127	8032500N	235800E	0.02	<1	10	80	5	10		
Q24128	8033000N	235700E	0.04	<1	35	20	10	10		
Q24129	8033250N	235700E	0.04	<1	20	40	105	10		
Q24130	8033400N	235700E	0.04	<1	5	35	35	15		
Q24131	8034900N	234100E	0.01	<1	15	20	30	5		
Q24132	8034900N	234100E	0.01	<1	10	25	115	25		
Q24133	8039000N	235400E	0.01	<1	10	10	<2	5		
Q24134	8038800N	235900E	0.02	<1	10	10	<2	5		
Q24135	8038800N	235300E	0.02	<1	10	15	<2	10		
Q24136	8038400N	237600E	0.01	<1	5	20	<2	5		
Q24137	8038350N	237550E	0.02	1	55	45	240	20		
Q24138	8038400N	235600E	0.02	<1	20	20	15	15		
Q24139	8039700N	239900E	0.02	<1	5	10	<2	45		
Q24140	8040700N	239900E	0.02	1	30	40	60	15		
Q24141	8040300N	241400E	0.94	1	460	105	125	1150		
Q24142	8041300N	239800E	0.05	<1	20	70	5	20		
Q24143	8039600N	240200E	0.02	<1	5	30	15	10		
Q24144	8039500N	240300E	0.02	2	35	220	3700	25		
Q24145	8039400N	240400E	1.21	2	1450	155	105	430		
Q24146	8046600N	246900E	0.03	<1	120	15	15	20		
Q24147	8045700N	247400E	0.65	1	35	50	<2	65		
Q24148	8045400N	248400E	<0.01	<1	55	45	5	75		
Q24149	8045200N	248700E	0.01	<1	55	50	15	145		
Q24150	8045200N	248700E	0.01	<1	35	50	2	50		
Q24151	8045000N	248700E	0.03	<1	10	35	<2	10		
Q24155	8045000N	250200E	0.02	<1	10	25	5	5		
Q24158	8046300N	248900E	0.02	2	40	50	115	20		
Q24159	8045800N	251700E	0.01	<1	5	60	15	10		
Q24160	8045950N	251600E	0.03	1	20	40	15	10		
Q24161	8045950N	251600E	0.01	<1	5	30	5	35		
Q24163	8044500N	250100E	0.01	<1	<2	10	<2	5		
Q24164	8046000N	252100E	0.01	<1	15	40	70	15		
Q24165	8046000N	252100E	0.01	<1	5	50	75	10		
Q24167	8025700N	237200E	0.06	1	45	50	45	10		
Q24168	8025700N	237250E	0.02	<1	5	15	2	10		
Q24169	8025700N	243200E	< 0.01	5	20	910	20	2050		
Q24170	8025700N	243200E	< 0.01	-1	35	310	80	510		
Q24171	8026960N	243200E	< 0.01	2	10	990	55	1150		
Q24172	8026940N	243200E	< 0.01	2	15	450	65	830		
Q24173	8026920N	243200E	< 0.01	1	15	450	45	520		
Q24174	8026900N	243200E	< 0.01	8	15	100	210	1500		
Q24175	8026880N	243200E	< 0.01	9	25	2150	200	1950		
Q24176	8026860N	243200E	< 0.01	2	15	800	25	230		
Q24177	8026840N	243200E	< 0.01	2	10	210	45	125		

metalicity

Q24178	8026820N	243200E	<0.01	3	15	270	55	90		
Q24179	8026800N	243200E	< 0.01	10	10	400	50	170		
Q24180	8026780N	243200E	< 0.01	1	10	110	35	80		
Q24181	8026760N	243200E	< 0.01	5	40	1400	70	690		
Q24182	8026740N	243200E	< 0.01	2	10	250	35	60		
Q24183	8026720N	243200E	< 0.01	18	15	1600	15	570		
Q24184	8026700N	243200E	< 0.01	1	5	210	15	45		
Q24185	8026680N	243200E	< 0.01	11	15	1750	48	360		
Q24186	8026660N	243200E	< 0.01	11	15	1800	40	550		
Q24187	8026640N	243200E	1.11	14	80	7900	115	7400		
Q24188	8037200N	238500E	< 0.01	2	20	110	15	75		
Q24189	8037000N	238850E	< 0.01	1	5	50	10	30		
Q24190	8039400N	240400E	< 0.01	1	5	40	30	60		
Q24191	8039420N	240400E	< 0.01	1	30	35	10	45		
Q24192	8039440N	240400E	< 0.01	<1	2	35	15	15		
Q24193	8039440N	240400E	< 0.01	1	<2	25	15	30		
Q24194	8039440N	240400E	0.01	2	2	25	20	90		
Q24195	8039460N	240420E	0.01	1	10	15	10	15		
Q24196	8039500N	240500E	< 0.01	1	10	20	15	70		
Q24197	8039500N	240300E	< 0.01	1	10	15	10	10		
Q24198	8040300N	241400E	< 0.01	1	25	20	20	<5		
Q24199	8040350N	241400E	< 0.01	1	15	20	20	<5		
Q24200	8040410N	241400E	< 0.01	1	25	20	25	<5		
Q26601	8040480N	241400E	< 0.01	<1	20	25	15	<5		
Q26602	8040560N	241400E	< 0.01	<1	15	20	30	<5		
Q26603	8040620N	241400E	< 0.01	1	15	15	20	<5		
Q26604	8040300N	241200E	< 0.01	1	15	20	10	40		
Q26605	8040300N	241200E	0.03	1	20	25	10	30		
Q26606	8045500N	247600E	< 0.01	<1	25	20	25	<5		
Q26607	8045500N	247600E	< 0.01	<1	20	20	30	<5		
Q26608	8045500N	247600E	< 0.01	<1	20	20	40	<5		
Q26609	8045500N	247600E	< 0.01	<1	25	25	20	<5		
Q26610	8045500N	247600E	< 0.01	<1	15	30	25	<5		
Q26611	8045500N	247600E	< 0.01	<1	25	10	25	<5		
Q26612	8045500N	247600E	< 0.01	<1	25	10	20	<5		
Q26614	8046100N	248780E	< 0.01	<1	25	70	5	65		

Appendix Three – Figure 1 Rock Chip Sample Approximate Locations Table ²

Exploration Area	Sample ID range
2	Q24103 - Q24112
2	Q24072 -Q24090
3	Q24046 - Q24051
4	Q24167 - Q24168
5	Omitted as not on EPM 28052
6	Q24146 - Q24165
6	Q26606 - Q26614
7	Q24052 - Q24061
7	Q24098 - Q24100
7	Q24169 - Q24187
8	Q24139 - Q24145
8	Q24190 - Q24200
8	Q26601 - Q26605
9	Q24131 - Q24132
9	Q24113 - Q24117
Shown in Figure 1.	QF24064 - Q24071

