

13th September 2022

PEKO RESOURCE

KEY POINTS

- A new JORC compliant Inferred Resource has been modelled for Peko
- The model is based on total material in the stockpile prior to commencement of reprocessing this year

Elmore Limited (ASX: ELE) ("**Elmore**" or "the **Company**") is pleased to announce that the Company has received the revised JORC compliant model for the Peko stockpile based on volumetric surveys undertaken prior to the commencement of processing by Elmore.

The Inferred resource covers total material in the stockpile, and specifies contained gold, copper and cobalt.

The results are aligned to the Company's previous expectations and will allow Elmore to provide further context to its operating plans and financial modelling.

Tonnage (Kt)	Grade			Co	ontained metal		
	Au g/t	Cu %	Co %	GOLD (Koz)	COPPER (Kt)	COBALT (Kt)	
3,615	1.1	0.22	0.10	129	8.1	3.5	

Table 1: Total Inferred Resources of the Peko tailings; status as of 20 of August 2022.

Contained and recoverable magnetite volumes remain an estimate by the Company based on observations and recoveries in sampling and test-work prior to the commencement of the project. Though these estimates have been further validated by operational results, magnetite does not form part of this resource estimate.

Managing Directors Statement

Elmore's Managing Director, David Mendelawitz stated: "Receiving and publishing this resource is an important step in us realising the potential of Peko. We are now able to close the loop between our laboratory test-work, what we are seeing in production and the cost model that underpins both our operating and refinancing plans. We look forwards to presenting the results of our modelling, which demonstrates an exciting and profitable mine-life for the project."

GEOLOGICAL BACKGROUND

The mineralisation is not a natural deposit but is represented by the tailings of the Au-Cu-Fe processing plant. In total, there are 6 tailings dams at the Peko mine site (Fig. 1a). The tailings were formed by slowly and evenly infilling the natural depressions by the rejects (tailings) of the processing plant. This has created horizontal layering of the mineralisation infilling tailings (Fig. 1b).

The tailings consist of mainly magnetite (~80%) with smaller amounts of silicate gangue mineral and minor amounts of sulphides and quartz. The sulphide minerology consists of mainly gold bearing pyrite with small amounts of chalcopyrite, marcasite, arsenopyrite and pyrrhotite. The primary copper bearing mineral is chalcopyrite. Main cobalt bearing mineral is pyrite. Cobalt also present in arsenopyrite, which is rare and occurs only as the traces in the tailings samples.

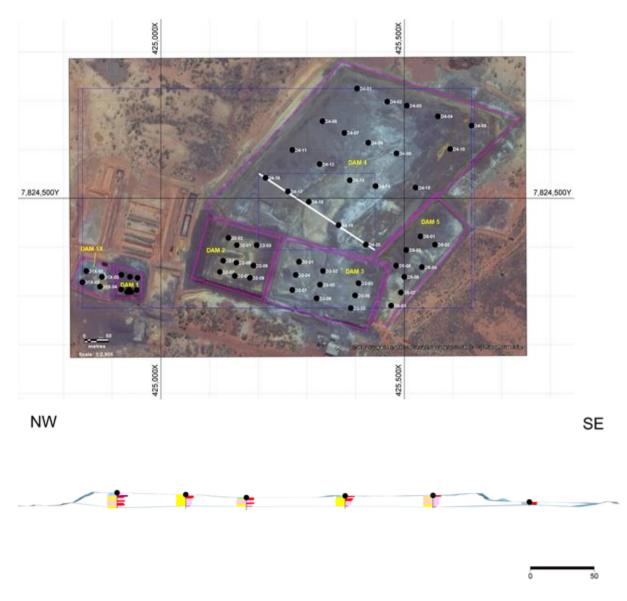


Figure 1: Peko tailings: (a) map showing distribution of the drill holes drilled in 2016; (b) crosssection. Location of the cross-section is shown on the Figure 1a.

DATA Summary of relevant exploration work program

Several campaigns of drilling and Resource estimation was undertaken at the Peko Stockpile.

- Drilling by ADL Drilling Pty Ltd (**ADL**) in 1985 was made using an open hole power auger drill. In late 1987 three twin holes in Dams 2 and 3 showed that the 1985 ADL samples had become significantly oxidized, prompting a decision to redrill the dams, concentrating on Dams 1, 2 and 3 for a total of 135 holes and 1,213m (average depth 8.9m). The method of drilling and sample collection for this program is not known.
- The Normandy drilling undertaken by Normandy (**Normandy Drilling**)comprised 50m by 50m spaced, auger cased, core holes, with samples taken every metre downhole. This was the first confirmed use of cased holes and the implied greater confidence in sample integrity.

The drilling program totalled 103 holes for 760.25 metres and covered the four main dams, a small dump east of Dam 4.

For the greater part sample recoveries exceeded 90% with more difficult moist material near the bottom of the dams. Normandy found that there were no apparent high grade gold domains within the resource despite a long processing history (1954-1976) and multiple ore sources.

• In 2016, the previous project owner has undertook comprehensive drilling of the tailings. This data was used for estimation resources in 2017 and also used for the current estimate

The Resource database includes 19 hand auger drill holes (38m drilled) and 46 track mounted RC drill holes (409m drilled). All drilling was made in January 2016, and was carried out using standard drilling and sampling procedures.

Drill holes were sampled at 1m intervals. A total of 447 samples were analysed at ALS in Perth for the following elements:

- Au ALS laboratory code of assay method is Au-AA26 (fire assay with atomic absorption finish)
- Cu, Co, Ag, Bi, Fe, S ALS laboratory code of assay method is ME-ICP61 (inductively coupled plasma atomic emission spectroscopy, ICP AES)

Reverse Circulation and auger drilling was used to obtain 1 m samples, approximately 3 kg. The samples were delivered to ALS Metallurgy laboratory in Perth for preparation and assaying.

The 1m samples were individually dried and pulverised then portions taken from the pulverised material for fire assay determination and a further portion taken for ICP analyses

The 2016 drilling results have been compared with the previous drilling data, in particular the Resource definition database of Normandy. The comparison indicates that 2016 results are in a good agreement with the previous drilling results.

Figure 1a shows drill hole spacing for reporting exploration results, and it is considered to be suitable for estimation of Inferred Resources.

Results of the 2016 drilling was reviewed by A.L.Govey, an independent consultant. He has concluded:

" Drilling by PekoBull has successfully verified or exceeded the grade, thickness and lateral and downhole continuity of the Peko tailings deposit as reported by predecessor companies. In addition ample new sample material was made available for extensive metallurgical test work. The project has passed a significant milestone in reducing, if not eliminating, any uncertainty relating to the Au-Cu-Co grades. There is sufficient previous work to reliably establish the volume and tonnage of tailings present and hence the contained metal inventory".

Resource database contains 65 drill holes with 496 samples (Table 1). Easting and Northing coordinates were obtained using the hand-held GPS. Z coordinate was deduced from the LiDAR topographic surface by projecting the drillhole collars onto the LiDAR wireframe. Tailings density data were the same that were used in the previous estimates (Normandy, 1997 and Abzalov, 2017).

Dam	No. Auger Holes	Total Metres	No. RC Holes	Total Metres	Average Depth
1	15	30			2
1X	4	8			2
2			9	126	14
3			9	83	9
4			20	180	9
5			8	20	2.5
Total	19	38	46	409	

Table 2: Distribution of the drill holes, drilled in 2016, by the tailings dams

TAILINGS DENSITY

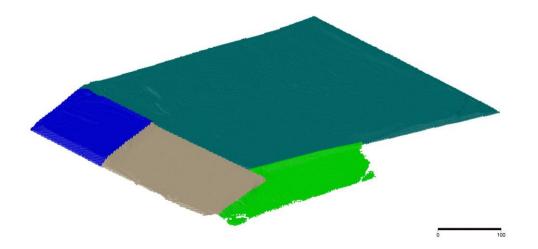
Dry Bulk Density was determined in 1989 by Laurie Smith and Associates. For this purpose, they dug two trenches in Dam 2 and three trenches in Dam 3. The bulk density of tailings was determined by measuring of the excavated volumes ranging from 25-53m³ and the sample weights ranging from 60-100 tonnes. The bulk dry density determinations of the 5 trenches varied from 1.48 to 2.58 tonnes/m3 (ie. BDD22 - 2.31, BDD21 - 1.48, BDD33 - 2.21, BDD32 - 1.79 and BDD31 - 2.58).

Based on these data the following density values were estimated for the tailings dams:

- Dam 1; 2.15 dry tonnes /m³
- Dam 2; 2.17 dry tonnes /m³
- Dam 3; 2.17 dry tonnes /m³

• Dam 4; 2.16 dry tonnes /m³

These values were used for tailings Resource estimation in 1997 by Normandy and used for the current Resource estimation.


ESTIMATION METHODOLOGY

Resources were estimated in a 2D system.

- Geostatistical analysis was made using ISATIS, a special geostatistical software.
- The model area was constrained by digitising the boundaries of the tailings dams from the map shown on the Figure 1a that were corrected by adjusting boundary string to the toe of the slope on the LiDAR wireframe of the Peko's topographic surface (Fig. 2).
- Volume of the mineralised bodies was estimated using the 3D wireframe of the tailings. Top surface was obtained using the LiDAR survey (Fig. 2). Bottom of the tailings deduced form the drill holes intersecting the tailings. The two surfaces were combined generating the closed 3D wireframe, that colloquially referred as a solid. The 3D solid was infilled by the rectangular cells of the block model (Fig. 3). Parent cells were 40 x 40m, vertical dimension was not defined, because the blocks grades were estimated using 2D kriging. Optimal fitting of the block was achieved by subcelling the parent blocks to 2x2x0.25 subcells.

Figure 2: Topographic surface of the Peko tailings generated using the LiDAR data

Figure 3: 3D closed wireframe of the Peko tailings 2, 3, 4 and 5

Volume of the tailings estimated directly from the wireframe is 1,668,400 m³. Volume of the block model is 1,666,636 m³. The difference is 0.1%, which is non-material.

• 2D variograms of Au, Cu and Co are summarised on the Figures 4 and 5:

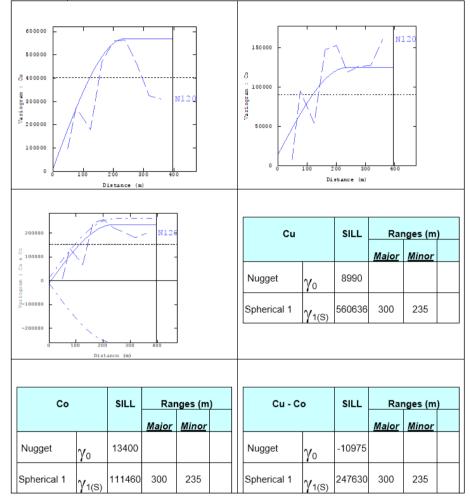


Figure 4: 2D variograms and cross-variograms of Cu - Co and their models

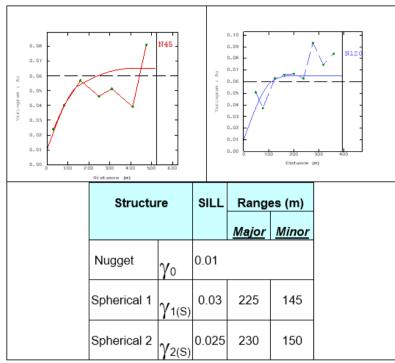


Figure 5: 2D variograms of Au

- Grade of the tailings was estimated as follows:
 - Dams 3, 4 and 5 were estimated as one body. Au by Ordinary kriging; Cu and Co by Ordinary Co-kriging;
 - Dam 2: was estimated separately. Au by Ordinary kriging; Cu and Co by Ordinary Co-kriging;
 - Dam 1x: grade of Au, Cu and Co was estimated as average of 8 samples collected from 4 holes drilled in this dam;
 - Dam 1 was not estimated due to insufficient data.

The drillhole data was used for estimation Mineral Resources. Average grade of intersection was estimated using length weighing technique, also given the equal size of the all samples, which are 1m long, all samples of the drillhole received the same weight.

Intersections is defined by top and bottom of the tailings.

No high-grade top cut was used, because statistical distribution of the data is close to normal and lacking of the outliers.

Figure 6. Drone Image of Tailings Stockpile

Further Exploration

As the tailings stockpile is a body of material that is easily visually definable, no further exploration is required. Infill drilling may be undertaken if the Company believes that it is beneficial to increase the Resource category from Inferred to Indicated or measured. Further exploration targeting subsurface mineralisation may be undertaken by the Company, though any resources defined would be separate to the resources defined in this resource model.

Metallurgical Test-work Associated with Resource Calculation

A substantial amount of historical (pre 1987) testwork has been completed for the recovery of gold, copper and cobalt metals from the Peko tailings material. Almost all testwork completed after 1987 (mainly in the early 2000s) has been focused on magnetic separation of a suitable coal washery magnetite product. Historical flotation work on the tailings showed ~50% of the gold reports to a flotation concentrate, with the remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching of the float tail yielded a residue which contains 0.2 to 0.3g/t Au. Total copper and cobalt recovery of 86% to 88%, (including water soluble plus concentrate) was produced when a flotation concentrate weight of 10 to 12% was produced. Gold recoveries of 65% - 75% were regularly achieved from this historical testwork.

Additional metallurgical tests have been undertaken in 2016 by ALS Metallurgy laboratory in Perth on behalf of Peko Bull. Results of the tests are as follows:

- Upfront grinding of the material is unlikely to have any additional benefits for gold, copper and cobalt extraction and can likely be eliminated from future flowsheets.
- A clean sulphide concentrate can be produced from the tailings by flotation. This fact was demonstrated in the proof of concept testwork and also in previous

testing (1985 to 1987), which demonstrated that flotation could recover a concentrate which amounted to between 10 to 12% of the weight containing 50% of the gold.

- · The tailings will produce a saleable grade coal washery magnetic concentrate.
- The tailings are acidic, and a significant proportion of the copper and cobalt are soluble when the tailings are mixed with water.

Elmore has reviewed this data and agree with the findings that where noted at that time.

Historical testing also demonstrated that LoPOx leaching can have a significant improvement in total metal recovery. A 50% increase was observed for cobalt recovery.

Competent Persons Statement

The information contained in this announcement that relates to the exploration results and the mineral resource estimates is based, and fairly reflects, information compiled by Mr David Mendelawitz, who is a Fellow of the Australian Institute of Mining and Metallurgy. Mr Mendelawitz is the Managing Director to Elmore Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mendelawitz consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

REFERENCES

Abzalov, M (2017): Peko Tailings: Estimation of Mineral Resources (concise report). MASSA geoservices, Reference Number PEC20171115, 43p.

Normandy Mining Ltd. (1997): Tenant Creek Tailings, desk top study. 19p.

The details of the resource can be found in the attached Table 1.

-END-

For further information please contact: Managing Director Mr David Mendelawitz info@elmoreltd.com.au +61 8 6323 2310

This release has been authorised by Elmore's Board of Directors

Appendix 1 - Drillhole Collar Co-ordinates

Hole_ID	Depth m	East (MGA zone 53)	North (MGA zone 53	LAT (GDA 94)	LONG (GDA94)	RL LIDAR	DAM
D1-01	2	424918.8	7824343.1	E.((())))			1
D1-02	2	424936.7	7824339.1				1
D1-03	2	424952.1	7824336.6				1
D1-04	2	424918.5	7824313.2				1
D1-05	1	424934.8	7824313.2				1
D1-06	2	424950.2	7824312.0				1
D1-07	2	424930.8	7824308.1				1
D1-08	2	424931.8	7824308.1				1
D1-09	2	424932.8	7824308.1				1
D1-10	2	424933.8	7824308.1				1
D1-11	2	424934.8	7824308.1				1
D1-12	2	424935.8	7824308.1				1
D1-13	2	424936.8	7824308.1				1
D1-14	2	424937.8	7824308.1				1
D1-15	2	424938.8	7824308.1				1
D1X-01	2	424847.0	7824351.0	-19.6748	134.2830		1.1
D1X-02	2	424879.0	7824339.0	-19.6749	134.2833		1.1
D1X-03	2	424839.0	7824328.0	-19.6750	134.2830		1.1
D1X-04	2	424875.0	7824319.0	-19.6750	134.2833		1.1
D2-01	15	425156.0	7824404.0	-19.6743	134.2860	311.7	2
D2-02	15	425139.0	7824419.0	-19.6742	134.2858	311.6	2
D2-03	15	425197.0	7824404.0	-19.6743	134.2864	311.6	
D2-04	15	425128.0	7824372.0		134.2857	311.7	
D2-05	15	425155.0	7824368.0	-19.6746	134.2860	311.6	
D2-06	15	425190.0	7824362.0	-19.6747	134.2863	311.7	2
D2-07	15	425121.0	7824349.0	-19.6748			
D2-08	15	425152.0	7824341.0	-19.6749	134.2859	311.6	
D2-09	15	425183.0	7824337.0				
D3-01	10	425284.0	7824370.0				
D3-02	12	425333.0	7824351.0				
D3-03	12	425406.0	7824326.0				
D3-04	11	425277.0	7824343.0				
D3-05	12	425327.0	7824323.0	-19.6750			
D3-06	12	425399.0	7824301.0				
D3-07	11	425270.0	7824312.0				
D3-08	12	425320.0	7824295.0				
D3-09	12	425390.0	7824275.0				
D4-01	12	425403.0	7824725.0				
D4-02	12	425465.0	7824698.0				
D4-03	12	425505.0	7824690.0				
D4-04	12 12	425569.0 425638.0	7824668.0	-19.6719			
D4-05 D4-06	12	425332.0	7824649.0	-19.6721			
D4-00 D4-07	11	425352.0					
D4-07 D4-08	11	425377.0					
D4-09	11	425484.0					
D4-10	12	425594.0					
D4-10	11	425270.0					
D4-12	9						
D4-13	10	425388.0					
D4-14	11	425441.0					
D4-15	11	425523.0					
D4-16	12	425215.0					
D4-17	11	425261.0					
D4-18	10						
D4-19	10	425365.0					
D4-20	10	425421.0					
D5-01	4	425533.0					
D5-02	4	425563.0					
D5-03	4	425504.0	7824394.0				
D5-04	4	425536.0		-19.6747			
D5-05	3	425483.0	7824362.0	-19.6747			
D5-06	3	425500.0	7824339.0	-19.6749	134.2893	300.5	
D5-07	1	425493.0	7824307.0	-19.6752	134.2892	299.4	
D5-08	1	425473.0	7824280.0	-19.6754	134.2890	299.2	5

Appendix 2.

JORC CHECK LIST (Table 1)

JORC (2012) TABLE 1 Checklist of Assessment and Reporting Criteria

Section 1 - Sampling Techniques and Data

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
(1.1.) Sampling techniques	• Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Resource database includes 19 hand auger drill holes (38m drilled) and 46 track mounted RC drill holes (409m drilled). All drilling was made in January 2016. Drill holes were sampled at 1m intervals. A total of 447 samples were analysed at ALS in Perth for the following elements: Au - ALS laboratory code of assay method is Au-AA26 (fire assay with atomic absorption finish) Cu, Co, Ag, Bi, Fe, S - ALS laboratory code of assay method is ME-ICP61 (inductively coupled plasma atomic emission spectroscopy, ICP – AES)
	• Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Drilling in 2016 was carried using standard drilling and sampling procedures.

	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- 	The san The 1m	nples were o samples we	lelivered to AL	S Metallurgy dried and p	laboratory in ulverised the	Perth for pre	pproximately 3 paration and as en from the punalyses	saying.
Drilling		Types c table	of drilling and	the distributio	on of the drill	holes per the	e tailings dam	s is summarise	d in the
techniques (1.2.)		Iadie	Dam	No. Auger Holes	Total Metres	No. RC Holes	Total Metres	Average Depth	
			1	15	30			2	
	sampling bit or other type, whether core is oriented and if so, by what		1X	4	8			2	
	method, etc).		2			9	126	14	
			3			9	83	9	
			4			20	180	9	
			5			8	20	2.5	
			Total	19	38	46	409		

Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	Sample weight was recorded and used to control the samples recovery
(1.3.)	• Measures taken to maximise sample recovery and ensure representative nature of the samples.	The tailings at the Peko project was drilled by previous owners and RC drilling was found well suited for this environment allowing to obtain a good quality samples for Resource estimation. Based on the knowledge gained by the previous explorers the RC drilling was chosen as the main method for Resource definition drilling at the Peko tailings project.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No evidences of relationships between samples recovery and grade was noted. In most of the dams there is evidence of copper and cobalt grade decreased in the upper two metres of the tailings. A.L.Govey, geologist, who reviewed the 2016 data, has explained the systematic decrease of Cu and Co grade in the upper layer of the tailings by leaching of these metals, possibly as a result of supergene weathering processes.
Logging (1.4.)	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geological logging was limited to documentation of the tailings material with an emphasis on recording of the depth where natural ground material has appeared in the drill hole samples. Level of detail is sufficient to support Inferred Resource estimation Drill holes were not geotechnically logged.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging was qualitative. Photos of the tailings dam was made for better understanding the type of material drilled and the tailings shapes.
	• The total length and percentage of the relevant intersections logged.	100% of the drill holes was logged
Sub- sampling techniques	• If core, whether cut or sawn and wether quarter, half or all core taken	Not applicable. Non-core type of drilling (i.e RC) was used
and sample preparation (1.5.)	• If non-core, whether riffled, tube sampled, rotary split, etc and	RC samples were split using a riffle splitter built into the drill rig.

whether sampled wet or dry.	
• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Samples were sent to the ALS laboratory where they were prepared following the standard protocol of ALS. The samples were all checked against the logsheet supplied by the company and found to be all present and accounted for. The samples were placed in labelled trays and dried at 95DegC for 24hours to remove any moisture. The dried samples were placed into sealed plastic bags labelled with the corresponding sample details The dried samples were pulverized with double silica flushed between each sample. Portions of the pulverized sample were removed for analyses
• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Quality of the pulp pulverising was controlled by test sieving. Results confirm that 95% pass for 75 μ m fraction is commonly achieved.
• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Field duplicates was not used. Pulp duplicates were re-assayed if high grade Cu and Fe results were obtained by 1 st analysis (laboratory code ME-ICP61). The samples were re-assayed using ICP-AES method, laboratory code OG62
• Whether sample sizes are appropriate to the grain size of the material being sampled.	3 kg sample representing 1 m of the drilled interval is a standard size of the RC samples used for estimation Resources of the base-metal mineralisation. This size is well suited for estimation of the tailings which are composed by a finer grained material then the natural ore.

Quality of	• The nature, quality and	All analyses were made at the ALS laboratory in Perth.
assay data and	appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Au was assayed by fire assay method with atomic-absorption finish. Laboratory code Au-AA26.
laboratory tests (1.6.)		Cu, Co, Ag, Bi, Fe, S assayed by Inductively Couple Plasma Atomic Emission Spectroscopy,
		Laboratory code ME-ICP61. Sample preparation was made using 4 acid digests.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable. Geophysical tools not used.
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Pulp duplicates were re-assayed if high grade Cu and Fe results were obtained by 1 st analysis (laboratory code ME-ICP61). The samples were re-assayed using ICP-AES method, laboratory code OG62. Accuracy control was limited to using of the internal ALS reference materials
Verification of sampling and	• The verification of significant intersections by either independent or alternative company personnel.	The 2016 drilling results have been compared my Dr. Abzalov (Resource CP) with the previous drilling data, in particular the Resource definition database of Normandy. The comparison indicates that 2016 results are in a good agreement with the previous drilling results.
assaying	• The use of twinned holes.	Twin holes were not used.
(1.7.)	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Assays results were obtained from the laboratory in electronic format as *.csv files. The data were compiled into a single Excel file, and checked by consulting geologist (A.L.Govey). The files were electronically sent to the project CP for Resource estimation.
	• Discuss any adjustment to assay data.	No adjustments were made to the data.

Location of data points (1.8.)	• Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Location of the drill hole collars was determined by a hand-held GPS. The Z coordinate was estimated by plotting (draping) the drillhole collars on the DTM surface generated using the LiDAR survey data. Holes are shallow and were drilled vertically down, therefore down hole survey was not used.				
	• Specification of the grid system used.	MGA (GDA94) zone 53				
	• Quality and adequacy of topographic control.	Topographic control is based on high-resolution LiDAR survey of the tailing dams which was used for 3D constraining the mineralised tailings and estimating the volume. Spatial extents of the tailings was digitised from the map of the tailing dams and DTM surface of the area, generated using the LiDAR survey data				
Data spacing and distribution (1.9.)	• Data spacing for reporting of <i>Exploration Results</i> .	Fig.1.9: Map of the Peko tailings dams	Drill holes spacing is as follows: Dam 1x 40 x 20m Dam 2 40 x 20m Dam 3 30 x 60m Dam 4 50-60 x 80-100m Dam 5 40 x 40-50m			
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill spacing is suitable for estimation Inferred Resources				
	• Whether sample compositing has been applied.	All samples were 1 m long. No compositing of samples was use	ed.			

Orientation of data in relation to geological structure (1.10.)	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation in tailings is essentially horizontal and all drill holes are drilled vertically intersecting the mineralisation at right angle, which ensures that the sampling is unbiased.
(1.10.)	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Orientation of the drill holes is orthogonal to the strike of mineralisation providing unbiased results
Sample security (1.11.)	• The measures taken to ensure sample security	Sampling in the field was made by authorised personnel. In the laboratory security of samples and assays were controlled by the internal security procedures of the ALS.
Audits or	• The results of any audits or reviews of sampling techniques and	Results of the 2016 drilling was reviewed by A.L.Govey, an independent consultant. He has concluded:
reviews		" Drilling by PekoBull has successfully verified or exceeded the grade, thickness and lateral and downhole
(1.12.)	data.	continuity of the Peko tailings deposit as reported by predecessor companies. In addition ample new
		sample material was made available for extensive metallurgical test work. The project has passed a
		significant milestone in reducing, if not eliminating, any uncertainty relating to the Au-Cu-Co grades.
		There is sufficient previous work to reliably establish the volume and tonnage of tailings present and
		hence the contained metal inventory". Mr Mendelawitz has verified the data compared to visual
		observations taken on site in processing and trench sampling and is satisfied that they are consistent.

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
Mineral tenement and land tenure status (2.1)	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The tenements of the project are shown on the map (Fig. 2.1) and listed in the table 2.1. CP of the project (M.Abzalov) was informed by the Elmore's managing director (David Mendelawitz) that all tenements are valid and their maintenance is complaiant with the Australian mining industry regulations.

			: Tenements map old blue outlines) a		IL (denoted by the b	oright blue infill co	olour	
	• The security of the tenure held at the time of reporting along with any known	Title ID	Title Number Title Type Code		st of the tenemenen	ts Percent Holder Type Expiry		
	impediments to obtaining a licence to operate	MLC128	128 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2023	
	· · · ·	MLC126	126 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2023	
	in the area.	EL23141	23141 EL	Application	SITZLER SAVAGE PTY LTD	100 Applicant	01/12/2020	
		EL23844	23844 EL	Application	SITZLER SAVAGE PTY LTD	100 Applicant		
		MLC664	664 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2025	
		MLC125	125 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2023	
		MLC7	7 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2025	
		MLC157	157 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2024	
		MLC9	9 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2031	
		MLC156	156 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2024	
		MLC509	509 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2025	
		MLC13	13 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2031	
		MLC8	8 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2030	
		MLC43	43 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2034	
		EL24165	24165 EL	Application	SITZLER SAVAGE PTY LTD	100 Applicant		
		MLC12	12 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2031	
		MLC510	510 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2025	
		MLC665	665 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2025	
		MLC19	19 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2025	
		MLC14	14 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2039	
		MLC3	3 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2023	
		MLC519	519 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2023	
		MLC6 MLC10	6 MLC 10 MLC	Renew Retained Renew Retained	SITZLER SAVAGE PTY LTD SITZLER SAVAGE PTY LTD	100 Holder 100 Holder	31/12/2025 31/12/2031	
		MLC10 MLC507	507 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2031	
		EL23922	23922 EL	Application	SITZLER SAVAGE PTY LTD	100 Applicant	51/12/2033	
		MLC44	44 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Applicant 100 Holder	31/12/2034	
		MLC666	666 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2025	
		MLC667	667 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2025	
		MLC11	11 MLC	Renew Retained	SITZLER SAVAGE PTY LTD	100 Holder	31/12/2031	
Exploration done by other	• Acknowledgment and appraisal of exploration by other parties.			lling and Re	esource estimation v	was undertaken a	at the	
parties (2.2)		 Peko tailings. Drilling by ADL in 1985 was made using an open hole power auger of In late 1987 three twin holes in Dams 2 and 3 showed that the 1985 						

r		
		samples had become significantly oxidized, prompting a decision to
		redrill the dams, concentrating on Dams 1, 2 and 3 for a total of 135
		holes and 1,213m (average depth 8.9m). The method of drilling and
		sample collection for this program is not known.
		• The Normandy drilling comprised 50m by 50m spaced, auger cased,
		core holes, with samples taken every metre downhole. This was the first
		confirmed use of cased holes and the implied greater confidence in
		sample integrity.
		The drilling program totalled 103 holes for 760.25 metres and covered
		the four main dams, a small dump east of Dam 4.
		For the greater part sample recoveries exceeded 90% with more difficult
		moist material near the bottom of the dams. Normandy found that there
		were no apparent high grade gold domains within the resource despite a
		long processing history (1954-1976) and multiple ore sources.
		In 2016, the previous project owner undertook comprehensive drilling of
		the tailings. These data were used for estimation resources in 2017 and
		also used for the current estimate and verified by the Resource CP.
Geology (2.3)	• Deposit type, geological setting and style	The mineralisation is not a natural deposit but is represented by the tailings of
	of mineralisation.	the Au-Cu-Fe processing plant (map is shown on the section 1.9).
		The tailings consist of mainly magnetite (~80%) with smaller amounts of silicate
		gangue mineral and minor amounts of sulphides and quartz.
		The sulphide minerology consists of mainly gold bearing pyrite with small
		amounts of chalcopyrite, marcasite, arsenopyrite and pyrrhotite. The primary copper bearing mineral is chalcopyrite. Main cobalt bearing mineral is pyrite.
		Cobalt also present in arsenopyrite, which is rare and occurs only as the traces

		Within the f	gs samples. erromagnetic m erally decrease			elements (wit	h the exception
Drill hole Information	• A summary of all information material to the understanding of the exploration results	Dam	No. Auger Holes	Total Metres	No. RC Holes	Total Metres	Average Depth
(2.4)		1	15	30			2
	information for all Material drill holes:	1X	4	8			2
	2			9	126	14	
		3			9	83	9
		4			20	180	9
	• Easting and Northing of the drill hole collar.	5			8	20	2.5
		Total	19	38	46	409	
		Hole ID	Depth Contact Groun		GA)53 No	orth (MGA)53	DAM
		D1-01	2				1
		D1-02	2				1
		D1-03	2				1
		D1-04	2				1
		D1-05	1				1
		D1-06	2				1
		D1-07	2				1
		D1-08	2				1
		D1-09	2				1
		D1-10	2				1
		D1-11	2				1
		D1-12	2				1
		D1-13	2				1
		D1-14	2				1
		D1-15	2				1

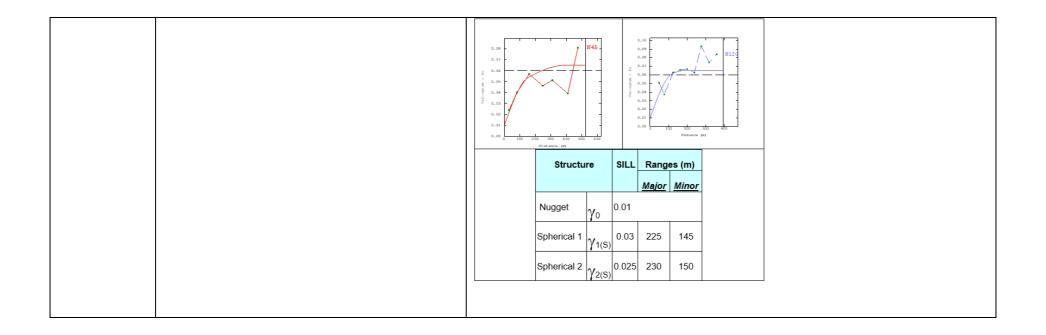
	D1X-01	2	2	424847	7824351	1x
	D1X-02	2	2	424879	7824339	1x
	D1X-03	2	2	424839	7824328	1x
	D1X-04	2	2	424875	7824319	1x
	D2-01	15	14	425156	7824404	2
	D2-02	15	14	425139	7824419	2
	D2-03	15	14	425197	7824404	2
	D2-04	15	14	425128	7824372	2
	D2-05	15	14	425155	7824368	2
	D2-06	15	14	425190	7824362	2
	D2-07	15	14	425121	7824349	2
	D2-08	15	14	425152	7824341	2
	D2-09	15	14	425183	7824337	2
	D3-01	10	9	425284	7824370	3
	D3-02	12	9	425333	7824351	3
	D3-03	12	9	425406	7824326	3
	D3-04	11	9	425277	7824343	3
	D3-05	12	9	425327	7824323	3
	D3-06	12	10	425399	7824301	3
	D3-07	11	9	425270	7824312	3
	D3-08	12	9	425320	7824295	3
	D3-09	12	9	425390	7824275	3
	D4-01	12	11	425403	7824725	4
	D4-02	12	10	425465	7824698	4
	D4-03	12	10	425505	7824690	4
	D4-04	12	11	425569	7824668	4
	D4-05	12	10	425638	7824649	4
	D4-06	12	10	425332	7824658	4
	D4-07	11	9	425377	7824634	4
	D4-08	11	9	425426	7824614	4

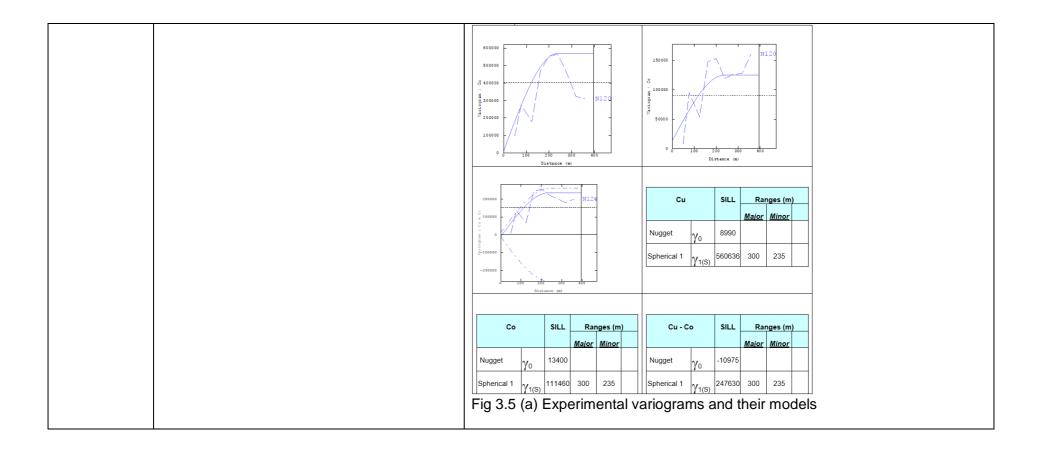
	D4-09	11	9	425484	7824592	4
	D4-10	12	9	425594	7824601	4
	D4-11	11	11	425270	7824599	4
	D4-12	9	7	425326	7824570	4
	D4-13	10	9	425388	7824537	4
	D4-14	11	9	425441	7824525	4
	D4-15	11	9	425523	7824522	4
	D4-16	12	10	425215	7824542	4
	D4-17	11	9	425261	7824514	4
	D4-18	10	8	425304	7824493	4
	D4-19	10	8	425365	7824445	4
	D4-20	10	9	425421	7824405	4
	D5-01	4	3	425533	7824422	5
	D5-02	4	3	425563	7824405	5
	D5-03	4	3	425504	7824394	5
	D5-04	4	3	425536	7824359	5
	D5-05	3	2	425483	7824362	5
	D5-06	3	2	425500	7824339	5
	D5-07	1	1	425493	7824307	5
	D5-08	1	1	425473	7824280	5
• Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar.	model of the	e topograp	hic surface	ecorded and wa	as estimated fro	om the LiDAR
• <i>dip and azimuth of the hole.</i>	All holes dril					
• down hole length and interception depth	Average dov	wn hole le	ngth of inte	erceptions 6.85	m	
• hole length.						

		Generative for the drillhole lengthes
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	The drill hole information is material and included in this table
Data aggregation methods (2.5)	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	The drillhole data was used for estimation Mineral Resources. Average grade of intersection was estimated using length weighing technique, also given the equal size of the all samples, which are 1m long, all samples of the drillhole received the same weight. Intersections is defined by top and bottom of the tailings. No high-grade top cut was used, because statistical distribution of the data is close to normal and lacking of the outliers (Fig. 2.5).

	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Fig. 2.5: Histogram of the 1m samples grades of gold.
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable. Metal equivalents were not estimated. Resources estimated and reported for Au, Cu and Co
Relationship between mineralisation	• These relationships are particularly important in the reporting of Exploration Results.	Relationships between mineralisation width and intercept length is irrelevant for this study because the data was used for estimation of the tailings Resources
widths and intercept lengths (2.6)	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Mineralisation is distributed as flat lying beds in the tailings. All drill holes are vertical and intersect the mineralisation approximately orthogonally providing the good estimate of the true thickness of mineralisation

remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching is the flotation tail deleterious or contaminating substances. regularly achieved from this historical testwork. Additional metallurgical tests have been undertaken in 2016. Results of the tests are a follows: · Upfront grinding of the material is unlikely to have any additional benefits for gold, copper and cobalt extraction and can likely be eliminated from future flowsheets. · A clean sulphide concentrate can be produced from the tailings by flotation. This factore is the flotation of the material is	Diagrams (2.7)	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The diagrams and maps are presented in the report and also in the JORC Table.
substantive exploration data (2.9)material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.recovery of gold, copper and cobalt metals from the Peko tailings material. Almost all testwork completed after 1987 (mainly in the early 2000s) has been focused on magnetic separation of a suitable coal washery magnetite product. Historical flotation work on the tailings showed ~50% of the gold reports to a flotation concentrate, with the remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching in the float tail yielded a residue which contains 0.2 to 0.3g/t Au. Total copper and cobalt recovery of 86% to 88%, (including water soluble plus concentrate) was produced when a flotation concentrate weight of 10 to 12% was produced. Gold recoveries of 65% - 75% were regularly achieved from this historical testwork.Additional metallurgical tests have been undertaken in 2016. Results of the tests are a follows: . Upfront grinding of the material is unlikely to have any additional benefits for gold, copper and cobalt extraction and can likely be eliminated from future flowsheets. . A clean sulphide concentrate can be produced from the tailings by flotation. This fact was demonstrated in the proof of concept testwork and also in previous testing (1980) to 1987), which demonstrated that flotation could recover a concentrate which	reporting	Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of	
 The tailings will produce a saleable grade coal washery magnetic concentrate. The tailings are acidic, and a significant proportion of the copper and cobalt are 	substantive exploration	material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential	 recovery of gold, copper and cobalt metals from the Peko tailings material. Almost all testwork completed after 1987 (mainly in the early 2000s) has been focused on magnetic separation of a suitable coal washery magnetite product. Historical flotation work on the tailings showed ~50% of the gold reports to a flotation concentrate, with the remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching of the float tail yielded a residue which contains 0.2 to 0.3g/t Au. Total copper and cobalt recovery of 86% to 88%, (including water soluble plus concentrate) was produced when a flotation concentrate weight of 10 to 12% was produced. Gold recoveries of 65% - 75% were regularly achieved from this historical testwork. Additional metallurgical tests have been undertaken in 2016. Results of the tests are as follows: Upfront grinding of the material is unlikely to have any additional benefits for gold, copper and cobalt extraction and can likely be eliminated from future flowsheets. A clean sulphide concentrate can be produced from the tailings by flotation. This fact was demonstrated in the proof of concept testwork and also in previous testing (1985 to 1987), which demonstrated that flotation could recover a concentrate which amounted to between 10 to 12% of the weight containing 50% of the gold. The tailings will produce a saleable grade coal washery magnetic concentrate.


		 soluble when the tailings are mixed with water. Historical testing also demonstrated that LoPOx leaching can have a significant improvement in total metal recovery. A 50% increase was observed for cobalt recovery.
Further work (2.10)	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	The drilling grid will be infilled, if required, to the level of details sufficient for estimation Indicated and Measured Resources and Ore Reserves.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	


Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
Database integrity (3.1)	• Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Assays results were obtained from the ALS laboratory in electronic format as *.csv files. The data were compiled into a single Excel file, which is located on the company server which is regularly backed up. The data were electronically sent to the project CP for Resource estimation.
	• Data validation procedures used.	The data were checked by consulting geologist (A.L.Govey) undertaking standard type, code, range, format and consistency validation of the data set
Site visits (3.2)	• Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Dr.M.Abzalov (CP) did not visit the project site.
	• If no site visits have been undertaken indicate why this is the case.	Dr.M.Abzalov (CP) was approached and requested to estimate Resources of the Peko tailings in late October 2017. Timing and concurrent commitments did not permit to undertake site visit. Later, since 2019 the visits became impossible due to the COVID related restrictions. The current estimate is made when Dr.M.Abzalov (CP) is overseas and planning to return back to Australia in November, 2022.
Geological interpretation (3.3)	• Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The current interpretation is based on 65 drill holes distributed as approximately regular grid. All drillholes were sampled at 1m intervals and logged. The available information together with the mapped tailing contacts have provided a sound base for the current geological interpretation.
	• Nature of the data used and of any assumptions made.	496 samples from 65 drill holes

Section 3 - Estimation and Reporting of Mineral Resources

L	• The effect, if any, of alternative interpretations on Mineral Resource estimation.	There appears to be a limited scope for alternative interpretations. The biggest uncertainty is the volume of the tailings which is approximately deuced from the thickness of the drill hole intersections.				
	• The use of geology in guiding and controlling Mineral Resource estimation.	Understanding of the tailing infilling procedures, which was formed by slowl evenly infilling creating horizontal layering of the mineralisation, was incorport the estimation procedures.				
	• The factors affecting continuity both of grade and geology.	Layered nature of the mineralisation is created by tailing infilling procedures. layered structure of the tailings controls distribution of the metals, including Au Co. The grade continuities have been quantified by estimating the variograms of the metals (Au, Cu, Co)				
Dimensions	• The extent and variability of the Mineral	Dam	Length, m	Width.m	Depth.m	
(3.4)	Resource expressed as length (along strike or	1	80	70	1.9	
	otherwise), plan width, and depth below surface	1x	80	60	2.0	
	to the upper and lower limits of the Mineral Resource.	2	150	130	14.0	
	Resource.	3	230	140	9.1	
		4	400	350	9.0	
		5	230	100	2.5	

Estimation and modelling techniques (3.5)	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Resources were estimated in a 2D system using special geostatistical software (Isatis). Volume of the mineralised bodies was estimated using the 3D wireframe (closed solid) of the tailings. Top surface was obtained using the LiDAR survey, the bottom constructed using the lower contact of the tailings deduced from the drill holes intersecting the tailings. The two surfaces were combined generating the closed 3D wireframe (colloquially referred as a solid). The 3D solid was infilled by the rectangular cells of the block model. Parent cells were 40 x 40m, vertical dimension was not defined, because the blocks grades were estimated using 2D kriging. Optimal fitting of the block was achieved by sub-celling the parent blocks to 2x2x0.25 subcells.
		Grade was estimated as follows: Dams 3, 4 and 5 were estimated as one body. Au by Ordinary kriging; Cu and Co by Ordinary Co-kriging; Dam 2: was estimated separately. Au by Ordinary kriging; Cu and Co by Ordinary Co- kriging;
		Dam 1x: grade of Au, Cu and Co was estimated as average of 8 samples collected from 4 holes drilled in this dam;
		Dam 1 was not estimated due to insufficient data
		Search neighbourhood was as follows:Radius350 x 200mDeclustering16 sectors with 1 sample per sectorMinimum number of samples3
		Grade was estimated to the 2D blocks of 40 x 40m
		Variograms and their estimated models of Au, Cu-Co are as follows:

• The availability of check estimates,		Dam	Tonnage (Kt)		Grade		Cor	ntained meta	al
				Au g/t	Cu %	Co %	GOLD (Koz)	COPPER (Kt)	COBALT (Kt)
previous estimates and/or mine production		1		r	ot estimate	d due to in	suffient data		
records and whether the Mineral Resource	ent ov)	1x	11	2.9	0.66	0.20	1	0.1	0.0
estimate takes appropriate account of such	The current estimate (2022, M.Abzalov)	2	517	1.6	0.48	0.21	27	2.5	1.1
data.	ie c estii (20	3	537	1.2	0.24	0.09	20	1.3	0.5
autu.	±° ≥	4	2,423	1.0	0.17	0.08	77	4.2	1.9
		5	127	1.1	0.09	0.02	5	0.1	0.02
		total	3,615	1.1	0.22	0.10	129	8.1	3.5
	N	1							
	Abzalov, 2017	1x	11	2.9	0.66	0.20	1	0.1	0.0
	v, 2	2	384	1.6	0.48	0.21	20	1.8	0.8
	alo	3	476	1.2	0.24	0.09	18	1.1	0.4
	Abz	4	2,157	1.0	0.17	0.08	68	3.7	1.7
		5	136	1.1	0.11	0.04	5	0.2	0.05
		total	3,163	1.1	0.22	0.10	112	6.9	3.0
	2	1	72	2.2	0.86	0.31	5	0.6	0.2
	Normandy, 1997	1x	did not exist in 1997						
		2	645	1.6	0.47	0.19	33	3.0	1.2
		3	517	1.3	0.27	0.09	21	1.4	0.5
		4	2,519	1.0	0.18	0.08	79	4.6	2.0
	ž	5 was not considered as a seprate dam in 1997							
		total	3,753				138	9.6	4.0
• The assumptions made regarding recovery of by-products.	contained tonnage i which hav Recovery estimation process to	t meta is rela <u>ve ste</u> v of th n due o reco	estimate repeals (Au, Cu, ated to more eper slopes be by-produce to the factorer it and the	Co) wi e accur that it cts was t that nus by	th esse ately de was inte not ar each m product	ntially efined erprete nalysec nodelle s vary	the same the shap d in 2017 and not d minera dependir	e grades. es of the <u>model.</u> used in used in u will ha	the Resource mineral being the source mineral being the source mineral being the source mineral being the source mineral being the source of the source of the source of the source of the source of t
			l some by p o longer be			hen be	e reproce	essed to	recover oth

• Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	Deleterious elements were not estimated due to the fact that each modelled mineral will have a different process to recover it and thus other non-grade elements may or may not be considered deleterious elements depending or the mineral being recovered.
• In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Parent blocks are 40 x 40m. This size is optimal for the drill spacings which are as follows:Dam 1x40 x 20mDam 450-60 x 80-100mDam 240 x 20mDam 540 x 40-50m
• Any assumptions behind modelling of selective mining units.	Dam 3 30 x 60m SMU size was not considered for the current Resource estimation
Any assumptions about correlation between variables.	Co and Cu exhibit strong correlation. The grade of these metals was estimated by Co-Kriging. Fig. 3.5 (b) Scatter-diagram of Co vs Cu, exhibiting a good
	Fig. 3.5 (b) Scatter-diagram of Co vs Cu, exhibiting a good correlation of these metals

• Description of how the geologinterpretation was used to control estimates.	<i>the resource</i> as the m Cu and C	structure of th ain factor that Co. pretation was	controls dist	tribution of th	e valuable m	etals, includi	ng Au,
• Discussion of basis for using grade cutting or capping.	Or not using	Sam In or	der to preve	re distributed	d evenly with of the high-gr eparately.		rom
		Bit Sequence 201 Bit Sequence 201<					
The process of validation, the	0	grade of the					
process used, the comparison of n drill hole data, and use of reconce		presented in t lings dams wi				e estimated	grade
available.	Dam	Dril	I hole samp	les	BI	ock model	
		Cu, ppm	Co, ppm	Au, ppm	Cu, ppm	Co, ppm	Au, ppm
	1	6572	1070	2.00	6570	1070	2.00
	1x 2	6572 4952	1976 2201	2.89 1.63	6572 4786	1976 2122	2.89 1.62
	3	2588	983	1.03	2393	925	1.02
	4	1728	807	0.99	1725	784	0.99
	5	932	217	1.24	928	196	1.19

Moisture (3.6)	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnage is estimated on a dry basis, using Dry Bulk Density as a tonnage factor
Cut-off parameters (3.7)	• The basis of the adopted cut-off grade(s) or quality parameters applied.	Cut-off was not applied because it is assumed that the whole dam will have to be excavated. Economically viable grade starts from the 1 st sample and continues to the bottom of the dam.

Mining factors	Assumptions made regarding possible	Mining factors was not applied and was not considered at the given Resource
or	mining methods, minimum mining dimensions	estimate because the resource has already been mined and left as a stockpile
-	8	for processing, thus there will be no mining required.
assumptions	and internal (or, if applicable, external) mining	
(3.8)	dilution. It is always necessary as part of the	
	process of determining reasonable prospects	
	for eventual economic extraction to consider	
	potential mining methods, but the assumptions	
	made regarding mining methods and	
	parameters when estimating Mineral Resources	
	may not always be rigorous. Where this is the	
	case, this should be reported with an	
	explanation of the basis of the mining	
	assumptions made.	

Metallurgical factors or assumptions (3.9)	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	The general metallurgical characteristics are: • The metal distribution within the tailings is as follows: • Gold: 50% in magnetite, 50% in pyrite; • Copper: 100% in copper sulphides; and • Cobalt: 80% in pyrite, 20% in cobalt sulphides. • Significant water soluble copper and cobalt are present in each dam. A relatively small amount of cyanide soluble copper and cobalt is also present. • The tailings contain some agglomerates which were most likely caused by the oxidising sulphides. • Based on historical (pre 1990) drilling, all but one dam is acidic in nature (Dam 1 - pH 1.6, Dam 2 - pH 4.0, Dam 3 - pH 6.0, Dam 4 - pH 7.2). It is suspected that all dams have deteriorated further since that date, as the pH of a composite from recent (2015) sampling was below pH 3.0. Historical flotation work on the tailings showed ~50% of the gold reports to a flotation concentrate, with the remainder to the flotation tail (consisting of magnetite plus gangue). Cyanide leaching of the float tail yielded a residue which contains 0.2 to 0.3g/t Au. Total copper and cobalt recovery of 86% to 88%, (including water soluble plus concentrate) was produced when a flotation concentrate weight of 10 to 12% was produced. Gold recoveries of 65% - 75% were regularly achieved from this historical testwork.
		 Additional metallurgical tests undertaken in 2016. Results of the tests are as follows: Upfront grinding of the material is unlikely to have any additional benefits for gold, copper and cobalt extraction and can likely be eliminated from future flowsheets.
		• A clean sulphide concentrate can be produced from the tailings by flotation. This fact was demonstrated in the proof of concept testwork and also in previous testing (1985 to 1987), which demonstrated that flotation could recover a concentrate which amounted to between 10 to 12% of the weight containing 50% of the gold.
		\cdot The tailings will produce a saleable grade coal washery magnetic concentrate.
		 The tailings are acidic and a significant proportion of the copper and cobalt are soluble when the tailings are mixed with water.
		Historical testing also demonstrated that LoPOx leaching can have a significant

	improvement in total metal recovery. A 50% increase was observed for cobalt
	improvement in total metal recovery. A 50% increase was observed for cobalt
	recovery.

Environmental factors or assumptions (3.10)	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Environmental factors were not considered at the current Resource estimation because the stockpile has been mined and the project is a reclamation project that will remove the majority of it.
--	--	---

Bulk density (3.11)	• Whether assumed or determined. If assumed, the basis for the assumptions. If	Average values, assigned to the Dams are as follows						
	determined, the method used, whether wet or	Dam	DBD (t/m3)	Source				
	dry, the frequency of the measurements, the	1	2.15	Resource estimation by Normandy , 1997				
	nature, size and representativeness of the	1x	2.15	assumed that it is simialr to Dam 1				
	samples.	2	2.17	Resource estimation by Normandy , 1997				
		3	2.17	Resource estimation by Normandy , 1997				
		4	2.16	Resource estimation by Normandy , 1997				
		5	2.15	Data was not awailable. The value simiar to Dam 1 was used				
	• The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs,	the Bulk Dry Density of the bulk samples which were approximately 60 tonnes each.stDry Bulk Density was determined in 1989. Laurie Smith and Associates in 1 carried out a comprehensive analysis of the specific gravity of the Peko tailir including digging two trenches in Dam 2 and three trenches in Dam 3 and de						
	porosity, etc), moisture and differences between rock and alteration zones within the deposit.	 weights from 60-100 tonnes. The bulk dry density determinations of the 5 trenches varied from 1.48 to 2.58 tonnes/m₃ (ie. BDD22 - 2.31, BDD21 - 1.48, BDD33 - 2.21, BDD32 - 1.79 and BDD31 - 2.58). Based on these data the Normandy used the following density values, that were also used in the current Resource estimation: 						
		Dam 1; 2.15 dry tonnes /m ³ Dam 2 ; 2.17 dry tonnes /m ³ Dam 3 ; 2.17 dry tonnes /m ³ Dam 4 ; 2.16 dry tonnes /m ³						
	• Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. The density values reflect the location of the samples with the hi near the walls where the tailings were discharged and the two low centre of the dams where the fine slime fraction might be expect							

Classification (3.12)	• The basis for the classification of the Mineral Resources into varying confidence categories.	The Resources are classified as Inferred because of lacking the QAC and drilling grid, in particular at the Dam 4, 50-60 x 80-100m, is too b preventing construction of the detailed 3D model which is needed for and Measured Resource categories.						broad and
		Data quality, quane estimation of the Ir				tribution are	sufficient fo	or accurate
	• Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	All factors were co this is because ins distances between	sufficient					•
	• Whether the result appropriately reflects the Competent Person's view of the deposit.	Dr. M. Abzalov (Cl tailings are as follo		project) (consent	that Inferred	Resources	of the Peko
		Tonnage (Kt)		Grade		C	ontained metal	
			Au g/t	Cu %	Co %	GOLD (Koz)	COPPER (Kt)	COBALT (Kt)
		3,615	1.1	0.22	0.10	129	8.1	3.5
Audits or reviews (3.13)	• The results of any audits or reviews of Mineral Resource estimates.	No audits of the Ro	esources	s were ur	ndertake	en		

Discussion of relative accuracy/ confidence (3.14)	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	Quantitative assessment of the relative accuracy and confidence level in the tailings Resource estimate was not undertaken. Data distribution, with the distances between drill holes varying from 40 x 20m to 80-100m is suitable for accurate estimation of the Inferred Resources of Au, Cu and Co, which spatial continuity of the grade of intersections (2D data), according to variogram ranges, is approximately 250 – 300m.
	• The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	Resources were estimated as 2D block model. In other words, they accurately represent the lateral local changes of the Au, Cu and Co grades by can not be used for Analysis of the vertical profiles of the metal in the tailings.

• These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	Not applicable. Production data not available for the Peko tailings
--	---