ASX Release 16 September 2022 # First Tranche of Phase III RC Drilling Results Confirm **Southern Extension of Christmas Gift Prospect Burracoppin Gold Project, WA** * 10m @ 1.38 g/t Au from 34m downhole (ABRC039) * ** Including 3m @ 3.62 g/t Au from 41m downhole ** *** Including 1m @ 8.74 g/t Au from 42m downhole *** **** 1m @ 5.06 g/t Au from 46m downhole (ABRC038) **** ### Highlights: - Phase III RC exploration drilling campaign completed at the Burracoppin Gold Project located along strike of Ramelius Resources "Edna May Gold Mine" in the eastern Wheatbelt of Western Australia - broad zones of gold mineralisation defined confirming the southern extension of the Christmas Gift prospect - closes the gap between the mineralisation at the Christmas Gift prospect in the north and the Benbur prospect in the south - potential to join the mineralisation significantly increases the scale of the potential gold endowment - A total of 40 RC holes were drilled for 3,639m completed during June 2022 - Assay results from the first 9 holes have been received around the Christmas Gift prospect with results confirming the southern extension of the mineralisation at **Christmas Gift** - Results include: - o 10m @ 1.38 g/t Au from 34m downhole in hole ABRC039, including: - 3m @ 3.62 g/t Au from 41m - 1m @ 8.74 g/t Au from 42m #### and - 1m @ 2.06 g/t Au from 63m - 3m @ 2.01 g/t Au from 45m downhole in hole ABRC038, including: - 1m @ 5.06 g/t Au from 46m - Further assay results from the Phase III campaign are expected to be received shortly - Potential large gold endowment at the Burracoppin Gold Project based on the drill results received from the RC drilling campaigns completed by Askari Metals Askari Metals Limited (ASX: AS2) ("Askari Metals" or "Company"), an Australian based exploration company with a portfolio of battery metals (Li + Cu) and precious metals (Au + Ag) projects across Western Australia, Northern Territory and New South Wales, is pleased to announce that the Company has received the results for the first nine (9) holes out of a total of forty (40) holes drilled as part of the Phase III RC drilling program completed on its 100% owned Burracoppin Gold Project, located in the Wheatbelt region of Western Australia along strike of the Ramelius Resources "Edna May Gold Mine" (JORC (2012) Mineral Resource of 31Mt @ 1.0 g/t Au for 990,000 ounces of gold – refer to February 2022 resource update). In June 2022, the Company completed a third phase of drilling on the Burracoppin Gold project, comprised of forty (40) RC drill holes for 3,639m. The program tested several targets, including strike extensions of the mineralisation at Burgess Find, Christmas Gift, Lone Tree and Easter Gift. The program also tested previously unexplored targets identified by the soil geochemical anomalies. Commenting on the results from the first nine (9) holes, Vice President - Exploration and Geology, Mr Johan Lambrechts, commented: "The Company is pleased with the results of the first nine holes from the 3rd phase of RC drilling on the Burracoppin project. The assay results have confirmed a southern strike extension of the mineralisation from the Christmas Gift prospect toward the main zone of mineralisation at Benbur. Connecting these two zones with in-fill drilling will add significant scale to the future potential of the Burracoppin Gold Project. Most of the assay results remain outstanding and the Company is eager to receive and analyse them. Once received the Company will compile them with the results from previous phases of drilling and will update the 3D geological model for potential resource definition. We look forward to keeping our investors informed of the progress." ### Phase Three RC Drilling Program The phase three RC drilling program at the Burracoppin Gold Project was designed as an extensional drilling program targeting interpreted strike extensions of the mineralisation previously identified at Burgess Find, Christmas Gift and Benbur in the North, and Easter Gift and Lone Tree in the South. The program also tested several targets identified by the Company's previously completed soil geochemical program. This program highlighted potential gold mineralisation in the far northern portion of the Burracoppin project and to the east of Benbur. These geochemical anomalies represent highly valuable targets as they had never been tested by drilling before and may result in a significant increase in the project's future potential if they return positive results. The phase three project did not test below and near existing areas of mineralisation. This is planned for future phases of drilling. This announcement refers to the first nine (9) RC drill holes for which we have received assay results. They are concentrated in the northern portion of the phase three drill program as illustrated in Figure 1, below. **Figure 1:** Plan view of the third phase of RC drilling on the Burracoppin Gold Project. The satellite image of the area is overlain by the TMI_2VD magnetic Image. Collars referred to in this document are indicated in Yellow #### **Discussion of Results** #### Burgess Find - Strike Extensional target Holes ABRC033-ABRC036 were drilled to the north of Burgess Find and aimed to test the potential strike extension of mineralisation in this area. ABRC033 intersected 2m @ 1.09 g/t Au from 31m downhole including 1m @ 2.11 g/t Au from 32m. This intersection was made on the eastern side of the magnetic anomaly striking through the area and did not align with the current mineralised intersections in the database and therefore warrants further investigation. ABRC034 intersected 3m @ 0.75 g/t Au from 99m downhole including 1m @ 1.17 g/t Au from 99m. This intercept aligns with the current interpreted mineralisation model and represents a deep intersection. Hole ABRC035 did not intersect any significant gold mineralisation. Hole ABRC036 was drilled to the northwest of the Burgess Find prospect and failed to intersect any significant mineralisation in this area. Interpretation of the current results indicates that mineralisation may lie westward of its design. This will be revisited once all the results have been received. #### Christmas Gift - Strike Extensional target Hole ABRC037 was designed to test for a separately interpreted set of the mineralised units parallel and to the west of the primary mineralised system on the Burracoppin Gold Project. Hole ABRC037 was abandoned at 9m depth and redrilled a few meters away as ABRC037A. Both holes intersected mineralisation near the surface, with hole ABRC037 intersecting 4m @ 1.76 g/t from the surface, including 3m @ 2.11 g/t Au from the surface. Hole ABRC037A intersected 4m @ 0.97 g/t Au from surface including 1m @ 1.31 g.t Au from surface. These intercepts highlight the potential surface gold mineralisation in the laterite cover on the Burracoppin Gold Project, which will be further investigated through future drilling campaigns. Holes ABRC038-ABRC039 were drilled to the south of Christmas Gift and aimed to test the potential strike extension of mineralisation in this area. ABRC038 intersected 3m @ 2.01 g/t Au from 45m downhole including 1m @ 5.06 g/t Au from 46m. ABRC039 intersected 10m @ 1.38 g/t Au from 34m downhole including 3m @ 3.63 g/t Au from 41m as well as including 1m @ 8.74 g/t Au from 42m. Slightly deeper downhole, an intersection of 2m @ 1.25 g/t Au from 63m, including 1m @ 2.06 g/t Au from 63m, was also made. Table 1: Table representing the significant intercepts around the Christmas Gift prospect | <u>Christmas Gift</u> | |---| | ABRC037 - 4m @ 1.76g/t Au from surface | | ABRC037A - 4m @ 0.97g/t Au from surface | | | | ABRC038 - 3m @ 2.01g/t Au from 45 | | including - | | ABRC038 - 1m @ 5.06g/t Au from 46 | | as well as - | | ABRC038 - 5m @ 0.42g/t Au from 54 | | | | ABRC039 - 10m @ 1.38g/t Au from 34 | | including - | | ABRC039 - 3m @ 0.6g/t Au from 34 | | as well as including - | | ABRC039 - 3m @ 3.62g/t Au from 41 | | including - | | ABRC039 - 1m @ 8.74g/t Au from 42 | | as well as - | | ABRC039 - 2m @ 1.25g/t Au from 63 | | including - | | ABRC039 - 1m @ 2.06g/t Au from 63 | The mineralised intercepts in holes ABRC038 and ABRC039 represent evidence of the southern strike extension to the mineralisation from Christmas Gift and closes the gap between the Christmas Gift prospect in the north and the Benbur prospect in the south. This in-fill area identifies an important target for future drilling campaigns on the Burracoppin Gold Project. The potential to join the mineralisation between the Christmas Gift prospect in the north and the Benbur prospect in the south significantly increases the scale of the potential gold endowment at the Burracoppin project. Hole ABRCO40 targeted a set of historical workings swinging westward and across the interpreted strike of the mineralisation. These workings represent an anomaly in terms of the strike they indicate and were therefore tested with one hole during the program. Hole ABRCO40 intersected 1m @ 1.03 g/t Au at 92m downhole. This intercept is immediately below the line of workings and validates the existence of mineralisation at this location. More work will be required in this area to define this secondary zone's mineralisation potential. Table 2: Table representing the significant intercepts of the holes described in this announcement | Burgess find | | <u>Ch</u> | ristmas Gift | | | | Ben | bur north | | |---|-------------|-----------|------------------|---------------|---------|------|------|-------------|---------------| | ABRC033 2m @ 1.09 g/t Au from 31 m downhole | ABRC037 4r | m @ 1.7 | '6 g/t Au from | surface | ABRC040 | 1m @ | 1.03 | g/t Au from | 92 m downhole | | | ABRC037A 4r | m @ 0.9 | 7 g/t Au from | surface | | | | | | | | | | | | | | | | | | ABRC034 5m @ 0.65 g/t Au from 99 m downhole | | | | | | | | | | | including | ABRC038
3r | m @ 2.0 | 1 g/t Au from | 45 m downhole | | | | | | | ABRC034 3m @ 0.75 g/t Au from 99 m downhole | | | including | | | | | | | | and | ABRC038 1r | m @ 5.0 | 6 g/t Au from | 46 m downhole | | | | | | | ABRC034 1m @ 1.17 g/t Au from 99 m downhole | | | | | | | | | | | | | | as well as | | | | | | | | | ABRC038 5r | m @ 0.4 | 2 g/t Au from | 54 m downhole | | | | | | | ABRC035 No significant intercepts | | | | | | | | | | | ABRC036 | | | | | | | | | | | | ABRC039 10 | | | 34 m downhole | | | | | | | | | | including | | | | | | | | | ABRC039 3r | m @ 0. | 6 g/t Au from | 34 m downhole | ell as including | | | | | | | | | ABRC039 3r | ~~~~~~~~ | ~~~~ | 41 m downhole | | | | | | | | | | including | | | | | | | | | ABRC039 1r | m @ 8.7 | 4 g/t Au from | 42 m downhole | as well as | | | | | | | | | ABRC039 2r | | | 63 m downhole | | | | | | | | | | including | | | | | | | | | ABRC039 1r | m @ 2.0 | 6 g/t Au from | 63 m downhole | | | | | | **Figure 2:** Plan view of the nine holes represented in this document and the nearby historic holes. The current interpretation of the mineralised zone is also indicated in pink #### **Future work** This announcement represents the results of the first nine (9) RC drill holes completed as part of the third phase of drilling on the Burracoppin Gold Project. The Company is eagerly awaiting the remaining results in order to interpret them and determine their impact on the current mineralisation model of the Burracoppin project and gauge their influence on the future exploration plans for the project. The incorporation of the recent data with the current geological model will be completed once all results have been received. The revised model will be fundamental in the future exploration design of the project. Further phases of drilling are anticipated, and the Company is eager to keep its shareholders informed about the progress and results of the Burracoppin Gold project. The maiden drilling program on the Company's 100% owned Horry Copper and Gold Project in the Kimberley region of Western Australia continues and the Company is excited by the potential of this project. #### **ENDS** For further information, contact: Gino D'Anna Executive Director M +61 400 408 878 gino@askarimetals.com Rod North, Managing Director Bourse Communications Pty Ltd M: +61 408 670 706 rod@boursecommunications.com.au Johan Lambrechts Vice President – Exploration and Geology M +61 431 477 145 johan@askarimetals.com #### **About Askari Metals Limited** Askari Metals was incorporated for the primary purpose of acquiring, exploring and developing a portfolio of high-grade battery (Li + Cu) and precious (Au + Ag) metal projects across **Western Australia**, **Northern Territory** and **New South Wales**. The Company has assembled an attractive portfolio of lithium, copper, gold and copper-gold exploration/mineral resource development projects in Western Australia, Northern Territory and New South Wales. For more information please visit: www.askarimetals.com #### **Caution Regarding Forward-Looking Information** This document contains forward-looking statements concerning Askari Metals Limited. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on the Company's beliefs, opinions and estimates of Askari Metals Limited as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. #### **Competent Person Statement** The information in this report that relates to Exploration Targets, Exploration Results or Mineral Resources is based on information compiled by Johan Lambrechts, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr. Lambrechts is a full-time employee of Askari Metals Limited, who has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Lambrechts consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. ### **Burracoppin Overview** The Burracoppin Gold Project is located approximately 20km east of Merredin and 15km west of the Edna May Gold Mine in the eastern wheat belt of Western Australia. Figure 3: Locality map of the Burracoppin Gold Project The area has gently undulating topography with isolated lateritic breakaways preserved on a well-developed regolith. It is underlain by Archaean granite/gneiss greenstone terrane metamorphosed to amphibolite/granulite grade. Minor banded iron formation outcrops are known, and aplite-pegmatite dykes intrude the amphibolites at the Burgess Find gold workings. Burgess Find, Christmas Gift, Benbur and Easter Gift were the four main areas mined at the Burracoppin Project (refer to Figure 2). The Burgess Find, Christmas Gift and Benbur mines reported historical production figures of 410 tonnes, 750 tonnes and 1,030 tonnes, respectively. Production of the original miners in the 1930s was reported in the "Daily News" newspaper (June 1933), which wrote that the first parcel processed from Burracoppin had produced gold grades of 49g/t Au. The workings targeted mineralisation hosted in narrow, steeply-dipping veins and fault zones within a sequence of gabbro and granite at or close to its western margin in pelitic sediments. The general strike is north-south, and units are folded into a series of open folds. The Easter Gift workings occur in mafic granulite and metasediments and occupy a similar stratigraphic position to the Christmas Gift-Benbur North-Benbur workings to the north. Laterites that cover the Archaean rock sequence also carry gold mineralisation. The laterite consists of loose pisolites with a significant sand matrix component at the surface, grading into a poorly to well cemented nodular laterite layer. Gold mineralisation appears to be restricted to the iron-rich laterites. ## Appendix 1 – JORC Code, 2012 Edition, Table 1 report Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections) | Criteria | JORC Code explanation | Commentary | |------------------------|---|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. | All holes were sampled on a 1m downhole interval basis. A representation of the rock chips from each 1m interval was collected and stored in RC chip trays for later use. All sampling lengths and other logging data were recorded in GRL's standard sampling record spreadsheets. Data includes from and to measurements, colour, lithology, magnetic susceptibility, structures etc. Visible sulphide content was logged as well as alteration and weathering. Industry-standard practice was used in the processing of samples for assay, with 1m intervals of RC chips collected in green plastic and calico bags. | | Drilling
techniques | Drill type (eg core, reverse
circulation, open-hole hammer,
rotary air blast, auger,
Bangka,
sonic, etc) and details. | In this program, reverse circulation (RC) percussion drill holes were used. The hole dip was -50°. RC percussion drilling was performed with a face sampling hammer bit (bit diameter between 4½ and 5 ¼ inches), and samples were collected by a cone splitter. | | Drill sample recovery | Method of recording and
assessing core and chip sample
recoveries and results assessed. | RC drill chip sample recovery was recorded by visual estimation. Overall estimated recovery was high. All samples were dry as a result of appropriate air pressure and volume and the lack of groundwater. Measures are taken to ensure maximum RC sample recoveries included maintaining a clean cyclone and drilling equipment, as well as regular communication with the drillers and slowing drill advance rates when variable to poor ground conditions are encountered. | | Logging | Whether core and chip samples
have been geologically and
geotechnically logged to a level
of detail to support appropriate | The drill chips were geologically logged at 1m intervals with detailed recording of lithology, alteration, mineralisation and other observations such as colour, moisture and recovery. Drill chips were collected and sieved before being placed into reference chip trays for visual logging at 1m intervals. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | Mineral Resource Estimation, mining studies and metallurgical studies. | Logging was performed at the time of drilling, and planned drill hole target
lengths were adjusted by the geologist during drilling. The geologist also
oversaw all sampling and drilling practices. A small selection of representative
chips was collected for every 1-meter interval and stored in chip trays as well
as a representative split of mineralised areas stored for potential future use. | | Sub-sampling
techniques and
sample
preparation | For all sample types, the nature,
quality and appropriateness of
the sample preparation
technique. | Im Samples were recovered using a rig-mounted cone splitter during drilling into a calico sample bag. The sample target weight was between 2 and 4kg. QAQC was employed. A standard, blank or duplicate sample was inserted into the sample stream at regular intervals and also at specific intervals based on the geologist's discretion. Standards were quantified industry standards. Duplicate samples were taken using the same sample sub-sample technique as the original sub-sample and inserted at the geologist's discretion. Sample sizes are appropriate for the nature of mineralisation. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | All AS2 samples were submitted to Bureau Veritas laboratories in Adelaide. The samples were sorted, wet weighed, dried then weighed again. Primary preparation involved crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which was pulverised in a vibrating pulveriser. All coarse residues have been retained. The samples have been analysed by a 40g lead collection fire assay as well as multi acid digest with an Inductively Coupled Plasma (ICP) Optical Emission Spectrometry finish for multi elements The lab randomly inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. AS2 also inserted Certified Reference Material (CRM) samples and blanks were inserted at least every 10 samples to assess the accuracy and reproducibility of the drill core results. All of the QAQC data has been statistically assessed to determine if results were within the certified standard deviations of the reference material. If required a batch or a portion of the batch may be re-assayed. (no re-assays required for the data in the release). | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. | | | Criteria | JORC Code explanation | Commentary | |--|--|---| | | Discuss any adjustment to assay data. | | | Location of data points | Accuracy and quality of surveys
used to locate drill holes (collar
and down-hole surveys),
trenches, mine workings and
other locations used in Mineral
Resource estimation. | Collar Survey - Collars were surveyed by high precision RTK enabled drone and are accurate to within 2 - 10cm Down Hole Survey - Downhole surveys were conducted using a Gyro. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | The holes in this announcement were designed to target areas with relatively sparse drill density. Grade continuity of the targeted lodes cannot be determined from this data alone. Results are shown in appendix 3. No compositing was done. | | Orientation of
data in relation to
geological
structure | Whether the orientation of
sampling achieves unbiased
sampling of possible structures
and the extent to which this is
known, considering the deposit
type. | The holes were drilled perpendicular to the mapped strike of the lodes and surface outcropping lithologies and drilled from the hanging wall side toward the steeply east-dipping lodes. The orientation of the drilling is deemed appropriate and unbiased. | | Sample security | The measures taken to ensure sample security. | All samples were collected and accounted for by AS2 employees/consultants during drilling. All samples were bagged into calico and plastic bags and closed with cable ties. Samples were transported to Perth from the logging site by AS2 employees/ consultants and submitted to the lab using courier companies. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for. | | Audits or reviews | The results of any audits or
reviews of sampling techniques
and data.
 | No audits have been conducted on the historic data to our knowledge. | Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |---|--|---| | Mineral tenement
and land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. | The Burracoppin Project (E70/5049) is located approximately 20km east of Merredin and 15km west of the Edna May Gold Mine in the eastern wheat belt of WA. The project is easily accessible from Merredin using the Great Eastern Highway. The Burracoppin South Road cross cuts some of the tenures. The exploration rights to the project are owned 100% by the Askari Metals Limited through the granted exploration license E70/5049. | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | | | Geology | Deposit type, geological setting and style of mineralisation. | The area is dominated by gently undulating topography with isolated lateritic breakaways preserved on an intensely developed regolith. It is underlain by Archaean granite/gneiss greenstone terrane metamorphosed to amphibolite/granulite grade. Minor banded iron formation outcrops are known, and aplite-pegmatite dykes intrude the amphibolites at the Burgess Find gold workings. Burges Find, Chrismas Gift, Benbur and Easter Gift were the four main areas mined at Burracoppin. (See Figure 2 below) The Burgess Find, Chrismas Gift and Benbur mines reported production figures of 410 tonnes, 750 tonnes and 1030 tonnes, respectively. Production of the original miners in the 1930s was reported in the "Daily News" newspaper (June 1933), which wrote that the first parcel processed from Burracoppin had produced gold grades of 49g/t. The workings targeted mineralisation hosted in narrow, vertically dipping veins that occur within a gabbro dyke at or close to its western margin in pelitic sediments. The veins and gabbro strike north-south and are folded into a series of open folds. The Easter Gift workings occur in mafic granulite and metasediments and occupy a similar stratigraphic position to that of the Christmas Gift-Benbur North-Benbur workings to the north. Laterites that cover the Archaean rock sequence also carry gold mineralisation. The laterite consists of loose pisolites with a significant sand matrix component at the surface, grading into a poorly to well cemented nodular laterite layer. Gold mineralisation appears to be restricted to iron-rich laterites. | | Drill hole
Information | A summary of all information
material to the understanding of the
exploration results including a | Total drilling to the date of this report was 9,352 metres comprising of: Drillhole Type | | Criteria | JORC Code explanation | Commentary | |--|--|--| | | tabulation of the following
information for all Material drill
holes: | Note: The RAB and Aircore holes were used as soils samples as is indicated by their average depth. The table below shows recent AS2 RC drill details | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | No grade aggregation, weighting, or cut-off methods were used for this announcement. | | Relationship
between
mineralisation
widths and
intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. | The mineralised units are near vertical, and drilling has almost exclusively been conducted from the east at optimal angles with the mineralised units. The drilling angle is about -50 degrees, resulting in mineralised intersections slightly longer than the true width. Interpretation of the mineralised units honours the true width. | | Criteria | JORC Code explanation | Commentary | |--|--|--| | Diagrams | Appropriate maps and sections
(with scales) and tabulations of
intercepts should be included for
any significant discovery being
reported These should include, but
not be limited to a plan view of drill
hole collar locations and appropriate
sectional views. | Maps presented in the text of the document | | Balanced
reporting | Where comprehensive reporting of
all Exploration Results is not
practicable, representative
reporting of both low and high
grades and/or widths should be
practised to avoid misleading
reporting of results. | All results of Askari Metals' samples have been reported in this releaseSee
appendix 3. If info about additional elements is sought, please contact the
AS2 Board. | | Other
substantive
exploration data | Other exploration data, if meaningful and material, should be reported, including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | See appendix 2. | | Further work | The nature and scale of planned
further work (eg tests for lateral
extensions or depth extensions or
large-scale step-out drilling). | Currently under assessment. Follow-up work is required, as mentioned in
the body of the announcement. | # Appendix 2. Historic Exploration in the
area of E70/5049_Burracoppin | REPORT_YEAR | OPERATOR | TARGET_COMMODITY | PROJECT | ANUMBER | |--------------|---|---|---------------------------------|------------------| | 1981 | VALIANT CONSOLIDATED LTD | Au | Burgess Find | 9736 | | 1981 | VALIANT CONSOLIDATED LTD | Au | Burgess Find | 16524 | | 1985 | AUST CONSOLIDATED MINERALS | Au | Westonia | 16639 | | 1753 | CARPENTARIA EXP CO PTY LTD | Au | Westonia | 17401 | | 1986 | AUST CONSOLIDATED MINERALS | Au | Westonia | 18730 | | | LTD | | | | | 1986
1986 | CARPENTARIA EXP CO PTY LTD WESTONIA MINES PTY LTD | Au | Westonia West Westonia | 18974
19535 | | 1986 | MIRALGA MINING | Au
 Au | Burgess Find | 20003 | | | AUST CONSOLIDATED MINERALS | | | | | 1987 | LTD | Au | Westonia | 20186 | | 1987 | AUREX PTY LTD QESTORE PTY LTD | Au | West Westeria | 20818
21701 | | 1987 | AUST CONSOLIDATED MINERALS | Au | West Westonia | | | 1987 | LTD | Au | Westonia | 22011 | | 1988 | AUST CONSOLIDATED MINERALS | Au | Corsini's - Westonia | 24889 | | | LTD | | | | | 1988 | WESTONIA MINES PTY LTD AUST CONSOLIDATED MINERALS | Au | Westonia West | 25229 | | 1988 | LTD | Au | West Westonia | 27080 | | 1988 | AUST CONSOLIDATED MINERALS | Au | Leaches Block | 27082 | | 1300 | LTD | Au | Leaches Block | 27002 | | 1988 | AUST CONSOLIDATED MINERALS | Au | West Westonia | 27083 | | 1000 | AUST CONSOLIDATED MINERALS | Λ | Ci-i-i- | 27004 | | 1988 | LTD | Au | Corsini's | 27084 | | 1989 | MIRALGA MINING | Au | Burgess Find | 29857 | | 1993 | MR FIRTH DA | Au | Burgess and Bennett
Find | 39454 | | 1994 | MR RUTHERFORD JW | Au | Burracoppin | 42589 | | 1994 | CAMBRIAN RESOURCES NL | Au | Burgess and Bennett | 43181 | | | | | Find | | | 1995 | CAMBRIAN RESOURCES NL | Au | Benbur West Burgess and Bennett | 45912 | | 1995 | CAMBRIAN RESOURCES NL | Au | Find | 46217 | | 1996 | CAMBRIAN RESOURCES NL | Au | Burracoppin | 47133 | | 1996 | CAMBRIAN RESOURCES NL | Au | Benbur West | 49289 | | 1996 | CAMBRIAN RESOURCES NL | Au | Burgess and Bennett
Find | 49338 | | 1996 | CAMBRIAN RESOURCES NL | Au | Burracoppin | 49526 | | 1997 | CAMBRIAN RESOURCES NL | Au | Burracoppin | 50656 | | 1997 | CAMBRIAN RESOURCES NL | Au | Burgess and Bennett | 52467 | | 1997 | CAMBRIAN RESOURCES NL | Au | Find
 Benbur West | 52468 | | | | | Burracoppin gold | | | 1997 | CAMBRIAN RESOURCES NL | Au | exploration | 52479 | | 1997 | CAMBRIAN RESOURCES NL | Au | Benbur West | 52481 | | 1997 | CAMBRIAN RESOURCES NL | Au
Au | Burracoppin
 Burracoppin | 53321
53845 | | 1998 | CAMBRIAN RESOURCES NL | Au | Burracoppin | 55244 | | 2007 | MAGNETIC RESOURCES NL | Au; Ni | Koonadgin | 76560 | | 2008 | MAGNETIC RESOURCES NL | Au | Koonadgin | 79047 | | 2008 | MAGNETIC RESOURCES NL | Au | Koonadgin | 79048 | | 2009
2010 | MAGNETIC RESOURCES NL MAGNETIC RESOURCES NL | Au; Fe
Au: Fe | Koonadgin
Koonadgin | 84076
87284 | | 2010 | ENTERPRISE METALS LTD | BaseMet; Au; Fe; PGE's | Burracoppin | 90428 | | 2012 | ENTERPRISE METALS LTD | BaseMet; Au; Fe; PGE's | Burracoppin | 93797 | | 2012 | ENTERPRISE METALS LTD | Au; PGE's | Burracoppin | 93879 | | 2012
2012 | Maka Minerals Pty Ltd Maka Minerals Pty Ltd | Au; Fe; Ni; PGE's | Koonadgin
Tandagin | 94704
95629 | | 2013 | ENTERPRISE METALS LTD | Au; Fe; Ni; PGE's
BaseMet; Au; Fe; PGE's | Burracoppin | 95629 | | 2013 | ENTERPRISE METALS LTD | BaseMet; Au; Fe; PGE's | Burracoppin | 98573 | | 2013 | ENTERPRISE METALS LTD | Au; Fe | Burracoppin | 98860 | | 2013 | ENTERPRISE METALS LTD | Au; Fe | Burracoppin | 100065 | | 2013
2014 | Maka Minerals Pty Ltd ENTERPRISE METALS LTD | COBALT; Au; Ni
BaseMet; Au; Fe; PGE's | Tandagin
Burracoppin | 100275
101937 | | 2014 | ENTERPRISE METALS LTD | Fe; Au; BaseMet; PGE's | Burracoppin | 104197 | | 2015 | ENTERPRISE METALS LTD | Fe; Au; BaseMet; PGE's | Burracoppin | 105931 | | 2020 | CYGNUS GOLD LIMITED | Au | Burracoppin | 124414 | Appendix 3: Table of assay results from the recent Askari Metals Ltd program | Hole_ID |) Туре | Sai | mpleID | From | То | Au_ppm | Hole_ID | Туре | SampleID | From | То | Au_ppm | Hole_ID | Туре | SampleID | From | То | Au_ppm | |------------------|--------|-----|------------------|----------|----------|--------------|--------------------|----------|---|------------|------------|--------|--------------------|----------|----------------------|------------|------------|--------------| | ABRC03 | 3 RC | | 204355 | 0 | 1 | 0.02 | ABRC035 | RC | AS204669 | 108 | 109 | 0.00 | ABRC038 | RC | AS204976 | 64 | 65 | 0.13 | | ABRC03 | | | 204356 | 1 | 2 | 0.01 | ABRC035 | RC | AS204670 | 109 | 110 | 0.00 | ABRC038 | RC | AS204977 | 65 | 66 | 0.02 | | ABRC03
ABRC03 | | | 204357
204358 | 3 | 4 | 0.00 | ABRC035
ABRC035 | RC
RC | AS204671
AS204672 | 110
111 | 111
112 | 0.02 | ABRC038
ABRC038 | RC
RC | AS204978
AS204979 | 66 | 67
68 | 0.01 | | ABRC03 | | | 204359 | 4 | 5 | 0.00 | ABRC035 | RC | AS204673 | 112 | 113 | 0.00 | ABRC038 | RC | AS204980 | 68 | 69 | 0.03 | | ABRC03 | | | 204360 | 5 | 6 | 0.00 | ABRC035 | RC | AS204674 | 113 | 114 | 0.00 | ABRC038 | RC | AS204981 | 69 | 70 | 0.05 | | ABRC03 | | | 204361 | 7 | 7 | 0.00 | ABRC035 | RC | AS204675 | 114 | 115 | 0.02 | ABRC038 | RC | AS204982 | 70 | 71 | 0.01 | | ABRC03
ABRC03 | | | 204362
204363 | 8 | 9 | 0.00 | ABRC035
ABRC035 | RC
RC | AS204676
AS204677 | 115
116 | 116
117 | 0.01 | ABRC038
ABRC038 | RC
RC | AS204983
AS204984 | 71
72 | 72
73 | 0.01 | | ABRC03 | | | 204364 | 9 | 10 | 0.00 | ABRC035 | RC | AS204678 | 117 | 118 | 0.04 | ABRC038 | RC | AS204985 | 73 | 74 | 0.01 | | ABRC03 | | AS | 204365 | 10 | 11 | 0.00 | ABRC035 | RC | AS204679 | 118 | 119 | 0.00 | ABRC038 | RC | AS204986 | 74 | 75 | 0.04 | | ABRC03 | | | 204366 | 11 | 12 | 0.00 | ABRC035 | RC | AS204680 | 119 | 120 | 0.02 | ABRC038 | RC | AS204987 | 75 | 76 | 0.01 | | ABRC03
ABRC03 | | | 204367
204368 | 12 | 13
14 | 0.00 | ABRC035
ABRC035 | RC
RC | AS204681
AS204682 | 120
121 | 121
122 | 0.00 | ABRC038
ABRC038 | RC
RC | AS204988
AS204989 | 76
77 | 77
78 | 0.00 | | ABRC03 | | | 204369 | 14 | 15 | 0.00 | ABRC035 | RC | AS204683 | 122 | 123 | 0.04 | ABRC038 | RC | AS204990 | 78 | 79 | 0.00 | | ABRC03 | | | 204371 | 16 | 17 | 0.00 | ABRC035 | RC | AS204684 | 123 | 124 | 0.00 | ABRC038 | RC | AS204991 | 79 | 80 | 0.00 | | ABRC03 | | | 204372 | 17 | 18 | 0.00 | ABRC036 | RC | AS204685 | 0 | 1 | 0.01 | ABRC038 | RC | AS204992 | 80 | 81 | 0.01 | | ABRC03
ABRC03 | | | 204373
204374 | 18
19 | 19
20 | 0.01
0.01 | ABRC036
ABRC036 | RC
RC | AS204686
AS204687 | 2 | 3 | 0.00 | ABRC038
ABRC038 | RC
RC | AS204993
AS204994 | 81
82 | 82
83 | 0.00 | | ABRC03 | | | 204375 | 20 | 21 | 0.01 | ABRC036 | RC | AS204688 | 3 | 4 | 0.00 | ABRC038 | RC | AS204995 | 83 | 84 | 0.01 | | ABRC03 | | | 204376 | 21 | 22 | 0.00 | ABRC036 | RC | AS204689 | 4 | 5 | 0.00 | ABRC038 | RC | AS204996 | 84 | 85 | 0.02 | | ABRC03 | | | 204378 | 23 | 24 | 0.00 | ABRC036 | RC | AS204690 | 5 | 6 | 0.00 | ABRC038 | RC | AS204997 | 85 | 86 | 0.01 | | ABRC03
ABRC03 | | | 204379
204380 | 24
25 | 25
26 | 0.01 | ABRC036
ABRC036 | RC
RC | AS204691
AS204692 | 7 | 7 | 0.00 | ABRC038
ABRC038 | RC
RC | AS204998
AS204999 | 86
87 | 87
88 | 0.00 | | ABRC03 | | | 204381 | 26 | 27 | 0.00 | ABRC036 | RC | AS204693 | 8 | 9 | 0.00 | ABRC038 | RC | AS204999
AS205000 | 88 | 89 | 0.02 | | ABRC03 | | | 204382 | 27 | 28 | 0.00 | ABRC036 | RC | AS204694 | 9 | 10 | 0.00 | ABRC038 | RC | AS205001 | 89 | 90 | 0.02 | | ABRC03 | | | 204384 | 29 | 30 | 0.00 | ABRC036 | RC | AS204695 | 10 | 11 | 0.00 | ABRC038 | RC | AS205002 | 90 | 91 | 0.01 | | ABRC03 | | | 204385 | 30 | 31 | 0.00 | ABRC036 | RC | AS204696
AS204697 | 11 | 12 | 0.00 | ABRC038 | RC | AS205003
AS205004 | 91 | 92 | 0.01 | | ABRC03 | | | 204386
204387 | 31
32 | 32
33 | 0.06
2.11 | ABRC036
ABRC036 | RC
RC | AS204697
AS204698 | 12 | 13
14 | 0.00 | ABRC038
ABRC038 | RC
RC | AS205004
AS205005 | 92 | 93
94 | 0.01 | | ABRC03 | | | 204388 | 33 | 34 | 0.35 | ABRC036 | RC | AS204699 | 14 | 15 | 0.00 | ABRC038 | RC | AS205006 | 94 | 95 | 0.02 | | ABRC03 | 3 RC | AS | 204389 | 34 | 35 | 0.03 | ABRC036 | RC | AS204700 | 15 | 16 | 0.00 | ABRC038 | RC | AS205007 | 95 | 96 | 0.01 | | ABRC03 | | | 204390 | 35 | 36 | 0.01 | ABRC036 | RC | AS204701 | 16 | 17 | 0.00 | ABRC038 | RC | AS205008 | 96 | 97 | 0.07 | | ABRC03
ABRC03 | | | 204391
204392 | 36
37 | 37
38 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204702
AS204703 | 17
18 | 18
19 | 0.00 | ABRC038
ABRC038 | RC
RC | AS205009
AS205011 | 97
98 | 98
99 | 0.00 | | ABRC03 | | | 204393 | 38 | 39 | 0.00 | ABRC036 | RC | AS204704 | 19 | 20 | 0.00 | ABRC038 | RC | AS205011 | 99 | 100 | 0.00 | | ABRC03 | 3 RC | AS | 204394 | 39 | 40 | 0.00 | ABRC036 | RC | AS204705 | 20 | 21 | 0.00 | ABRC038 | RC | AS205013 | 100 | 101 | 0.02 | | ABRC03 | | | 204395 | 40 | 41 | 0.01 | ABRC036 | RC | AS204706 | 21 | 22 | 0.00 | ABRC038 | RC | AS205014 | 101 | 102 | 0.01 | | ABRC03
ABRC03 | | | 204396
204397 | 41
42 | 42
43 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204707
AS204708 | 22 | 23
24 | 0.00 | ABRC038
ABRC038 | RC
RC | AS205015
AS205016 | 102 | 103
104 | 0.01 | | ABRC03 | | | 204397 | 43 | 44 | 0.00 | ABRC036 | RC | AS204708
AS204709 | 24 | 25 | 0.00 | ABRC038 | RC | AS205016
AS205017 | 103 | 104 | 0.00 | | ABRC03 | 3 RC | AS | 204399 | 44 | 45 | 0.00 | ABRC036 | RC | AS204710 | 25 | 26 | 0.00 | ABRC038 | RC | AS205018 | 105 | 106 | 0.19 | | ABRC03 | | | 204400 | 45 | 46 | 0.00 | ABRC036 | RC | AS204712 | 27 | 28 | 0.00 | ABRC038 | RC | AS205019 | 106 | 107 | 0.00 | | ABRC03
ABRC03 | | | 204401
204402 | 46
47 | 47
48 | 0.00 |
ABRC036
ABRC036 | RC
RC | AS204713
AS204714 | 28
29 | 29
30 | 0.01 | ABRC038
ABRC038 | RC
RC | AS205021
AS205022 | 107
108 | 108
109 | 0.00 | | ABRC03 | | | 204402 | 48 | 49 | 0.00 | ABRC036 | RC | AS204714
AS204715 | 30 | 31 | 0.01 | ABRC038 | RC | AS205022
AS205023 | 109 | 110 | 0.00 | | ABRC03 | | | 204404 | 49 | 50 | 0.00 | ABRC036 | RC | AS204716 | 31 | 32 | 0.02 | ABRC038 | RC | AS205024 | 110 | 111 | 0.00 | | ABRC03 | | | 204405 | 50 | 51 | 0.01 | ABRC036 | RC | AS204717 | 32 | 33 | 0.04 | ABRC038 | RC | AS205027 | 112 | 113 | 0.10 | | ABRC03
ABRC03 | | | 204406
204407 | 51 | 52
53 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204718
AS204719 | 33
34 | 34
35 | 0.02 | ABRC038
ABRC038 | RC
RC | AS205028
AS205029 | 113
114 | 114
115 | 0.14 | | ABRC03 | | | 204407 | 52
53 | 54 | 0.00 | ABRC036 | RC | AS204719
AS204720 | 35 | 36 | 0.00 | ABRC038 | RC | AS205029
AS205031 | 115 | 116 | 0.18 | | ABRC03 | | | 204409 | 54 | 55 | 0.00 | ABRC036 | RC | AS204721 | 36 | 37 | 0.00 | ABRC038 | RC | AS205032 | 116 | 117 | 0.00 | | ABRC03 | | | 204410 | 55 | 56 | 0.02 | ABRC036 | RC | AS204723 | 38 | 39 | 0.02 | ABRC038 | RC | AS205033 | 117 | 118 | 0.01 | | ABRC03
ABRC03 | | | 204411 | 56
57 | 57
58 | 0.01 | ABRC036
ABRC036 | RC
RC | AS204724
AS204725 | 39
40 | 40
41 | 0.00 | ABRC038
ABRC038 | RC
RC | AS205034
AS205035 | 118
119 | 119
120 | 0.00 | | ABRC03 | | | 204412 | 58 | 59 | 0.00 | ABRC036 | RC | AS204725
AS204726 | 41 | 42 | 0.00 | ABRC038 | RC | AS205035
AS205036 | 120 | 121 | 0.00 | | ABRC03 | | | 204414 | 59 | 60 | 0.00 | ABRC036 | RC | AS204727 | 42 | 43 | 0.00 | ABRC038 | RC | AS205037 | 121 | 122 | 0.00 | | ABRC03 | | | 204415 | 60 | 61 | 0.00 | ABRC036 | RC | AS204728 | 43 | 44 | 0.00 | ABRC038 | RC | AS205038 | 122 | 123 | 0.01 | | ABRC03 | | | 204416 | 61 | 62 | 0.00 | ABRC036 | RC | AS204729
AS204731 | 44 | 45 | 0.00 | ABRC038 | RC | AS205039 | 123 | 124 | 0.14 | | ABRC03 | | | 204417 | 62
63 | 63
64 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204731
AS204732 | 46
47 | 47
48 | 0.02 | ABRC039
ABRC039 | RC
RC | AS205041
AS205042 | 1 | 2 | 0.05 | | ABRC03 | | AS | 204419 | 64 | 65 | 0.00 | ABRC036 | RC | AS204733 | 48 | 49 | 0.07 | ABRC039 | RC | AS205043 | 2 | 3 | 0.02 | | ABRC03 | | | 204420 | 65 | 66 | 0.00 | ABRC036 | RC | AS204734 | 49 | 50 | 0.02 | ABRC039 | RC | AS205044 | 3 | 4 | 0.02 | | ABRC03
ABRC03 | | | 204421 | 66 | 67
68 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204735
AS204736 | 50
51 | 51
52 | 0.02 | ABRC039
ABRC039 | RC
RC | AS205045
AS205046 | 5 | 5 | 0.01 | | ABRC03 | | | 204422 | 67
68 | 69 | 0.00 | ABRC036 | RC | AS204730
AS204737 | 52 | 53 | 0.12 | ABRC039 | RC | AS205040
AS205047 | 6 | 7 | 0.00 | | ABRC03 | | | 204424 | 69 | 70 | 0.00 | ABRC036 | RC | AS204738 | 53 | 54 | 0.03 | ABRC039 | RC | AS205048 | 7 | 8 | 0.01 | | ABRC03 | | | 204425 | 70 | 71 | 0.00 | ABRC036 | RC | AS204739 | 54 | 55 | 0.00 | ABRC039 | RC | AS205049 | 8 | 9 | 0.01 | | ABRC03
ABRC03 | | | 204426
204427 | 71
72 | 72
73 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204740
AS204741 | 55
56 | 56
57 | 0.01 | ABRC039
ABRC039 | RC
RC | AS205051
AS205052 | 9 | 10
11 | 0.03 | | ABRC03 | | | 204427 | 73 | 74 | 0.00 | ABRC036 | RC | AS204741
AS204742 | 57 | 58 | 0.00 | ABRC039 | RC | AS205052
AS205053 | 11 | 12 | 0.02 | | ABRC03 | 3 RC | AS | 204429 | 74 | 75 | 0.00 | ABRC036 | RC | AS204743 | 58 | 59 | 0.06 | ABRC039 | RC | AS205054 | 12 | 13 | 0.42 | | ABRC03 | | | 204430 | 75 | 76 | 0.00 | ABRC036 | RC | AS204744 | 59 | 60 | 0.03 | ABRC039 | RC | AS205055 | 13 | 14 | 0.19 | | ABRC03
ABRC03 | | | 204431
204432 | 76
77 | 77
78 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204745
AS204746 | 60 | 61
62 | 0.03 | ABRC039
ABRC039 | RC
RC | AS205056
AS205057 | 14
15 | 15
16 | 0.01 | | ABRC03 | | | 204433 | 78 | 79 | 0.00 | ABRC036 | RC | AS204740
AS204747 | 62 | 63 | 0.01 | ABRC039 | RC | AS205057
AS205058 | 16 | 17 | 0.03 | | ABRC03 | | | 204434 | 79 | 80 | 0.02 | ABRC036 | RC | AS204748 | 63 | 64 | 0.01 | ABRC039 | RC | AS205059 | 17 | 18 | 0.00 | | ABRC03 | | | 204435 | 80 | 81 | 0.00 | ABRC036 | RC RC | AS204749 | 64 | 65 | 0.01 | ABRC039 | RC | AS205061 | 18 | 19 | 0.00 | | ABRC03
ABRC03 | | | 204436
204437 | 81
82 | 82
83 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204750
AS204751 | 65
66 | 66
67 | 0.00 | ABRC039
ABRC039 | RC
RC | AS205062
AS205063 | 19
20 | 20 | 0.10 | | ABRC03 | | | 204438 | 83 | 84 | 0.00 | ABRC036 | RC | AS204752 | 67 | 68 | 0.00 | ABRC039 | RC | AS205064 | 21 | 22 | 0.00 | | ABRC03 | 3 RC | | 204439 | 84 | 85 | 0.00 | ABRC036 | RC | AS204753 | 68 | 69 | 0.01 | ABRC039 | RC | AS205065 | 22 | 23 | 0.00 | | ABRC03 | | | 204440 | 85 | 86 | 0.00 | ABRC036 | RC | AS204754 | 69 | 70 | 0.00 | ABRC039 | RC | AS205066 | 23 | 24 | 0.00 | | ABRC03
ABRC03 | | | 204441 | 86
87 | 87
88 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204755
AS204756 | 70
71 | 71
72 | 0.01 | ABRC039
ABRC039 | RC
RC | AS205067
AS205068 | 24
25 | 25
26 | 0.00 | | ABRC03 | | | 204443 | 88 | 89 | 0.01 | ABRC036 | RC | AS204757 | 72 | 73 | 0.01 | ABRC039 | RC | AS205069 | 26 | 27 | 0.04 | | ABRC03 | | | 204444 | 89 | 90 | 0.00 | ABRC036 | RC | AS204758 | 73 | 74 | 0.01 | ABRC039 | RC | AS205071 | 27 | 28 | 0.02 | | ABRC03 | | | 204445 | 90 | 91 | 0.00 | ABRC036 | RC RC | AS204759 | 74 | 75 | 0.01 | ABRC039 | RC | AS205072 | 28 | 29 | 0.01 | | ABRC03
ABRC03 | | | 204446 | 91
92 | 92
93 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204760
AS204761 | 75
76 | 76
77 | 0.00 | ABRC039
ABRC039 | RC
RC | AS205073
AS205074 | 29
30 | 30
31 | 0.00 | | ABRC03 | | | 204447 | 93 | 94 | 0.00 | ABRC036 | RC | AS204761
AS204762 | 77 | 78 | 0.00 | ABRC039 | RC | AS205074
AS205077 | 32 | 33 | 0.01 | | ABRC03 | 3 RC | AS | 204449 | 94 | 95 | 0.00 | ABRC036 | RC | AS204763 | 78 | 79 | 0.00 | ABRC039 | RC | AS205078 | 33 | 34 | 0.12 | | ABRC03 | | | 204450 | 95 | 96 | 0.00 | ABRC036 | RC | AS204764 | 79 | 80 | 0.00 | ABRC039 | RC | AS205079 | 34 | 35 | 0.76 | | ABRC03
ABRC03 | | | 204451
204452 | 96
97 | 97
98 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204765
AS204766 | 80
81 | 81
82 | 0.00 | ABRC039
ABRC039 | RC
RC | AS205081
AS205082 | 35
36 | 36
37 | 0.31 | | ABRC03 | | | 204452 | 99 | 100 | 0.00 | ABRC036 | RC | AS204766
AS204767 | 81 | 83 | 0.00 | ABRC039 | RC | AS205082
AS205083 | 36 | 38 | 0.74 | | ABRC03 | 4 RC | AS | 204455 | 0 | 1 | 0.02 | ABRC036 | RC | AS204768 | 83 | 84 | 0.00 | ABRC039 | RC | AS205084 | 38 | 39 | 0.23 | | ABRC03 | | | 204456 | 1 | 2 | 0.01 | ABRC036 | RC | AS204769 | 84 | 85 | 0.00 | ABRC039 | RC | AS205085 | 39 | 40 | 0.27 | | ABRC03 | | | 204457 | 2 | 3 | 0.00 | ABRC036 | RC RC | AS204770 | 85 | 86 | 0.00 | ABRC039 | RC | AS205086 | 40 | 41 | 0.27 | | ABRC03
ABRC03 | | | 204459
204460 | 5 | 5
6 | 0.01 | ABRC036
ABRC036 | RC
RC | AS204771
AS204772 | 86
87 | 87
88 | 0.00 | ABRC039
ABRC039 | RC
RC | AS205087
AS205088 | 41 | 42 | 0.51
8.74 | | ABRC03 | | | 204461 | 6 | 7 | 0.01 | ABRC036 | RC | AS204773 | 88 | 89 | 0.02 | ABRC039 | RC | AS205089 | 43 | 44 | 1.62 | | ABRC03 | 4 RC | AS | 204462 | 7 | 8 | 0.01 | ABRC036 | RC | AS204774 | 89 | 90 | 0.01 | ABRC039 | RC | AS205091 | 44 | 45 | 0.07 | | ABRC03 | | | 204463 | 8 | 9 | 0.01 | ABRC036 | RC | AS204775 | 90 | 91 | 0.01 | ABRC039 | RC | AS205092 | 45 | 46 | 0.04 | | ABRC03 | | | 204465
204466 | 10
11 | 11
12 | 0.01 | ABRC036
ABRC036 | RC
RC | AS204777
AS204778 | 92 | 93
94 | 0.02 | ABRC039
ABRC039 | RC
RC | AS205093
AS205094 | 46 | 47
48 | 0.17 | | ABRC03 | | | | 11 | 14 | 0.01 | ADITOUSU | I IIC | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , ,,, | J-7 | 5.10 | 10110033 | , nc | | / | 70 | 0.01 | | Hole_ID | Type | SampleID | From | То | Au_ppm | Hole_ID | Туре | SampleID | From | То | Au_ppm | Hole_ID | Туре | SampleID | From | То | Au_ppm | |--------------------|----------|----------------------|----------|------------|--------------|----------------------|----------|----------------------|------------|------------|--------------|--------------------|----------|----------------------|------------|------------|--------| | ABRC034 | RC | AS204467 | 12 | 13 | 0.00 | ABRC036 | RC | AS204779 | 94 | 95 | 0.00 | ABRC039 | RC | AS205095 | 48 | 49 | 0.01 | | ABRC034 | RC | AS204468 | 13 | 14 | 0.01 | ABRC036 | RC | AS204780 | 95 | 96 | 0.00 | ABRC039 | RC | AS205096 | 49 | 50 | 0.01 | | ABRC034 | RC | AS204469 | 14 | 15 | 0.01 | ABRC036 | RC | AS204781 | 96 | 97 | 0.00 | ABRC039 | RC | AS205097 | 50 | 51 | 0.01 | | ABRC034
ABRC034 | RC
RC | AS204470
AS204471 | 15
16 | 16
17 | 0.01 | ABRC036
ABRC036 | RC
RC | AS204782
AS204783 | 97
98 | 98
99 | 0.00 | ABRC039
ABRC039 | RC
RC | AS205098
AS205099 | 51
52 | 52
53 | 0.00 | | ABRC034 | RC | AS204471 | 17 | 18 | 0.00 | ABRC036 | RC | AS204784 | 99 | 100 | 0.02 | ABRC039 | RC | AS205101 | 53 | 54 | 0.01 | | ABRC034 | RC | AS204473 | 18 | 19 | 0.00 | ABRC036 | RC | AS204785 | 100 | 101 | 0.01 | ABRC039 | RC | AS205102 | 54 | 55 | 0.02 | | ABRC034 | RC | AS204474 | 19 | 20 | 0.00 | ABRC036 | RC | AS204786 | 101 | 102 | 0.00 | ABRC039 | RC | AS205103 | 55 | 56 | 0.00 | | ABRC034
ABRC034 | RC
RC | AS204475
AS204476 | 20 | 21 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204787
AS204788 | 102 | 103
104 | 0.00 | ABRC039
ABRC039 | RC
RC | AS205104
AS205105 | 56
57 | 57
58 | 0.03 | | ABRC034 | RC | AS204477 | 22 | 23 | 0.02 | ABRC036 | RC | AS204789 | 104 | 105 | 0.00 | ABRC039 | RC | AS205105 | 58 | 59 | 0.03 | | ABRC034 | RC | AS204478 | 23 | 24 | 0.03 | ABRC036 | RC | AS204790 | 105 | 106 | 0.00 | ABRC039 | RC | AS205107 |
59 | 60 | 0.03 | | ABRC034 | RC | AS204479 | 24 | 25 | 0.00 | ABRC036 | RC | AS204791 | 106 | 107 | 0.00 | ABRC039 | RC | AS205108 | 60 | 61 | 0.08 | | ABRC034
ABRC034 | RC
RC | AS204480
AS204481 | 25
26 | 26
27 | 0.00 | ABRC036
ABRC036 | RC
RC | AS204792
AS204793 | 107
108 | 108
109 | 0.00 | ABRC039
ABRC039 | RC
RC | AS205109
AS205111 | 61
62 | 62
63 | 0.02 | | ABRC034 | RC | AS204481
AS204482 | 27 | 28 | 0.00 | ABRC036 | RC | AS204794 | 109 | 110 | 0.00 | ABRC039 | RC | AS205111
AS205112 | 63 | 64 | 2.06 | | ABRC034 | RC | AS204483 | 28 | 29 | 0.01 | ABRC036 | RC | AS204795 | 110 | 111 | 0.01 | ABRC039 | RC | AS205113 | 64 | 65 | 0.45 | | ABRC034 | RC | AS204484 | 29 | 30 | 0.00 | ABRC036 | RC | AS204796 | 111 | 112 | 0.00 | ABRC039 | RC | AS205114 | 65 | 66 | 0.04 | | ABRC034
ABRC034 | RC
RC | AS204485
AS204486 | 30 | 31
32 | 0.01 | ABRC036
ABRC036 | RC
RC | AS204797
AS204798 | 112
113 | 113
114 | 0.04 | ABRC039
ABRC039 | RC
RC | AS205115
AS205116 | 66 | 67
68 | 0.01 | | ABRC034 | RC | AS204480
AS204487 | 32 | 33 | 0.00 | ABRC036 | RC | AS204799 | 114 | 115 | 0.01 | ABRC039 | RC | AS205110
AS205117 | 68 | 69 | 0.00 | | ABRC034 | RC | AS204488 | 33 | 34 | 0.00 | ABRC036 | RC | AS204800 | 115 | 116 | 0.02 | ABRC039 | RC | AS205118 | 69 | 70 | 0.01 | | ABRC034 | RC | AS204489 | 34 | 35 | 0.00 | ABRC036 | RC | AS204801 | 116 | 117 | 0.01 | ABRC039 | RC | AS205119 | 70 | 71 | 0.02 | | ABRC034
ABRC034 | RC
RC | AS204490
AS204491 | 35
36 | 36
37 | 0.00 | ABRC036
ABRC037 | RC
RC | AS204802
AS204803 | 117 | 118 | 0.00
1.92 | ABRC039
ABRC039 | RC
RC | AS205121
AS205122 | 71
72 | 72
73 | 0.01 | | ABRC034 | RC | AS204491
AS204492 | 37 | 38 | 0.00 | ABRC037 | RC | AS204803 | 1 | 2 | 2.72 | ABRC039 | RC | AS205122
AS205123 | 73 | 74 | 0.00 | | ABRC034 | RC | AS204493 | 38 | 39 | 0.42 | ABRC037 | RC | AS204805 | 2 | 3 | 1.69 | ABRC039 | RC | AS205124 | 74 | 75 | 0.00 | | ABRC034 | RC | AS204494 | 39 | 40 | 0.22 | ABRC037 | RC | AS204806 | 3 | 4 | 0.71 | ABRC039 | RC | AS205127 | 76 | 77 | 0.07 | | ABRC034
ABRC034 | RC
RC | AS204495
AS204496 | 40 | 41 | 0.03 | ABRC037
ABRC037 | RC
RC | AS204807
AS204808 | 5 | 5 | 0.31 | ABRC039
ABRC039 | RC
RC | AS205128
AS205129 | 77
78 | 78
79 | 0.00 | | ABRC034 | RC | AS204497 | 42 | 43 | 0.01 | ABRC037 | RC | AS204809 | 6 | 7 | 0.04 | ABRC039 | RC | AS205123
AS205131 | 79 | 80 | 0.00 | | ABRC034 | RC | AS204498 | 43 | 44 | 0.01 | ABRC037 | RC | AS204810 | 7 | 8 | 0.01 | ABRC039 | RC | AS205132 | 80 | 81 | 0.00 | | ABRC034 | RC | AS204499 | 44 | 45 | 0.01 | ABRC037 | RC | AS204811 | 8 | 9 | 0.01 | ABRC039 | RC | AS205133 | 81 | 82 | 0.00 | | ABRC034
ABRC034 | RC
RC | AS204500
AS204501 | 45
46 | 46
47 | 0.03
0.14 | ABRC037A
ABRC037A | RC
RC | AS204812
AS204813 | 0 | 2 | 1.31
0.92 | ABRC039
ABRC039 | RC
RC | AS205134
AS205135 | 82
83 | 83
84 | 0.00 | | ABRC034 | RC | AS204501
AS204502 | 47 | 48 | 0.14 | ABRC037A
ABRC037A | RC | AS204813
AS204814 | 2 | 3 | 0.92 | ABRC039 | RC | AS205135
AS205136 | 84 | 85 | 0.00 | | ABRC034 | RC | AS204503 | 48 | 49 | 0.00 | ABRC037A | RC | AS204815 | 3 | 4 | 0.72 | ABRC039 | RC | AS205137 | 85 | 86 | 0.03 | | ABRC034 | RC | AS204504 | 49 | 50 | 0.01 | ABRC037A | RC | AS204816 | 4 | 5 | 0.17 | ABRC039 | RC | AS205138 | 86 | 87 | 0.02 | | ABRC034
ABRC034 | RC
RC | AS204505
AS204506 | 50
51 | 51
52 | 0.00 | ABRC037A
ABRC037A | RC
RC | AS204817
AS204818 | 5 | 7 | 0.05 | ABRC039
ABRC039 | RC
RC | AS205139
AS205141 | 87
88 | 88
89 | 0.01 | | ABRC034 | RC | AS204506
AS204507 | 52 | 53 | 0.00 | ABRC037A | RC | AS204819 | 7 | 8 | 0.09 | ABRC039 | RC | AS205141
AS205142 | 89 | 90 | 0.03 | | ABRC034 | RC | AS204508 | 53 | 54 | 0.00 | ABRC037A | RC | AS204820 | 8 | 9 | 0.02 | ABRC039 | RC | AS205143 | 90 | 91 | 0.12 | | ABRC034 | RC | AS204509 | 54 | 55 | 0.01 | ABRC037A | RC | AS204821 | 9 | 10 | 0.01 | ABRC039 | RC | AS205144 | 91 | 92 | 0.05 | | ABRC034
ABRC034 | RC
RC | AS204510
AS204511 | 55
56 | 56
57 | 0.00 | ABRC037A
ABRC037A | RC
RC | AS204822
AS204823 | 10 | 11
12 | 0.04 | ABRC039
ABRC039 | RC
RC | AS205145
AS205146 | 92 | 93
94 | 0.01 | | ABRC034 | RC | AS204512 | 57 | 58 | 0.04 | ABRC037A | RC | AS204824 | 12 | 13 | 0.01 | ABRC039 | RC | AS205147 | 94 | 95 | 0.00 | | ABRC034 | RC | AS204513 | 58 | 59 | 0.03 | ABRC037A | RC | AS204825 | 13 | 14 | 0.00 | ABRC039 | RC | AS205148 | 95 | 96 | 0.01 | | ABRC034 | RC | AS204514 | 59 | 60 | 0.01 | ABRC037A | RC | AS204826 | 14 | 15 | 0.01 | ABRC039 | RC | AS205149 | 96 | 97 | 0.21 | | ABRC034
ABRC034 | RC
RC | AS204515
AS204516 | 60 | 61
62 | 0.01 | ABRC037A
ABRC037A | RC
RC | AS204827
AS204828 | 15
16 | 16
17 | 0.00 | ABRC039
ABRC039 | RC
RC | AS205151
AS205152 | 97
98 | 98
99 | 0.08 | | ABRC034 | RC | AS204517 | 62 | 63 | 0.01 | ABRC037A | RC | AS204829 | 17 | 18 | 0.00 | ABRC039 | RC | AS205153 | 99 | 100 | 0.02 | | ABRC034 | RC | AS204518 | 63 | 64 | 0.04 | ABRC037A | RC | AS204830 | 18 | 19 | 0.01 | ABRC039 | RC | AS205154 | 100 | 101 | 0.01 | | ABRC034 | RC | AS204519 | 64 | 65 | 0.02 | ABRC037A | RC | AS204831 | 19 | 20 | 0.00 | ABRC039 | RC | AS205155 | 101 | 102 | 0.00 | | ABRC034
ABRC034 | RC
RC | AS204520
AS204521 | 65
66 | 66
67 | 0.00 | ABRC037A
ABRC037A | RC
RC | AS204832
AS204833 | 20 | 21
22 | 0.09 | ABRC039
ABRC039 | RC
RC | AS205156
AS205157 | 102
103 | 103
104 | 0.00 | | ABRC034 | RC | AS204522 | 67 | 68 | 0.00 | ABRC037A | RC | AS204834 | 22 | 23 | 0.03 | ABRC039 | RC | AS205158 | 104 | 105 | 0.00 | | ABRC034 | RC | AS204523 | 68 | 69 | 0.00 | ABRC037A | RC | AS204835 | 23 | 24 | 0.00 | ABRC039 | RC | AS205159 | 105 | 106 | 0.00 | | ABRC034
ABRC034 | RC
RC | AS204524
AS204525 | 69
70 | 70
71 | 0.00 | ABRC037A | RC
RC | AS204836
AS204837 | 24
25 | 25
26 | 0.03 | ABRC039
ABRC039 | RC
RC | AS205161
AS205162 | 106
107 | 107
108 | 0.00 | | ABRC034 | RC | AS204525
AS204526 | 71 | 72 | 0.00 | ABRC037A
ABRC037A | RC | AS204838 | 26 | 27 | 0.01 | ABRC039 | RC | AS205162
AS205163 | 107 | 108 | 0.01 | | ABRC034 | RC | AS204527 | 72 | 73 | 0.00 | ABRC037A | RC | AS204839 | 27 | 28 | 0.01 | ABRC039 | RC | AS205164 | 109 | 110 | 0.13 | | ABRC034 | RC | AS204528 | 73 | 74 | 0.01 | ABRC037A | RC | AS204840 | 28 | 29 | 0.03 | ABRC039 | RC | AS205165 | 110 | 111 | 0.01 | | ABRC034
ABRC034 | RC
RC | AS204529
AS204530 | 74
75 | 75
76 | 0.00 | ABRC037A
ABRC037A | RC
RC | AS204841
AS204842 | 30 | 30
31 | 0.01 | ABRC039
ABRC039 | RC
RC | AS205166
AS205167 | 111
112 | 112
113 | 0.01 | | ABRC034 | RC | AS204531 | 76 | 77 | 0.00 | ABRC037A | RC | AS204842
AS204843 | 31 | 32 | 0.00 | ABRC039 | RC | AS205167
AS205168 | 113 | 114 | 0.00 | | ABRC034 | RC | AS204532 | 77 | 78 | 0.00 | ABRC037A | RC | AS204844 | 32 | 33 | 0.02 | ABRC039 | RC | AS205169 | 114 | 115 | 0.00 | | ABRC034 | RC | AS204533 | 78 | 79 | 0.02 | ABRC037A | RC | AS204845 | 33 | 34 | 0.01 | ABRC039 | RC | AS205171 | 115 | 116 | 0.01 | | ABRC034
ABRC034 | RC
RC | AS204534
AS204535 | 79
80 | 80
81 | 0.04 | ABRC037A
ABRC037A | RC
RC | AS204846
AS204847 | 34
35 | 35
36 | 0.00 | ABRC039
ABRC039 | RC
RC | AS205172
AS205173 | 116
117 | 117
118 | 0.00 | | ABRC034 | RC | AS204536 | 81 | 82 | 0.06 | ABRC037A | RC | AS204848 | 36 | 37 | 0.00 | ABRC039 | RC | AS205174 | 118 | 119 | 0.00 | | ABRC034 | RC | AS204537 | 82 | 83 | 0.01 | ABRC037A | RC | AS204849 | 37 | 38 | 0.00 | ABRC039 | RC | AS205177 | 120 | 121 | 0.04 | | ABRC034 | RC | AS204538 | 83 | 84 | 0.01 | ABRC037A | RC | AS204850 | 38 | 39 | 0.00 | ABRC039 | RC PC | AS205178 | 121 | 122 | 0.00 | | ABRC034
ABRC034 | RC
RC | AS204539
AS204540 | 84
85 | 85
86 | 0.01 | ABRC037A
ABRC037A | RC
RC | AS204851
AS204852 | 39
40 | 40
41 | 0.00 | ABRC040
ABRC040 | RC
RC | AS205179
AS205181 | 1 | 2 | 0.06 | | ABRC034 | RC | AS204541 | 86 | 87 | 0.00 | ABRC037A | RC | AS204853 | 41 | 42 | 0.00 | ABRC040 | RC | AS205181 | 2 | 3 | 0.01 | | ABRC034 | RC | AS204542 | 87 | 88 | 0.08 | ABRC037A | RC | AS204854 | 42 | 43 | 0.00 | ABRC040 | RC | AS205183 | 3 | 4 | 0.00 | | ABRC034
ABRC034 | RC
RC | AS204543
AS204544 | 88 | 89
90 | 0.04 | ABRC037A
ABRC037A | RC
RC | AS204855
AS204856 | 43 | 44 | 0.00 | ABRC040
ABRC040 | RC
RC | AS205184
AS205185 | 5 | 5
6 | 0.01 | | ABRC034 | RC | AS204544
AS204545 | 90 | 91 | 0.03 | ABRC037A
ABRC037A | RC | AS204856
AS204857 | 44 | 45
46 | 0.00 | ABRC040 | RC | AS205185
AS205186 | 6 | 7 | 0.00 | | ABRC034 | RC | AS204546 | 91 | 92 | 0.00 | ABRC037A | RC | AS204858 | 46 | 47 | 0.01 | ABRC040 | RC | AS205187 | 7 | 8 | 0.00 | | ABRC034 | RC | AS204547 | 92 | 93 | 0.01 | ABRC037A | RC | AS204859 | 47 | 48 | 0.00 | ABRC040 | RC | AS205188 | 8 | 9 | 0.00 | | ABRC034
ABRC034 | RC
RC | AS204548
AS204549 | 93 | 94
95 | 0.00 | ABRC037A
ABRC037A | RC
RC | AS204860
AS204861 | 48 | 49
50 | 0.01 | ABRC040
ABRC040 | RC
RC | AS205189
AS205191 | 10 | 10
11 | 0.00 | | ABRC034 | RC | AS204549
AS204550 | 95 | 96 | 0.00 | ABRC037A
ABRC037A | RC | AS204862 | 50 | 51 | 0.01 | ABRC040 | RC | AS205191
AS205192 | 11 | 12 | 0.00 | | ABRC034 | RC | AS204551 | 96 | 97 | 0.01 | ABRC037A | RC | AS204863 | 51 | 52 | 0.00 | ABRC040 | RC | AS205193 | 12 | 13 | 0.01 | | ABRC034 | RC | AS204552 | 97 | 98 | 0.02 | ABRC037A | RC | AS204864 | 52 | 53 | 0.03 | ABRC040 | RC | AS205194 | 13 | 14 | 0.00 | | ABRC034
ABRC034 | RC
RC | AS204553
AS204554 | 98 | 99 | 0.06
1.17 | ABRC037A
ABRC037A | RC
RC | AS204865
AS204866 | 53
54 | 54
55 | 0.01 |
ABRC040
ABRC040 | RC
RC | AS205195
AS205196 | 14 | 15
16 | 0.00 | | ABRC034 | RC | AS204555 | 100 | 100 | 0.37 | ABRC037A | RC | AS204867 | 55 | 56 | 0.00 | ABRC040 | RC | AS205196
AS205197 | 16 | 17 | 0.00 | | ABRC034 | RC | AS204556 | 101 | 102 | 0.70 | ABRC037A | RC | AS204868 | 56 | 57 | 0.07 | ABRC040 | RC | AS205198 | 17 | 18 | 0.00 | | ABRC034 | RC | AS204557 | 102 | 103 | 0.40 | ABRC037A | RC | AS204869 | 57 | 58 | 0.00 | ABRC040 | RC | AS205199 | 18 | 19 | 0.00 | | ABRC034
ABRC034 | RC
RC | AS204558
AS204559 | 103 | 104
105 | 0.59 | ABRC037A
ABRC037A | RC
RC | AS204870
AS204871 | 58
59 | 59
60 | 0.01 | ABRC040
ABRC040 | RC
RC | AS205201
AS205202 | 19
20 | 20 | 0.00 | | ABRC034 | RC | AS204559
AS204560 | 104 | 105 | 0.42 | ABRC037A
ABRC037A | RC | AS204871
AS204872 | 60 | 61 | 0.01 | ABRC040 | RC | AS205202
AS205203 | 20 | 22 | 0.01 | | ABRC035 | RC | AS204561 | 0 | 1 | 0.16 | ABRC037A | RC | AS204873 | 61 | 62 | 0.01 | ABRC040 | RC | AS205203 | 22 | 23 | 0.01 | | ABRC035 | RC | AS204562 | 1 | 2 | 0.05 | ABRC037A | RC | AS204874 | 62 | 63 | 0.01 | ABRC040 | RC | AS205205 | 23 | 24 | 0.01 | | ABRC035 | RC RC | AS204563
AS204564 | 3 | 3 | 0.01 | ABRC037A | RC RC | AS204875 | 63 | 64 | 0.00 | ABRC040 | RC
RC | AS205206 | 24 | 25 | 0.00 | | ABRC035
ABRC035 | RC
RC | AS204564
AS204565 | 4 | 5 | 0.00 | ABRC037A
ABRC037A | RC
RC | AS204876
AS204877 | 64 | 65
66 | 0.00 | ABRC040
ABRC040 | RC
RC | AS205207
AS205208 | 25
26 | 26
27 | 0.00 | | ABRC035 | RC | AS204566 | 5 | 6 | 0.00 | ABRC037A | RC | AS204878 | 66 | 67 | 0.00 | ABRC040 | RC | AS205200 | 27 | 28 | 0.01 | | ABRC035 | RC | AS204567 | 6 | 7 | 0.00 | ABRC037A | RC | AS204879 | 67 | 68 | 0.00 | ABRC040 | RC | AS205211 | 28 | 29 | 0.00 | | ABRC035
ABRC035 | RC
RC | AS204568
AS204569 | 8 | 9 | 0.00 | ABRC037A
ABRC037A | RC
RC | AS204880
AS204881 | 68 | 69
70 | 0.01 | ABRC040
ABRC040 | RC
RC | AS205212
AS205213 | 29
30 | 30
31 | 0.00 | | ABRC035 | RC | AS204569
AS204570 | 9 | 10 | 0.00 | ABRC037A
ABRC037A | RC | AS204881
AS204882 | 70 | 70 | 0.03 | ABRC040 | RC | AS205213
AS205214 | 31 | 32 | 0.03 | | ABRC035 | RC | AS204571 | 10 | 11 | 0.00 | ABRC037A | RC | AS204883 | 71 | 72 | 0.01 | ABRC040 | RC | AS205214
AS205215 | 32 | 33 | 0.01 | | ABRC035 | RC | AS204572 | 11 | 12 | 0.00 | ABRC037A | RC | AS204884 | 72 | 73 | 0.01 | ABRC040 | RC | AS205216 | 33 | 34 | 0.00 | | ABRC035
ABRC035 | RC
RC | AS204573 | 12 | 13 | 0.00 | ABRC037A | RC
RC | AS204885
AS204886 | 73
74 | 74
75 | 0.00 | ABRC040
ABRC040 | RC
RC | AS205217
AS205218 | 34
35 | 35
36 | 0.01 | | ABRC035
ABRC035 | RC | AS204574
AS204575 | 13 | 15 | 0.00 | ABRC037A
ABRC037A | RC | AS204886
AS204887 | 75 | 76 | 0.03 | ABRC040
ABRC040 | RC | AS205218
AS205219 | 36 | 36 | 0.00 | Hele ID | Time | Cammiain | - France | т. | A., | Uele ID | Tues | Completo | From | Ta | A., | Hole_ID | Tuna | SampleID | From | т. | A | |--------------------|----------|----------------------|----------|----------|--------|----------------------|----------|----------------------|----------|----------|--------|--------------------|----------|----------------------|----------|----------|--------------| | Hole_ID | Type | SampleID | From | To | Au_ppm | Hole_ID | Type | SampleID | _ | To | Au_ppm | | Type | | _ | To | Au_ppm | | ABRC035
ABRC035 | RC
RC | AS204576
AS204578 | 15
17 | 16
18 | 0.01 | ABRC037A
ABRC037A | RC
RC | AS204888
AS204889 | 76
77 | 77
78 | 0.00 | ABRC040
ABRC040 | RC
RC | AS205221
AS205222 | 37 | 38
39 | 0.01 | | | | | _ | | | | | | | | | | | | | | | | ABRC035 | RC | AS204579 | 18 | 19 | 0.01 | ABRC037A | RC | AS204890 | 78 | 79 | 0.01 | ABRC040 | RC | AS205223 | 39 | 40 | 0.00 | | ABRC035 | RC | AS204580 | 19 | 20 | 0.00 | ABRC037A | RC | AS204891 | 79 | 80 | 0.00 | ABRC040 | RC | AS205224 | 40 | 41 | 0.00 | | ABRC035 | RC | AS204581 | 20 | 21 | 0.00 | ABRC037A | RC | AS204892 | 80 | 81 | 0.00 | ABRC040 | RC | AS205227 | 42 | 43 | 0.00 | | ABRC035 | RC | AS204582 | 21 | 22 | 0.00 | ABRC037A | RC | AS204893 | 81 | 82 | 0.01 | ABRC040 | RC | AS205228 | 43 | 44 | 0.00 | | ABRC035 | RC | AS204583 | 22 | 23 | 0.00 | ABRC037A | RC | AS204894 | 82 | 83 | 0.00 | ABRC040 | RC | AS205229 | 44 | 45 | 0.01 | | ABRC035 | RC | AS204584 | 23 | 24 | 0.00 | ABRC037A | RC | AS204895 | 83 | 84 | 0.00 | ABRC040 | RC | AS205231 | 45 | 46 | 0.02 | | ABRC035 | RC | AS204585 | 24 | 25 | 0.00 | ABRC037A | RC | AS204896 | 84 | 85 | 0.01 | ABRC040 | RC | AS205232 | 46 | 47 | 0.01 | | ABRC035 | RC | AS204586 | 25 | 26 | 0.00 | ABRC037A | RC | AS204897 | 85 | 86 | 0.00 | ABRC040 | RC | AS205233 | 47 | 48 | 0.02 | | ABRC035 | RC | AS204587 | 26 | 27 | 0.01 | ABRC037A | RC | AS204898 | 86 | 87 | 0.00 | ABRC040 | RC | AS205234 | 48 | 49 | 0.01 | | ABRC035 | RC | AS204588 | 27 | 28 | 0.01 | ABRC037A | RC | AS204899 | 87 | 88 | 0.00 | ABRC040 | RC | AS205235 | 49 | 50 | 0.01 | | ABRC035 | RC | AS204590 | 29 | 30 | 0.02 | ABRC037A | RC | AS204900 | 88 | 89 | 0.00 | ABRC040 | RC | AS205236 | 50 | 51 | 0.01 | | ABRC035 | RC | AS204591 | 30 | 31 | 0.08 | ABRC037A | RC | AS204901 | 89 | 90 | 0.00 | ABRC040 | RC | AS205237 | 51 | 52 | 0.01 | | ABRC035 | RC | AS204592 | 31 | 32 | 0.01 | ABRC037A | RC | AS204902 | 90 | 91 | 0.00 | ABRC040 | RC | AS205238 | 52 | 53 | 0.00 | | ABRC035 | RC | AS204593 | 32 | 33 | 0.02 | ABRC037A | RC | AS204903 | 91 | 92 | 0.00 | ABRC040 | RC | AS205239 | 53 | 54 | 0.00 | | ABRC035 | RC | AS204594 | 33 | 34 | 0.01 | ABRC037A | RC | AS204904 | 92 | 93 | 0.01 | ABRC040 | RC | AS205241 | 54 | 55 | 0.00 | | ABRC035 | RC | AS204595 | 34 | 35 | 0.02 | ABRC037A | RC | AS204905 | 93 | 94 | 0.01 | ABRC040 | RC | AS205242 | 55 | 56 | 0.00 | | ABRC035 | RC | AS204596 | 35 | 36 | 0.05 | ABRC037A | RC | AS204906 | 94 | 95 | 0.00 | ABRC040 | RC | AS205243 | 56 | 57 | 0.01 | | ABRC035 | RC | AS204597 | 36 | 37 | 0.04 | ABRC037A | RC | AS204907 | 95 | 96 | 0.00 | ABRC040 | RC | AS205244 | 57 | 58 | 0.00 | | ABRC035 | RC | AS204598 | 37 | 38 | 0.02 | ABRC037A | RC | AS204908 | 96 | 97 | 0.00 | ABRC040 | RC | AS205245 | 58 | 59 | 0.01 | | ABRC035 | RC | AS204599 | 38 | 39 | 0.01 | ABRC037A | RC | AS204909 | 97 | 98 | 0.00 | ABRC040 | RC | AS205246 | 59 | 60 | 0.01 | | ABRC035 | RC | AS204600 | 39 | 40 | 0.00 | ABRC037A | RC | AS204910 | 98 | 99 | 0.00 | ABRC040 | RC | AS205247 | 60 | 61 | 0.01 | | ABRC035 | RC | AS204601 | 40 | 41 | 0.00 | ABRC037A | RC | AS204911 | 99 | 100 | 0.00 | ABRC040 | RC | AS205248 | 61 | 62 | 0.01 | | ABRC035 | RC | AS204602 | 41 | 42 | 0.00 | ABRC038 | RC | AS204912 | 0 | 1 | 0.02 | ABRC040 | RC | AS205249 | 62 | 63 | 0.00 | | ABRC035 | RC | AS204603 | 42 | 43 | 0.00 | ABRC038 | RC | AS204913 | 1 | 2 | 0.01 | ABRC040 | RC | AS205251 | 63 | 64 | 0.00 | | ABRC035 | RC | AS204604 | 43 | 44 | 0.00 | ABRC038 | RC | AS204914 | 2 | 3 | 0.01 | ABRC040 | RC | AS205252 | 64 | 65 | 0.00 | | ABRC035 | RC | AS204605 | 44 | 45 | 0.00 | ABRC038 | RC | AS204915 | 3 | 4 | 0.00 | ABRC040 | RC | AS205253 | 65 | 66 | 0.01 | | ABRC035 | RC | AS204606 | 45 | 46 | 0.00 | ABRC038 | RC | AS204916 | 4 | 5 | 0.01 | ABRC040 | RC | AS205254 | 66 | 67 | 0.01 | | ABRC035 | RC | AS204607 | 46 | 47 | 0.00 | ABRC038 | RC | AS204917 | 5 | 6 | 0.00 | ABRC040 | RC | AS205255 | 67 | 68 | 0.00 | | ABRC035 | RC | AS204608 | 47 | 48 | 0.09 | ABRC038 | RC | AS204918 | 6 | 7 | 0.01 | ABRC040 | RC | AS205256 | 68 | 69 | 0.00 | | ABRC035 | RC | AS204609 | 48 | 49 | 0.01 | ABRC038 | RC | AS204919 | 7 | 8 | 0.02 | ABRC040 | RC | AS205257 | 69 | 70 | 0.00 | | ABRC035 | RC | AS204610 | 49 | 50 | 0.00 | ABRC038 | RC | AS204920 | 8 | 9 | 0.01 | ABRC040
ABRC040 | RC | AS205258 | 70 | 71 | 0.00 | | ABRC035 | RC | AS204611 | 50 | 51 | 0.00 | ABRC038 | RC | AS204921 | _ | 10 | 0.02 | | RC | AS205259 | 71 | 72 | 0.00 | | ABRC035 | RC | AS204612 | 51 | 52 | 0.00 | ABRC038 | RC | AS204922 | 10 | 11 | 0.03 | ABRC040 | RC | AS205261 | 72 | 73 | 0.00 | | ABRC035 | RC | AS204613 | 52 | 53 | 0.00 | ABRC038 | RC | AS204923 | 11 | 12 | 0.05 | ABRC040 | RC | AS205262 | 73 | 74 | 0.00 | | ABRC035 | RC | AS204614 | 53 | 54 | 0.00 | ABRC038 | RC | AS204924 | 12 | 13 | 0.05 | ABRC040 | RC | AS205263 | 74 | 75 | 0.01 | | ABRC035 | RC | AS204615 | 54 | 55 | 0.00 | ABRC038 | RC | AS204925 | 13 | 14 | 0.02 | ABRC040 | RC | AS205264 | 75 | 76 | 0.05 | | ABRC035 | RC | AS204616 | 55 | 56 | 0.00 | ABRC038 | RC | AS204926 | 14 | 15 | 0.01 | ABRC040 | RC | AS205265 | 76 | 77 | 0.02 | | ABRC035 | RC | AS204617 | 56 | 57 | 0.00 | ABRC038 | RC | AS204927 | 15 | 16 | 0.01 | ABRC040 | RC | AS205266 | 77 | 78 | 0.04 | | ABRC035 | RC | AS204619 | 58 | 59 | 0.00 | ABRC038 | RC | AS204928 | 16 | 17 | 0.01 | ABRC040 | RC | AS205267 | 78 | 79 | 0.01 | | ABRC035 | RC | AS204620 | 59 | 60 | 0.00 | ABRC038 | RC | AS204929 | 17 | 18 | 0.01 | ABRC040 | RC | AS205268 | 79 | 80 | 0.01 | | ABRC035 | RC | AS204621 | 60 | 61 | 0.00 | ABRC038 | RC | AS204930 | 18 | 19 | 0.01 | ABRC040 | RC | AS205269 | 80 | 81 | 0.01 | | ABRC035 | RC | AS204622 | 61 | 62 | 0.00 | ABRC038 | RC | AS204931 | 19 | 20 | 0.01 | ABRC040 | RC | AS205271 | 81 | 82 | 0.02 | | ABRC035 | RC | AS204623 | 62 | 63 | 0.00 | ABRC038 | RC | AS204932 | 20 | 21 | 0.00 | ABRC040 | RC | AS205272 | 82 | 83 | 0.01 | | ABRC035 | RC | AS204624 | 63 | 64 | 0.00 | ABRC038 | RC | AS204933 | 21 | 22 | 0.00 | ABRC040 | RC | AS205273 | 83 | 84 | 0.02 | | ABRC035 | RC | AS204625 | 64 | 65 | 0.00 | ABRC038 | RC | AS204934 | 22 | 23 | 0.00 | ABRC040 | RC | AS205274 | 84 | 85 | 0.01 | | ABRC035 | RC | AS204626 | 65 | 66 | 0.00 | ABRC038 | RC | AS204935 | 23 | 24 | 0.00 | ABRC040 | RC | AS205277 | 86 | 87 | 0.01 | | ABRC035 | RC | AS204627 | 66 | 67 | 0.00 | ABRC038 | RC | AS204936 | 24 | 25 | 0.00 | ABRC040 | RC | AS205278 | 87 | 88 | 0.00 | | ABRC035 | RC | AS204628 |
67 | 68 | 0.00 | ABRC038 | RC | AS204937 | 25 | 26 | 0.00 | ABRC040 | RC | AS205279 | 88 | 89 | 0.00 | | ABRC035 | RC | AS204629 | 68 | 69 | 0.00 | ABRC038 | RC | AS204938 | 26 | 27 | 0.00 | ABRC040 | RC | AS205281 | 89 | 90 | 0.01 | | ABRC035
ABRC035 | RC
RC | AS204630
AS204631 | 69
70 | 70
71 | 0.00 | ABRC038
ABRC038 | RC
RC | AS204939
AS204940 | 27 | 28
29 | 0.00 | ABRC040
ABRC040 | RC
RC | AS205282
AS205283 | 90 | 91
92 | 0.23 | | ABRC035 | RC | | | 72 | | | RC | | 29 | 30 | 0.00 | ABRC040 | RC | AS205283
AS205284 | 92 | | | | ABRC035 | | AS204632 | 71 | 73 | 0.00 | ABRC038 | RC | AS204941
AS204942 | | 31 | 0.00 | ABRC040 | RC | AS205284
AS205285 | | 93 | 1.03
0.06 | | ABRC035 | RC
RC | AS204633
AS204634 | 72 | 74 | 0.09 | ABRC038
ABRC038 | RC | AS204942
AS204943 | 30 | 32 | 0.00 | ABRC040 | RC | AS205285
AS205286 | 93 | 94
95 | 0.08 | | | | | 74 | 75 | | | RC | | | 33 | | | RC | | | | | | ABRC035
ABRC035 | RC
RC | AS204635
AS204636 | 75 | 76 | 0.05 | ABRC038
ABRC038 | RC | AS204944
AS204945 | 32 | 34 | 0.00 | ABRC040
ABRC040 | RC | AS205287
AS205288 | 95
96 | 96
97 | 0.01 | | ABRC035 | RC | AS204637 | 76 | 77 | 0.56 | ABRC038 | RC | AS204946 | 34 | 35 | 0.00 | ABRC040 | RC | AS205288
AS205289 | 97 | 98 | 0.02 | | | | | | | 0.10 | ABRC038 | | | | | 0.00 | | | | | 99 | 0.02 | | ABRC035
ABRC035 | RC
RC | AS204638
AS204639 | 77
78 | 78
79 | 0.10 | ABRC038 | RC
RC | AS204947
AS204948 | 35
36 | 36
37 | 0.00 | ABRC040
ABRC040 | RC
RC | AS205291
AS205292 | 98 | 100 | 0.02 | | ABRC035 | RC | AS204639
AS204640 | 79 | 80 | 0.41 | ABRC038 | RC | AS204948
AS204949 | 37 | 38 | 0.00 | ABRC040 | RC | AS205292
AS205293 | 100 | 100 | 0.02 | | ABRC035 | RC | AS204640
AS204641 | 80 | 81 | 0.41 | ABRC038 | RC | AS204949
AS204950 | 38 | 39 | 0.00 | ABRC040 | RC | AS205293
AS205294 | 100 | 101 | 0.02 | | ABRC035 | RC | AS204642 | 81 | 82 | 0.09 | ABRC038 | RC | AS204951 | 39 | 40 | 0.00 | ABRC040 | RC | AS205295 | 102 | 103 | 0.08 | | ABRC035 | RC | AS204643 | 82 | 83 | 0.01 | ABRC038 | RC | AS204951
AS204952 | 40 | 41 | 0.00 | ABRC040 | RC | AS205295
AS205296 | 102 | 103 | 0.02 | | ABRC035 | RC | AS204644 | 83 | 84 | 0.01 | ABRC038 | RC | AS204952
AS204953 | 41 | 42 | 0.13 | ABRC040 | RC | AS205290
AS205297 | 103 | 105 | 0.02 | | ABRC035 | RC | AS204645 | 84 | 85 | 0.01 | ABRC038 | RC | AS204954 | 42 | 43 | 0.02 | ABRC040 | RC | AS205297
AS205298 | 105 | 105 | 0.02 | | ABRC035 | RC | AS204646 | 85 | 86 | 0.00 | ABRC038 | RC | AS204955 | 43 | 44 | 0.00 | ABRC040 | RC | AS205299 | 106 | 107 | 0.02 | | ABRC035 | RC | AS204647 | 86 | 87 | 0.01 | ABRC038 | RC | AS204956 | 44 | 45 | 0.01 | ABRC040 | RC | AS205301 | 107 | 108 | 0.01 | | ABRC035 | RC | AS204648 | 87 | 88 | 0.02 | ABRC038 | RC | AS204957 | 45 | 46 | 0.32 | ABRC040 | RC | AS205301
AS205302 | 108 | 109 | 0.01 | | ABRC035 | RC | AS204649 | 88 | 89 | 0.00 | ABRC038 | RC | AS204958 | 46 | 47 | 5.06 | ABRC040 | RC | AS205302 | 109 | 110 | 0.01 | | ABRC035 | RC | AS204650 | 89 | 90 | 0.00 | ABRC038 | RC | AS204959 | 47 | 48 | 0.65 | ABRC040 | RC | AS205304 | 110 | 111 | 0.07 | | ABRC035 | RC | AS204651 | 90 | 91 | 0.00 | ABRC038 | RC | AS204960 | 48 | 49 | 0.16 | ABRC040 | RC | AS205305 | 111 | 112 | 0.03 | | ABRC035 | RC | AS204652 | 91 | 92 | 0.03 | ABRC038 | RC | AS204961 | 49 | 50 | 0.12 | ABRC040 | RC | AS205306 | 112 | 113 | 0.02 | | ABRC035 | RC | AS204653 | 92 | 93 | 0.06 | ABRC038 | RC | AS204962 | 50 | 51 | 0.11 | ABRC040 | RC | AS205307 | 113 | 114 | 0.03 | | ABRC035 | RC | AS204654 | 93 | 94 | 0.10 | ABRC038 | RC | AS204963 | 51 | 52 | 0.03 | ABRC040 | RC | AS205307 | 114 | 115 | 0.00 | | ABRC035 | RC | AS204655 | 94 | 95 | 0.02 | ABRC038 | RC | AS204964 | 52 | 53 | 0.12 | ABRC040 | RC | AS205309 | 115 | 116 | 0.02 | | ABRC035 | RC | AS204656 | 95 | 96 | 0.02 | ABRC038 | RC | AS204965 | 53 | 54 | 0.12 | ABRC040 | RC | AS205303 | 116 | 117 | 0.02 | | ABRC035 | RC | AS204658 | 95 | 98 | 0.30 | ABRC038 | RC | AS204965
AS204966 | 54 | 55 | 0.10 | ABRC040 | RC | AS205311
AS205312 | 117 | 117 | 0.07 | | ABRC035 | RC | AS204659 | 98 | 99 | 0.15 | ABRC038 | RC | AS204967 | 55 | 56 | 0.47 | ABRC040 | RC | AS205312
AS205313 | 118 | 119 | 0.40 | | ABRC035 | RC | AS204659
AS204660 | 99 | 100 | 0.13 | ABRC038 | RC | AS204967
AS204968 | 56 | 57 | 0.47 | ABRC040 | RC | AS205313
AS205314 | 119 | 120 | 0.40 | | ABRC035 | RC | AS204660
AS204661 | 100 | 100 | 0.03 | ABRC038 | RC | AS204968
AS204969 | 57 | 58 | 0.14 | ABRC040 | RC | AS205314
AS205315 | 120 | 120 | 0.05 | | ABRC035 | RC | AS204661
AS204662 | 100 | 101 | 0.04 | ABRC038 | RC | AS204969
AS204970 | 58 | 59 | 0.69 | ABRC040 | RC | AS205315
AS205316 | 121 | 122 | 0.01 | | ABRC035 | RC | AS204662
AS204663 | 101 | 102 | 0.00 | ABRC038 | RC | AS204970
AS204971 | 58 | 60 | 0.69 | ABRC040 | RC | AS205316
AS205317 | 121 | 123 | 0.00 | | ABRC035 | RC | AS204664 | 102 | 103 | 0.03 | ABRC038 | RC | AS204971
AS204972 | 60 | 61 | 0.10 | ABRC040 | RC | AS205317
AS205318 | 123 | 123 | 0.00 | | ABRC035 | RC | AS204665 | 103 | 104 | 0.01 | ABRC038 | RC | AS204972
AS204973 | 61 | 62 | 0.10 | ABRC040 | RC | AS205318
AS205319 | 123 | 124 | 0.00 | | ABRC035 | RC | AS204665
AS204667 | 104 | 105 | 0.00 | ABRC038 | RC | AS204973
AS204974 | 62 | 63 | 0.02 | ABRC040 | RC | AS205319
AS205321 | 124 | 125 | 0.00 | | ABRC035 | RC | | 106 | 107 | | | | | 63 | | | ABRC040 | | AS205321
AS205322 | 125 | 126 | | | ADKCU35 | KC | AS204668 | 107 | 108 | 0.00 | ABRC038 | RC | AS204975 | 03 | 64 | 0.29 | ABKCU4U | RC | A32U5322 | 126 | 127 | 0.01 |