

Mt Ida Assay update, Electrostate Acquisition Completed

Red Dirt Metals Limited (ASX: RDT) ("Red Dirt" or the "Company") is pleased to announce an update on recently completed diamond drilling at the Mt Ida Lithium Project, and completion of the acquisition of Lithium explorer Electrostate Limited ("Electrostate"). Electrostate is the 100% holder of the Yinnetharra Lithium Project in the central Gascoyne region of Western Australia.

Highlights include:

- All maiden resource definition drilling at Mt Ida is now complete and all assays reported
- Independent consultant has commenced resource estimation report with site visits completed
- Maiden resource estimate scheduled for completion early October
- Metallurgical testwork ongoing with a further 4 diamond holes submitted to Nagrom laboratories

Significant intervals include;

- 28.9m @ 1.92% Li₂O and 187ppm Ta₂O₅ from 318.5m in IDRD033, best intercept drilled to date at Mt Ida in Sister Sam
- 21.3m @ 1.90% Li₂O and 180ppm Ta₂O₅ from 180m in IDRD03, Sister Sam
- 22.5m @ 0.97% Li₂O and 79ppm Ta₂O₅ from 415.4m in SPEX020, Sparrow North
- 10.9m @ 1.01% Li₂O and 137ppm Ta₂O₅ from 381.6m in SPEX010, Sparrow North

Completion of Yinnetharra Lithium Project Acquisition:

- Settlement of Electrostate Limited acquisition and the Yinnetharra Lithium Project finalised
- Yinnetharra project has significant potential to host a large tonnage LCT bearing system, existing known pegmatites have been drilled and mapped over greater than 7km of strike
- RDT to commence 5,000m drilling programme in November with POW's approved and in place
- Red Dirt is fully funded with ~\$AUD18million in cash post acquisition

Commenting on the latest drilling results and the Electrostate completion, Managing Director Matthew

"Resource definition and extensional drilling continue to provide strong results to be included into the calculation of our maiden resource estimate. Now just weeks away, the resource estimate is the most material milestone in the Company's history and will provide the cornerstone for continued development of Mt Ida and our rapid progression towards production.

"Red Dirt has also completed the acquisition of the drill ready Yinnetharra Lithium Project in the Gascoyne. In parallel with the final acquisition process, the upcoming Program of Works has been finalised, drill rigs have been booked and the team is looking forward to starting drilling in November. The drill targets are exciting, and we believe there is great potential to add to the Red Dirt lithium portfolio."

Mt Ida Drilling

Mt Ida resource definition drilling is now complete and resource estimation work by independent resource consultants is now underway. RDT is expecting the initial resource estimate to be completed in the first half of October. A scoping level mining study will follow using this initial resource estimate.

Sparrow North has now intersected significant thicknesses of high grade LCT mineralisation at depth. This result indicates that in all three of the main pegmatites intersected to date, the pegmatite bodies remain open.

Some of the outstanding drill results are included below. For full results, please see Appendices 2 and 3:

- 28.9m @ 1.92% Li₂O and 187ppm Ta₂O₅ from 318.5m in IDRD033, best intercept drilled to date at Mt Ida
- 21.3m @ 1.90% Li₂O and 180ppm Ta₂O₅ from 180m in IDRD031, Sister Sam
- 22.5m @ 0.97% Li₂O and 79ppm Ta₂O₅ from 415.4m in SPEX020, Sparrow North
- 10.9m @ 1.01% Li₂O and 137ppm Ta₂O₅ from 381.6m in SPEX010, Sparrow North
- 14.1m @ 1.67% Li₂O and 65ppm Ta₂O₅ from 144m in IDRD041, Sister Sam
- 13.3m @ 1.51% Li₂O and 88ppm Ta₂O₅ from 313m in IDRCD232, Sister Sam

The Company will now shift the drilling focus towards regional exploration and the maiden drill programme at the recently acquired Yinnetharra Project in November this year. Metallurgical studies on Mt Ida are ongoing with an additional programme recently commenced with results to be included into the PFS scheduled to commence in Quarter 4 this year.

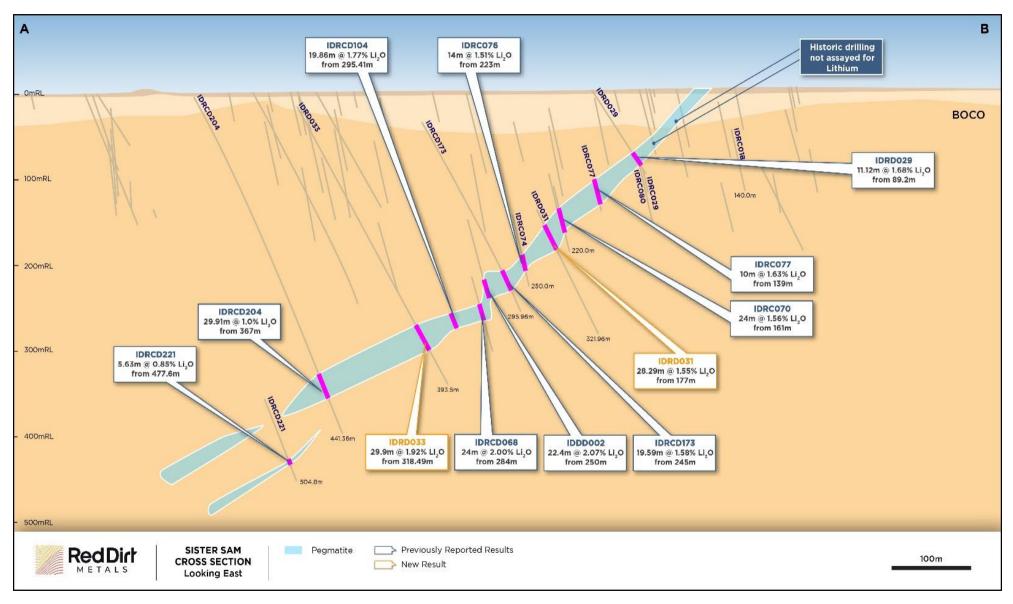


Figure 1; Section through Sister Sam Pegmatite showing latest infill resource definition drilling

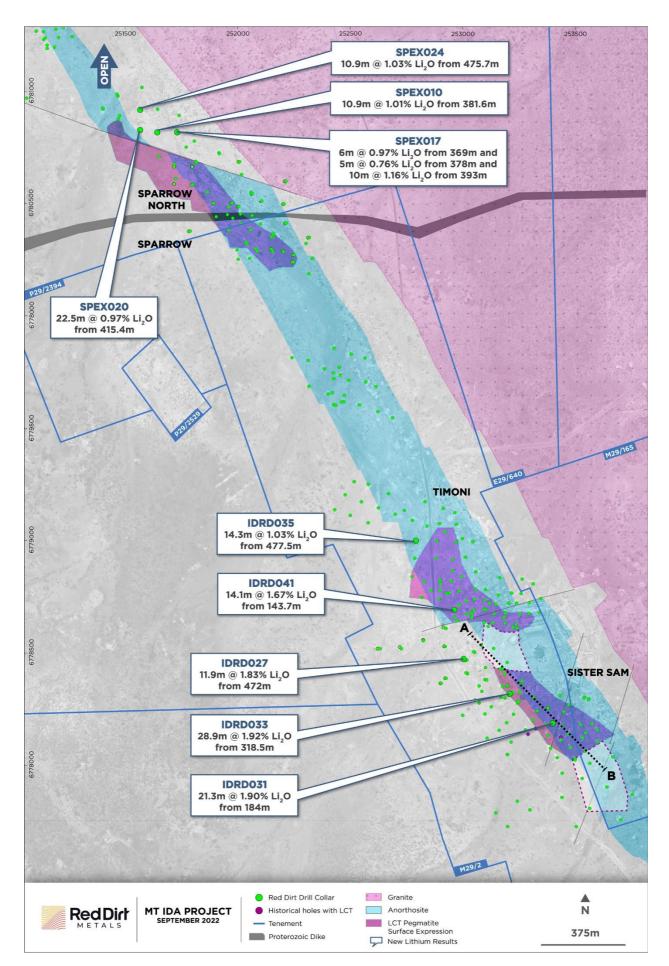


Figure 2; Planview showing position of latest reported drill holes with pegmatite bodies projected to surface

Summary of the Yinnetharra Lithium Project Acquisition

Red Dirt now holds 100% of the issued capital of Electrostate Limited and Electrostate Malinda Pty Ltd (**Electrostate Group**), which are the holders of the Yinnetharra Lithium Project.

The Yinnetharra Lithium Project is located approximately 120km northeast of Gascoyne Junction. The Project sits within a tenement package comprised of six (6) tenements. Three (3) granted and three (3) pending tenement applications cover an area of 520km² (Figure 1). The tenement package is located on a highly prospective LCT bearing belt of metasediments forming a contact with a regional scale granite trending in a north westerly orientation for approximately 50km.

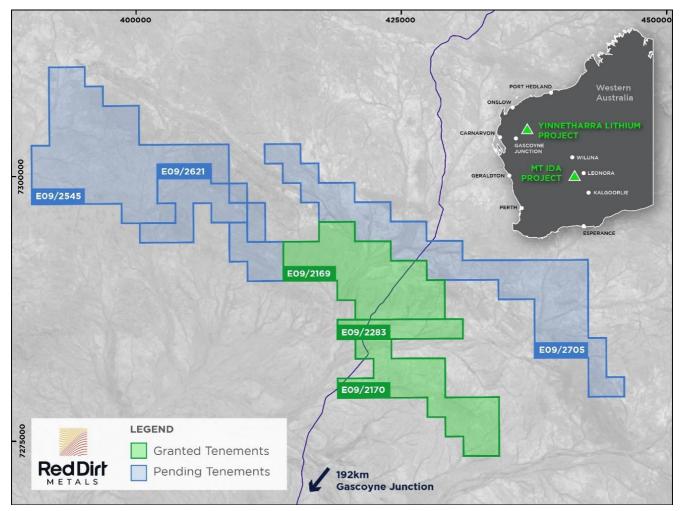


Figure 3: Tenement map showing acquired tenements and location northeast of Gascoyne Junction

As consideration for the acquisition, Red Dirt has issued or agreed:

- (a) \$15,000,000 worth of Red Dirt Shares at a deemed issue price of 56.7c per Red Dirt Share totalling 26,455,026 Red Dirt Shares (Consideration Shares);
- (b) \$10,000,000 (**Deferred Consideration**) upon delineation of a JORC 2012 compliant resource in excess of 15 million tonnes @ 0.9% Li₂O or greater on the Project within four (4) years following settlement of the acquisition (**Milestone**). The Company can elect to pay the Deferred Consideration via cash or by the issue of ordinary shares at a deemed issue price equal to the 10-day VWAP up to and including the day prior to the date on which the Milestone is achieved; and
- (c) 2,666,666 Red Dirt Options as follows:
 - (i) 170,400 Red Dirt Options to Lithium Royalty Corp; and
 - (ii) 2,496,266 Red Dirt Options to Electrification and Decarbonization AIE LP each with an exercise price of \$0.75, expiring eighteen (18) months from the date of issue, to satisfy obligations under subscription agreements entered into with these entities pre-acquisition.

A total 8,905,724 of the Consideration Shares will be escrowed for a period of 6 months. Red Dirt will also assume a 1% Gross Sales Royalty over the Yinnetharra project area.

The Yinnetharra Project

The Project has seen a limited amount of exploration to date. The presence of multiple outcropping LCT bearing pegmatites has been confirmed, with excellent grade and widths of spodumene bearing mineralisation intercepted. Significant intervals of near surface mineralisation have been drilled with lithium bearing pegmatites intersected from surface outcrop. Little discernible depletion and leaching of lithium appears within the shallow weathering profile. Significant intervals to date include;

Hole_ID		From	То	Width (m)	Li ₂ O %	Ta₂O₅ ppm
GASRC0001		87	123	36	0.71	57
GASRC0002		16	23	7	0.46	52
GASRC0003		105	108	3	0.38	26
	and	110	133	23	1.02	55
GASRC0004		0	1	1	0.75	76
	and	14	30	16	0.95	142
GASRC0007		0	26	26	0.95	59
GASRC0009		106	108	2	1.49	30
	and	121	126	5	0.39	97
GASRC0011		0	8	8	1.04	47
	and	15	20	5	1.04	67
GASRC0016		117	120	3	1.26	74
GASRC0017		23	24	1	0.63	106
	and	115	118	3	0.8	18
	and	132	157	25	0.58	77
MARC003		6	12	6	0.52	127
MARC009		97	98	1	0.31	68
		105	106	1	0.32	5
MARC010		71	72	1	0.49	24
	and	77	94	17	0.95	54
MARC011		81	99	18	1.09	41

Table 1: Table of significant historic and recent intervals from the Yinnetharra Lithium Project

A limited 4km² portion of the entire 520km² has been subject to systematic exploration. Significant outcropping spodumene bearing pegmatites have been delineated. The prospectivity of the tenement package is highlighted by existing soil and rock chip geochemistry in conjunction with previously drilled RC holes.

A coherent very high tenor soil anomaly has been defined (see Figure 2 below) with maximum soil sample results to 0.8% Li₂O, maximum reported rock chip samples up to 3.77% Li₂O. The soil anomaly is open with the edges of the current soil survey impacted by transported cover. To date, five mineralised pegmatites have been delineated with dimensions of at least 1,500m long, up to 36m wide, to a depth of at least 100m from surface. There is significant potential for further discoveries of LCT pegmatites at the Project with only 34 RC drillholes completed to date. Further, the drillholes completed cover a limited area of the known pegmatite bodies tested as they have been concentrated in four areas.

Programme of works (POW's) have now been approved and RDT is planning to commence its first pass 5,000m drill programme in November of this year, 3 rigs will be mobilised to Yinnetharra to complete the first pass programme before the end of the year. The initial focus of the programme will be to quantify the exploration target potential and the structural controls on the known existing outcropping and drilled pegmatite bodies, sample will also be collected for preliminary metallurgical sighter testwork and mineralogical studies.

¹ Previously announced drilling as per ASX announcement 9th October 2017 under Segue Resources Ltd: (SEG) and 15th November 2018 Arrow Minerals (AMD)

 $^{^2}$ Drillholes MARC010-and MARC011 were completed and assayed by Electrostate Limited (See JORC table 1)

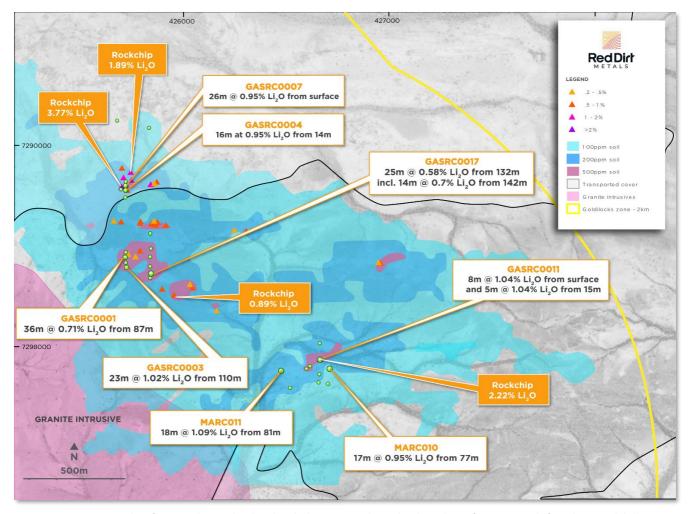


Figure 4: Contoured surface geochemical soil and rock chip Li₂O results with selected significant intervals from historical drilling, "Goldilocks zone" highlighted showing the preferred zone for LCT pegmatite emplacement

Authorised for lodgement by the Board of the Company.

For further information, please contact

Matthew Boyes Managing Director +61 8 6319 1900 info@reddirtmetals.com.au Investor/Media enquiries Citadel-MAGNUS Michael Weir +61 402 347 032 Jono van Hazel +61 411 564 969

About Red Dirt Metals (RDT)

Red Dirt Metals (ASX: RDT) is an exploration and development company focused on bringing the high-quality, lithium-bearing pegmatite deposits located in Western Australia into production. RDT is rapidly advancing its Mt Ida Lithium Project towards production with a well funded pathway outlined, and the advantage of holding existing mining leases and heritage clearance already approved.

To capitalise on the prevailing buoyant spodumene and lithium pricing, RDT recognises that a rapid development pathway will unlock the most value for shareholders. Beyond the Mt Ida Lithium Project, RDT has acquired the high prospective Yinnetharra Lithium Project and will continue to assess opportunities to increase the lithium portfolio by identifying and adding new potential lithium acquisitions."

Competent Persons Statement

Exploration information in this Announcement is based upon work undertaken by Mr Matthew Boyes who is a Fellow of the Australasian Institute of Mining and Metallurgy (AUSIMM). Mr Boyes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Boyes is an employee of Red Dirt Metals Limited and consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The information in this release that references previously reported exploration results is extracted from the Segue Resources (SEG) and Arrow Minerals ASX market announcements released on. The previous market announcements are available to view or on the ASX website (www. asx.com.au) dated 09/10/2017 (SEG) and 15/11/2018 (AMD) respectively. Drillholes with prefix MARC were completed by the current owner Electrostate Limited and not previously publicly released. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Appendix 1 Drill hole collar file;

HoleID	MGA_East	MGA_North	MGA_RL	Dip	MGA_Azi	Depth
GASRC0001	425718	7289442	309	-90	0	144
GASRC0002	425719	7289464	328	-60	0	90
GASRC0003	425725	7289391	325	-60	355	144
GASRC0004	425716	7289773	315	-60	0	150
GASRC0005	425717	7289739	328	-60	0	150
GASRC0006	425719	7289818	319	-60	0	150
GASRC0007	425721	7289799	323	-60	179	72
GASRC0008	425838	7289443	303	-60	5	150
GASRC0009	425837	7289397	305	-62	2	150
GASRC0010	425842	7289483	328	-60	0	150
GASRC0011	426660	7288933	324	-60	0	150
GASRC0012	426661	7288860	329	-60	355	150
GASRC0013	426615	7288900	320	-60	356	150
GASRC0014	427018	7289402	320	-60	358	150
GASRC0015	427019	7289438	325	-60	358	150
GASRC0016	426657	7288821	326	-60	357	162
GASRC0017	425837	7289356	324	-60	10	168
MARC001	425695	7289780	327	-60	0	80
MARC002	425719	7289414	329	-60	0	<i>7</i> 6
MARC003	425839	7289338	325	-60	0	106
MARC004	425838	7289561	315	-60	0	52
MARC005	426309	7289604	328	-60	180	58
MARC006	426586	7289674	319	-60	0	40
MARC007	426540	7289760	323	-60	0	58
MARC008	426598	7288887	303	-60	0	88
MARC009	426702	7288812	305	-60	0	140
MARC010	426708	7288888	328	-60	0	130
MARC011	426518	7288792	324	-60	0	120
MARC012	426663	7289013	329	-60	0	70
MARC013	427019	7289468	320	-60	0	60
MARC014	426197	7289589	320	-60	180	<i>7</i> 8
MARC015	426319	7289566	325	-60	0	100
MARC016	425677	7290122	326	-60	0	58
MARC017	425832	7290085	324	-60	0	64

Appendix 2 Significant Interval table;

HoleID		From	То	Width (m)	Li2O %	Ta2O5 ppm
GASRC0001		87	123	36	0.71	57
GASRC0002		16	23	7	0.46	52
GASRC0003		105	108	3	0.38	26
	and	110	133	23	1.02	55
GASRC0004		0	1	1	0.75	76
	and	14	30	16	0.95	142
GASRC0007		0	26	26	0.95	59
GASRC0008	NSR					
GASRC0009		106	108	2	1.49	30
	and	121	126	5	0.39	97
GASRC0010	NSR					
GASRC0011		0	8	8	1.04	47
	and	15	20	5	1.04	67
GASRC0016		117	120	3	1.26	74
GASRC0017		23	24	1	0.63	106
	and	115	118	3	0.8	18
	and	132	157	25	0.58	77
MARC003		6	12	6	0.52	127
MARC009		97	98	1	0.31	68
		105	106	1	0.32	5
MARC010		71	72	1	0.49	24
	and	77	94	17	0.95	54
MARC011		81	99	18	1.09	41

Appendix 3 Significant Interval table Mt Ida

HoleID		From	То	Width (m)	Li₂O %	Ta₂O₅ ppm	Au ppm
IDEX001		135	136	1			1.35
IDEX013	NSR						
IDEX014		232	233	1			0.51
	and	256	257	1			3.85
IDRC117	NSR						
IDRC116	NSR						
IDRC133	NSR						
IDRC152	NSR						
IDRD008		299.76	300.8	1.04	0.65	86	
	and	310.78	311.22	0.44			3.7
	and	390.72	400.8	10.08			2.91
	and	405	406	1			0.81
	and	407.71	411.8	4.09			5.07
	and	414	414.89	0.89			0.99
	and	435	439	4			1.79
	and	482.06	483	0.94			4.08
	and	484.59	485.48	0.89			0.74
	and	526	528.2	2.2			0.76
IDRD011	NSR						
IDRD019		453.74	455	1.26			1.48
IDRD023		378.66	380.51	1.85			6.23
	and	385.16	387.59	2.43			27.47
IDRD026		73.1	76.8	3.7	1	174	
	and	88.05	88.65	0.6			2.2
	and	91.04	92	0.96			1.91
IDRD027		472.06	484	11.94	1.83	179	
IDRD028		663	664	1			2.07
IDRD031		177.97	179.1	1.13	1.4	648	
	and	184	205.29	21.29	1.9	180	
	and	255.46	255.76	0.3			10.28
IDRD033		318.49	347.39	28.9	1.92	187	

		355.49	358.2	2.71	_		21.28
IDRD035		277.88	279.7	1.82	1	145	
	and	407.5	410	2.5			1.53
	and	419	420	1			0.79
	and	470.94	473.1	2.16	0.56	172	
	and	477.55	491.87	14.32	1.03	322	
IDRD038		76	77	1			0.66
		311.45	314	2.55	1.13	116	
		580.53	584.62	4.09	1.45	170	0.01
		583.83	584.62	0.79			0.81
	++++	590.74 592.02	591.04 592.39	0.3 0.37			2.84 5.52
100000	NSR	392.02	392.39	0.37			5.52
IDRD039 IDRD040	INSK	137	138	1			0.59
IDRD040		143.75	157.86	14.11	1.67	65	0.59
IDRD059	NSR	143.73	137.00	14.11	1.07	65	
IDRD060	NSK	90	91	1			0.61
IDRD080	and	147	148	1			0.52
IDRCD175	unu	325	326.04	1.04			1.05
IDRCD173		327.78	328.08	0.3			5.95
	+	362.86	363.34	0.48			11.81
	+	381.62	383.72	2.1			3.89
SPEX005	NSR	JU1.UZ	JUJ./ Z	۷,۱			3.07
SPEX008	NSR						
SPEX009	NSR						
SPEX010	11010	30	31	1			2.19
31 EXCTO	and	381.59	392.52	10.93	1.01	137	2.17
	and	400.67	403	2.33	1.33	173	
SPEX011	G G.	236	240	4	0.64	148	
0. 2.0		284	288	4	1.5	73	
SPEX012		102	104	2	0.98	305	
SPEX013		107	108	1	0.70		2.58
SPEX014	NSR	107					2.00
SPEX015	NSR						
SPEX017		369	375	6	0.97	120	
	and	378	383	5	0.76	99	
	and	393	403	10	1.16	493	
SPEX018		316	319	3	0.41	5	
SPEX020		172	173	1	1.03	492	
	and	415.38	437.89	22.51	0.97	79	
SPEX022	NSR						
SPEX023	NSR						
SPEX024		450.33	452.55	2.22	1.04	184	
	and	461.69	464.5	2.81	1.2	179	
	and	475.69	486.63	10.94	1.03	70	
	and	494.45	495.49	1.04	0.59	55	
SPEX025	NSR						
SPEX026		420.17	421.84	1.67	0.55	216	
	and	441.37	445	3.63	1.1	146	
	and	452.31	454.12	1.81	0.52	136	
SPEX028		247.8	254.4	6.6	1.82	57	
	and	328.64	329.22	0.58	0.87	147	
SPEX030		269.27	273	3.73	0.46	20	
	and	285.12	286.41	1.29	1	301	
	and	299.56	300.98	1.42	0.86	219	
	and	321	325.5	4.5	0.52	170	
	and	331.49	336	4.51	1.12	44	
	and	343.56	345.43	1.87	0.42	201	
SPRD003	\rightarrow	84	85	1	0.53	253	
SPRD008	\rightarrow	79.85	83.62	3.77	0.6	502	
SPRD009	NSR						
							ļ
evious ASX announcements belo							

IDEX008		66	68	2			4.07
IDEX009		78	81	3			0.92
	and	86	88	2			4.49
IDEX010	NSR						
IDEX011		93	98	5			2.17
	and	112	113	1			1
IDRC212		34	36	2			0.6
IDRC214		88	93	5			7.67
	and	116	120	4			1.81
	and	124	136	12			9.83
IDRC217	ana	111	113	2			1.75
IDRC220		72	76	4			1.12
		110	113	3			4.66
IDRC223							
IDRC225		107	108	1			0.71
IDRC226		32	36	4			1.49
IDRC228		142	144	2			1.12
IDRC229		71	72	1			1.19
	and	129	130	1			1.14
IDRCD102		299	301	2			0.76
IDRCD171		398	399	1			1.12
IDRCD221		107	108	1			0.8
IDRCD238		207.39	208.58	1.19			10.13
	and	216.93	217.32	0.39			0.83
IDRCD239		138.77	140	1.23			3.16
		191.02	191.72	0.7			5.74
		198.05	198.5	0.45			0.9
IDRD006		241	241.6	0.6			1.01
IDRDOOG	and	404.88	410.75	5.87	0.59	123	1.01
	1 1				0.39	51	
1000010	and	416.42	417.48	1.06			
IDRD012		326.57	328	1.43	0.88	361	
IDRD017		85	86	1			0.56
IDRD018	NSR						
IDRD019		44	45	1			0.55
IDRD020	NSR						
IDRD021	NSR						
IDRD022	NSR						
IDRD023	NSR						
IDRD024		81	83	2	0.91	98	
	and	86	88	2	1.35	133	
IDRD025		139	141	2	0.46	214	
IDRD034		108	112	4			1.4
	and	116	120	4			0.79
	and	136	140	4			0.54
SPEX001	aria	66	68	2	1.28	107	0.01
01 EX001		103	106	3	1.20	107	1.67
SPEX002		228	232	4	1		0.75
	+				+		
SPEX004		150	153	3	0.5	100	1.08
SPEX006		193	195	2	0.5	193	
	and	202	204	2	0.49	46	
	and	227	228	1	ļ		0.79
SPEX008		250	253	3	0.39	121	
		260	264	4	1.1	195	
		292	295	3	1.06	409	
		302	305	3	0.52	183	
SPRD002	NSR						
SPRD003	NSR						
SPRD004	NSR						
SPRD005	NSR						
SPRD006	NSR						
SPRD007	NSR				1		
SPRD009	NSR						
	NSR			1	 		
SPRD010	1/2/1	20	22	1	 		0.55
SPRD011		32	33	1	1		0.55
	and	36	37	1	ĺ		7.35

	and	385	388	3			24.21
	and	389.91	391	1.09	1.85	486	
IDRCD205		254	254.68	0.68			0.73
		431.8	432.2	0.4			3.26
	and	437	438	1			0.51
	and	434.24	439	4.76	0.48	94	
	and	444	446.6	2.6	1.17	191	
	and	468.93	476.63	7.7	0.76	178	
IDRCD221		477.6	483.23	5.63	0.85	176	
IDRCD232		201.64	202.96	1.32	0.55	126	
IDNOD202	and	309.04	309.9	0.86	0.52	401	
	and	312.54	325.88	13.34	1.51	88	
	and	329.92	334.09	4.17	0.34	70	
IDRCD233	dila	324.24	327.46	3.22	1.44	96	
IDRD002		410.27	411	0.73	1.44	70	1.03
IDNDOOZ	and	439.88	444.78	4.9	0.91	136	1.03
		480	492.16	12.16	1.25	156	
	and				1.25	136	20.01
100007	and	502.64	503.46	0.82	0.70	2/1	32.01
IDRD007		204.41	205.93	1.52	0.79	361	
	++++	364.33	370.57	6.24	1.59	157	1.00
IDDDC: 0		257	260.11	3.11			1.08
IDRD012		535	536	1	2.22	0.5	1.17
IDRD013		47	48	1	0.33	95	
	and	54	56	2	0.77	344	1
IDRD029		89.2	100.32	11.12	1.73	257	
IDRD029					1./3	257	0.54
IDDD000		107.75	108.74	0.99			0.54
IDRD030		303.46	309.07	5.61	0.00	105	52.69
		77.85	86.96	9.11	0.82	105	
		101.02	105	3.98	1.35	108	
IDRC123		42	44	2	0.91	113	
IDRD002		127	128	1			2.43
IDRCD153		264.82	266	1.18	0.89	480	
	and	269.1	269.42	0.32	1.25	399	
	and	275.57	280.73	5.16	2.42	105	
IDRCD172		297.76	304.71	6.95	1.54	189	
	and	311.4	320	8.6	1.59	125	
	and	325.03	326.32	1.29	1.43	245	
	and	318.53	318.89	0.36			3.73
IDRCD204		242.1	242.68	0.58			0.87
	and	367	372.08	5.08	1.09	191	
	and	374.1	374.53	0.43	0.81	199	
	and	377	387.13	10.13	1.68	257	
1000115	++++	393.4	396.91	3.51	1.81	211	
IDRC145		151	152	1	2.03	482	
	and	169	172	3	1.69	608	<u> </u>
1550-1-	and	182	184	2	0.57	372	
IDRC147		123	125	2	0.51	119	
	and	210	211	1			1.88
	and	225	231	6	0.95	282	
IDRC148		83	86	3	1.04	497	
	and	94	97	3	0.99	209	
IDRC155		48	51	3			2.47
IDRC157		47	48	1			0.85
		93	96	3			0.67
IDRC165		126	128	2			3.39
IDRC167		162	166	4			1.4
		171	173	2	1.41	443	
IDRC169		148	149	1			0.95
IDRC170		64	65	1			1.11
IDRC176		62	66	4			3.87
	and	98	99	1			2.63
IDD0104		1.40	1.4.4	1			0.95
IDRC186		143	144	1			0.73

IDRCD149		69	71	1			0.89
IDRCD153		163	164	1	0.83	122	
IDRCD237		121	127	6	1.81	49	
IDRCD239		70	75	5	1.3	68	
IDRCD104		295.41	315.27	19.86	1.77	350	
IDRCD171		332.39	349.16	16.77	1.77	215	
	and	352	365.71	13.71	0.97	243	
IDRCD173		245	265.16	20.16	1.64	407	
IDRC091		82	84	2			1.08
IDRC092		62	64	2			2.71
	and	86	87	1			4.99
	and	156	157	1			1
	and	175	176	1			1.52
IDRC094		82	83	1	0.75	183	
	and	89	90	1	1.06	134	
	and	93	94	1	0.55	127	
	and	100	105	5	1.49	348	
	and	116	118	2	0.76	477	
IDRC096		52	54	2	0.7	229	
1000000	and	73	75	2	0.99	425	0.10
IDRC099		34	35	1			0.63
	and	56	59	3			3.39
	and	99	100	1			3.27
	and	103	105	2	/		1.71
IDRC101		45	46	1	0.54	179	1.05
	and	59	61	2	1.44	070	1.05
IDDC100	and	64	69	5	1.46	279	
IDRC103		157	158	1	0.8	155	11.07
1220100	and	170	173	3			11.37
IDRC109	1	121	122	1			0.52
	and	123	124	1	1.00		0.89
IDDC112	and	242	247	5	1.88	68	4.07
IDRC113	ava al	112 128	117 129	5			4.96 0.57
	and			1			0.6
IDRC115	and	130	131	1	1 47	210	0.6
IDRC116		186 36	194 40	8 4	1.47	318	1.92
IDRC116	and				0.97	250	1.72
	and and	68 93	70 97	2 4	1.06	128	
IDRC118	ana	43	46	3	1.06	125	
IDICTIO		86	89	3	1.76	52	
IDRC120		78	79	1	1.76	32	2.32
IDIC 120	and	139	14	1			1.38
IDRC121	ana	60	61	1			1.09
IDRC121		102	104	2			4.16
DICTZZ	and	139	140	1			9.48
	and	154	156	2			7.40
	and	171	177	6			1.92
IDRC123	and	171	18	1	0.57	0.6	1./2
15115120	and	22	23	1	0.79	9	
IDRC125	and	47	48	1	0., /	,	0.61
121120		52	53	1			0.6
IDRC131	+++	77	80	3	1.02	250	
.==	and	190	192	2	0.9	222	
IDRC133		179	183	4	1.43	248	
IDRC137		51	57	6	1.82	241	
	and	65	68	3	1.21	224	
	and	201	202	1	1.05	314	
	and	206	207	1	1.26	299	
IDRC139		155	161	6	1.01	171	
- · - ·			6	1	0.6	446	†
IDRC143		5	0	l I	0.0	440	
IDRC143 IDRC186		5 143	144	1	0.0	440	0.95
IDRC143 IDRC186 IDRCD100	NSR				0.91	610	0.95

IDRCD104	NSR	95	96	1			0.75
		122	123	1			1.39
	and	188	189	1			0.54
	and	248	249	1			25.23
IDRC070		162	185	23	1.61	189	
		128	129	1			1.08
		112	116	4			1.1
	and	146	148	2			2.86
IDRC073		72	73	1			5.93
	and	149	155	6	1.75	176	
IDRC074		198	228	30	1.38	253	
IDRC075		214	215	1	0.6	272	
	and	220	221	1			1.02
	and	245	246	1			0.66
IDRC076		226	247	21	1.18	245	
	and	250	252	2			0.96
IDRC077		139	149	10	1.63	375	
IDRC078		167	168	1			0.51
	and	200	201	1	2.48	195	
	and	110	112	2			1.66
IDRC081		92	108	16	1.82	360	
	and	119	125	6	1.26	166	
	and	137	141	4	0.89	117	
IDRC083		89	90	1	0.67	102	
	and	181	188	7	1.89	208	
	and	193	200	7	1.14	109	
IDRC084		32	40	8			0.91
	and	59	61	2	1.03	318	
IDRC085		67	68	1	0.86	228	
IDRC086		113	115	2	1.78	408	
IDRC088		121	136	15	1.5	175	
	and	149	150	1	1.53	203	
IDRC089		92	99	7	1.63	206	
IDRC090		131	141	10	1.38	81	

Section 1 Sampling Techniques and Data – Mt Ida

Criteria	Commentary
Sampling techniques	 Red Dirt Metals Sampling activities have included reverse circulation (RC) and diamond (DD) drilling, and rock chip sampling at the Mt Ida project. Core sampling of one historic drillhole has also been carried out, with assaying, petrological and XRD analysis completed RC are samples collected from a static cone splitter mounted directly below the cyclone on the rig DD sampling is carried out to lithological/alteration domain with lengths between 0.3-1.1m Historic Data Limited historical data has been supplied, historic sampling referenced has been carried out by Hammill Resources, International Goldfields, La Mancha Resources, Eastern Goldfields and Ora Banda Mining, and has included rock chip sampling, and RC, DD and rotary air blast (RAB) drilling Sampling of historic RC has been carried out via riffle split for 1m sampling, and scoop or spear sampling for 4m composites, historic RAB drilling was sampled via spear into 4m composites Historic core has been cut and sampled to geological intervals These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	 Red Dirt Metals Drilling has been carried out by Orlando Drilling and Frontline Drilling, RC drilling utilised an Explorac 220RC rig with a 143 mm face sampling hammer bit, DD drilling was completed by a truck mounted Sandvik DE820 and a KWL 1500 and is HQ2 and NQ2 diameter Diamond tails average 200m depth Historic Data Historic drilling has been completed by various companies including Kennedy Drilling, Wallis Drilling, Ausdrill and unnamed contractors Historic DD drilling was NQ sized core It is assumed industry standard drilling methods and equipment were utilised for all historic drilling
Drill sample recovery	 Red Dirt Metals Sample condition is recorded for every RC drill metre including noting the presence of water or minimal sample return, inspections of rigs are carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Historic Data Limited sample recovery and condition information has been supplied or found
Logging	 Red Dirt Metals Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All chip trays and drill core are photographed in full Historic Data A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering It is unknown if all historic core was oriented, limited geotechnical logging has been supplied No historic core or chip photography has been supplied

Criteria	Commentary
	Logging is of a level suitable to support Mineral resource estimates and
	subsequent mining studies
Sub-sampling techniques and sample preparation	Red Dirt Metals DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet samples are encountered, extra cleaning of the splitter is carried out afterward Chip samples have been analysed for Li suite elements via ICPMS, and for Au by 50g fire assay by Nagrom, NAL and ALS Historic core sampled by Red Dirt Metals was collected for ICPMS analysis via selection from NQ half and quarter core, and submitted to Nagrom Samples analysed by Nagrom, NAL and ALS were dried, crushed and pulverised to 80% passing 75 microns before undergoing a selected peroxide fusion digest or 4 acid digest with ICPMS finish or fire assay with ICPMS finish Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative sub-sample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation RC duplicate field samples were carried out at a rate of 1:20 and were sampled directly from the splitter on the rig. These are submitted for the same assay process as the primary samples and the laboratory are unaware of such submissions Historic Data Historic chip sampling methods include single metre riffle split and 4m composites that were either scoop or spear sampled, while historic core was cut onsite and half core sampled Historic samples were analysed at LLAS, Genalysis and unspecified laboratories Historic Au analysis techniques generally included crushing, splitting if required, and pulverisation, with aqua regia or fire assay with AAS finish used to determine concentration Historic multielement analysis was carried with mixed acid digest and ICP-MS determination
Quality of assay data and laboratory tests	 Red Dirt Metals Samples have been analysed by external laboratories utilising industry standard methods The assay methods utilised by Nagrom, NAL and ALS for RC chip, rock chip and core sampling allow for total dissolution of the sample where required Standards and blanks are inserted at a rate of 1 in 20 in RC and DD sampling, All QAQC analyses were within tolerance No QAQC samples were submitted with rock chip analysis No standards were used by Red Dirt Metals in the historic core ICP analysis or XRD quantification process. Internal duplicate and repeat analyses were carried out as part of the assay process by Nagrom, NAL and ALS, as well as internal standard analysis A standard mica phase was used for the XRD analysis. It is possible that a lithium bearing mica such as lepidolite is present. A subsequent analysis technique would be required for confirmation Historic Data All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods Limited historic QAQC data has been supplied, industry standard best practice is assumed
Verification of sampling and assaying	 Red Dirt Metals Significant intercepts have been reviewed by senior personnel No specific twinned holes have been completed, but drilling has verified historic drilling intervals Primary data is collected via excel templates and third-party logging

Criteria	Commentary
	software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database. Historic data was supplied in various formats and has been validated as much as practicable • No adjustments to assay data have been made other than conversion from Li to Li2O and Ta to Ta2O5 Historic Data • Data entry, verification and storage protocols remain unknown for historic operators
Location of data points	 Red Dirt Metals MGA94 zone 51 grid coordinate system is used Current drilling collars have been pegged using a handheld GPS unit, all collars will be surveyed upon program completion by an independent third party Downhole surveys are completed by the drilling contractors using a true north seeking gyro instrument Topography has been surveyed by recent operators. Collar elevations are consistent with surrounding holes and the natural surface elevation Historic Data Historic collars are recorded as being picked up by DGPS, GPS or unknown methods and utilised the MGA94 zone 51 coordinate system Historic downhole surveys were completed by north seeking gyro, Eastman single shot and multi shot downhole camera
Data spacing and distribution	 Drill hole spacing is variable throughout the programme area Spacing is considered appropriate for this style of exploration and resource development drilling Sample composting has not been applied
Orientation of data in relation to geological structure	Drill holes are orientated perpendicular to the regional trend of the mineralisation previously drilled at the project; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised
Sample security	Red Dirt Metals Samples are prepared onsite under supervision of Red Dirt Metals staff and transported by a third party directly to the laboratory Historic Data Sample security measures are unknown
Audits or reviews	Internal audits are routinely carried out on significant intercepts

Section 2 Reporting of Exploration Results – Mt Ida

Criteria	Commentary
Mineral tenement and land tenure status	 Drilling and sampling activities have been carried on M29/2, M29/165 and E29/640 The tenements are in good standing There are no heritage issues
Exploration done by other parties	 The area has a long history of gold and base metals exploration and mining, with gold being discovered in the district in the 1890s. Numerous generations of exploration have been completed including activities such as drilling, geophysics and geochemical sampling Targeted Li assaying was first carried out in the early 2000s by La Mancha Resources and more recently, lithium assays were completed by Ora Banda Mining
Geology Drill hole Information	 The Mt Ida project is located within the Eastern Goldfields region of Western Australia within the Mt Ida/Ularring greenstone belt Locally the Kurrajong Antiform dominates the regional structure at Mount Ida, a south-southeast trending, tight isoclinal fold that plunges at a low angle to the south. The Antiform is comprised of a layered greenstone sequence of mafic and ultramafic rocks Late stage granitoids and pegmatites intrude the sequence A list of the drill hole coordinates, orientations and metrics are
Dilli fiole illiofficiation	provided as an appended table
Data aggregation methods	 No metal equivalents are used Significant intercepts are calculated with a cut-off grade of 0.3% Li2O
Relationship between mineralisation widths and intercept lengths	The geometry of the Li mineralisation is currently unknown although preliminary interpretation suggests the pegmatite intrusive sills and bodies are orientated sub-parallel to the Mt Ida Granitic intrusion and the northwest trending amphibolite mafic units which bound the western and eastern limbs of the intrusive
Diagrams	Figures have been included in the announcement
Balanced reporting	 It is not practical to report all historical exploration results from the Mount Ida Project. Relevant collars and details are contained within the body of the announcement
Other substantive exploration data	None completed at this time
Further work	 Drilling is continuing at Mt Ida with a 60,000m programme consisting of a mix of RC and diamond drilling underway Aircore and geochemical drilling will also be commenced along strike from the Mt Ida central area with the objective of targeting the pegmatite outcrops located in the mafic sequence sitting to the west of the Mt Ida granitic complex

JORC Code, 2012 Edition – Table 1 Yinnetharra

Section 1 Sampling Techniques and Data - Yinnetharra

Criteria	Commentary
Sampling techniques	 Limited data has been supplied, sampling referenced has been carried out by Segue Resources and Electrostate, reverse circulation (RC) drilling and semi-quantative XRD analysis have been completed at the project Sampling of RC drilling has been carried out via a static cone splitter mounted beneath a cyclone return system to produce a representative sample, or via scoop These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	 RC drilling was completed using a T450 drill rig with external booster and auxiliary air unit, or unspecified methods utilising a 133mm face sampling bit It is assumed industry standard drilling methods and equipment were utilised for all drilling
Drill sample recovery	 RC recoveries were visually estimated on the rig, bulk reject sample from the splitter was retained on site in green bags for use in weighing and calculating drill recoveries at a later date if required Sample weights were recorded by the laboratory No bias was thought to exist due to sample recovery
Logging	 A complete quantitative and qualitative logging suite was supplied for drilling including lithology, alteration, mineralogy, veining and weathering No chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies
Sub-sampling techniques and sample preparation	 RC sampling methods included single metre static cone split from the rig or via scoop from the green bags Samples were recorded as being mostly dry Field duplicates were inserted at a rate of 1:20 within the pegmatite zones Samples were analysed by Nagrom or ALS Laboratories where 3kg samples were crushed and pulverised to 85% passing 75 microns for a sodium peroxide fusion followed by ICP-MS determination for 25 elements. Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative sub-sample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation
Quality of assay data and laboratory tests	 All samples are assumed to have been prepared and assayed by industry standard techniques and methods The sodium peroxide fusion used is a total digest method Field duplicates, certified reference materials (CRMs) and blanks were inserted into the sampling sequence at a rate of 1:20 within the pegmatite zone Internal standards, duplicates and repeats were carried out by Nagrom and ALS as part of the assay process No standards were used in the XRD process
Verification of sampling and assaying	 Significant intercepts have been reviewed by senior personnel No twinned holes have been drilled Primary data was recorded in logbooks or spreadsheets before transfer into a geological database
Location of data points	 Collars were located using handheld Garmin GPS unit with +/- 5m accuracy GDA94 MGA zone 50 grid coordinate system was used Holes were not downhole surveyed, planned collar surveys were provided
Data spacing and distribution	 Drill hole spacing is variable throughout the programme area Spacing is considered appropriate for this style of exploration Sample composting has not been applied

Criteria	Commentary
Orientation of data in relation to geological structure	 Drill holes were orientated to intersect the pegmatite zones as close to perpendicular as possible; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised as true orientation of the pegmatites is yet to be determined
Sample security	 Samples were collected, stored, and delivered to the laboratory by company personnel
Audits or reviews	None carried out

Section 2 Reporting of Exploration Results - Yinnetharra

Criteria	Commentary
Mineral tenement and land tenure status	 Drilling activities have been carried on E09/2169 The tenements are in good standing There are no heritage issues
Exploration done by other parties	 The area has a long history of multi commodity exploration including base and precious metals, industrial minerals and gem stones stretching back to the 1970s, activities carried out have included geophysics and geochemical sampling, and some drilling Targeted Li exploration was carried out in 2017 by Segue Resources with follow up drilling completed by Electrostate in July 2022
Geology	The project lies within the heart of the Proterozoic Gascoyne Province, positioned more broadly within the Capricorn Orogen — a major zone of tectonism formed between the Archean Yilgarn and Pilbara cratons. The Gascoyne Province has itself been divided into several zones each characterised by a distinctive and episodic history of deformation, metamorphism and granitic magmatism. The project sits along the northern edge of the Mutherbukin zone, along the Ti Tree Syncline. Mutherbukin is dominated by the Thirty-Three supersuite — a belt of plutons comprised primarily of foliated metamonzogranite, monzogranite and granodiorite. Rare-earth pegmatites have been identified and mined on small scales
Drill hole Information	A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	 No metal equivalents are used Significant intercepts are calculated with a cut-off grade of 0.3% Li2O
Relationship between mineralisation widths and intercept lengths	 The pegmatites are interpreted as dipping moderately to steeply toward the south Further drilling is required to confirm the true orientation of the pegmatites across multiple lines
Diagrams	Figures have been included in the announcement
Balanced reporting	 All drill collars, XRD results and significant intercepts have been reported in the appendix
Other substantive exploration data	None completed at this time
Further work	POW's have been submitted to give RDT access to drill 200RC and 100 Diamond holes immediately over the area currently cleared under the existing heritage agreement, work will only be carried out under the guidelines of the heritage agreement and the agreed POW terms. The initial 12 months of exploration will be focused on understanding the potential size and the orientation and structural setting of the pegmatite emplacement at the Yinnetharra project, RDT envisages both additional Geochemical and geophysical studies will be utilised to complete this scope of work