

29 September 2022

HIGH-GRADE GOLD 200M BELOW NE BANKAN'S 3.9MOZ RESOURCE PITSHELL

Near-mine results continue to demonstrate Bankan's upside

Predictive Discovery Limited (ASX:PDI) ("Predictive" or "Company") is pleased to announce new infill Diamond Drill (DD) and Reverse Circulation (RC) results from the 3.9Moz (inferred mineral resource) NE Bankan deposit as well as near-mine Air Core (AC) and power Auger (AG) within 3 kms of the 4.2Moz Au (inferred mineral resource) Bankan Gold Project¹.

The latest drilling results are in line with the Company's stated strategy of adding to and improving the quality of the current resource at the Bankan Gold Project.

The deeper DD results 200m below the current NE Bankan pitshell demonstrate further continuity of gold mineralisation and grade outside of the current resource, whilst the shallower grade control RC results will be used to determine the ultimate drill spacing required to convert the current inferred resource to the indicated category with modelling for this to be completed in October 2022.

The near-mine AC and AG drilling results, all within 3kms of the current NE Bankan and Bankan Creek discoveries, have provided additional shallow and near-term deposit targets that have potential to add additional resource ounces to the Bankan Gold Project.

The drilling results in this statement include a total of 1,266 holes for 42,877m, drilled between April to end of August 2022 for the AG and AC drilling, and from 1 August to mid-September 2022 for the DD and RC drilling. The metres are split as follows:

Drill type	# Holes	# Metres	Locality
DD	6 holes	3,022m	NE Bankan
RC	77 holes	6,181m	NE Bankan
AC	109 holes	5,312m	<3km NE Bankan
AG	1,074 holes	28,362m	<3km NE Bankan

NE Bankan - Diamond Drilling

Infill results from six DD-holes totalling 3,022 metres, including hole BNEDD0129W2, which
returned wide zones of high-grade gold more than 200 metres below the 3.9Moz Resource
pit shell (Fig. 1). Better results include:

¹ ASX Announcement - 4.2Moz Bankan Gold Resource (1st August 2022)

- BNEDD0127: 22m @ 2.41g/t Au from 68m, and 7m @ 7.11g/t Au from 166m
- BNEDD0128: **17m @ 1.69g/t Au** from 582m
- BNEDD0129W2: 30.52m @ 3.55g/t Au from 723, incl.
 9m @ 7.98g/t Au, and
 16m @ 6.14g/t Au from 832m, and
 7.6m @ 3.17g/t Au from 887
- BNEDD0130: 28m @ 1.26g/t Au from 229, and
- BNEDD0131: 1m @ 60.2g/t Au from 30m, and 15m @ 1.75 g/t Au from 133m
- BNEDD0132: 22.8m @ 3.52g/t Au from 404m, incl.
 6m @ 7.48g/t Au from 412m, and
 14m @ 1.58 g/t from 430m, and
 8m @ 1.81g/t Au from 502

NE Bankan - Reverse Circulation Drilling

- Highlights from the RC Grade Control include:
 - BNERC0209: 28m @ 3.31 g/t Au from 33m
 - BNERC0241: **45m @ 2.31g/t Au** from 2m
 - BNERC0243: 42m @ 2.04 g/t Au from 33m
 - BNERC0245: 27m @ 4.51g/t Au from 8m
 - BNERC0246: **18m @ 4.98 g/t Au** from 6m

NE Bankan - Diamond Drilling Detailed

Bankan currently has an inferred Mineral Resource of 79.5 million tonnes at 1.63g/t Au for 4.2 million ounces of gold². Drilling at NE Bankan is targeting the plunge extension of the high-grade shoot and upgrading the resource classification to indicated.

There are currently 10 active drill rigs on site with four Diamond, two multipurpose Diamond/Reverse Circulation, one Reverse Circulation, one Air Core and two Power Auger drill rigs, all conducting various resource development and exploration programs across the Bankan Project.

DD-Hole BNEDD0129W2 intersected first **30.52m @ 3.55g/t Au** from 723, incl. **9m @ 7.98g/t Au** on the current Resource hanging-wall shear zone (STMZ) and further with additional **16m @ 6.14 g/t Au** on a new second, footwall high-grade shear zone (ST3Z) - see Figure 3.

DD-Hole BNEDD0129W2 links on plunge the deepest intercept to date in BNEDD0113 of **24m @ 5.5 g/t** incl. **11m @ 10.3 g/t** with the deepest intercept in the last Mineral Resource Estimate (1 August 2022), BNEDD0119A of **30m @ 3.43 g/t** incl **11m @ 6.22 g/t Au**.

The ST3Z structure may not have been intercepted by BNEDD0113, opening up multiple lode potential at depth within the plunging high-grade shoot. DD-Hole BNEDD0129W2 intercepts lie 225 metres down-plunge from the current US\$1,800/oz pit shell, with BNEDD0113 375 metres down-plunge.

DD-Hole BNEDD0132 intersected **22.8m @ 3.52g/t Au** from 404.2m incl. **6m @ 7.18 g/t Au** from 412m, **14m @ 1.58 g/t Au** from 430m and **8m @ 1.81g/t Au** from 502m. The intercept of **22.8m @ 3.52g/t** occurs immediately below the main resource host, the hanging-wall STMZ and pushes the southern limit of the 150GM solid a further 40 metres southward.

Additional drilling has been planned up-dip and south along strike to follow-up on this strong intercept. At the northern limit of the up-plunge NE Bankan shoot, holes BNEDD0130 and BNEDD0131 were drilled to define the structural architecture of the resource and investigate the robustness of the grade continuity up-plunge within the pit shell (see Figures 1 & 2).

Results indicate that Section 1175340N represents the northern margin of the NE Bankan shoot and, whilst within the pit shell, DD metres will be focused on the southern generative margin of the NE Bankan high-grade shoot.

Detailed results and a complete explanation of the methods followed in drilling and assaying the reported holes can be found in Tables 1-2 and Figures 1-8.

Commenting on the latest drilling results Managing Director Andrew Pardey:

"The drill results reported today are a combination of targeting the high-grade zone beneath the NE Bankan optimised resource pit shell, combined with the RC grade control drilling program adding to and improving the quality of Bankan's 4.2Moz inferred Resource.

Also included is AC and Auger drilling, targeting potential nearby 'feeder' deposits. The Company's understanding of Bankan's rich geology has accelerated substantially with ten active drill rigs on site, up from four at the beginning of the year.

Results to date correlate with our geological model of the orebodies discovered to date, whether it be the shallow oxide or the high-grade zone extending well below the current NE Bankan optimised resource pit shell.

We remain on track to deliver on the 60,000m RC and DD campaigns and have commenced the work on the detailed Scoping Study due to be completed in the second half of 2023."

Page 3 of 46 predictivediscovery.com

29 September 2022

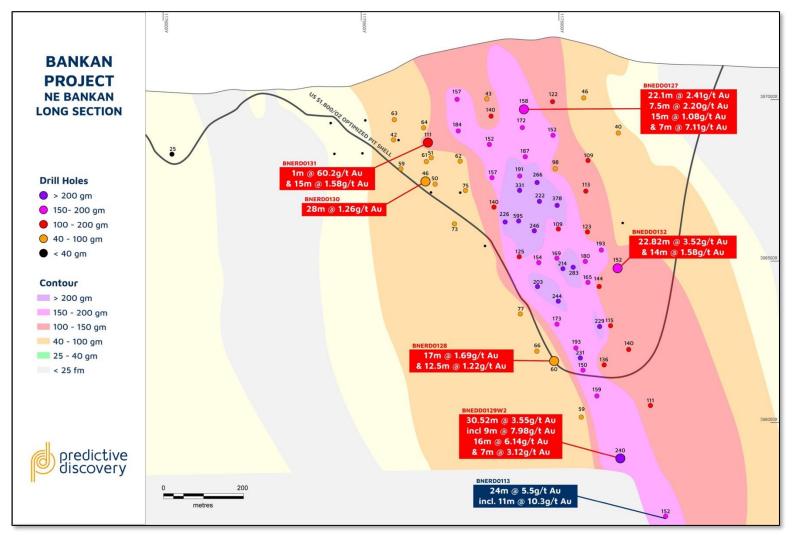


Figure 1 – NE Bankan, Long-Section view, with new Diamond Drill holes BNEDD0127- BNEDD0131 (red callouts), including BNEDD0129W2 which intersected gold mineralisation more than 200m below the 3.9Moz Resource pit shell. Also shown is the deepest Diamond Drill hole completed to date (BNERD113 – blue callout).

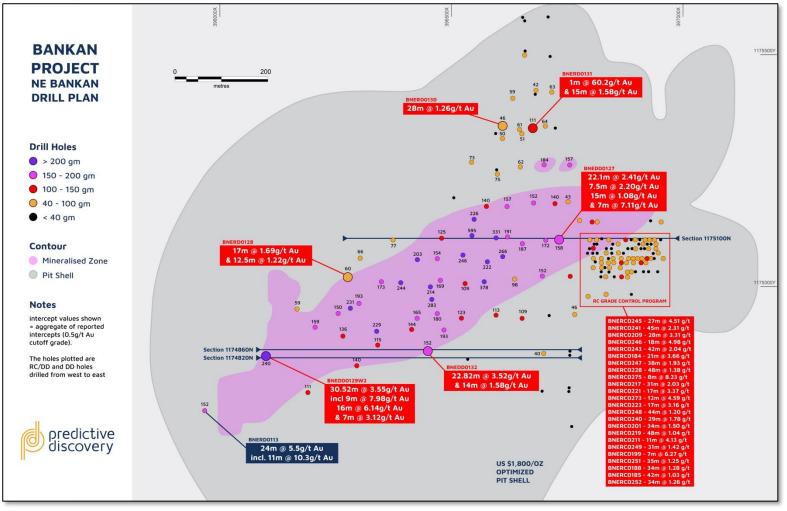


Figure 2 – NE Bankan Drill Plan, including new Diamond Drill and Reverse Circulation Drilling results (red callouts) overlain previous results and high-grade zone, including the deepest Diamond Drill hole completed to date (BNERD113 blue callout).

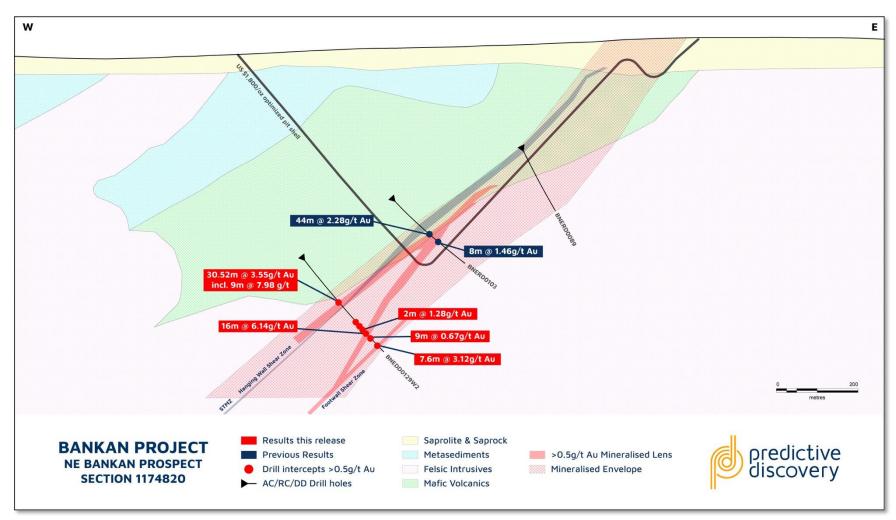


Figure 3 - Section 1174820N (+20mN/- 60mS) with new diamond drillhole BNERD0129W2.

Hole ID

29 September 2022

From To Int Aug/t

Core Photography for BNEDD0129W2 (739 - 754m)

Intercept: 30.52m @ 3.55 g/t incl. 9m @ 7.98 g/t

9.54		TIOIII	10	int	Aug/t
		739	740	1	5.76
		740	741	1	11.10
		741	742	1	2.80
		742	743	1	0.76
		743	744	1	27.90
		744	745.05	1.05	7.19
		745.05	746.42	1.37	1.62
	BNEDD0129W2	746.42	747.2	0.78	9.87
		747.2	748	0.8	2.04
		748	749	1	1.09
		749	749.75	0.75	0.67
		749.75	750.52	0.77	1.12
		750.52	752	1.48	1.39
		752	753	1	6.69
		753	754	1	3.44

Figure 4 - Section 1174820N BNEDD129W2 Cut Core Photo with annotated assays 739.6m to 753.52m.

Figure 5 - Section 1174820N BNEDD129W2 Cut core high-grade specimens - +4% Py +/- Cpy + Chlorite + Albite + Silica +/- Feldspar +/- Biotite.

Core Photography for BNEDD0129W2 (832 - 848m)

• Intercept: 16m @ 6.14 g/t

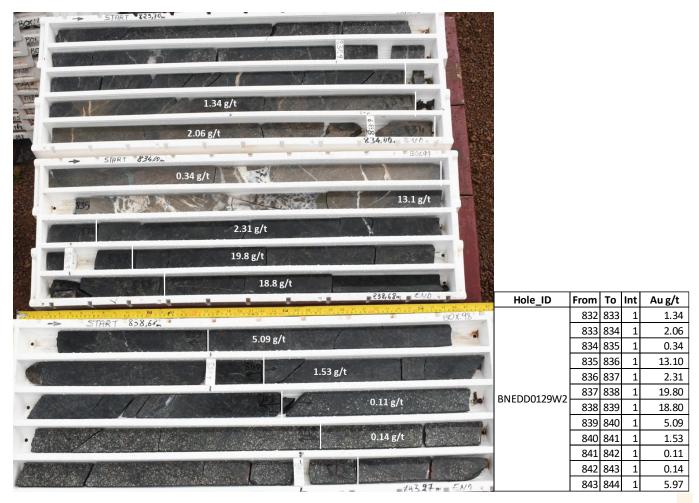


Figure 6 - Section 1174820N BNEDD129W2 Cut Core Photo with annotated assays 825.3m to 843.27m.

Page 8 of 46 predictivediscovery.com

ASX Announcement

29 September 2022

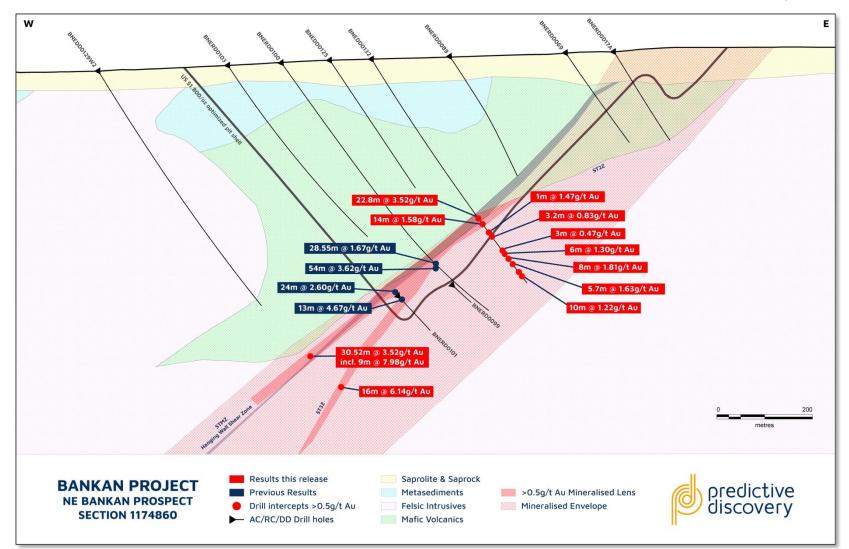


Figure 7 - Section 1174860N (+20mN/- 60mS) with new diamond drillhole BNEDD0132.

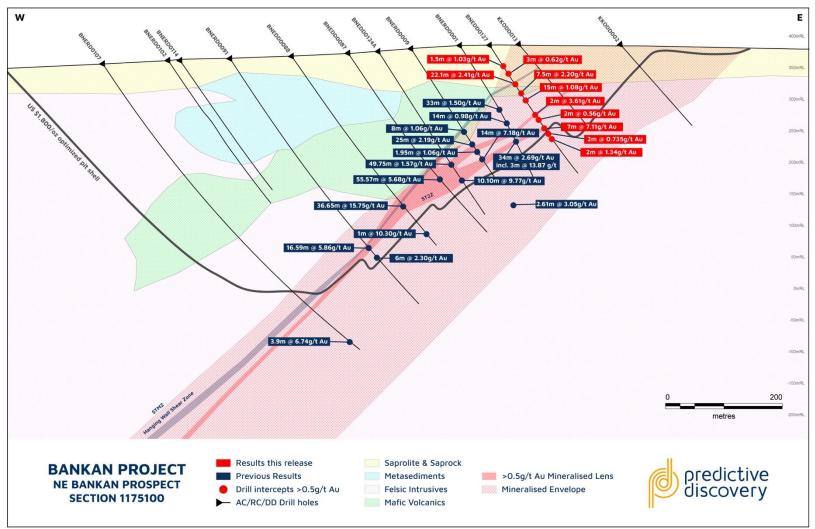


Figure 8 - Section 1175100N (+20mN/- 60mS) with new diamond drillhole BNEDD0127.

Page 10 of 46

29 September 2022

Reverse Circulation Drilling

- Results from 77 RC-holes (totalling 6,181m) of the dedicated 10m x 10m angled grade control program (BNERC0166-BNERC0276 reported) at NE Bankan (see Figure 1), investigating the shortrange variability of the high-grade mineralisation within the upper fresh and oxide horizons of the main shoot.
- The results from this drill program will be used to determine the required drill spacing required to be able to convert the current inferred resource to the indicated category and provide input into the scoping study now underway. Better results include:
 - BNERC0168: 25m @ 1.36g/t Au from 44m
 - BNERC0169: 20m @ 1.84g/t Au from 38m
 - BNERC0184: 21m @ 3.66g/t Au from 59m
 - BNERC0185: 42m @ 1.03g/t Au from 26m
 - BNERC0186: 23m @ 1.29g/t Au from 55m
 - BNERC0187: 26m @ 1.25g/t Au from 47m
 - BNERC0188: 34m @ 1.28g/t Au from 50m
 - BNERC0189: 5m @ 8.08g/t Au from 50m, and 20m @ 1.27g/t Au from 58m
 - BNERC0199:

•

•

•

•

•

•

•

10m @ 3.67g/t Au from 70m

7m @ 6.27g/t Au from 58m, and

- BNERC0200: 31m @ 1.11g/t Au from 36m
- BNERC0201: 13m @ 2.78g/t Au from 64m
- BNERC0202: 11m @ 2.31g/t Au from 24m
- BNERC0203: 24m @ 1.50g/t Au from 19m, and 18m @ 2.11g/t Au from 46m
- BNERC0206: 23m @ 1.54g/t Au from 21m
 - BNERC0208: 13m @ 2.21g/t Au from 33m, and 15m @ 1.70g/t Au from 51m
 - BNERC0209: 28m @ 3.31g/t Au from 33m
 - BNERC0211: 11m @ 4.13g/t Au from 66m
 - BNERC0212: 11m @ 2.94g/t Au from 69m
- BNERC0213: 18m @ 2.14g/t Au from 62m
- BNERC0214: 23m @ 1.19g/t Au from 22m
- BNERC0216: 23m @ 1.10g/t Au from 38m
- BNERC0217: 31m @ 2.03g/t Au from 48m
- BNERC0218: 30m @ 1.06g/t Au from 4m
- BNERC0219: 10m @ 0.62g/t Au from 70m
- BNERC0221: 17m @ 3.37g/t Au from 2m
- BNERC0222: 17m @ 1.79g/t Au from 18m

•	BNERC0223:	17m @ 3.16g/t Au from 29m, and
		7m @ 4.81g/t Au from 50m
•	BNERC0224:	24m @ 1.69g/t Au from 37m
•	BNERC0225:	7m @ 4.14g/t Au from 53m
•	BNERC0228:	48m @ 1.38g/t Au from 0m
•	BNERC0232:	17m @ 1.69g/t Au from 6m
•	BNERC0233:	32m @ 1.13g/t Au from 4m
•	BNERC0241:	45m @ 2.31g/t Au from 2m
•	BNERC0242:	21m @ 1.23g/t Au from 27m
•	BNERC0243:	42m @ 2.04g/t Au from 6m
•	BNERC0244:	24m @ 1.72g/t Au from 3m
•	BNERC0245:	27m @ 4.51g/t Au from 8m
•	BNERC0246:	18m @ 4.98g/t Au from 33m
•	BNERC0247:	38m @ 1.93g/t Au from 40m
•	BNERC0249:	31m @ 1.42g/t Au from 25m
•	BNERC0250:	12m @ 2.56g/t Au from 45m
•	BNERC0251:	35m @ 1.25g/t Au from 37m
•	BNERC0252:	34m @ 1.26g/t Au from 43m
•	BNERC0271:	23m @ 1.49g/t Au from 4m
•	BNERC0272:	19m @ 2.21g/t Au from 6m
•	BNERC0273:	12m @ 4.59g/t Au from 2m
•	BNERC0275:	16m @ 2.39g/t Au from 6m, and
		-
		8m @ 8.23g/t Au from 25m

RC program location can be seen in Figure 2 with a full list of results available in Table 2.

REGIONAL/NEAR-MINE EXPLORATION

Aircore Results

• AC drilling focused on the 800W, NEB South and NEB North prospect areas with 109 shallow AC holes (BKAC0278-BKAC386) totalling 5,312 metres (Fig. 9).

800W Prospect

- BKAC0290: 50m @ 0.58g/t Au from 0m (mineralised to EOH)
- BKAC0285: 12m @ 1.24g/t Au from 28m

NEB S Prospect

• BKAC0340: 20m @ 1.34g/t Au from 30m

Page 12 of 46 predictivediscovery.com

NEB N Prospect

BKAC0308: 14m @ 1.67g/t Au from 18m

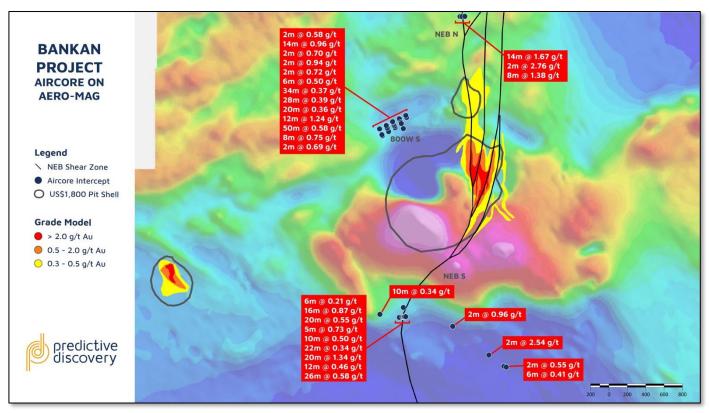


Figure 9 – NE Bankan, summary plan of the latest air core results from near-mine Exploration, overlain aeromagnetic survey – Bankan Creek pitshell is also shown 3km to the West.

Several significant intercepts were reported from this last phase of aircore, namely 50m @ 0.58 g/t, 12m @1.24 g/t and 14m @ 0.96 g/t. The 800W prospect has a 250-metre core of oxide mineralisation (Fig. 10-11) with the second phase of air core drilling reorientated 160-340°, orthogonal to the interpreted NE070° strike of the 800w mineralised structures, from previous results.

Page 13 of 46 predictivediscovery.com



Figure 10 - 800W Prospect, Air Core results overlain previous drilling.

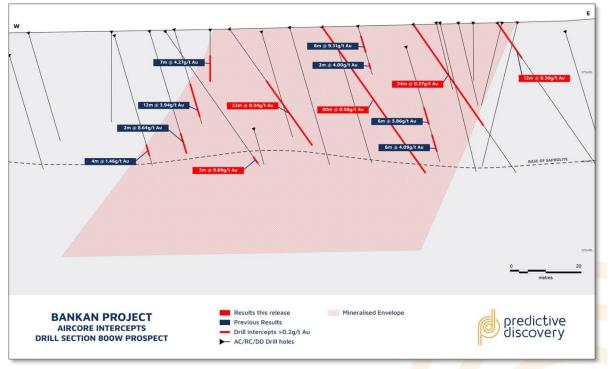


Figure 11 - 800W prospect, AC drill section.

Recent air core and infill auger results from NE Bankan-South reinforce the anomalism associated with the interpreted southern strike extension of the NE Bankan fault system.

Page 14 of 46 predictivediscovery.com

The NE Bankan-North prospect is located 600m north on strike from the last drill section from NE Bankan (Fig. 12). Recent air core results confirm the presence of the NE Bankan-style mineralisation on exactly the same structural setting within the tonalite.

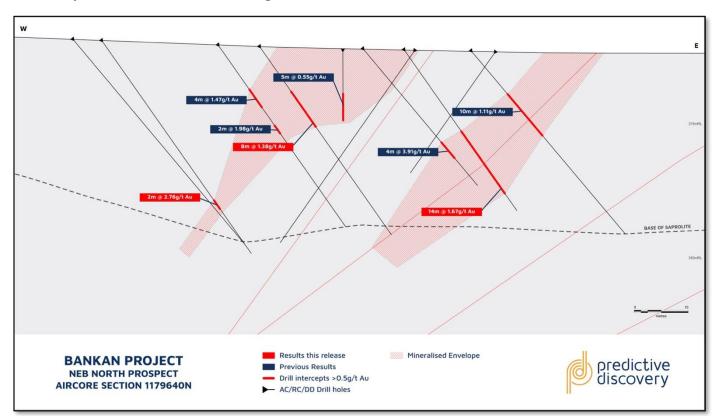


Figure 12 - Section 1179640N (+20mN/- 60mS) NEB North Prospect, with new AC holes overlain previous drilling.

Power Auger Results

Reported below are the last 1,074 auger holes from the current regional exploration program across the Bankan Project (Fig. 13). Totalling 28,362 metres of power auger drilling, the program was focused on the main prospects between the NE Bankan and Bankan Creek resources areas (Holes BKAU2222 to BKAU3592) and investigating the prospectivity of the NE Bankan Footwall (NE Bankan FW).

Other prospects targeted were NE Bankan South (NEB S), NE Bankan West (NEB W), 800W and NE Bankan North, Bankan Creek East (BCK E) and the newly developing Main Contact Anomaly (MCTA), formerly referred to as Bankan Creek North.

Page 15 of 46 predictivediscovery.com

The most significant power auger results from this batch are:

NEB FW

BKAU3295: 10m @ 10.53g/t Au from 18m

800W South

BKAU2596: 24m @ 1.92g/t Au from 4m

Main Contact Anomaly

• BKAU2657: 10m @ 4.34g/t Au from 20m

Bankan Creek East

• BKAU3172: 10m @ 1.33g/t Au from 4m

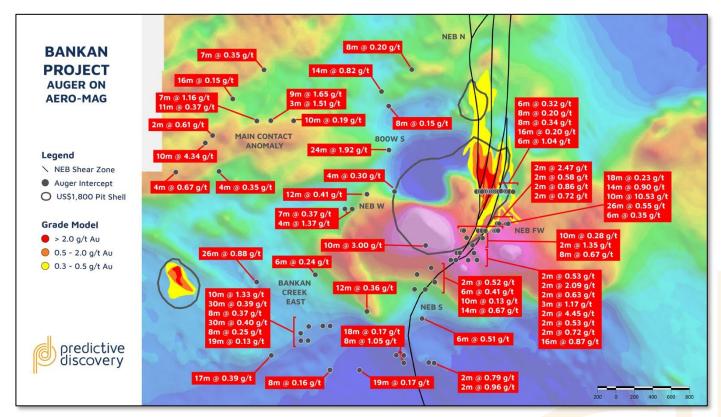


Figure 13 - A summary plan of the latest auger results from Bankan Exploration.

NE Bankan Footwall (Detailed)

Infill auger drilling around the eastern footwall of the NE Bankan shear zone has picked up gold anomalism along the main Mafic Basalt-Tonalite contact east of the current pit shell with **10m** @ **10.53g/t Au and 6m** @ **1.3g/t Au** defining the auger signature of potential mineralisation on the contact heading south-west along the interpreted strike extension (Fig. 14).

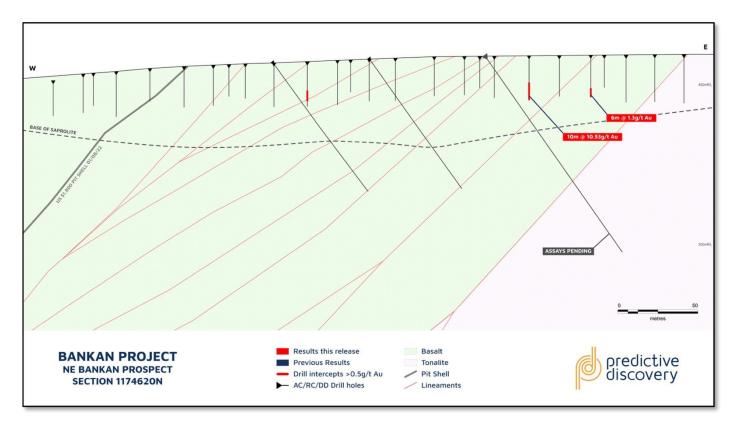


Figure 14 - Section 1174620N (+20mN/- 60mS) NEB Footwall prospect with new power auger Intercepts overlain previous drilling.

NE Bankan West and Bankan Creek East (Detailed)

A number of significant auger intercepts have been reported from the NEB West and Bankan Creek East areas in this last auger survey, namely **28m @ 1.92g/t Au** (800WS), **10m @ 3g/t Au** (NEB W), **10m @ 1.33g/t Au** (BCK E), **26m @ 0.88g/t Au** (BCK E) and **14m @ 0.67g/t Au** (NEB S).

The auger results correspond to major breaks and contacts in the magnetics which are interpreted as significant fault structures controlling the auger anomalism. These recent auger results reinforce the importance of the primary NE-SW faulting on gold deposition.

Main Contact Anomaly (Detailed)

Recent infill auger results have consolidated a concept for a new E-W prospect called the Main Contact Anomaly, previously called Bankan Creek North, with highlights including **10m @4.34 g/t Au, 9m @ 1.65g/t Au and 7m @ 1.16g/t Au.**

Incorporating all auger and aircore results to date we observe a 2.2km generative zone of anomalism associated with the interpreted margins of a subjacent intrusive (Fig. 15).

Subsequent auger infill will focus on consolidating the anomalism and developing a geological model from surface mapping and prospecting.

Page 17 of 46 predictivediscovery.com

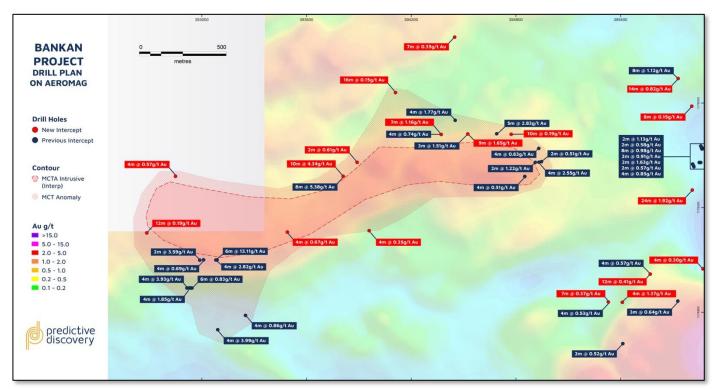


Figure 15 – Main Contact Anomaly, power auger drilling overlain previous drilling and regional aeromag.

Detailed results and a complete explanation of the methods followed in drilling and assaying the reported holes can be found in Tables 3-4 and Figures 8-15.

NEXT STEPS

NE Bankan Diamond and Reverse Circulation Drilling

Diamond Drill Programs

- Based on the variography of the detailed 10m x 10m grade control block, the Company will design a new NE Bankan Resource drill program, expected to deliver a high conversion of Resources from inferred to indicated categories.
- 6 DD rigs remain on double shift, a second EDM2000 deep hole rig is expected Q4 2022.

RC Drill Program

- The final 3,916 metres of the NE Bankan Resource RC drilling program is expected to be completed during October 2022.
- Bankan Creek 1,280 metres RC drilling is expected to be completed Q1 2023 (Dry season).

Page 18 of 46 predictivediscovery.com

Regional and Near-Mine Exploration Program

Near-Mine Air Core Program

• Develop and test the near-resource surface prospects "in the shadow of the current resources". Infill air core sections linking NE Bankan North southward to join with the NE Bankan northern pit mineralisation.

Power Auger Program

- Continue the northern regional target generation auger program grids post-wet season, commencing in November 2022 with a 4-auger rig roll-out on the main NNW trending structure.
- Continue with near-resource anomaly infill auger patterns surrounding and consolidating each of the major trends and point anomalies identified in this last phase of auger drilling.
- Prioritise extensions to existing prospects including NEB FW, NEB N, NEB S, BCK NE, BCK SW and the MCTA.

Regional Ground Geophysics

- Utilise the recently completed Gradient Array Induced Polarisation and Pole-Dipole Array data to target the northern strike extension of NE Bankan and N BCK fault systems.
- Plan new GAIP grids on known mineralised settings to help devise 3D geological setting models and lead subsequent auger and air core drilling.
- Investigate the Main Contact Anomaly with GAIP and prospect mapping to develop a structural model and infill further auger drilling to consolidate a clearer target for air core drilling.
- Complete a combined GAIP + ground gravity survey in the dry season, covering the main Archean-Birimian basin margin transfer, which hosts the Main Contact Anomaly, map the contact architecture and develop a 4D model to focus further auger and multi-vector multielement geochemical and spectral alteration exploration.

- END -

This announcement is authorised for release by Predictive Managing Director, Andrew Pardey. For further information visit our website at www.predictivediscovery.com or contact:

Andrew Pardey

Managing Director E: <u>andrew.pardey@predictivediscovery.com</u> Bobby Morse/Ariadna Peretz - Buchanan Media Enquiries E: predictive@buchanan.uk.com P: +44 (0) 20 7466 500

> Page 19 of 46 predictivediscovery.com

COMPETENT PERSONS STATEMENT

The exploration results reported herein are based on information compiled by Mr Norm Bailie. Mr Bailie is a full-time employee of the company and has sufficient experience relevant to the style of mineralisation and type of deposits being considered to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bailie consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

COMPLIANCE STATEMENT

Predictive advises that it is not aware of any new information or data that materially affects the previous exploration results or mineral resource estimate contained in this announcement and all material assumptions and technical parameters underpinning the mineral resource estimate continue to apply and have not materially changed.

About the Bankan Gold Project

The Bankan gold camp is situated in north-east Guinea, West Africa (Fig. 16). The project is 550km by road from Guinea's capital Conakry within the region of Upper Guinea (Haute-Guinée) and is near the regional administrative centre of Kouroussa.

The Bankan project area covers 356km² in four exploration permits, Kaninko, Saman, Bokoro and Argo. Three permits are held by wholly owned subsidiaries of Predictive Discovery Limited. The fourth, Argo, is held in a joint venture with the owners of local company Argo Mining SARLU, through which the company has the right to acquire 100% equity at decision-to-mine.

Geologically, the Bankan gold camp lies in the south-western portion of the Siguiri Basin, a component of the early Proterozoic Birimian orogenic belt in north-eastern Guinea. The Siguiri Basin is largely composed of turbiditic sediments with lesser mafic volcanics and minor felsic intrusives. The geology in the immediate Bankan area consists of shelf sedimentary rocks (conglomerates, sandstones, shales and limestones), mafic volcanics and intrusives and felsic intrusives, the latter generally ranging from tonalite to quartz diorite in composition.

Page 20 of 46 predictivediscovery.com

Figure 1611 - Predictive Discovery's Bankan Gold Project, located in Guinea's Siguiri Basin, close to large regional mines and deposits.

Page 21 of 46 predictivediscovery.com

TABLE 1 – DIAMOND DRILLING RESULTS (NE BANKAN)

Hole No.	Prospe ct	UTM 29N East	UTM 29N North	RL (GPS)	Hole azimu th	Hole dip	Hole depth	0.50	g/t gold cut	t-off		
								From	Interva I	Au g/t	GM	Comments
BNEDD0127	Bankan NE	396711.6	11750 99	430.681	88.84	-57.24	266.9	41.90	1.50	1.03	2	
								56.90	3.00	0.62	2	
								68.90	22.10	2.41	53	22.1m @ 2.41 g/t
								94.30	7.50	2.20	17	
								105.00	15.00	1.08	16	
								134.00	1.00	0.54	1	
								141.00	2.00	3.61	7	
								152.00	1.00	1.11	1	
								166.00	7.00	7.11	50	7m @ 7.11 g/t
								181.00	1.00	0.89	1	
								186.00	2.00	1.34	3	
								191.00	2.00	0.56	1	
								201.00	2.00	0.74	1	
								214.00	1.00	1.79	2	
								219.00	1.60	0.83	1	
								225.00	1.00	0.60	1	
BNEDD0128	Bankan NE	395960.4	11750 18.4	393.643	90	-55	682.9	528.00	1.00	1.70	2	
								537.00	1.00	5.79	6	
								559.00	3.00	0.79	2	
								566.00	8.00	0.58	5	
								582.00	17.00	1.69	29	17m @ 1.69 g/t
								604.50	12.50	1.22	15	
								624.00	1.00	0.51	1	
								627.00	0.60	0.56	0	
								671.00	1.00	0.61	1	
BNEDD0129W 2	Bankan NE	395669.8 1	11748 48.9	382.193	90	-55	902.9	723.48	30.52	3.55	108	30.52m @3.55 g/t incl 9m @ 7.98 g/t
								802.00	1.00	0.59	1	
								816.00	1.00	0.51	1	
								827.00	2.00	1.28	3	
								832.00	16.00	6.14	98	16m @ 6.14 g/t
								852.00	9.00	0.67	6	

Page 22 of 46 predictivediscovery.com

								877.40	7.60	3.17	24	7.6m @ 3.17 g/t
BNEDD0130	Bankan NE	396507.1 9	11753 38.9	412.722	86.6	-56.53	320	92.00	1.00	1.38	1	
	INE	9	30.9					106.00	2.84	0.87	2	
											1	
								114.00	1.00	0.69		
								224.00	2.00	0.96	2	28m @ 1.26 g/t
								229.00	28.00	1.26	35	-
								270.00	1.00	0.61	1	
								278.00	1.00	0.69	1	
								282.00	1.00	1.16	1	
BNEDD0131	Bankan	396615.7	11753	417.467	90	-55	279.6	303.00	3.25	0.61	2	1m @ 60.2 g/t
DIVEDDOTST	NE	2	39.9	-17.407	50	55	215.0	30.00	1.00	60.20	60	
								67.20	6.50	0.53	3	
								85.00	1.00	1.85	2	
								89.00	1.00	0.63	1	
								93.00	1.00	0.59	1	
								121.00	1.00	0.75	1	
								125.00	2.00	0.63	1	
								129.00	1.00	0.93	1	
								133.00	15.00	1.75	26	15m @ 1.75 g/t
								162.00	2.00	0.81	2	
								176.00	1.00	0.61	1	
								179.00	1.00	2.65	3	
								188.00	2.00	1.21	2	
								211.00	1.00	0.63	1	
								220.00	1.00	0.78	1	
								228.00	1.00	0.65	1	
								234.20	0.80	0.71	1	
								240.00	2.00	1.27	3	
								249.00	1.00	0.65	1	
								252.00	1.00	1.62	2	
BNEDD0132	Bankan NE	396240.1 4	11748 60.2	406.435	90	-55	570	400.00	1.00	1.47	1	
								404.20	22.80	3.52	80	22.8m @ 3.52 g/t incl 6m @ 7.48 g/t
								430.00	14.00	1.58	22	
	1			1				447.00	1.00	0.64	1	
								449.00	1.00	0.74	1	

Page 23 of 46 predictivediscovery.com

				483.00	3.20	0.83	3	
				490.00	6.00	1.30	8	
				502.00	8.00	1.81	14	8m @ 1.81 g/t
				517.30	5.70	1.63	9	
				540.00	2.00	0.58	1	
				547.00	7.00	1.62	11	

TABLE 2 – REVERSE CIRCULATION DRILLING RESULTS (NE BANKAN)

Hole No. Prospec		UTM 29N East	UTM 29N North	RL (GPS)	Hole azimuth	Hole dip	Hole depth		0.5g/t gold cut-off		
								From	Interval (est true widths)	Au g/t	GМ
BNERC0166	Bankan NE	396,845.57	1,175,030.02	431.16	91.68	- 54.91	87.00	74.00	3.00	3.78	11
								81.00	1.00	0.71	1
BNERC0168	Bankan NE	396,806.20	1,175,030.25	431.16	90.47	- 55.34	88.00	14.00	4.00	0.61	2
								25.00	3.00	0.84	3
								32.00	1.00	0.83	1
								37.00	4.00	1.25	5
								44.00	25.00	1.36	34
								72.00	7.00	1.25	9
								82.00	2.00	0.74	2
BNERC0169	Bankan NE	396,795.29	1,175,029.97	431.36	87.82	- 54.70	81.00	10.00	3.00	0.56	2
								16.00	5.00	1.54	8
								26.00	6.00	0.79	5
								38.00	20.00	1.84	37
								61.00	13.00	0.93	12
								79.00	2.00	0.69	1
BNERC0170	Bankan NE	396,785.16	1,175,030.07	431.11	90.10	- 54.79	84.00	20.00	1.00	0.53	1
								24.00	6.00	1.34	8
								35.00	2.00	0.65	1
								40.00	9.00	1.39	13
								52.00	14.00	1.43	20
								69.00	15.00	1.59	24
BNERC0184	Bankan NE	396,825.87	1,175,039.86	431.26	90.00	- 55.00	<mark>80.00</mark>	-	9.00	0.57	5
								<mark>14</mark> .00	1.00	0.78	1
								18.00	1.00	0.62	1
								23.00	<mark>9.0</mark> 0	1.28	12

Page 24 of 46 predictivediscovery.com

								35.00	21.00	0.85	18
								59.00	21.00	3.66	77
BNERC0185	Bankan NE	396,815.42	1,175,039.43	431.32	90.00	- 55.00	80.00	9.00	2.00	0.78	2
								15.00	1.00	0.51	1
								26.00	42.00	1.03	43
								74.00	6.00	1.17	7
BNERC0186	Bankan NE	396,805.98	1,175,040.08	431.31	90.00	- 55.00	80.00	11.00	16.00	1.30	21
								32.00	20.00	1.76	35
								55.00	23.00	1.29	30
BNERC0187	Bankan NE	396,796.09	1,175,039.72	431.08	90.00	- 55.00	80.00	2.00	5.00	0.43	2
								15.00	18.00	1.23	22
								37.00	6.00	0.88	5
								47.00	26.00	1.25	33
BNERC0188	Bankan NE	396,785.97	1,175,040.07	431.27	90.00	- 55.00	84.00	14.00	1.00	0.81	1
								18.00	1.00	0.84	1
								24.00	4.00	1.01	4
								31.00	10.00	0.89	9
								45.00	2.00	2.22	4
								50.00	34.00	1.28	44
BNERC0189	Bankan NE	396,776.15	1,175,040.18	431.39	90.00	- 55.00	90.00	6.00	4.00	0.44	2
								22.00	1.00	0.73	1
								31.00	12.00	0.68	8
								50.00	5.00	8.09	41
								58.00	20.00	1.27	25
								81.00	4.00	0.56	2
BNERC0190	Bankan NE	396,945.26	1,175,069.49	430.00	90.00	- 55.00	80.00	4.00	6.00	0.73	4
								14.00	1.00	2.55	3
								68.00	1.00	1.06	1
BNERC0196	Bankan NE	396,855.84	1,175,069.53	430.40	90.00	- 55.00	80.00	7.00	17.00	1.05	18
								31.00	8.00	0.41	3
								43.00	1.00	1.36	1
								<mark>49.00</mark>	1.00	<u>8.03</u>	8
								53.00	1.00	0.60	1
								61.00	10.00	1.40	14
								74.00	4.00	1.06	4
BNERC0197	Bankan NE	396,845.47	1,175,070.03	430.45	90.00	- 55.00	<mark>8</mark> 0.00	10.00	16.00	1.30	21
								30.00	2.00	1.86	4

Page 25 of 46 predictivediscovery.com

BNERC0203	NE	396,785.40	1,175,068.97	431.11	90.00	55.00	80.00	12.00	4.00 24.00	1.33 1.50	5 36
	Bankan					-		70.00	10.00	1.95	20
								57.00	8.00	1.11	9
								52.00	2.00	0.99	2
								46.00	3.00	0.70	2
								42.00	1.00	0.93	1
								38.00	1.00	0.57	1
								24.00	11.00	2.31	25
BNERC0202	Bankan NE	396,797.27	1,175,071.05	430.99	90.00	- 55.00	80.00	10.00	11.00	0.89	10
								64.00	13.00	2.78	36
								27.00	34.00	1.50	51
	INE					53.00		10.00	13.00	0.78	10
BNERC0201	Bankan NE	396,807.22	1,175,071.04	430.86	90.00	- 55.00	80.00	3.00	2.00	0.71	1
								73.00	3.00	1.72	5
								36.00	31.00	1.11	34
								25.00	5.00	1.05	5
	NE	,	,			55.00		9.00	9.00	0.65	6
BNERC0200	Bankan	396,815.96	1,175,071.35	430.81	90.00	-	80.00	2.00	1.00	0.58	1
								70.00	10.00	3.67	37
								44.00 58.00	9.00 7.00	1.33 6.27	12 44
								20.00	20.00	1.14	23
								11.00	3.00	1.34	4
BNERC0199	NE	396,825.83	1,175,070.60	430.53	90.00	55.00	80.00	2.00	2.00	0.75	2
	Bankan					-		73.00	5.00	0.69	3
								60.00	3.00	0.43	1
								45.00	8.00	1.02	8
								29.00	6.00	1.30	8
								23.00	3.00	1.31	4
BNERC0198	Bankan NE	396,835.27	1,175,070.39	430.63	90.00	- 55.00	80.00	4.00	11.00	0.70	8
								71.00	8.00	1.56	13
								67.00	1.00	0.53	1
								58.00	5.00	3.06	15
								43.00	10.00	0.93	9

Page 26 of 46 predictivediscovery.com

								75.00	2.00	0.73	2
BNERC0204	Bankan NE	396,775.78	1,175,070.37	431.09	90.00	- 55.00	80.00	18.00	17.00	1.58	27
	THE .					33.00		39.00	5.00	0.79	4
								53.00	1.00	0.53	1
								58.00	21.00	1.27	27
BNERC0205	Bankan NE	396,944.82	1,175,079.89	429.69	90.00	- 55.00	80.00	1.00	12.00	1.18	14
								44.00	1.00	0.67	1
BNERC0206	Bankan NE	396,905.52	1,175,080.11	430.22	90.00	- 55.00	80.00	6.00	5.00	1.21	6
								21.00	23.00	1.54	35
								57.00	1.00	2.15	2
BNERC0207	Bankan NE	396,896.22	1,175,080.43	430.16	90.00	- 55.00	80.00	2.00	3.00	0.62	2
								8.00	4.00	1.05	4
								15.00	1.00	0.75	1
								23.00	15.00	1.66	25
								41.00	3.00	2.24	7
								48.00	5.00	1.21	6
								66.00	1.00	0.57	1
								77.00	3.00	1.05	3
BNERC0208	Bankan NE	396,885.60	1,175,080.10	430.31	90.00	- 55.00	80.00	-	1.00	0.96	1
								7.00	1.00	0.87	1
								11.00	2.00	0.62	1
								18.00	10.00	1.47	15
								33.00	13.00	2.21	29
								51.00	15.00	1.70	26
BNERC0209	Bankan NE	396,875.05	1,175,080.45	430.10	90.00	- 55.00	80.00	-	2.00	0.87	2
								6.00	7.00	0.70	5
								25.00	1.00	1.08	1
								33.00	28.00	3.31	93
								65.00	3.00	0.67	2
								72.00	1.00	0.50	1
								79.00	1.00	0.81	1
BNERC0210	Bankan NE	396,867.16	1,175,079.67	430.32	90.00	- 55.00	80.00	2.00	11.00	0.74	8
								38.00	1.00	0.58	1
								42.00	1.00	0.60	1
								47.00	1.00	1.38	1
								51.00	11.00	0.71	8
								68.00	<mark>4.0</mark> 0	0.58	2

Page 27 of 46 predictivediscovery.com

								76.00	4.00	0.61	2
BNERC0211	Bankan NE	396,856.03	1,175,080.33	430.08	90.00	- 55.00	80.00	5.00	3.00	0.82	3
								14.00	1.00	0.75	1
								23.00	1.00	0.78	1
								28.00	1.00	1.47	2
								33.00	4.00	3.50	14
								45.00	4.00	2.65	11
								66.00	11.00	4.13	45
BNERC0212	Bankan NE	396,845.98	1,175,079.87	430.25	90.00	- 55.00	80.00	5.00	5.00	0.53	3
								16.00	10.00	0.79	8
								30.00	7.00	1.02	7
								44.00	2.00	2.60	5
								49.00	4.00	1.09	4
								69.00	11.00	2.94	32
BNERC0213	Bankan NE	396,836.64	1,175,080.35	430.14	90.00	- 55.00	80.00	7.00	20.00	1.17	23
								30.00	6.00	1.58	10
								40.00	11.00	1.10	12
								54.00	5.00	1.50	8
								62.00	18.00	2.14	39
BNERC0214	Bankan NE	396,825.78	1,175,080.32	430.28	90.00	- 55.00	80.00	-	1.00	0.52	1
								4.00	10.00	0.75	8
								17.00	1.00	0.59	1
								22.00	23.00	1.19	27
								48.00	17.00	0.86	15
								70.00	5.00	1.20	6
BNERC0215	Bankan NE	396,817.09	1,175,080.26	430.85	90.00	- 55.00	80.00	3.00	13.00	1.23	16
								25.00	7.00	1.45	10
								38.00	6.00	2.02	12
								48.00	20.00	0.98	20
								73.00	4.00	0.61	2
BNERC0216	Bankan NE	396,805.98	1,175,080.27	430.95	90.00	- 55.00	80.00	3.00	21.00	0.91	19
								27.00	1.00	0.70	1
								32.00	3.00	0.66	2
								38.00	23.00	1.10	25
								<mark>65.0</mark> 0	7.00	0.63	4
								75.00	1.00	0.67	1
BNERC0217	Bankan NE	396,796.38	1,175,079.29	431.18	90.00	- 55.00	80.00	7.00	23.00	0.87	20

Page 28 of 46
predictivediscovery.com

								37.00	5.00	0.62	3
								48.00	31.00	2.03	63
BNERC0218	Bankan NE	396,785.73	1,175,080.45	431.15	90.00	- 55.00	80.00	4.00	30.00	1.06	32
								43.00	1.00	0.89	1
								47.00	10.00	0.87	9
								61.00	13.00	1.00	13
								77.00	3.00	0.88	3
BNERC0219	Bankan NE	396,776.59	1,175,080.30	431.37	90.00	- 55.00	80.00	13.00	1.00	0.64	1
								18.00	48.00	1.04	50
								70.00	10.00	0.62	6
BNERC0220	Bankan NE	396,945.90	1,175,090.25	429.12	90.00	- 55.00	80.00	1.00	11.00	1.10	12
								15.00	1.00	3.27	3
								24.00	1.00	0.67	1
								46.00	1.00	0.67	1
BNERC0221	Bankan NE	396,934.75	1,175,090.52	429.42	90.00	- 55.00	80.00	2.00	17.00	3.37	57
								30.00	1.00	0.54	1
								35.00	1.00	0.59	1
								66.00	1.00	1.00	1
								72.00	2.00	4.39	9
BNERC0222	Bankan NE	396,905.52	1,175,089.22	429.70	90.00	- 55.00	80.00	3.00	11.00	1.05	12
								18.00	17.00	1.79	30
								38.00	2.00	3.06	6
								43.00	8.00	0.89	7
								61.00	3.00	1.53	5
BNERC0223	Bankan NE	396,896.56	1,175,089.79	430.05	90.00	- 55.00	80.00	2.00	8.00	0.87	7
								13.00	6.00	2.71	16
								29.00	17.00	3.16	54
								50.00	7.00	4.81	34
								66.00	1.00	0.53	1
								70.00	1.00	0.74	1
BNERC0224	Bankan NE	396,886.04	1,175,089.69	430.14	90.00	- 55.00	80.00	6.00	4.00	0.58	2
								17.00	2.00	1.72	3
								25.00	1.00	0.75	1
								37.00	24.00	1.69	41
								67.00	1.00	0.59	1
								72.00	2.00	10.4 <mark>8</mark>	21
BNERC0225	Bankan NE	396,875.46	1,175,089.97	429.93	90.00	- 55.00	80.00	3.00	<mark>13.0</mark> 0	0.91	12

Page 29 of 46 predictivediscovery.com

l						1		22.00	2.00	1.64	3
								27.00	4.00	1.47	6
								42.00	2.00	1.00	2
								48.00	2.00	0.75	2
								53.00	7.00	4.14	29
								63.00	1.00	1.09	1
								69.00	10.00	0.98	10
BNERC0226	Bankan NE	396,865.64	1,175,091.13	429.80	90.00	- 55.00	80.00	-	1.00	0.50	1
						55.00		7.00	8.00	0.45	4
								19.00	8.00	0.90	7
								31.00	8.00	2.83	23
								46.00	3.00	1.33	4
								52.00	4.00	3.48	14
								62.00	8.00	2.69	22
								74.00	6.00	0.93	6
BNERC0227	Bankan NE	396,854.83	1,175,089.81	429.91	90.00	- 55.00	80.00	-	1.00	0.60	1
								5.00	17.00	0.98	17
								26.00	3.00	1.52	5
								49.00	5.00	1.11	6
								59.00	1.00	0.57	1
								66.00	14.00	1.36	19
BNERC0228	Bankan NE	396,845.48	1,175,090.05	429.85	90.00	- 55.00	80.00	-	48.00	1.38	66
								54.00	4.00	1.65	7
								67.00	1.00	0.53	1
								71.00	8.00	1.39	11
BNERC0229	Bankan NE	396,835.88	1,175,089.90	429.94	90.00	- 55.00	80.00	3.00	34.00	0.94	32
								40.00	11.00	0.93	10
								60.00	4.00	3.69	15
								70.00	5.00	2.98	15
								79.00	1.00	18.80	19
BNERC0230	Bankan NE	396,825.71	1,175,089.92	430.10	90.00	- 55.00	80.00	-	2.00	0.66	1
								5.00	1.00	1.53	2
								9.00	2.00	0.99	2
								19.00	14.00	1.26	18
								<u>39.0</u> 0	6.00	1.37	8
								54.00	5.00	3.69	18
						ļ		65.00	5.00	1.92	10
								73.00	2.00	1.34	3

Page 30 of 46
predictivediscovery.com

BNERC0231	Bankan NE	396,815.94	1,175,090.20	430.32	90.00	- 55.00	80.00	6.00	9.00	0.85	8
								18.00	1.00	0.93	1
								23.00	11.00	1.27	14
								47.00	3.00	1.06	3
								53.00	1.00	0.61	1
								58.00	4.00	0.61	2
								67.00	5.00	2.47	12
BNERC0232	Bankan NE	396,805.64	1,175,089.82	430.96	90.00	- 55.00	80.00	6.00	17.00	1.69	29
								26.00	17.00	0.64	11
								51.00	7.00	0.67	5
								61.00	15.00	1.16	17
BNERC0233	Bankan NE	396,795.99	1,175,090.39	431.04	90.00	- 55.00	80.00	4.00	32.00	1.13	36
								39.00	9.00	0.91	8
								55.00	1.00	0.54	1
								60.00	1.00	1.41	1
								64.00	6.00	0.63	4
								73.00	7.00	0.76	5
BNERC0234	Bankan NE	396,785.78	1,175,089.17	431.11	90.00	- 55.00	80.00	6.00	13.00	1.70	22
								24.00	7.00	0.86	6
								36.00	6.00	3.06	18
								48.00	4.00	1.13	5
								55.00	7.00	0.66	5
								69.00	1.00	0.55	1
								73.00	7.00	0.76	5
BNERC0235	Bankan NE	396,775.68	1,175,089.39	431.23	90.00	- 55.00	80.00	9.00	1.00	0.59	1
								16.00	6.00	0.84	5
								27.00	5.00	0.97	5
								36.00	2.00	0.91	2
								45.00	3.00	4.55	14
								51.00	3.00	1.25	4
								61.00	2.00	1.72	3
								<mark>69.00</mark>	7.00	1.01	7
BNERC0236	Bankan NE	396,946.17	1,175,049.73	430.41	90.00	- 55.00	80.00	-	11.00	1.11	12
BNERC0237	Bankan NE	396,935.93	1,175,050.17	430.50	90.00	- 55.00	80.00	2.00	11.00	1.21	13
								<mark>26.0</mark> 0	1.00	0.91	1
								32.00	1.00	2.59	3
BNERC0238	Bankan NE	396,926.07	1,175,050.63	430.54	90.00	- 55.00	67.00	6.00	12.00	1.18	14

Page 31 of 46 predictivediscovery.com

								50.00	1.00	0.81	1
BNERC0239	Bankan NE	396,916.26	1,175,050.05	430.88	90.00	- 55.00	80.00	4.00	19.00	0.89	17
						55.00		26.00	2.00	0.54	1
								38.00	2.00	2.05	4
								61.00	1.00	0.51	1
BNERC0240	Bankan NE	396,905.93	1,175,049.97	431.05	90.00	- 55.00	80.00	7.00	29.00	1.78	52
								39.00	1.00	1.33	1
BNERC0241	Bankan NE	396,895.89	1,175,049.90	431.46	90.00	- 55.00	80.00	2.00	45.00	2.31	104
BNERC0242	Bankan NE	396,886.20	1,175,050.18	431.59	90.00	- 55.00	80.00	2.00	1.00	0.60	1
								8.00	16.00	1.00	16
								27.00	21.00	1.23	26
								53.00	3.00	0.97	3
								59.00	1.00	0.52	1
BNERC0243	Bankan NE	396,876.05	1,175,050.33	431.10	90.00	- 55.00	80.00	6.00	42.00	2.04	86
								57.00	9.00	0.61	6
								71.00	1.00	0.55	1
BNERC0244	Bankan NE	396,866.38	1,175,050.22	431.11	90.00	- 55.00	80.00	3.00	24.00	1.72	41
								32.00	3.00	0.77	2
								41.00	15.00	1.26	19
								59.00	1.00	0.61	1
								67.00	1.00	0.77	1
								75.00	2.00	3.70	7
BNERC0245	Bankan NE	396,855.05	1,175,049.92	431.38	90.00	- 55.00	80.00	8.00	27.00	4.51	122
								40.00	19.00	1.12	21
								65.00	3.00	0.71	2
								75.00	1.00	0.65	1
BNERC0246	Bankan NE	396,846.14	1,175,049.82	430.97	90.00	- 55.00	80.00	4.00	22.00	0.95	21
								29.00	1.00	0.51	1
								33.00	18.00	4.98	90
								54.00	11.00	2.42	27
								69.00	10.00	0.61	6
BNERC0247	Bankan NE	396,835.40	1,175,049.41	430.82	90.00	- 55.00	80.00	8.00	13.00	0.63	8
								25.00	11.00	1.04	11
								40.00	38.00	1.93	73
BNERC0248	Bankan NE	396,825.59	1,175,049.71	430.96	90.00	- 55.00	<mark>80.</mark> 00	2.00	9.00	0.90	8
								19.00	44.00	1.20	53
								73.00	6.00	1.71	10

Page 32 of 46 predictivediscovery.com

BNERC0249	Bankan NE	396,815.42	1,175,050.21	431.00	90.00	- 55.00	80.00	11.00	9.00	0.99	9
								25.00	31.00	1.42	44
								60.00	1.00	0.66	1
								66.00	5.00	2.07	10
								74.00	3.00	5.23	16
BNERC0250	Bankan NE	396,805.25	1,175,050.80	431.00	90.00	- 55.00	80.00	13.00	5.00	1.07	5
								21.00	2.00	1.70	3
								27.00	13.00	1.47	19
								45.00	12.00	2.56	31
								61.00	6.00	0.63	4
								73.00	1.00	0.57	1
BNERC0251	Bankan NE	396,795.51	1,175,050.52	431.07	90.00	- 55.00	80.00	4.00	2.00	0.60	1
								15.00	16.00	1.84	29
								37.00	35.00	1.25	44
BNERC0252	Bankan NE	396,784.98	1,175,049.78	431.41	90.00	- 55.00	80.00	7.00	1.00	0.53	1
								15.00	3.00	1.52	5
								23.00	1.00	0.68	1
								27.00	12.00	0.91	11
								43.00	34.00	1.26	43
BNERC0253	Bankan NE	396,775.24	1,175,049.86	431.85	90.00	- 55.00	80.00	23.00	1.00	0.88	1
								30.00	12.00	0.92	11
								48.00	1.00	0.78	1
								53.00	12.00	0.87	10
								70.00	10.00	0.62	6
BNERC0254	Bankan NE	396,835.79	1,175,017.87	431.46	90.00	- 55.00	80.00	11.00	1.00	0.56	1
								15.00	5.00	0.88	4
								24.00	21.00	1.01	21
								49.00	2.00	0.97	2
								56.00	13.00	1.19	16
								78.00	2.00	0.96	2
BNERC0268	Bankan NE	397,071.53	1,175,743.13	398.86	90.00	- 55.00	80.00	56.00	1.00	0.53	1
BNERC0271	Bankan NE	396,926.07	1,175,080.80	429.85	90.00	- 55.00	80.00	4.00	23.00	1.49	34
								40.00	1.00	0.99	1
								71.00	1.00	0.54	1
								<mark>76.</mark> 00	1.00	0.60	1
BNERC0272	Bankan NE	396,915.69	1,175,080.72	429.98	90.00	- 55.00	80.00	6.00	19.00	2.21	42
								28.00	10.00	1.18	12

Page 33 of 46 predictivediscovery.com

								49.00	2.00	0.64	1
								78.00	1.00	0.51	1
BNERC0273	Bankan NE	396,935.53	1,175,080.36	429.81	90.00	- 55.00	80.00	2.00	12.00	4.59	55
								31.00	2.00	0.99	2
								46.00	4.00	0.63	3
BNERC0274	Bankan NE	396,936.14	1,175,069.76	430.28	90.00	- 55.00	80.00	-	13.00	1.06	14
								21.00	2.00	0.56	1
								36.00	3.00	0.54	2
								46.00	4.00	0.45	2
BNERC0275	Bankan NE	396,926.13	1,175,070.00	430.32	90.00	- 55.00	80.00	6.00	16.00	2.39	38
								25.00	8.00	8.23	66
								54.00	6.00	0.71	4
								63.00	2.00	2.06	4
BNERC0276	Bankan NE	396,915.77	1,175,068.88	430.50	90.00	- 55.00	80.00	2.00	23.00	0.87	20
								28.00	3.00	2.84	9
								40.00	1.00	0.75	1
								65.00	1.00	0.50	1

TABLE 3 - BANKAN PROJECT AIRCORE RESULTS

Page 34 of 46 predictivediscovery.com

HOLE_ID	COLLAR_E	COLLAR_N	COLLAR_RL	AZIMUTH	DIP	HOLE_DEPTH	FROM	INTERVAL	AU_G/T	GM	PLOT_INTERCEPT	COMMENTS	PROJECT	PROSPECT
BKAC0279	396076.216	1175855.289	389.156	160	-55	50	34	2	0.70	1	2m @ 0.70 g/t		Bankan	800W
BKAC0280	395992.561	1175847.077	388.603	160	-55	45	32	8	0.30	2	8m @ 0.30 g/t		Bankan	800W
BKAC0281	396002.72	1175824.903	388.94	160	-55	50	6	4	0.41	2	4m @ 0.41 g/t		Bankan	800W
BKAC0282	396013.476	1175803.042	389.816	160	-55	50	22	28	0.39	11	28m @ 0.39 g/t	mineralised to EOH	Bankan	800W
BKAC0283	396022.122	1175779.436	390.091	160	-55	50	10	14	0.96	13	14m @ 0.96 g/t		Bankan	800W
BKAC0285	396041.112	1175732.292	391.063	160	-55	50	28	12	1.24	15	12m @ 1.24 g/t		Bankan	800W
BKAC0286	396066.531	1175877.84	388.682	160	-55	50	36	2	0.94	2	2m @ 0.94 g/t		Bankan	800W
BKAC0286	396066.531	1175877.84	388.682	160	-55	50	14	2	0.72	1	2m @ 0.72 g/t		Bankan	800W
BKAC0286	396066.531	1175877.84	388.682	160	-55	50	22	2	0.58	1	2m @ 0.58 g/t		Bankan	800W
BKAC0288	395955.965	1175728.573	389.799	160	-55	50	0	12	0.30	4	12m @ 0.30 g/t		Bankan	800W
BKAC0289	395947.612	1175750.439	389.043	160	-55	50	0	34	0.37	13	34m @ 0.37 g/t		Bankan	800W
BKAC0290	395937.873	1175773.934	388.556	160		50	0	50	0.58	29	50m @ 0.58 g/t	mineralised to EOH	Bankan	800W
BKAC0291	395928.289	1175798.253	388.167	160	-55	40	18	22	0.24	5	22m @ 0.24 g/t		Bankan	800W
BKAC0292	395921.145	1175815.442	388.011	160	-55	47	44	2	0.69	1	2m @ 0.69 g/t		Bankan	800W
BKAC0294	395882.259	1175695.036	389.042	160	-55	50	14	18	0.39	7	18m @ 0.39 g/t		Bankan	800W
BKAC0296	395863.58	1175744.463	388.438	160		50	6	18	0.35	6	18m @ 0.35 g/t		Bankan	800W
BKAC0296	395863.58	1175744.463	388.438	160	-55	50	40	8	0.15	1	8m @ 0.15 g/t		Bankan	800W
BKAC0297	395854.142	1175769.69	388.22	160	-55	44	28	6	0.50	3	6m @ 0.50 g/t		Bankan	800W
BKAC0297	395854.142	1175769.69	388.22	160		44	38	6	0.32	2	6m @ 0.32 g/t		Bankan	800W
BKAC0299	395816.95	1175644.154	387.986	160	-55	50	4	20	0.36	7	20m @ 0.36 g/t		Bankan	800W
BKAC0300	395805.902	1175670.153	387.963	160		44	36	8	0.75	6	8m @ 0.75 g/t		Bankan	800W
BKAC0303	395779.616	1175735.137	388.262	160		50	38	12	0.10	1	12m @ 0.10 g/t	mineralised to EOH	Bankan	800W
BKAC0306	396647.515	1176939.713	390.783	90	-55	48	36	2	2.76	6	2m @ 2.76 g/t		Bankan	NEB N
BKAC0307	396676.662	1176937.136	389.779	90	-55	42	10	8	1.38	11	8m @ 1.38 g/t		Bankan	NEB N
BKAC0308	396703.741	1176941.929	388.916	90	-55	36	18	14	1.67	23	14m @ 1.67 g/t		Bankan	NEB N
BKAC0339	395980.973	1173652.885	394.624	90	-55	55	32	12	0.46	6	12m @ 0.46 g/t		Bankan	NEB S
BKAC0340	396009.847	1173658.783	397.531	90		58	38	20	1.34	27	20m @ 1.34 g/t	mineralised to EOH	Bankan	NEB S
BKAC0340	396009.847	1173658.783	397.531		-55	58	8	26	0.58	15	26m @ 0.58 g/t		Bankan	NEB S
BKAC0341	396029.059	1173656.433	398.515		-55	53	28	16	0.87	14	16m @ 0.87 g/t		Bankan	NEB S
BKAC0341	396029.059	1173656.433	398.515	90	-55	53	2	22	0.34	7	22m @ 0.34 g/t		Bankan	NEB S
BKAC0341	396029.059	1173656.433	398.515	90	-55	53	48	5	0.73	4	5m @ 0.73 g/t		Bankan	NEB S
BKAC0342	396054.34	1173661.209	399.96	90	-55	58	0	20	0.55	11	20m @ 0.55 g/t		Bankan	NEB S
BKAC0342	396054.34	1173661.209	399.96	90	-55	58	26	10	0.50	5	10m @ 0.50 g/t		Bankan	NEB S
BKAC0343	395786.244	1173687.075	388.303		-55	40	4	10	0.34	3	10m @ 0.34 g/t		Bankan	NEB S
BKAC0345	396033.344	1173761.54	402.482		-55	47	22	6	0.21	1	6m @ 0.21 g/t		Bankan	NEB S
BKAC0355	396566.94	1173554.915	403.999	90	-55	58	32	2	0.96	2	2m @ 0.96 g/t		Bankan	NEB S
BKAC0374	396978.837	1173243.051	380.303	130	-55	34	22	2	2.54	5	2m @ 2.54 g/t		Bankan	NEB S
BKAC0385	397143.05	1173118.762	376.791	120		50	40	6	0.41	3	6m @ 0.41 g/t		Bankan	NEB S
BKAC0386	397167.643	1173110.193	377.016	120	-55	43	22	2	0.55	1	2m @ 0.55 g/t		Bankan	NEB S

Notes: Only significant results are shown in this table. The target depth on this drill program was 50m. Up to 6 samples were collected in 4m intervals and assayed for gold. The prepared drill samples were sent to the SGS laboratory in Bamako, Mali for pulverisation and fire assay gold analysis. Reported results are Individual one metre samples were collected from the cyclone and weighed. Each sample was then riffle split producing a 1kg split sample. Two metre composite samples weighing approximately 2kg were submitted to the assay laboratory by combining the individual 1kg riffle split sample from each metre into a single bag.

TABLE 4 - BANKAN PROJECT POWER AUGER RESULTS

HOLE_ID	COLLAR_E	COLLAR_N	COLLAR_RL	HOLE_DEPTH	FROM	INTERVAL	AU_G/T	GM	PLOT_INTERCEPT	PROJECT	PROSPECT
BKAU2400	396060	1176380	378.077	16	8	8	0.2	2	8m @ 0.20 g/t	Bankan	800W N
BKAU2490	394110	1176060	388.509	30	14	16	0.15	2	16m @ 0.15 g/t	Bankan	Main Contact Anomaly
BKAU2519	394449	1176378	408.92	30	23	7	0.35	2	7m @ 0.35 g/t	Bankan	Main Contact Anomaly
BKAU2552	395730	1176141	385.958	26	12	14	0.82	11	14m @ 0.82 g/t	Bankan	800W N
BKAU2575	395808	1175982	386.175	26	14	8	0.15	1	8m @ 0.15 g/t	Bankan	800W N
BKAU2596	395811	1175501	386.991	28	4	24	1.92	46	24m @ 1.92 g/t	Bankan	800W S
BKAU2657	393810	1175580	387.193	30	20	10	4.34	43	10m @ 4.34 g/t	Bankan	Main Contact Anomaly
BKAU2662	393890	1175660	384.097	30	0	2	0.61	1	2m @ 0.61 g/t	Bankan	Main Contact Anomaly
BKAU2693	394372	1175820	398.967	30	0	11	0.37	4	11m @ 0.37 g/t	Bankan	Main Contact Anomaly
BKAU2693	394372	1175820	398.967	30	23	7	1.16	8	7 <mark>m @</mark> 1.16 g/t	Bankan	Main Contact Anomaly
BKAU2775	394773	1175821	411.867	30	4	10	0.19	2	10m @ 0.19 g/t	Bankan	Main Contact Anomaly
BKAU2778	394524	1175823	409.001	20	4	3	1.51	5	<mark>3m</mark> @ 1.51 g/t	Bankan	Main Contact Anomaly

BKAU2778	394524	1175823	409.001	20	11	9	1.65	15	9m @ 1.65 g/t	Bankan	Main Contact
BKAU2782	393490	1175260	411.882	30	20	4	0.67	3	4m @ 0.67 g/t	Bankan	Anomaly Main Contact
BKAU2782	393959	1175268		28	20	4	0.87	3	- 5	Bankan	Anomaly Main Contact
BKAU2793	392849	1175580	390.597 408.144	30	11	4	0.55	2	4m @ 0.35 g/t 4m @ 0.57 g/t	Bankan	Anomaly Main Contact
									-		Anomaly Main Contact
BKAU2799	392684	1175255	389.116	30	13	12	0.19	2	12m @ 0.19 g/t	Bankan	Anomaly
BKAU2827	395009	1174140	390.56	30	24	6	0.24	1	6m @ 0.24 g/t	Bankan	BCK E
BKAU2881	394370	1174060	394.627	30	4	26	0.88	23	26m @ 0.88 g/t	Bankan	BCK E
BKAU2997	395330	1174859	384.454	30	3	7	0.37	3	7m @ 0.37 g/t	Bankan	NEB W
BKAU2998	395410	1174857	382.265	30	0	4	1.37	5	4m @ 1.37 g/t	Bankan	NEB W
BKAU3024	395570	1175019	381.904	12	0	12	0.41	5	12m @ 0.41 g/t	Bankan	NEB W
BKAU3049	395570	1173740	377.418	30	18	12	0.36	4	12m @ 0.36 g/t	Bankan	BCK E
BKAU3084	395971	1173260	378.705	30	4	14	0.12	2	14m @ 0.12 g/t	Bankan	NEB S
BKAU3085	394850	1173420	400.555	30	14	8	0.25	2	8m @ 0.25 g/t	Bankan	BCK E
BKAU3086	394929	1173421	399.146	30	11	19	0.13	2	19m @ 0.13 g/t	Bankan	BCK E
BKAU3087	395169	1173101	399.685	25	4	8	0.16	1	8m @ 0.16 g/t	Bankan	BCK E
BKAU3089	395890	1173261	375.798	30	12	18	0.17	3	18m @ 0.17 g/t	Bankan	NEB S
BKAU3172	395170	1173580	379.963	28	4	10	1.33	13	10m @ 1.33 g/t	Bankan	ВСК Е
BKAU3198	394937	1173575	390.309	28	10	8	0.37	3	8m @ 0.37 g/t	Bankan	BCK E
BKAU3224	395090	1173580	384.535	30	0	30	0.39	12	30m @ 0.39 g/t	Bankan	ВСК Е
BKAU3226	394849	1173501	396.949	30	0	30	0.4	12	30m @ 0.40 g/t	Bankan	ВСК Е
BKAU3227	394529	1173259	394.58	30	3	17	0.39	7	17m @ 0.39 g/t	Bankan	BCK E
BKAU3232	395872.165	1175049.076	390.773	26	0	4	0.3	1	4m @ 0.30 g/t	Bankan	NEB W
BKAU3255	396764.311	1175047.945	431.333	28	0	12	0.15	2	12m @ 0.15 g/t	Bankan	NEB
BKAU3258	396883.677	1175049.595	431.307	28	0	28	0.6	17	28m @ 0.60 g/t	Bankan	NEB
BKAU3259	396801.429	1175049.859	431.195	20	0	20	0.26	5	20m @ 0.26 g/t	Bankan	NEB
BKAU3260	396902.864	1175048.549	431.217	28	4	24	0.56	13	24m @ 0.56 g/t	Bankan	NEB
BKAU3261	396920.804	1175049.983	430.893	30	0	30	1.25	38	30m @ 1.25 g/t	Bankan	NEB
BKAU3262	396941.874	1175050.292	430.676	28	0	28	0.7	20	28m @ 0.70 g/t	Bankan	NEB
BKAU3263	396961.912	1175050.044	430.386	28	0	26	0.59	15	26m @ 0.59 g/t	Bankan	NEB
BKAU3264	396981.749	1175049.271	429.943	28	0	28	0.67	19	28m @ 0.67 g/t	Bankan	NEB
BKAU3265	397003.599	1175048.354	429.63	28	0	6	1.04	6	6m @ 1.04 g/t	Bankan	NEB
BKAU3266	397030.635	1175053.95	428.694	26	0	6	0.32	2	6m @ 0.32 g/t	Bankan	NEB FW
BKAU3269	397079.915	1175051.073	428.444	30	0	8	0.2	2	8m @ 0.20 g/t	Bankan	NEB FW
BKAU3270	397099.767	1175050.702	428.537	30	0	16	0.2	3	16m @ 0.20 g/t	Bankan	NEB FW
BKAU3271	397120.309	1175047.612	428.611	28	2	8	0.34	3	8m @ 0. <mark>34 g/</mark> t	Bankan	NEB FW
BKAU3272	397163.11	1175046.829	429.668	22	2	8	0.22	2	8m @ 0.22 g/t	Bankan	NEB FW
BKAU3274	396863.118	1175050.545	431.195	26	0	26	0.58	15	26m @ 0.58 g/t	Bankan	NEB
BKAU3275	396843.61	1175050.4	431.015	24	0	24	0.49	12	24m @ 0.49 g/t	Bankan	NEB
BKAU3276	396824.001	1175049.093	431.027	30	0	30	1.85	56	30m @ 1.85 g/t	Bankan	NEB
BKAU3277	396608.16	1174623.101	404.632	30	6	18	0.23	4	18m @ 0.23 g/t	Bankan	NEB S
BKAU3278	396624.974	1174621.454	401.393	24	0	2	0.91	2	2m @ 0.91 g/t	Bankan	NEB S
BKAU3286						6		2			NEB S
dkau3286	396783.274	1174619.865	415.591	22	16	Ø	0.35	2	6m @ 0.35 g/t	Bankan	INEB 5

Page 36 of 46
predictivediscovery.com

BKAU3288	396822.055	1174620.002	416.619	28	14	14	0.9	13	14m @ 0.90 g/t	Bankan	NEB S
BKAU3290	396860.907	1174621.017	417.869	26	10	10	0.13	1	10m @ 0.13 g/t	Bankan	NEB S
BKAU3295	396961.002	1174620.873	420.536	28	18	10	10.53	105	10m @ 10.53 g/t	Bankan	NEB FW
BKAU3296	396979.711	1174622.928	420.913	26	2	10	0.16	2	10m @ 0.16 g/t	Bankan	NEB FW
BKAU3296	396979.711	1174622.928	420.913	26	16	10	0.16	2	10m @ 0.16 g/t	Bankan	NEB FW
BKAU3297	396999.487	1174622.892	421.264	26	0	26	0.55	14	6m @ 1.3 g/t	Bankan	NEB FW
BKAU3328	395490	1173099	381.417	30	11	19	0.17	3	19m @ 0.17 g/t	Bankan	BCK E
BKAU3381	396205.762	1173979.921	407.315	30	16	14	0.67	9	14m @ 0.67 g/t	Bankan	NEB S
BKAU3387	396089.546	1173980.581	404.714	28	18	10	0.13	1	10m @ 0.13 g/t	Bankan	NEB S
BKAU3397	396309.324	1174058.355	411.139	23	10	6	0.41	2	6m @ 0.41 g/t	Bankan	NEB S
BKAU3401	396656.265	1174544.086	404.015	22	12	10	0.28	3	10m @ 0.28 g/t	Bankan	NEB S
BKAU3408	396830.995	1174539.04	413.215	24	16	8	0.67	5	8m @ 0.67 g/t	Bankan	NEB S
BKAU3428	396989.915	1174698.694	425.005	24	22	2	2.47	5	2m @ 2.47 g/t	Bankan	NEB FW
BKAU3432	397010.631	1174697.673	425.38	24	4	2	0.72	1	2m @ 0.72 g/t	Bankan	NEB FW
BKAU3434	397089.586	1174696.604	425.061	26	6	2	0.86	2	2m @ 0.86 g/t	Bankan	NEB FW
BKAU3450	396270.571	1174216.975	401.075	22	2	2	0.53	1	2m @ 0.53 g/t	Bankan	NEB S
BKAU3452	396721.894	1174460.965	401.309	26	2	2	1.35	3	2m @ 1.35 g/t	Bankan	NEB S
BKAU3454	396171.573	1173661.343	404.976	24	8	6	0.51	3	6m @ 0.51 g/t	Bankan	NEB S
BKAU3457	395971.129	1173177.507	376.599	22	14	8	1.05	8	8m @ 1.05 g/t	Bankan	NEB S
BKAU3463	396243.826	1173182.051	390.152	28	18	2	0.96	2	2m @ 0.96 g/t	Bankan	NEB S
BKAU3466	396303	1173177	390.441	30	14	2	0.79	2	2m @ 0.79 g/t	Bankan	NEB S
BKAU3512	396769.104	1174300.311	411.01	30	6	2	4.45	9	2m @ 4.45 g/t	Bankan	NEB S
BKAU3534	396737.067	1174376.696	406.057	30	16	3	1.17	4	3m @ 1.17 g/t	Bankan	NEB S
BKAU3547	396210.33	1174459.355	386.838	16	6	10	3	30	10m @ 3 g/t	Bankan	NEB HW
BKAU3549	396116.911	1174143.031	405.045	28	18	2	0.52	1	2m @ 0.52 g/t	Bankan	NEB S
BKAU3570	397109.68	1174697.263	424.846	25	16	2	0.58	1	2m @ 0.58 g/t	Bankan	NEB FW
BKAU3573	396550.225	1174378.176	395.907	20	6	2	0.53	1	2m @ 0.53 g/t	Bankan	NEB S
BKAU3575	396584.1	1174377.854	396.143	16	14	2	2.09	4	2m @ 2.09 g/t	Bankan	NEB S
BKAU3580	396673.509	1174298.772	401.656	17	15	2	0.63	1	2m @ 0.63 g/t	Bankan	NEB S
BKAU3585	396539.404	1174301.55	398.931	24	12	2	0.72	1	2m @ 0.72 g/t	Bankan	NEB S
BKAU3592	396483.629	1174300.324	407.462	28	12	16	0.87	14	16m @ 0.87 g/t	Bankan	NEB S

TABLE 5 - JORC CODE – DIAMOND AND REVERSE CIRCULATION DRILLING

	Section 1: Sampling Techniques and Data								
Criteria	JORC Code Explanation	Commentary							
Sampling Technique	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be	Samples assayed were cut drill core and reverse circulation (RC) drill chips. Core was cut in half with a core saw where competent and with a knife in soft saprolite in the upper sections of the diamond drill holes.							

Page 37 of 46 predictivediscovery.com

	taken as limiting the broad	One metre RC chip samples were riffle split producing samples
	meaning of sampling Include reference to measures taken to	which weighed 2-3kg for submission to the assay laboratory.
	ensure sample representivity	Duplicate samples were also retained for re-assay.
	and the appropriate calibration	
	of any measurement tools or systems used. Aspects of the	Sampling was supervised by qualified geologists.
	determination of mineralisation	
	that are Material to the Public	Samples were dried, crushed and pulverised at the SGS laboratory
	Report.	in Bamako to produce a 50g fire assay charge.
	In cases where 'industry	
	In cases where 'industry	
	standard' work has been done	
	this would be relatively simple	
	(eg 'reverse circulation drilling	
	was used to obtain 1 m samples	
	from which 3 kg was pulverised	
	to produce a 30 g charge for fire	
	assay'). In other cases more	
	explanation may be required,	
	such as where there is coarse	
	gold that has inherent sampling	
	problems. Unusual commodities	
	or mineralisation types (eg	
	submarine nodules) may	
	warrant disclosure of detailed	
D.:!!!:	information.	
Drilling	Drill type (eg core, reverse circulation, open- hole hammer,	Drill types are 3 diamond drill rigs collecting PQ, HQ and NQ core
	rotary air blast, auger, Bangka,	and a separate reverse circulation rig using a 118mm diameter
	sonic, etc) and details (eg core	reverse circulation hammer.
	diameter, triple or standard	
	tube, depth of diamond tails, face- sampling bit or other type,	
	whether core is oriented and if	
	so, by what method, etc).	
Drill Sample		
	Method of recording and	Drill core:
Recovery	Method of recording and assessing core and chip sample recoveries and results	Drill core: Sample recoveries were measured in the normal way for diamond drill
	assessing core and chip sample recoveries and results assessed.	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples.	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.
	assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	Sample recoveries were measured in the normal way for diamond drill core. Core recoveries were generally excellent except for the saprolite where some core loss was experienced owing to clayey core being washed out in the diamond drilling process. Given that most of these saprolite core loss zones were obtained in mineralised intervals, grade is probably underestimated in those sections as zones of core loss are assumed to contain no gold. Significant sample bias is not expected with cut core. RC chips: Each 1 metre drill sample was weighed. Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery.

Page 38 of 46 predictivediscovery.com

Logging	Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All drill samples were logged systematically for lithology, weathering, alteration, veining, structure and minor minerals. Minor minerals were estimated quantitively. A core orientation device was employed enabling orientated structural measurements to be taken.
Sub-Sampling Technique and Sample Preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	The diamond drill samples were collected by longitudinally splitting core using a core saw or a knife where core was very soft and clayey. Half of the core was sent off to the laboratory for assay. The sampling method is considered adequate for a diamond drilling program of this type. The RC samples were collected by riffle splitting samples from large bags collected directly from the cyclone on the drill rig. Sample condition is generally dry or moist, however some samples are wet. One field duplicate was taken and assayed every 50m. The sampling method is considered adequate for an RC drilling program of this type.
Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 All samples were assayed by SGS technique FAA505 for gold with a detection limit of 5ppb Au. All samples with gold values exceeding 10g/t Au were re-assayed using SGS method FAA515 with a detection limit of 0.01g/t Au. Field duplicates, standards and blank samples were each submitted for every 15 samples on a rotating basis. Diamond core duplicates were obtained by cutting the half core sample into two quarter core samples. As samples are not homogenised some variation is expected. Duplicate and standards analyses were all returned were within acceptable limits of expected values.
Verification of Sampling and Assaying	established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data	At this stage, the intersections have not been verified independently. No twin holes were drilled in the holes reported here but some drilling has been done previously sufficiently close to a previously drilled holes to provide confirmation of the location of mineralisation. Specifically KKODD002 was drilled close to Air Core Hole KKOAC001 and demonstrated that that similar, consistent gold mineralisation was present in the near surface.
Location of Data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys),	Drill hole collar locations were recorded at the completion of each hole by hand-held GPS.

	trenches, mine workings and	
	other locations used in Mineral Resource estimation.	Positional data was recorded in projection WGS84 Zone 29N.
	Specification of the grid system used Quality and adequacy of topographic control	Hole locations will be re-surveyed using a digital GPS system at completion of program.
Data Spacing and Distribution	Data spacing for reporting of Exploration Results Whether the data spacing and distribution is sufficient to establish the degree of	The diamond and RC drill holes were designed to explore the gold mineralised system in fresh rock. Single DD holes are in the process of being drilled on most 80m spaced sections in the 1km long zone tested previously with RC drilling.
	geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications	The adequacy of the current drill hole spacing for Mineral Resource estimation is not yet known as an appropriate understanding of mineralisation continuity has not yet been established
	applied. Whether sample compositing has been applied	
Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	There is very limited outcrop in the immediate area but based on the small number of geological observations and the overall strike of the anomaly, an east west line orientation with holes inclined to the west was considered most likely to test the target mineralised zone. Results from earlier drilling has now determined that the overall dip of the gold mineralised envelope is to the west. All drill holes reported in this release were drilled from west to east to obtain true widths through the gold mineralisation.
Sample Security	The measures taken to ensure sample security	Core trays and RC chips are stored in a guarded location close to the nearby Bankan Village. Coarse rejects and pulps will be eventually recovered from SGS in Bamako and stored at Predictive's field office in Kouroussa.
Audits or Reviews	The results of any audits or reviews of sampling techniques and data	No reviews or audits of sampling techniques were conducted.
	Section 2 Reporti	ng of Exploration Results
Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Kaninko Reconnaissance Authorisation was granted to a Predictive subsidiary in Guinea in June 2019. It was converted to an Exploration Permit in early October 2019. It is 100% owned by Predictive.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Predictive is not aware of any significant previous gold exploration over the permit.
Geology	Deposit type, geological setting and style of mineralisation.	The geology of the Kaninko permit consists of felsic intrusives including granite and tonalite, with mafic to intermediate volcanics and intrusives. Metasediments including marble, chert and schists have also been observed.
Drill Hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following	See Table 1 and the accompanying notes in these tables.

	information for all Material drill	
	 holes: easting and northing of 	
	the drill hole collar	
	• elevation or RL (Reduced	
	Level – elevation above sea	
	level in metres) of the drill	
	hole collar	
	dip and azimuth of the holedown hole length and	
	interception depth	
	 hole length 	
	 If the exclusion of this 	
	information is justified on	
	the basis that the	
	information is not Material and this exclusion does not	
	detract from the	
	understanding of the	
	report, the Competent	
	Person should clearly explain why this is the	
	case.	
Data	In reporting Exploration	Diamond and RC drill sampling was generally in one metre intervals.
Aggregation Mothods	Results, weighting averaging techniques, maximum and/or	
Methods	techniques, maximum and/or minimum grade truncations	Up to 2m (down-hole) of internal waste is included for results reported
	(eg cutting of high grades) and	at both the 0.25g/t Au and 0.5g/t Au cut-off grades.
	cut-off grades are usually	at both the 0.259/t Au and 0.59/t Au cut-on grades.
	Material and should be stated. Where aggregate intercepts	
	incorporate short lengths of	Mineralised intervals are reported on a weighted average basis.
	high grade results and longer	
	lengths of low grade results, the	
	procedure used for such aggregation should be stated	
	and some typical examples of	
	such aggregations should be	
	shown in detail.	
	The assumptions used for any	
	reporting of metal equivalent	
	values should be clearly stated.	
Relationship Between	These relationships are particularly important in the	True widths have only been estimated for the three west to east
Mineralisation	reporting of Exploration Results	diamond drill holes. The overall orientation of mineralised zones
Widths and	If the geometry of the	on the other drilled lines is not yet properly understood.
Intercept Lengths	mineralisation with respect to	
	the drill hole angle is known, its nature should be reported.	
	If it is not known and only the	
	down hole lengths are	
	reported, there should be a	
	clear statement to this effect (eg 'down hole length, true	
	width not known').	
Diagrams	Appropriate maps and sections	An appropriate map and cross sections are included in this
	(with scales) and tabulations of intercepts should be included	release (Figures 1-4).
	for any significant discovery	
	being reported These should	
	include, but not be limited to a	
	plan view of drill hole collar locations and appropriate	
	sectional views.	
Balanced	Where comprehensive	Comprehensive reporting of the drill results is provided in Table
Reporting	reporting of all Exploration	1.
	Results is not practicable, representative reporting of	
	both low and high grades	
	and/or widths should be	
	practiced to avoid misleading reporting of Exploration	
	Results.	
Other	Other exploration data, if	All other exploration data on this area has been reported previously
Substantive Exploration	meaningful and material,	by PDI.
Exploration	should be reported including (but not limited to): geological	
Data		

Further Work	observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological	These results form part of a large ongoing program of RC and diamond drilling. Geological studies will continue to be conducted to characterise the gold mineralisation going forward.
	areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	

TABLE 6 - JORC CODE – AC & POWER AUGER DRILLING

Criteria	JORC Code Explanation	Commentary
Sampling Technique	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Samples assayed were Aircore (AC) drill chips/core and Power Auger (Auger). Auger: In all the power auger drill holes reported here, 2kg composite samples were collected for every 4m downhole interval. AC: Individual one metre samples were collected from the cyclone and weighed. Each sample was then riffle split producing a 1kg split sample. Two metre composite samples weighing approximately 2kg were submitted to the assay laboratory by combining the individual 1kg riffle split sample from each metre into a single bag. All samples were dried, crushed and pulverised at the SGS laboratory in Bamako to produce a 50g fire assay charge with Au analysed by FAA505. Duplicate samples were retained for re-assay. Sampling was supervised by qualified geologists.
Drilling	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	AC: Drilling company is IPGS (Industry Petroleum and Gas of Senegal) Drill type is Aircore using a 3.5 inch diameter coring blade. Where hard layers including quartz veins were encountered the blade was switched to a face sampling AC/RC hammer bit. Auger: Power auger drilling was carried out by ADS (African Drilling Services) using a 4WD-mounted power auger rig.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Each 1 metre drill sample was weighed. AC: Sample recoveries were in general high and no unusual measures were taken to maximise sample recovery. Where samples became too wet or sample recovery an quality decreased holes were stopped. Significant sample bias is not expected with riffle splitting of saprolitic materials. Auger: Sample recovery is not assessed for power auger drilling as it is a geochemic method. In general, however, recoveries are good because the hole has to be cleare by the screw-type rods in order for the drill rods to advance downwards.

Page 43 of 46 predictivediscovery.com

Logging	Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All drill samples were logged systematically for lithology, weathering and alteration and minor minerals. Minor minerals are estimated quantitively. None of the samples will not be used in a Mineral Resource estimation.
Sub-Sampling Technique and Sample Preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	AC: The samples were collected by riffle splitting samples from large bags collected directly from the cyclone on the drill rig. Sample condition is generally dry or moist, however some samples are wet. Auger: Each 4m to 5m interval in the composite interval was subsampled using a scoop. No field duplicates were collected. One field duplicate was taken and assayed every 50 samples. The sampling methods are considered adequate for an AC and Auger drilling program of this type.
Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	All samples were assayed by SGS technique FAA505 for gold with a detection limit of Sppb Au. All samples with gold values exceeding 10g/t Au were re-assayed using SGS method FAA515 with a detection limit of 0.01g/t Au. Field duplicates, standards and blank samples were each submitted for every 15 samples on a rotating basis for Ac drilling but not Auger drilling. Duplicate and standards analyses were all returned were within acceptable limits of expected values.
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data	At this stage, the intersections have not been verified independently. No twin holes have been drilled for Auger. For AC some abandoned shallow AC blade holes were redrilled with AC Hammer within 5m radius. These may be considered twin holes in part. No adjustment is assay data has been made.
Location of Data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used Quality and adequacy of topographic control	Drill hole collar locations were recorded at the completion of each hole by hand- held GPS. Positional data was recorded in projection WGS84 UTM Zone 29N. Relative height levels (RL) are relative to Above Mean Sea Level (AMSL) and assigned by draping collars on DTM surface determined from aerial geophysical survey. Hole locations may be re-surveyed using a digital GPS system later.

Page 44 of 46 predictivediscovery.com

Data Spacing and Distribution	Data spacing for reporting of Exploration Results Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	AC: The drill holes were designed to follow up previously defined >0.25g/t Au auger soil anomalies. Holes were either drilled heel to toe along traverses, or as scissor pairs in opposite directions at each target. Hole target depths and spacing were nominally 50m or as modified for heel to toe coverage. The intention of the drilling is to obtain a complete sample of the oxidised gold mineralisation and provide some indication of gold mineralisation orientations. All holes were angle drilled at 50 or 55 degrees. The adequacy of the current drill hole spacing for Mineral Resource estimation is not yet known as an appropriate understanding of mineralisation and continuity has not yet been established Auger: Holes were located on 320m x 80m and 80m x 80m grids. This type of drilling is not appropriate for the calculation of any Mineral Resource estimate.
Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	There is very limited outcrop in the area but based on the Bankan NE deposit to the north, and east west line orientation with holes inclined to the west and east was considered most likely to test the target anomalies.
Sample Security	The measures taken to ensure sample security	Large samples are stored in guarded location close to the nearby Bankan Village. Samples were split and sealed (tied off in calico or plastic bags) at the drill site. All samples picked for analyses are placed in clearly marked bags and were stored securely on site before being picked up and transported to Bamako by SGS truck. Coarse rejects and pulps will be eventually recovered from SGS in Bamako and stored at Predictive's field office in Kouroussa.
Audits or Reviews	The results of any audits or reviews of sampling techniques and data	No reviews or audits of sampling techniques were conducted.
	Section 2 Report	ing of Exploration Results
Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Bankan Gold Project comprises 4 exploration permits, Kaninko (PDI 100%), Saman (PDI 100%), Bokoro (PDI 100%) and Argo JV (right to earn 100% in JV with local partner). Permits are held by Predictive subsidiaries in Guinea or in a joint venture structure. Parts of the Kaninko and Saman permits overlap the outermost buffer zone (or "transitional area") of the Upper Niger National Park.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Predictive is not aware of any significant previous gold exploration over the permit.
Geology	Deposit type, geological setting and style of mineralisation.	The geology of the permits consists of mafic volcanics and intrusives, granitic rocks and minor metasediments.
Drill Hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length	See the accompanying notes and Tables in this release.

	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	All mineralised intervals are reported on a weighted average basis. AC: Drill sampling was in two metre composites intervals. Up to 2m (down-hole) of internal waste is included for results reported at the 0.25g/t Au cut-off grade. Auger: Kaninko and Saman area gold results are averaged from 4m depth to end of hole. This removes the effect of false transported anomalies in laterite. For the Argo area, no transported effects have been noted to date therefore gold results are averaged from surface to end of hole.
Relationship Between Mineralisation Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	True widths have not been estimated as the overall orientation of mineralised zones is not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate map and cross sections are included in this release.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of the drill results is provided in Table 1.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All other exploration data on this area has been reported previously by PDI.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The AC results form part of an ongoing regional exploration drill program to follow up power auger drilling soil anomalies. Regional power auger drilling is also ongoing testing new target areas.

Page 46 of 46 predictivediscovery.com