

ASX Announcement

3 October 2022

ASX: OD6

Drilling Complete at Splinter Rock Critical Rare Earth Minerals Project

OD6 Metals Limited (**OD6** or the **Company**) is pleased to advise that drilling has been completed at its Splinter Rock Project. Splinter Rock hosts widespread clay rare earth element (REE) mineralisation.

Highlights:

- Maiden Aircore (AC) drilling program completed at Splinter Rock
- 179 holes, totalling 5,862m drilled, over 100km of drill traverses lines has been accomplished
- Compilation of drill hole logging data to occur to enable detailed mapping of clay depth and thickness
- Assay results anticipated to be progressively available commencing in late October 2022

Brett Hazelden, Managing Director, commented:

"The successful completion of our maiden drill program at Splinter Rock is a key milestone for OD6 Metals. It is particularly pleasing that the drilling has encountered the expected thick intersections of clays, at shallow depths, across over 100km of drill line traverses. We look forward to updating the market on the detailed mapping of clays encountered during the drill program and assays as they become progressively available."

Completed Drill Hole Locations

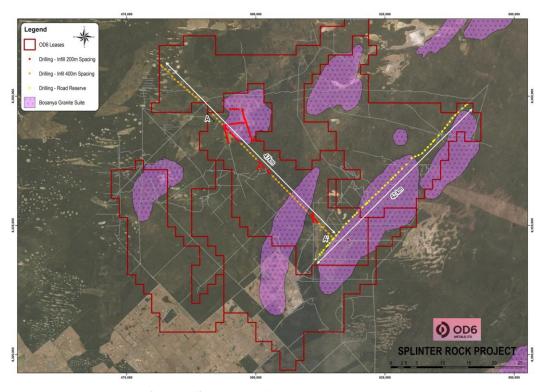


Figure 1 Splinter Rock Project (2,579km²) showing drill locations and granites.

Target Mineralisation

The Splinter Rock Project is a 2,579km² tenement package located approximately 150km northeast of Esperance, Western Australia. The Splinter Rock clay-hosted REE mineralisation is currently inferred to be a mobilised weathering product of the REE enriched Booanya granite suite (as shown in pink in Figure 1 above). Based on historic work and compilation of target geology (as presented in the Company's prospectus dated 20 June 2022), the target area at Splinter Rock covers over 30 x 60km, making this one of the largest known clay REE target areas in Australia.

Drill Program Achievements

The completed program accomplished:

- 179 aircore holes
- A total of 5,862m drilled
- Average depth of 32.7m
- Drill spacing varied between 200m, 400m and 800m
- Drilling was completed along 2 perpendicular traverses plus an area of intense drilling near the geographic location of Splinter Rock totalling over 100km in length
- A small number of planned drill holes here not completed due to poor access conditions

Thick Clay Intersections

From previous work, the thick zones of saprolite clays have the potential to host rare earth mineralisation (see Historical Exploration below). The newly completed drilling at Splinter rock has continued to confirm the existence and continuity of the thick saprolite clay horizons which are interspersed between granite outcrops and bedrock in the area.

The Company is currently compiling and reviewing all the drill hole logging data recorded over the last month to enable detailed mapping of clay depth and thickness, with future cross sections to be released to the market which will detail thickness of transported covering, thickness of saprolite clays and depth to basement.

Program Timeline

Subject to laboratory processing times, assays are expected to be progressively received commencing in late October 2022.

Historical exploration

Historically a 30km drill transect of air core drilling traversed the Splinter Rock tenure at between a 2km and 4km spacing (refer below). A number of holes intersected an enriched REE saprolite clay zone between 5m and 37m in thickness.

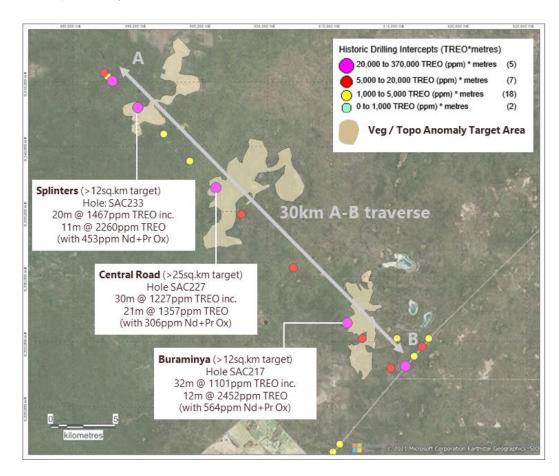


Figure 2 Plan view of historic drilling traverse showing widespread clay hosted rare earth intersections (refer to independent technical report in the Company's prospectus lodged 10 May 2022 for further details

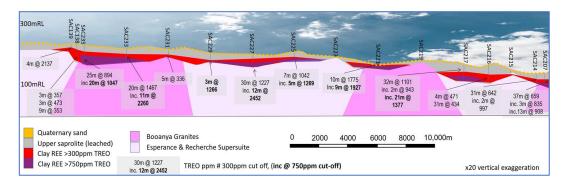


Figure 3 Cross-section (vertically exaggerated) of historic drilling on the Splinter Rock project (refer to independent technical report in the Company's prospectus lodged 10 May 2022 for further details).

Visual Mineralisation Cautionary Statement

In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages). Quantitative assays will be completed by ALS Global in Perth Western Australia

Competent Persons Statement

Information in this report relating to Exploration Results is based on information reviewed by Jeremy Peters, who is a Fellow of the Australasian Institute of Mining and Metallurgy and a Chartered Professional Geologist and Mining Engineer of that organisation. Mr Peters is an independent consultant of Burn Shirt Pty Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Peters consents to the inclusion of the data in the form and context in which it appears.

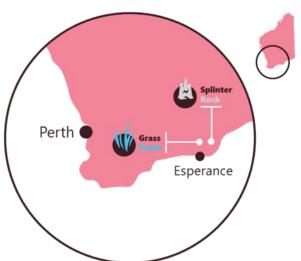
Forward Looking Statements

Certain information in this document refers to the intentions of OD6 Metals, however these are not intended to be forecasts, forward looking statements, or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to OD6 Metals projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the OD6 Metals plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause OD6 Metals actual results, performance, or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, OD6 Metals and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

No New Information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

This announcement has been authorised for release by the Board of OD6 Metals Limited



About OD6 Metals

OD6 Metals is an Australian public company with a purpose to pursue exploration and development opportunities within the resources sector. The Company holds a 100% interest in the Splinter Rock Project and Grass Patch Project, which are located in the Goldfields-Esperance region of Western Australia, about 30 to 150km north of the major port and town of Esperance.

The projects are considered prospective for clay-hosted rare earth elements (REEs), with the Company's aim of delineating and defining economic resources and reserves to develop into a future revenue generating operational mine. Clay REE deposits are currently economically extracted in China, which is the dominant world producer of REEs.

Rare earth elements (in particular, Nd and Pr), are becoming increasingly important in the global economy, with uses including advanced electronics, permanent magnets in electric motors and electricity generators (such as wind turbines) and battery technologies.

Corporate Directory

Managing Director

Non-Executive Chairman

Non-Executive Director

Non-Executive Director

Non-Executive Director

Dr Mitch Loan

Financial Controller/ Joint Company Secretary

Joint Company Secretary

Mr Joel Ives

Exploration Manager

Tim Jones

Contact

OD6 Metals Ltd ACN 654 839 602

www.od6metals.com.au

Mail to: info@od6metals.com.au

Phone:+61 8 6189 8515

Level 1, 50 Kings Park Road, West Perth, WA 6005

PO Box 277, North Beach, WA 6920 PO Box 2009, Esperance, WA 6450

Drilling Data

Hole ID	Туре	Easting	Northing	RL (m)	Azimuth (degrees)	Dip (degrees)	End of Hole (m)
SRAC0001	AirCore	514654	6322831	148.59	0	-90	40.00
SRAC0002	AirCore	514097	6323405	148.43	0	-90	30.00
SRAC0003	AirCore	513537	6323977	155.38	0	-90	10.00
SRAC0004	AirCore	513108	6324610	168.86	0	-90	3.00
SRAC0005	AirCore	512744	6324620	170.31	0	-90	40.00
SRAC0006	AirCore	512256	6325294	170.51	0	-90	40.00
SRAC0007	AirCore	511976	6325580	166.71	0	-90	39.00
SRAC0008	AirCore	511133	6325653	166.55	0	-90	40.00
SRAC0009	Not Drilled						
SRAC0010	Not Drilled						
SRAC0011	AirCore	511417	6326153	168.25	0	-90	40.00
SRAC0012	AirCore	511135	6326440	175.18	0	-90	12.00
SRAC0013	AirCore	510889	6326694	179.79	0	-90	4.00
SRAC0014	Not Drilled						
SRAC0015	AirCore	510608	6326979	182.08	0	-90	8.00
SRAC0016	Not Drilled						
SRAC0017	Not Drilled						
SRAC0018	AirCore	509773	6327840	187.84	0	-90	8.00
SRAC0019	AirCore	509214	6328412	188.64	0	-90	36.00
SRAC0020	AirCore	508656	6328986	182.50	0	-90	19.00
SRAC0021	AirCore	508100	6329561	178.84	0	-90	40.00
SRAC0022	AirCore	507541	6330133	175.58	0	-90	36.00
SRAC0023	AirCore	507103	6330585	173.18	0	-90	35.00
SRAC0024	AirCore	506627	6331075	175.85	0	-90	31.00
SRAC0025	AirCore	506067	6331647	185.69	0	-90	5.00
SRAC0026	AirCore	505507	6332218	195.41	0	-90	6.00
SRAC0027	AirCore	505018	6332733	197.52	0	-90	3.00
SRAC0028	AirCore	504457	6333303	197.78	0	-90	52.00
SRAC0029	AirCore	503897	6333874	201.59	0	-90	2.00
SRAC0030	AirCore	503345	6334444	214.28	0	-90	12.00
SRAC0031	AirCore	502786	6335016	210.71	0	-90	10.00
SRAC0032	AirCore	502508	6335304	209.12	0	-90	8.00
SRAC0033	AirCore	502230	6335591	206.23	0	-90	46.00
SRAC0034	AirCore	500301	6335852	210.24	0	-90	8.00
SRAC0035	AirCore	501691	6336146	203.83	0	-90	8.00
SRAC0036	AirCore	500605	6336247	208.35	0	-90	12.00
SRAC0037	AirCore	500808	6336347	207.05	0	-90	1.00
SRAC0038	AirCore	501411	6336431	205.35	0	-90	12.00
SRAC0039	AirCore	501155	6336696	206.37	0	-90	44.00
SRAC0040	AirCore	500874	6336983	206.22	0	-90	47.00
SRAC0041	AirCore	500595	6337270	207.11	0	-90	54.00

Hole ID	Туре	Easting	Northing	RL (m)	Azimuth (degrees)	Dip (degrees)	End of Hole (m)
SRAC0042	AirCore	500036	6337842	207.3	0	-90	58.00
SRAC0043	AirCore	499486	6338407	204.3	0	-90	51.00
SRAC0044	AirCore	498927	6338980	212.4	0	-90	47.00
SRAC0045	AirCore	498368	6339552	222.2	0	-90	5.00
SRAC0046	AirCore	497813	6340128	228.2	0	-90	13.00
SRAC0047	AirCore	497254	6340700	225.6	0	-90	31.00
SRAC0048	AirCore	494735	6340935	227.2	0	-90	44.00
SRAC0049	AirCore	496697	6341274	227.7	0	-90	11.00
SRAC0050	AirCore	494628	6341318	231.0	0	-90	34.00
SRAC0051	AirCore	499615	6341327	221.5	0	-90	31.00
SRAC0052	AirCore	500014	6341356	217.1	0	-90	12.00
SRAC0053	AirCore	500412	6341386	214.1	0	-90	22.00
SRAC0054	AirCore	500810	6341402	209.0	0	-90	51.00
SRAC0055	AirCore	499269	6341403	226.8	0	-90	17.00
SRAC0056	AirCore	496417	6341560	229.5	0	-90	39.00
SRAC0057	AirCore	494562	6341649	228.0	0	-90	34.00
SRAC0058	AirCore	499232	6341718	227.3	0	-90	3.00
SRAC0059	AirCore	496138	6341847	235.2	0	-90	32.00
SRAC0060	AirCore	494475	6341935	223.9	0	-90	45.00
SRAC0061	AirCore	499074	6342085	232.8	0	-90	20.00
SRAC0062	AirCore	495861	6342135	236.2	0	-90	29.00
SRAC0063	AirCore	494385	6342319	220.4	0	-90	60.00
SRAC0064	AirCore	495583	6342422	235.0	0	-90	45.00
SRAC0065	AirCore	498941	6342458	229.3	0	-90	13.00
SRAC0066	AirCore	494250	6342692	229.1	0	-90	37.00
SRAC0067	AirCore	495302	6342707	231.6	0	-90	20.00
SRAC0068	AirCore	498814	6342837	226.1	0	-90	46.00
SRAC0069	AirCore	495022	6342993	227.2	0	-90	39.00
SRAC0070	AirCore	494143	6343077	234.1	0	-90	96.00
SRAC0071	AirCore	498663	6343206	224.9	0	-90	66.00
SRAC0072	AirCore	494659	6343366	226.3	0	-90	56.00
SRAC0073	AirCore	494019	6343456	234.1	0	-90	48.00
SRAC0074	AirCore	498574	6343594	225.1	0	-90	36.00
SRAC0075	AirCore	494379	6343652	230.4	0	-90	58.00
SRAC0076	AirCore	493923	6343845	232.6	0	-90	23.00
SRAC0077	AirCore	494103	6343941	233.6	0	-90	60.00
SRAC0078	AirCore	498448	6343973	228.3	0	-90	18.00
SRAC0079	AirCore	493769	6344282	231.5	0	-90	41.00
SRAC0080	AirCore	494158	6344343	230.3	0	-90	63.00
SRAC0081	AirCore	498310	6344348	234.6	0	-90	86.00
SRAC0082	AirCore	494550	6344422	229.2	0	-90	46.00
SRAC0083	AirCore	493576	6344481	231.3	0	-90	28.00
SRAC0084	AirCore	494944	6344493	218.9	0	-90	7.00

Hole ID	Туре	Easting	Northing	RL (m)	Azimuth (degrees)	Dip (degrees)	End of Hole (m)
SRAC0085	Not Drilled						
SRAC0086	AirCore	495733	6344602	219.1	0	-90	40.00
SRAC0087	AirCore	496123	6344681	221.2	0	-90	44.00
SRAC0088	AirCore	498184	6344725	225.6	0	-90	51.00
SRAC0089	Not Drilled						
SRAC0090	AirCore	496510	6344755	221.8	0	-90	38.00
SRAC0091	AirCore	496905	6344791	222.3	0	-90	32.00
SRAC0092	AirCore	497305	6344810	223.9	0	-90	46.00
SRAC0093	AirCore	493018	6345055	236.8	0	-90	63.00
SRAC0094	AirCore	498040	6345102	230.6	0	-90	89.00
SRAC0095	AirCore	497889	6345471	245.5	0	-90	7.00
SRAC0096	AirCore	492460	6345627	240.6	0	-90	30.00
SRAC0097	AirCore	497765	6345851	248.6	0	-90	23.00
SRAC0098	AirCore	497669	6346239	240.1	0	-90	45.00
SRAC0099	AirCore	491777	6346326	236.9	0	-90	58.00
SRAC0100	AirCore	497566	6346624	234.5	0	-90	25.00
SRAC0101	AirCore	491216	6346897	239.9	0	-90	48.00
SRAC0102	AirCore	497452	6347008	225.5	0	-90	64.00
SRAC0103	AirCore	497372	6347399	221.7	0	-90	53.00
SRAC0104	Not Drilled						
SRAC0105	Not Drilled						
SRAC0106	Not Drilled						
SRAC0107	AirCore	496263	6347464	230.4	0	-90	55.00
SRAC0108	AirCore	495867	6347481	234.4	0	-90	22.00
SRAC0109	Not Drilled						
SRAC0110	AirCore	488929	6349288	239.1	0	-90	9.00
SRAC0111	AirCore	488334	6349821	244.0	0	-90	17.00
SRAC0112	AirCore	487772	6350287	239.5	0	-90	41.00
SRAC0113	AirCore	487156	6350793	239.5	0	-90	30.00
SRAC0114	AirCore	486746	6351157	239.0	0	-90	24.00
SRAC0115	AirCore	486161	6351688	238.7	0	-90	38.00
SRAC0116	AirCore	485528	6352177	238.9	0	-90	29.00
SRAC0117	AirCore	484947	6352719	229.8	0	-90	30.00
SRAC0118	AirCore	484301	6353188	221.4	0	-90	42.00
SRAC0119	AirCore	483811	6353805	219.6	0	-90	46.00
SRAC0120	AirCore	483036	6354697	219.4	0	-90	23.00
SRAC0121	AirCore	482409	6355159	218.9	0	-90	22.00
SRAC0122	AirCore	481494	6306272	197.6	0	-90	26.00
SRAC0123	AirCore	481994	6306788	191.5	0	-90	22.00
SRAC0124	AirCore	482294	6307105	195.4	0	-90	13.00
SRAC0125	AirCore	482798	6307789	201.5	0	-90	3.00
SRAC0126	AirCore	483400	6308631	199.7	0	-90	2.00
SRAC0127	AirCore	484322	6309329	196.3	0	-90	3.00

Hole ID	Туре	Easting	Northing	RL (m)	Azimuth (degrees)	Dip (degrees)	End of Hole (m)
SRAC0128	AirCore	499081	6306804	152.4	0	-90	6.00
SRAC0129	AirCore	499796	6307424	157.2	0	-90	40.00
SRAC0130	AirCore	500516	6308034	167.6	0	-90	27.00
SRAC0131	AirCore	501078	6308520	173.5	0	-90	27.00
SRAC0132	AirCore	502666	6309871	169.1	0	-90	28.00
SRAC0133	AirCore	503925	6310976	161.6	0	-90	40.00
SRAC0134	AirCore	504859	6311766	149.6	0	-90	42.00
SRAC0135	AirCore	506496	6313172	152.1	0	-90	30.00
SRAC0136	AirCore	507821	6314324	147.6	0	-90	40.00
SRAC0137	AirCore	511578	6318400	152.0	0	-90	40.00
SRAC0138	AirCore	512396	6319328	150.6	0	-90	40.00
SRAC0139	AirCore	512769	6319741	149.8	0	-90	40.00
SRAC0140	AirCore	513128	6320172	149.4	0	-90	40.00
SRAC0141	AirCore	513737	6320889	148.6	0	-90	111.00
SRAC0142	AirCore	513951	6321139	153.2	0	-90	76.00
SRAC0143	AirCore	514286	6321537	152.8	0	-90	4.00
SRAC0144	AirCore	514870	6322225	156.1	0	-90	19.00
SRAC0145	AirCore	515045	6322423	150.6	0	-90	10.00
SRAC0146	AirCore	515551	6323024	150.6	0	-90	47.00
SRAC0147	AirCore	516107	6323680	153.8	0	-90	26.00
SRAC0148	AirCore	516916	6324615	159.1	0	-90	12.00
SRAC0149	AirCore	517485	6325298	161.8	0	-90	77.00
SRAC0150	AirCore	517999	6325835	151.7	0	-90	95.00
SRAC0151	AirCore	518765	6326608	145.9	0	-90	56.00
SRAC0152	AirCore	519126	6326958	145.1	0	-90	57.00
SRAC0153	AirCore	519564	6327391	152.7	0	-90	57.00
SRAC0154	AirCore	520179	6327977	164.5	0	-90	8.00
SRAC0155	AirCore	520679	6328464	175.3	0	-90	19.00
SRAC0156	AirCore	521287	6329037	173.7	0	-90	4.00
SRAC0157	AirCore	521560	6329326	177.1	0	-90	40.00
SRAC0158	AirCore	521948	6329703	180.2	0	-90	12.00
SRAC0159	AirCore	522586	6330321	175.4	0	-90	29.00
SRAC0160	AirCore	523231	6330951	167.9	0	-90	9.00
SRAC0161	AirCore	523804	6331449	158.5	0	-90	17.00
SRAC0162	AirCore	524486	6332174	168.1	0	-90	24.00
SRAC0163	AirCore	525010	6332681	170.3	0	-90	24.00
SRAC0164	AirCore	525590	6333243	178.4	0	-90	9.00
SRAC0165	AirCore	526215	6333849	172.8	0	-90	32.00
SRAC0166	AirCore	526574	6334204	172.6	0	-90	33.00
SRAC0167	AirCore	527036	6334662	168.7	0	-90	5.00
SRAC0168	AirCore	527644	6335242	175.9	0	-90	45.00
SRAC0169	AirCore	528342	6335925	178.6	0	-90	39.00
SRAC0170	AirCore	529190	6336745	181.1	0	-90	40.00

					Automoth	D'	Footset
Hole ID	Туре	Easting	Northing	RL (m)	Azimuth (degrees)	Dip (degrees)	End of Hole (m)
SRAC0171	AirCore	530156	6337959	176.9	0	-90	7.00
SRAC0172	AirCore	530876	6338290	172.7	0	-90	13.00
SRAC0173	AirCore	531540	6338548	163.9	0	-90	62.00
SRAC0174	AirCore	532232	6338911	163.8	0	-90	41.00
SRAC0175	AirCore	532777	6339496	161.1	0	-90	46.00
SRAC0176	AirCore	533318	6340087	164.6	0	-90	38.00
SRAC0177	AirCore	533882	6340665	167.7	0	-90	14.00
SRAC0178	AirCore	534347	6341212	165.8	0	-90	44.00
SRAC0179	AirCore	534595	6341484	161.7	0	-90	6.00
SRAC0180	AirCore	535398	6342356	158.1	0	-90	37.00
SRAC0181	AirCore	536103	6343145	166.8	0	-90	16.00
SRAC0182	AirCore	536606	6343770	166.4	0	-90	8.00
SRAC0183	AirCore	537107	6344402	158.3	0	-90	6.00
SRAC0184	AirCore	537607	6345034	155.4	0	-90	78.00
SRAC0185	AirCore	538089	6345672	156.2	0	-90	88.00
SRAC0186	AirCore	538607	6346275	155.5	0	-90	6.00
SRAC0187	AirCore	539196	6346817	156.2	0	-90	6.00
SRAC0188	AirCore	539995	6347587	157.3	0	-90	80.00
SRAC0189	AirCore	540589	6348129	159.3	0	-90	5.00
SRAC0190	AirCore	540957	6348449	157.5	0	-90	70.00

JORC 2012 – Table1: Splinter Rock

Section 1 Sampling Techniques and Data (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commontoni
		Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Geochemical sampling was undertaken by sampling of metre interval samples returned from the cyclone of a conventional aircore drilling rig. Certified reference samples, duplicates and blank samples were inserted into the sample stream such as to represent approximately 5% of the samples submitted to the laboratory for analysis Two composite samples were collected over three metre intervals – the first (the A sample) being submitted for laboratory analysis and the second (the B sample) being retained as a reference. A sample from each metre was collected and stored in a chip tray for logging and x-ray diffraction analysis

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Air core drilling was completed by hammer and blade industry standard drilling techniques Aircore is considered to be an appropriate drilling technique for saprolite clay Drilling used blade bits of 87mmØ with 3m length drill rods to blade refusal.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Air core recoveries were not recorded but are not considered to be materially biased, given the nature of the geology and samples. Holes were drilled approximately 400m apart, with closer spacing in areas demonstrated to contain elevated REE assays from previous drilling. The assay data will be analysed against control samples and historical assays for any indications of bias
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 A sample from each metre was collected and stored in a chip tray for logging Geological logs recorded lithology, colour and weathering.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 A composite sample of ~ 3kg for analysis was taken using a scoop from each metre pile to subsample 1 to 1.5kg sample. This was then dispatched to the laboratory. A second composite sample was similarly taken and stored on site as a reference Air core samples were mostly dry although intersections at depth were sometimes wet. Certified reference samples, duplicates and blank samples were inserted into the sample stream such as to represent approximately 5% of the samples submitted to the laboratory for analysis
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 "A Samples" were submitted for chemical analysis using industry standard sample preparation and analytical techniques including: Riffle split all "A samples" to 50:50 bagging one half as a coarse reject for storage Pulverise the balance of the material via LN 5 Generate a standard 300g master pulp packet Generate a second split at 150g for dispatched by the balance as a bulk pulp master for storage Multi-Element Ultra Trace method ME-MS61r for exploration in soils or sediments. 4-Acid digest on 0.25g sample analysed via ICP-MS and ICP-AES REEs included.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Certified reference samples, duplicates and blank samples were inserted into the sample stream such as to represent approximately 5% of the samples submitted to the laboratory for analysis A representative selection of historic drill holes were twinned (duplicated) to validate previous logging and assay data. Data stored in a database, with auto-validation of logging data, Multielement results (REE) are converted to stoichiometric oxide (REO) using element-to-stoichiometric conversion factors.

Criteria	JORC Code explanation	Commentary		
		Element ppm	Conversion Factor	Oxide Form
		Ce	1.1713	CeO₂
		Dy	1.1477	Dy ₂ O ₃
		Er	1.1435	Er ₂ O ₃
		Eu	1.1579	Eu ₂ O ₃
		Gd	1.1526	Gd ₂ O ₃
		Но	1.1455	Ho ₂ O ₃
		La	1.1728	La ₂ O ₃
		Lu	1.1371	Lu ₂ O ₃
		Nd	1.1664	Nd ₂ O ₃
		Pr	1.1703	Pr ₆ O ₁₁
		Sm	1.1596	Sm ₂ O ₃
		Tb	1.1510	Tb ₄ O ₇
		Tm	1.1421	Tm ₂ O ₃
		Υ	1.2699	Y ₂ O ₃
		Yb	1.1387	Yb ₂ O ₃
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	are used for evaluation g TREO (Tota = La ₂ O ₃ + C Eu ₂ O ₃ + Gd + Tm ₂ O ₃ + Y Note that Y ₂ Drill hole co GPS to +/-5 Grid system Downhole s being vertica No topograp relatively fla	Il Rare Earth Oxide) $eO_2 + Pr_6O_{11} + Nd_2O_2O_3 + Tb_4O_7 + Dy_2O_3$ $'b_2O_3 + Lu_2O_3 + Y_2O_3$ O_3 is included in the Illars were located us m accuracy was MGA 94 Zone urvey was not under all bhy control was used t topography	their reporting and $O_3 + Sm_2O_3 + G_3 + G_2O_3 + G_2O_3 + G_2O_3 + G_2O_3$ TREO calculation. Sing a handheld 51 taken, the holes d, given the
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	over a 100 kDrilling inter 200m centre elevated RE	vals were closed to a es where historic dril	approximately ling returned
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 		ere vertical and appr ar to mineralisation	roximately
Sample security	 The measures taken to ensure sample security. 		ere taken and dispato t to the analytical lab	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	sampling ted Independen	ndent Competent Pe chniques and data c t Competent Person drilling to verify samp llection.	ollection. The completed a site

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Splinter Rock Project is held by Odette Six Pty Ltd which is a 100% owned subsidiary of OD6 Metals Ltd. Granted exploration Licences include E63/2115, E69/3904, E69/3905, E69/3907, E69/3893, E69/3894. The ELs predominantly overly vacant crown land with a small portion of freehold agricultural land used for crop and livestock farming to the south. The Company has Native Title Land Access agreements with Ngadju Native Title Aboriginal Corporate and Esperance Tjaltjraak Native Title Aboriginal Corporation. The tenements are in good standing with no known impediments outside the usual course of exploration licenses.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 An Independent Geological Report was completed by of Sahara Natural Resources and included in the Company's Prospectus dated 10 May 2022. Historic exploration for REE's was conducted by Salazar Gold Pty Ltd The historical data has been assessed and is considered of good quality.
Geology	Deposit type, geological setting and style of mineralisation.	 The rare earth mineralisation at the Splinter Rock Project occurs in the weathered profile (in-situ regolith clays) adjacent to and above Booanya Granite of the East Nornalup Zone of the Albany-Fraser Orogen. The Booanya granites are enriched in REEs. Factors such as groundwater dispersion and paleo-weathering environments may mobilise REEs away from the granite sources.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All drill results are reported to the ASX in line with ASIC requirements A summary of material drill hole information ins included in the Drill Hole Data table included above No material has been excluded. Assay results have yet to be received and are thus not included
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No cut-off grades or data aggregation methods have been utilised Multielement results (REE) are converted to stoichiometric oxide (REO) using element-to- stoichiometric conversion factors.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Drillholes drilled vertical and orthogonal to generally flat to shallow dipping clay mineralisation. Drilled width is approximately true width.

Criteria	JORC Code explanation	Commentary
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Drilling is presented in long-section and cross section as appropriate.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drillhole results have been reported including those drill holes where no significant intersection was recorded.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All material data available is reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further work will include additional air core drilling, core drilling (e.g sonic or push-tube drilling, mineralogy, metallurgical testwork and study work.