

10 October 2022 ASX: GAL

Corporate Directory

Directors

Chairman & MD Brad Underwood

Non-Executive Director Noel O'Brien

Non-Executive Director Cecilia Camarri

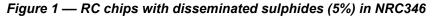
Non-Executive Director Mathew Whyte

Projects

Fraser Range Project Nickel-Copper-Cobalt

Norseman Project Palladium-Nickel-Copper-Rhodium-Platinum-Gold

Contact Details


T: +61 8 9463 0063 E: info@galmining.com.au W: www.galileomining.com.au 13 Colin St, West Perth, WA

NEW NICKEL SULPHIDE ZONE DISCOVERED NORTH OF CALLISTO

Highlights

- Four RC drill holes completed 400 metres north of the Callisto discovery have intersected disseminated nickel sulphide mineralisation up to 51 metres thick ⁽¹⁾
- Portable XRF analyses confirm the presence of nickel sulphide with laboratory assays required to determine whether palladium/platinum and other metals are present ⁽²⁾
- NRC346 contains the most abundant disseminated sulphide in a shallow zone starting at just 82 metres below surface
- Samples from this new zone have been submitted to the laboratory with first assays expected in approximately five weeks
- New results confirm Galileo's geological model that the five kilometres of ground to the north of Callisto is highly prospective for new discoveries
- RC and diamond drilling continues at Callisto with the diamond rig drilling out mineralisation down dip of the discovery and the RC rig testing for new discoveries to the north

Galileo Mining Ltd (ASX: GAL, "Galileo" or the "Company") is pleased to provide an exploration update from ongoing RC drilling north of the Callisto palladiumplatinum-gold-rhodium-nickel-copper discovery within the Company's 100% owned Norseman project in Western Australia.

- (1) See Appendix 1 for drill hole information and visual mineralisation descriptions
- (2) Portable XRF was used for geological logging and qualitative purposes only. pXRFs do not read Pd,Pt,or Au.

Galileo's Managing Director Brad Underwood commented; "RC drilling north of Callisto has identified a new zone of disseminated nickel sulphide in the first exploration drill program in the area since the discovery at Callisto defined the prospective geological unit on Galileo's ground. Our target generation model suggested that the five kilometres north of Callisto are the most prospective and these early drill results strongly support this concept. With 278 km² of tenements in the Norseman project we continue to believe that Galileo has all of the most prospective ground in this newly established mineral domain.

🗑 GALILEO

To date we have undertaken scout RC drilling up to 500 metres north of Callisto with plans to extend this to 1,000 metres in the current program. The recent approval of proposed drill programs from the Department of Mines now allows for systematic drilling of the prospective geological horizons up to 3.5km north. At the same time the diamond drill rig continues to drill down dip of Callisto where the mineralisation is interpreted to continue into Galileo's tenements.

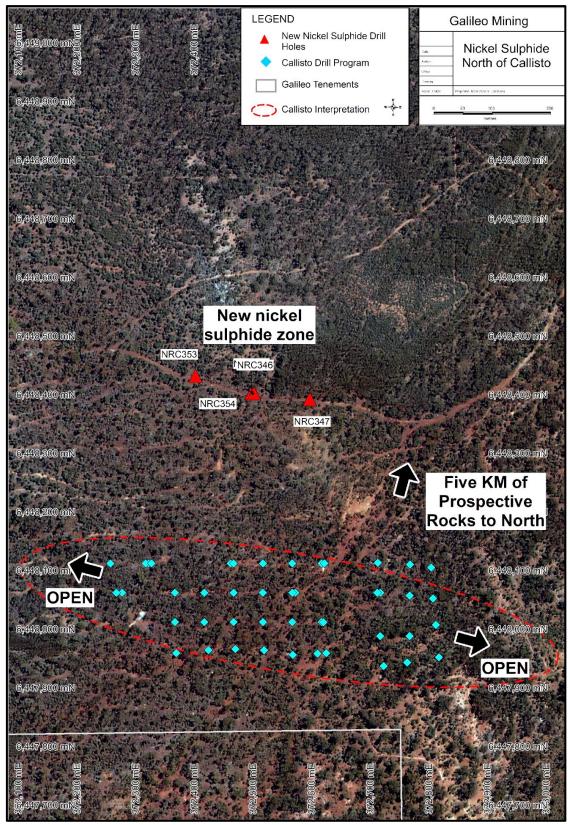

With no known outcrop, and over five kilometres of prospective strike, we consider that a significant opportunity exists for additional discoveries at shallow depths. We are very excited to be rapidly progressing this new discovery and look forward to updating the market as results become available."

Figure 2 — RC drilling on site at Galileo's 100% owned Norseman project. Diamond drill rig mast is just visible in the background.

Figure 3 — Plan map of RC drilling at the newly identified nickel sulphide zone north of the Callisto discovery. Diamond drilling is ongoing at Callisto while the RC drill rig continues to test targets to the north. Map includes the current geological interpretation of the metal enrichment footprint at Callisto with five kilometres of prospective ground to the north.

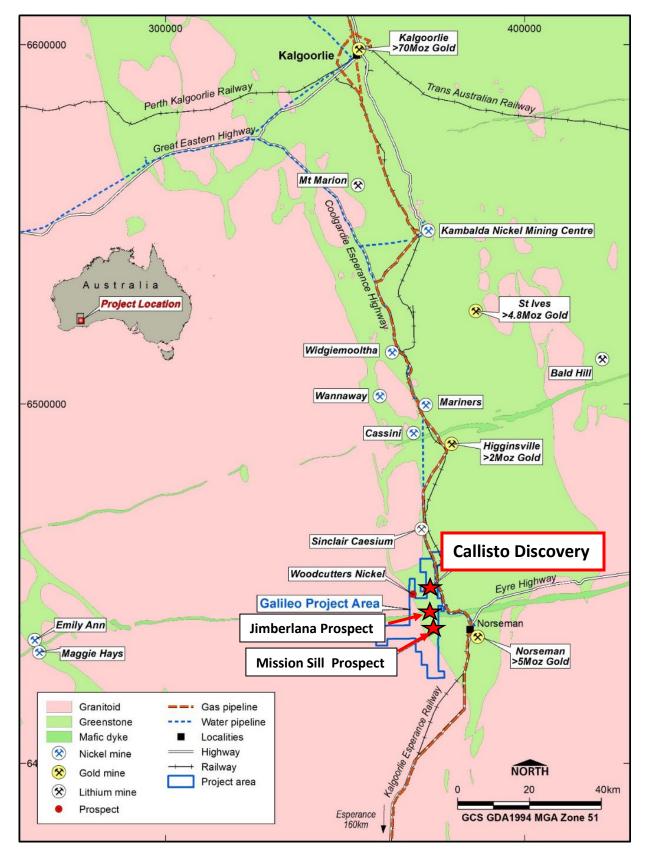
Page 3 | 16

Scout RC drilling undertaken on an existing track 400 metres north of Callisto discovery drill hole NRC266 intersected disseminated nickel sulphide mineralisation with total sulphide content estimated at 5% over the logged interval in NRC346.⁽³⁾ An adjacent drill hole 100m to the east (NRC347) also intersected disseminated sulphides with a lower overall abundance of logged sulphides. Two further drill holes were then completed with an 85-degree dip to establish the geometry and extent of mineralisation on the drill line (NRC353 and NRC354). Portable XRF analyses has confirmed the presence of nickel sulphides which were logged in drill chips.⁽⁴⁾ Copper values registered on the pXRF were not significant and it is unknown whether the new nickel sulphide zone represents a similar style of mineralisation to that discovered at Callisto or a new mineralised domain.

GALI

Diamond drilling continues at the Callisto discovery with the extent of sulphide mineralisation, and the geometry of metal distribution within the sulphide zones, yet to be determined. Current interpretation of the metal enriched sulphide zone at Callisto implies that the high value metals are contained within a west-northwest to east-southeast trending corridor, open in both directions (see Figure 2).

Samples from the new zone of nickel sulphide have been submitted to the laboratory with first results expected in approximately five weeks. Exploration RC drilling will meanwhile continue to the north, targeting the interpreted prospective geological horizons on Galileo's tenements.


(3) See Appendix 1 for drill hole information and visual mineralisation descriptions.

(4) Portable XRF was used for geological logging and qualitative purposes only. pXRFs do not read Pd,Pt,or Au.

Page 4 | 16

Figure 4 – Norseman project location map with a selection of regional mines and infrastructure

Competent Person Statement

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Brad Underwood, a Member of the Australasian Institute of Mining and Metallurgy, and a full time employee of Galileo Mining Ltd. Mr Underwood has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Underwood consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

With regard to the Company's ASX Announcements referenced in the above Announcement, the Company is not aware of any new information or data that materially affects the information included in the Announcements.

Authorised for release by the Galileo Board of Directors.

Investor information: phone Galileo Mining on + 61 8 9463 0063 or email info@galmining.com.au

Media: David Tasker Managing Director Chapter One Advisors E: <u>dtasker@chapteroneadvisors.com.au</u> T: +61 433 112 936

About Galileo Mining:

Galileo Mining Ltd (ASX: GAL) is focussed on the exploration and development of palladium, nickel, copper, and cobalt resources in Western Australia. GAL's tenements near Norseman are highly prospective for palladium-copper-nickel sulphide deposits as shown by the Callisto discovery. GAL also has Joint Ventures with the Creasy Group over tenements in the Fraser Range which are prospective for nickel-copper sulphide deposits similar to the operating Nova mine. GAL's Norseman Project contains a near surface laterite deposit with over 26,000 tonnes of contained cobalt, and 122,000 tonnes of contained nickel, in JORC compliant resources (see JORC Table below).

JORC Mineral Resource Estimates for the Norseman Cobalt Project ("Estimates") (refer to ASX "Prospectus" announcement dated May 25th 2018 and ASX announcement dated 11th December 2018, accessible at <u>http://www.galileomining.com.au/investors/asx-announcements/</u>). Galileo confirms that all material assumptions and technical parameters underpinning the Estimates continue to apply and have not materially changed).

Cut-off	Class	Tonnes Mt	Со		Ni	
Cobalt %			%	Tonnes	%	Tonnes
MT THIRSTY SILL						
0.06 %	Indicated	10.5	0.12	12,100	0.58	60,800
	Inferred	2.0	0.11	2,200	0.51	10,200
	Total	12.5	0.11	14,300	0.57	71,100
MISSION SILL						
0.06 %	Inferred	7.7	0.11	8,200	0.45	35,000
GOBLIN						
0.06 %	Inferred	4.9	0.08	4,100	0.36	16,400
TOTAL JORC COMPLI	TOTAL JORC COMPLIANT RESOURCES					
0.06 %	Total	25.1	0.11	26,600	0.49	122,500

Appendix 1: Norseman RC Drill Hole Details

Comments include preliminary geological logging of disseminated sulphide intersections where relevant. Sulphide mineralisation and metal contents are not directly correlated. Assays are required to determine metal content (ie. Pd, Pt, Au, Cu, Ni, Rh values).

Hole ID	East	North	RL	Azi	Dip	RC Depth (m)	From (m)	To (m)	Length (m)	Lithology	Mineralisation Description Sulphide % (Visual Estimate)
NRC346	372500	6448400	362	270	-60	215	95	146	51	Ultramafic (peridotite, pyroxenite)	Disseminated sulphide (Po-Pn) 5%
NRC347	372600	6448390	359	270	-60	221	87	116	29	Ultramafic (peridotite, pyroxenite)	Disseminated sulphide (Po-Pn) 3%
NRC353	372405	6448430	363	270	-85	155	60	102	42	Ultramafic (peridotite, pyroxenite)	Disseminated sulphide (Po-Pn) 3%
NRC354	372505	6448400	362	270	-85	155	80	123	43	Ultramafic (peridotite, pyroxenite)	Disseminated sulphide (Po-Pn) 3%

Note: Easting and Northing coordinates are GDA94 Zone 51.

Po = Pyrrhotite Cpy = Chalcopyrite Pn = Pentlandite Py = Pyrite

In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of sulphide material abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available.

Appendix 2:

Logging of Sulphide Mode, Type, and Percentage

Cautionary Statement: Sulphide estimates are completed by visual observation with analytical laboratory results pending for drill holes NRC294 to NRC305. Sulphide mineralisation and metal contents are not directly correlated. Assays are required to determine metal content (ie. Pd, Pt, Au, Cu, Ni, Rh values).

Galileo Field Logging Guide

Sulphide Mode	Percent Range (visually estimated)
Weakly disseminated	< 1 %
Disseminated	1-5%

	GALILE Mir	Oning
N.	Heavily disseminated	5 – 20 %
	Matrix	20 – 40 %
	Net textured	20 – 40 %
	Semi-massive	>40 to < 80 %
	Massive	>80 %

Appendix 3:

Galileo Mining Ltd – Norseman Project

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) drilling was used to obtain one metre individually bagged chip samples. Each RC bag was spear sampled to provide a 4-metre representative composite sample for analyses. A 1m sample split for each metre is collected at the time of drilling from the drill rig mounted cone splitter. Selected 1m split sample intervals were selected from zones of interest and sent to the laboratory for analysis with remainder of drill hole assayed using 4m composite samples. QAQC standards (blank & reference) and duplicate samples were included routinely with 1 per 20 samples being a standard or duplicate. Samples were sent to an independent commercial assay laboratory. All assay sample preparation comprised oven drying, pulverising and splitting to a representative assay charge pulp. A 50g Lead Collection Fire Assay with ICP-MS finish was used to determine Au, Pt and Pd results. A four acid digest was used for sample digest with a 48 element analysis suite including Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge,

Criteria	JORC Code explanation	Commentary
		 Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr by ICP-OES finish. Assaying of composite samples is still in progress
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling was undertaken by Core Drilling Services using a 5.5" face sampling drill bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries are visually estimated for each metre with poor or wet samples recorded in drill and sample log sheets. The sample cyclone was routinely cleaned at the end of each 6m rod and when deemed necessary. No relationship has been determined between sample recoveries and grade and there is insufficient data to determine if there is a sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging of drill holes was done on a visual basis with logging including lithology, grainsize, mineralogy, texture, deformation, mineralisation, alteration, veining, colour and weathering. Logging of drill chips is qualitative and based on the presentation of representative drill chips retained for all 1m sample intervals in the chip trays. All drill holes were logged in their entirety
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All assays reported are from 1m cone split samples. 1m cone split samples were collected for all metres at the time of drilling from the drill rig mounted cone splitter. Selected 1m cone split samples for intervals deemed of interest by the geologist supervising the drill rig were submitted for priority assay. The samples are dried and pulverised before analysis. QAQC reference samples and duplicates were routinely submitted with each batch. The sample size is considered appropriate for the mineralisation style, application and analytical techniques used.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 RC Chip samples are analysed for a multielement suite (48 elements) by ICP-OES following a four-acid digest. Assays for Au, Pt, Pd are completed by 50gram Fire Assay with an ICP-MS finish. The assay methods used are considered appropriate. QAQC standards and duplicates are routinely included at a rate of 1 per 20 samples Further internal laboratory QAQC procedures included internal batch standards and blanks Sample preparation was completed at Intertek Genalysis Laboratory, (Kalgoorlie) with digest and assay conducted by Intertek-Genalysis Laboratory Services (Perth) using a four acid (4A/MS48) for multi-element assay and 50gram Fire Assay with an ICP-MS finish for Au, Pt, Pd, (FA50/MS). A Niton portable handheld XRF (pXRF) has been used only to assist field logging and as a guide for sample selection. No pXRF values are reported.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Field data is collected on site using a standard set of logging templates entered directly into a laptop computer. Data is then sent to the Galileo database manager (CSA Global - Perth) for validation and upload into the database. Assays are as reported from the laboratory and stored in the Company database and have not been adjusted in any way.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars are surveyed with a handheld GPS with an accuracy of +/-5m which is considered sufficient for drill hole location accuracy. Co-ordinates are in GDA94 datum, Zone 51. Downhole depths are in metres from surface. Topographic control has an accuracy of 2m based on detailed satellite imagery derived DTM or on laser altimeter data collected from aeromagnetic surveys

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole spacing for the individual drill holes was approximately 50m. The holes were placed to target potential mineralisation as indicated by previous drilling and geological interpretation. Drill spacing is insufficient for the purposes of Mineral Resource estimation. Drill holes were sampled from surface on a 4m composite basis or as 1m, 2m, or 3m samples as determined by the end of hole depth or under instruction from the geologist supervising the program. 1m cone split samples were collected through zones of geological interest.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 It is unknown whether the orientation of sampling achieves unbiased sampling as interpretation of quantitative measurements of mineralised zones/structures has not yet been completed. The drilling is oriented either perpendicular to the regional lithological strike and dip or as holes adjacent to previous aircore drilling.
Sample security	• The measures taken to ensure sample security.	 Each sample was put into a tied off calico bag and then several placed in large plastic "polyweave" bags which were zip tied closed. Samples were delivered directly to the laboratory in Kalgoorlie by Galileo staff.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Continuous improvement internal reviews of sampling techniques and procedures are ongoing. No external audits have been performed.

Page 11 | 16

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral</i> <i>tenement and</i> <i>land tenure</i> <i>status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Norseman Project comprises two exploration licenses, eighteen granted prospecting licenses and one mining lease covering 278km² All tenements within the Norseman Project are 100% owned by Galileo Mining Ltd. A 1% Net Smelter Royalty is payable to Australian Gold Resources Pty Ltd on mine production from within the Norseman Project (NSR does not apply to production from any laterite operations) The Norseman Project is centred around a location approximately 10km north-west of Norseman on vacant crown land. All tenements in the Norseman Project are 100% covered by the Ngadju Native Title Determined Claim. The tenements are in good standing and there are no known impediments.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	Between the mid-1960's and 2000 exploration was conducted in the area for gold and base-metals (most notably Ni sulphides). Exploration focussed on the Mt Thirsty Sill and eastern limb of the Mission Sill.
		Central Norseman Gold Corporation/WMC (1966-1972)
		• Explored the Jimberlana Dyke for Ni-Cu- PGE-Cr. Soil sampling generated several Cu anomalies 160-320ppm Cu.
		 Barrier Exploration and Jimberlana Minerals Between (1968 and 1974) Explored immediately south of Mt Thirsty for Ni-Cu sulphide. IP, Ground Magnetic Surveys, Soil Sampling, Soil Auger Sampling and Diamond Drilling was completed.
		Resolute Limited, Great Southern Mines Ltd and Dundas Mining Pty Ltd (1993-1996)
		Gold focussed exploration. Several gold anomalies were identified in soil geochemistry but were not followed up. Resolute assayed for Au, Ni, Cu, Zn but did not assay for PGE.

Page 12 | 16

Criteria	JORC Code explanation	Commentary
		 Resolute Limited drilled laterite regolith profiles over the ultramafic portions o the Mt Thirsty Sill and identified a smal Ni-Co Resource with high Co grades.
		Kinross Gold Corp Australia (1999)Completed a 50m line space
		aeromagnetic survey. 2000-2004
		 Australian Gold Resources ("AGR") hel "Mt Thirsty Project" from 2000 to 30 June 2004. Works identified Ni-Corresources on the Project. Anaconda Nickel Ltd ("ANL") explore AGR Mt Thirsty Project as part of the AGR/ANL Exploration Access Agreement 2000-2001.
		AGR/ANL (2000-2001)
		 Mapping focussed on identifying Co-Nenriched regolith areas. RC on 800mx100m grid at Mission Sitargeting Ni-Co Laterite (MTRC001MTRC035). Nickel assay maximum of 0.50%, Co 0.16%, Cu to 0.23%. Concluded the anomalous Cu-PGI association suggested affinity with Bushveldt or Stillwater style PGI mineralisation. A lack of an arseni correlation cited as support for magmatic rather than hydrothermat PGE source.
		AGR (2003-2004)
		 Soil sampling over the Mission Sill an Jimberlana Dyke. RC drilling (MTRC036-052) confirme shallow PGE anomalism with bes results of 1m at 2.04 combined Pt-Pd i MTRC038 from surface. Petrography identified sulphide texture indicative of primary magmatic character. Sixty samples were re-assayed for PG when assays returned >0.05% Cu. July further 230 samples were re-assayed based on the initial Au-Pd-Pt results The best combined result for Au-Pd-Ft

Criteria	JORC Code explanation	Commentary
		 Galileo Galileo commenced exploration on the Norseman Project from 30th June 2004 after sale of the tenements by AGR.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Norseman target geology and mineralisation style is nickel-copper- PGE mineralisation related to layered intrusions and komatiite nickel sulphide mineralisation occurring within the GSWA mapped Mount Kirk Formation The Mount Kirk formation is described as "Acid and basic volcanic rocks and sedimentary rocks, intruded by basic and ultrabasic rocks"
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to drill hole collar table in Appendix 1 and assay results in Tables 1 and 2.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Tables of the relevant assay intervals of significance are included in this release. Parts-per-billion and parts-per-million data reported from the assay laboratory have been converted to grams-per-tonne for Au, Pd, Pt. Parts-per-million data reported from the assay laboratory for Cu and Ni have been converted to percent values and reported as percent values rounded to 2 decimal places. 3E intercepts have been calculated as the sum of Au, Pd and Pt assays in grams-per-tonne rounded to 2 decimal places. The reported significant intercepts calculated using a lower cut of 1g/t 3E have a maximum of 1m of internal dilution and include the corresponding interval intercept for Pd, Pt, Au, Cu

Page 14 | 16

Criteria	JORC Code explanation	Commentary
		 and Ni The reported significant intercepts calculated using a lower cut of 0.5g/t 3E have a maximum of 3m of internal dilution and include the corresponding interval intercept for Pd, Pt, Au, Cu and Ni
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The drilling is oriented approximately perpendicular to the regional lithological strike and dip It is unknown whether the orientation of sampling achieves unbiased sampling of possible structures as no measurable structures are recorded in drill chips. No quantitative measurements of mineralised zones/structures exist, and all drill intercepts are reported as down hole length in metres, true width unknown.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Project location map and plan map of the drill hole locations with respect to each other and with respect to other available data are included in the text. Drill hole locations have been determined with hand-held GPS drill hole collar location (Garmin GPS 78s) +/- 5m in X/Y/Z dimensions
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All available relevant information is presented.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Detailed 50m line spaced aeromagnetic data has been used for interpretation of underlying geology. Data was collected by Magspec Airborne Surveys Pty Ltd using a Geometrics G-823 caesium vapor magnetometer at an average flying height of 30m. 28 lines (for 657 stations) of 200m or 400m line x 100m station spaced Moving Loop Electromagnetic survey data was collected over the prospect using a 200m loop. Data was collected using a Smartem receiver and Fluxgate receiver coil at base frequencies of 1.0Hz to 0.25Hz and 28-30 Amp current. Two conductor plates were

Page 15 | 16

Criteria	JORC Code explanation	Commentary
		modelled. Based on the available drill logs these conductors appear to represent the position of sulphide rich sediment beneath the target mafic- ultramafic intrusion.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Laboratory assaying Petrographical examination of selected intervals Follow up RC and diamond drilling