BEST-EVER DRILL RESULTS FROM THE ANTLER COPPER DEPOSIT 26.8m @ 7.0% Cu-equivalent intersected in deepest hole yet in the South Shoot - Extensional drilling continues to expand the South Shoot at the Company's 100%-owned Antler Copper Deposit in Arizona, USA. - Drilling at the South Shoot has returned the best assay results seen to date from a single hole at the Antler Project: - 10.8m @ 2.0% Cu, 6.7% Zn, 0.7% Pb, 22.6 g/t Ag and 0.20m Au from 934.0m (10.8m @ 4.5% Cu-equivalent*); and - 15.9m @ 4.8% Cu, 10.9% Zn, 0.8% Pb, 42.6 g/t Ag and 0.52m Au from 948.8m (15.9m @ 8.7% Cu-equivalent*) in ANT94W3 Combined, these two intervals comprise a total of: - 26.8m @ 7.0% Cu-equivalent* - These results increase the down-dip extent of the South Shoot to >900m, with the mineralisation remaining completely open at depth. - Drilling continues to further extend the Antler Copper Deposit at depth. *Refer to the detailed explanation of the assumptions and pricing underpinning the copper equivalent calculations on page 4 of this announcement and in Section 2 of the attached JORC Code Table (Appendix 2). 4m of the 13.9m of uninterrupted, very high-grade massive sulphides intersected in drill hole ANT94W3 - the deepest hole drilled yet to test the depth extents of the South Shoot at the Antler Copper Deposit. **ASX RELEASE 11 OCTOBER 2022** **New World Resources** Limited ABN: 23 108 456 444 **ASX Code: NWC** **DIRECTORS AND OFFICERS:** Richard Hill Chairman Mike Haynes **Managing Director/CEO** **Tony Polglase Non-Executive Director** Ian Cunningham Company Secretary **CAPITAL STRUCTURE:** Shares: 1,846.9m Share Price (10/10/22): \$0.031 #### **PROJECTS:** Antler Copper Project, Arizona, USA Tererro Copper-Gold-Zinc Project, New Mexico, USA #### **CONTACT DETAILS:** Unit 25, 22 Railway Rd Subiaco, WA Australia 6008 Ph: +61 9226 1356 Info@newworldres.com www.newworldres.com ## Mike Haynes, New World's Managing Director and CEO, commented: "Over the past two years we have drilled some cracking holes at Antler. On a grade-thickness basis, this is the best yet! "The deepest hole drilled to date to test the South Shoot, ANT94W3, has intersected almost 14 metres of true, uninterrupted, massive sulphides. And the drill core looks spectacular! "Now the assay results have exceeded expectations: 26.8m @ 7.0% Cu-equivalent is an exceptional result. "This is very exciting, particularly as this is extensional drilling, with very-large step-outs. "With thick and very high-grade mineralisation intersected in the deepest holes drilled in both the Main Shoot and the South Shoot, we can't wait to see what we find below these recent holes." Figure 1. Long Section of grade x thickness for copper equivalent results from the Antler Deposit showing historical underground workings, grade-thickness results for all surface drilling and select significant intersections in previous drilling (yellow text boxes for previously announced results and green text boxes for new results announced here). **New World Resources Limited** ("**NWC**", "**New World**" or the "**Company**") is pleased to report the best-ever assay results from a single drill hole at the 100%-owned Antler Copper Deposit in northern Arizona, USA ("**the Antler Project**"; see Figure 1), together with assay results for a series of other holes designed to test for depth extensions. # **Drilling to Test for Depth Extensions of the South Shoot** Assay results have been returned from a further six holes drilled to test the depth extension of the South Shoot. Exceptional results have been returned from ANT94W3 – with assays confirming that this hole intersected two thick, very high-grade intervals of mineralisation (separated by 4m of un-mineralised material), with results including: - 10.8m @ 2.0% Cu, 6.7% Zn, 0.7% Pb, 22.6 g/t Ag and 0.20m Au from 934.0m (10.8m @ 4.5% Cu-equivalent*) and - 15.9m @ 4.8% Cu, 10.9% Zn, 0.8% Pb, 42.6 g/t Ag and 0.52m Au from 948.8m (15.9m @ 8.7% Cu-equivalent*) in ANT94W3 Combined, these two intervals comprise a total of: • 26.8m @ 7.0% Cu-equivalent* On a grade-thickness basis, these are the best assay results yet to be returned from a single drill hole at the Antler Copper Deposit. Significantly, these results increase the down-dip extent of the thick, high-grade South Shoot to >900m - with mineralisation remaining completely open at depth. Further extensional drilling continues. Other assay results from holes drilled to test the extensions of the South Shoot included: 4.1m @ 2.2% Cu, 17.7% Zn, 2.3% Pb, 59.7 g/t Ag and 0.28m Au from 853.6m (4.1m @ 9.0% Cu-equivalent*) in ANT109 Encouragingly, the results from this hole (ANT109) indicate that the thick, high-grade mineralisation that makes up the South Shoot may be extending to the south as well as at depth (see Figure 1) – with further drilling required to confirm this. ## **Drilling to Test for Depth Extensions of a Possible Third Shoot** Assay results have been received for two holes (ANT107 and ANT107W1) drilled to begin to test for the extensions of what had been interpreted to be a "possible third shoot" of thicker high-grade mineralisation at the southern end of the Deposit – testing below ANT62, which intersected (see NWC's ASX Announcement dated 16 August 2021): - 10.3m @ 1.5% Cu, 1.1% Zn, 2.1% Pb, 53.5 g/t Ag and 0.11 g/t Au from 345.5m (10.3m @ 2.3% Cu-equivalent), including - 1.6m @ 3.4% Cu, 0.6% Zn, 0.3% Pb, 22.3 g/t Ag and 0.14 g/t Au from 349.9m (1.6m @ 3.4% Cu-equivalent), and - 2.9m @ 2.0% Cu, 3.4% Zn, 6.1% Pb, 144.0 g/t Ag and 0.19 g/t Au from 352.9m (2.9m @ 4.6% Cu-equivalent) Unfortunately, both holes intersected considerable faulted material at the target depths, with only thin mineralisation present (see Figure 1 and Table 2). Further, deeper drilling will be undertaken in due course below these holes, particularly in line with the encouraging results returned from ANT109 (see above). ## **Ongoing Drilling Program** The mineralisation at the Antler Deposit remains completely open at depth – with some of the best results returned to date coming from some of the deepest holes yet drilled at the Project. Accordingly, resource expansion drilling is continuing, with two diamond core rigs currently operating to test for depth extensions of the Deposit. Assays are pending for four completed holes, with two holes in progress. ## Authorised for release by the Board For further information please contact: Mike Haynes Managing Director/CEO New World Resources Limited Phone: +61 419 961 895 Email: mhaynes@newworldres.com Media Inquiries: Nicholas Read – Read Corporate Phone: +61 419 929 046 Email: nicholas@readcorporate.com.au #### Additional Information ## **Qualified and Competent Person** The information in this announcement that relates to exploration results and exploration targets is based, and fairly reflects, information compiled by Mr Patrick Siglin, who is the Company's Exploration Manager. Mr Siglin is a Registered Member of the Society for Mining, Metallurgy and Exploration. Mr Siglin has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results and Mineral Resources (JORC Code). Mr Siglin consents to the inclusion in the announcement of the matters based on the information in the form and context in which it appears. ## Previously Reported Results There is information in this announcement relating to: - (i) the Mineral Resource Estimate for the Antler Copper Deposit), which was previously announced on 5 November 2021; and - (ii) exploration results which were previously announced on 14 January, 9 and 20 March, 17 and 24 April, 12 May, 3 June, 7, 21 and 28 July, 3 and 31 August, 22 September, 22 October and 2 and 10 and 25 November 2020 and 18 January and 2, 12 and 19 March and 8 and 20 April, 20 May, 21 June, 15 and 29 July, 16 August, 22 September, 13 October, 1, 5 and 30 November 2021 and 20 January, 1 March, 20 April, 14 and 22 July and 26 September 2022. Other than as disclosed in those announcements, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements, and that all material assumptions and technical parameters have not materially changed. The Company also confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements. All references to the Scoping Study and its outcomes in this announcement relate to the announcement of 11 July 2022 titled "Scoping Study Results – Antler Copper Project". Please refer to that announcement for full details and supporting information. ## Forward Looking Statements Information included in this announcement constitutes forward-looking statements. When used in this announcement, forward-looking statements can be identified by words such as "anticipate", "believe", "could", "estimate", "expect", "future", "intend", "may", "opportunity", "plan", "potential", "project", "seek", "will" and other similar words that involve risks and uncertainties. Forward-looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of resources and reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation as well as other uncertainties and risks set out in the announcements made by the Company from time to time with the Australian Securities Exchange. Forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, its directors and management of the Company that could cause the Company's actual results to differ materially from the results expressed or anticipated in these statements. The Company cannot and does not give any assurance that the results, performance or achievements expressed or implied by the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements. The Company does not undertake to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by applicable law and stock exchange listing requirements. # Copper Equivalent Calculations Copper equivalent grades have previously been calculated based on the parameters set out in New World's announcements to the ASX on 12 May, 3 August, 31 August, 22 September and 2 and 25 November 2020, and 18 January, 19 March, 8 April, 20 May, 21 June, 15 and 29 July, 16 August, 22 September, 13 October, 5 and 30 November 2021 and 20 January, 1 March, 20 April, 14 and 22 July and 26 September 2022. Copper equivalent grades for the new assay results reported in this announcement have been based on the following assumed metal prices that closely reflect the spot prices prevailing on 10 October 2022; namely: copper – US\$7,507/t, zinc – US\$3,011/t, lead – US\$2,116/t, silver – US\$20.26/oz and gold – US\$1,709/oz. Potential metallurgical recoveries have been included in the calculation of copper equivalent grades. These recoveries have been based on metallurgical testwork that New World has conducted over the past 10 months. This metallurgical testwork is continuing, but recoveries are estimated to be in the order of: copper – 87.2%, zinc – 88.9%, lead – 59.1%, silver – 50.3% and gold – 70.0%. New World believes that all elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold. The following formula was used to calculate the copper equivalent grade, with results rounded to one decimal point: * Cu equiv. (%) = (Cu% x 0.872) + (Zn% x 0.889 x 3,011/7,507) + (Pb% x 0.591 x 2,116/7,507) + (Ag oz/t x 0.503 x 20.26/7,507 x 100) + (Au oz/t x 0.700 x 1,709/7,507 x 100) Table 1. Collar information for holes drilled recently at the Antler Copper Project | Hole ID | UTM
Easting | UTM Northing | Elevation (m) | Azimuth | Dip | Total Depth (m) | Purpose | |------------|----------------|--------------|---------------|---------|-------|-----------------|---------------| | ANT0080 | 228588.4 | 3864167.2 | 1003.2 | 113.5 | -53.0 | 264.6 | Exploration | | ANT0081 | 227601.0 | 3864249.4 | 968.0 | 78.7 | -55.0 | 1036.62 | Exploration | | ANT0081W1 | 227601.0 | 3864249.4 | 968.0 | wedge | wedge | 1001.6 | Exploration | | ANT0082 | 228589.0 | 3864168.1 | 1003.2 | 87.6 | -51.9 | 134.9 | Exploration | | ANT0083 | 228652.9 | 3864157.6 | 1006.3 | 95.0 | -81.8 | 94.5 | Exploration | | ANT0084 | 228614.0 | 3864100.9 | 1003.9 | 94.1 | -46.9 | 360.0 | Exploration | | ANT0085 | 228613.8 | 3864099.5 | 1003.9 | 141.2 | -58.7 | 109.7 | Exploration | | ANT0086 | 228591.2 | 3864008.9 | 1005.7 | 111.5 | -54.2 | 103.0 | Exploration | | ANT0087 | 228523.0 | 3864112.8 | 1008.0 | 124.0 | -45.0 | 183.6 | Exploration | | ANT0088 | 228522.1 | 3864113.9 | 1008.0 | 115.1 | -65.4 | 230.25 | Exploration | | ANT0089 | 228522.1 | 3864114.3 | 1008.2 | 83.0 | -56.3 | 194.46 | Exploration | | ANT0090 | 228522.9 | 3864113.1 | 1008.2 | 154.0 | -49.0 | 199.95 | Exploration | | ANT0091 | 227689.8 | 3864244.0 | 980.0 | 91.8 | -46.8 | 909.52 | Exploration | | ANT0091W1 | 227689.8 | 3864244.0 | 980.0 | wedge | wedge | 909.5 | Exploration | | ANT0091W2 | 227689.8 | 3864244.0 | 980.0 | wedge | wedge | 872.6 | Exploration | | ANT0091W3 | 227689.8 | 3864244.0 | 980.0 | wedge | wedge | 907.4 | Exploration | | ANT0091W4A | 227689.8 | 3864244.0 | 980.0 | Wedge | wedge | 835.46 | Exploration | | ANT0092 | 228170.6 | 3863837.3 | 965.7 | 83.3 | -88.0 | 508.41 | Exploration | | ANT0093 | 228173.2 | 3863835.9 | 965.7 | 52.0 | -84.0 | 438.15 | Exploration | | ANT0094A | 227597.4 | 3864256.4 | 968.0 | 71.6 | -53.2 | 1054.9 | Exploration | | ANT0094AW1 | 227597.4 | 3864256.4 | 968.0 | wedge | wedge | 1061.0 | Exploration | | ANT0094AW2 | 227597.4 | 3864256.4 | 968.0 | wedge | wedge | 1022.3 | Exploration | | ANT0094AW3 | 227597.4 | 3864256.4 | 968.0 | wedge | wedge | 1000.2 | Exploration | | ANT0095 | 228174.9 | 3863835.5 | 965.7 | 49.8 | -76.0 | 480.67 | Exploration | | ANT0096 | 228177.9 | 3863834.1 | 965.7 | 72.1 | -59.9 | 352.84 | Exploration | | ANT0097 | 228172.6 | 3863833.1 | 965.7 | -75.9 | 158.4 | 381.9 | Exploration | | ANT0098 | 227595.9 | 3864256.9 | 968.0 | -55.9 | 68.0 | 1066.8 | Exploration | | ANT0098W1 | 227595.9 | 3864256.9 | 968.0 | wedge | wedge | 1108.3 | Exploration | | ANT0098W2 | 227595.9 | 3864256.9 | 968.0 | wedge | wedge | 1091.2 | Exploration | | ANT0099 | 228283.7 | 3863925.8 | 985.5 | -82.2 | 36.5 | 417.0 | Exploration | | ANT0100 | 228388.9 | 3863740.8 | 963.6 | -45.2 | 122.8 | 151.8 | Sterilisation | | ANT0101 | 228392.8 | 3863742.5 | 963.6 | -45.2 | 71.9 | 62.5 | Sterilisation | | ANT0102 | 228391.7 | 3863737.1 | 963.6 | -45.0 | 165.1 | 61.9 | Sterilisation | | ANT0103 | 228354.5 | 3863690.7 | 966.0 | -45.0 | 120.0 | 48.8 | Sterilisation | | 6 | New World | | |---|-----------|--| | | 1 | | | ANT0104 | 228354.5 | 3863690.7 | 966.0 | -53.9 | 116.8 | 68.7 | Sterilisation | |------------|----------|------------|-------|-------|-------|----------------------|---------------| | ANT0105 | 228491.9 | 3863902.4 | 982.0 | -45.0 | 120.0 | 207.0 | Sterilisation | | ANT0106 | 228432.4 | 3863800.0 | 979.0 | -45.0 | 105.6 | 94.5 | Sterilisation | | ANT0107 | 227688.5 | 38644247.0 | 908.0 | -45.0 | 113.5 | 902.7 | Exploration | | ANT0107W1 | 227688.5 | 38644247.0 | 908.0 | wedge | wedge | 836.5 | Exploration | | ANT0108 | 227595.1 | 3864249.3 | 968.0 | -51.5 | 88.0 | 1080.7 | Exploration | | ANT0108W1 | 227595.1 | 3864249.3 | 968.0 | wedge | wedge | 1003.40 | Exploration | | ANT0109 | 227594.5 | 3864249.3 | 968.0 | -47.5 | 91.2 | 897.5 | Exploration | | ANT0109W1 | 227594.5 | 3864249.3 | 968.0 | wedge | wedge | 907.69 | Exploration | | ANT0109W2 | 227594.5 | 3864249.3 | 968.0 | wedge | wedge | 897.64 | Exploration | | ANT0110 | 227688.1 | 3864246.7 | 980.0 | -54.1 | 69.0 | 979.02 | Exploration | | ANT0110W1A | 227688.1 | 3864246.7 | 980.0 | wedge | wedge | Drilling in progress | Exploration | | ANT0111 | 227594.1 | 3864250.5 | 968.0 | -68.2 | 67.9 | Drilling in progress | Exploration | Table 2. Significant intercepts in drill holes ANT91W3, ANT94W3, ANT98W2, ANT107, ANT107W1, ANT108, ANT109 and ANT109W1 completed recently at the Antler Copper Project. | Hole ID | From (m) | To (m) | Interval (m) | Cu (%) | Zn (%) | Pb (%) | Ag (ppm) | Au (ppm) | |----------|----------|---------|--------------|--------|--------|--------|----------|----------| | ANT91W3 | 847.04 | 848.26 | 1.22 | 0.30 | 1.60 | 0.03 | 0.00 | 0.00 | | | 848.63 | 848.82 | 0.19 | 0.25 | 1.16 | 0.23 | 8.00 | 0.21 | | | | | | | | | | | | ANT94W3 | 908.11 | 908.42 | 0.31 | 0.72 | 0.02 | 2.89 | 90.00 | 0.20 | | | 933.95 | 944.79 | 10.84 | 2.03 | 6.68 | 0.69 | 22.65 | 0.20 | | | 948.75 | 964.69 | 15.94 | 4.83 | 10.89 | 0.76 | 42.64 | 0.52 | | | | | | | | | | | | ANT98W2 | 988.91 | 989.05 | 0.14 | 2.19 | 0.06 | 2.69 | 61.00 | 0.11 | | | 1009.64 | 1010.08 | 0.44 | 0.17 | 0.01 | 0.45 | 61.00 | 0.47 | | | | | | | | | | | | ANT107 | 784.85 | 785.64 | 0.79 | 0.15 | 1.30 | 0.16 | 8.00 | 0.03 | | | | | | | | | | | | ANT107W1 | NSI | | | | | | | | | | | | | | | | | | | ANT108 | 887.88 | 888.01 | 0.13 | 0.05 | 0.05 | 3.22 | 534.00 | 1.33 | | | 898.40 | 903.03 | 4.63 | 0.08 | 0.01 | 0.08 | 8.89 | 2.61 | | | 905.10 | 906.17 | 1.07 | 0.16 | 0.01 | 0.06 | 5.00 | 1.50 | | | | | | | | | | | | ANT109 | 761.26 | 761.85 | 0.59 | 0.90 | 0.02 | 3.63 | 196.00 | 3.14 | | | 845.43 | 847.16 | 1.73 | 0.00 | 0.03 | 0.00 | 0.00 | 1.15 | | | 850.65 | 852.53 | 1.88 | 0.02 | 0.02 | 0.00 | 0.00 | 1.07 | | | 853.55 | 857.62 | 4.07 | 2.16 | 17.73 | 2.32 | 59.67 | 0.28 | | | | | | | | | | | | ANT109W1 | 808.03 | 809.71 | 1.68 | 0.00 | 0.00 | 0.00 | 0.00 | 1.79 | | | 815.34 | 817.02 | 1.68 | 0.00 | 0.00 | 0.00 | 0.00 | 1.41 | | | 873.26 | 874.17 | 0.91 | 0.15 | 10.26 | 1.70 | 52.43 | 0.16 | NSI = No significant intersection. **Table 3. JORC Mineral Resource Estimate for the Antler Copper Deposit above a 1.0% Cu-Equivalent cut-off grade** (see NWC ASX Announcement dated 5 November 2021 for more information). | Classification | Tonnes | Cu (%) | Zn (%) | Pb (%) | Ag (g/t) | Au (g/t) | Cu-Equiv (%) | |----------------|-----------|--------|--------|--------|----------|----------|--------------| | Indicated | 5,734,153 | 2.15 | 5.31 | 0.86 | 31.55 | 0.22 | 3.9 | | Inferred | 1,989,127 | 2.47 | 5.35 | 1.01 | 20.87 | 0.08 | 4.1 | | Total | 7,723,280 | 2.23 | 5.32 | 0.90 | 28.80 | 0.18 | 3.9 | # APPENDIX 1 - JORC CODE 2012 EDITION, TABLE 1 REPORT # JORC Code, 2012 Edition – Table 1 Section 1: Sampling Techniques and Data (Criteria in this section applies to all succeeding sections) | Criteria | JORC Code Explanation | Commentary | |------------------------|--|---| | Sampling
Techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done, this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information | HQ and NQ diamond core samples have been obtained during drilling. Core is being logged and marked up for sampling by experienced geologists. Mineralised (and potentially mineralised) intervals of core are then cut in half (with a core saw), with half-core retained on site for further reference and the other half-core submitted to a laboratory for analysis. | | Criteria | JORC Code Explanation | Commentary | |--------------------------|--|---| | Drilling
Techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). | Diamond core was drilled from surface to the end of the hole. In all holes less than 733 m deep, HQ diamond core drilling was undertaken through the targeted mineralised horizon(s). HQ diamond core diameter is 63.5mm In all holes greater than 733 m deep, NQ diamond core drilling was undertaken through the targeted mineralized horizon(s). In these holes, HQ drilling is completed to approximately 670 m before reducing to NQ. NQ diamond core diameter is 47.6mm | | Drill Sample
Recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material | Drill core recoveries were routinely recorded by the drilling contractors and subsequently cross-checked by the Company's geologists. Recoveries were generally good. There does not appear to be a relationship between sample recovery and grade. Recoveries were normal through the mineralized zone. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged | Drill core was logged to industry standards, with logging suitable for Mineral Resource estimation. | | Criteria | JORC Code Explanation | Commentary | |--|---|--| | Sub-Sampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Drill core has been halved with a core saw; with one half of the core sent to a laboratory for assay and the other half retained on site in ordered core storage trays for future reference. Blanks, duplicates and standards are included in every 30 samples submitted to the laboratory for analysis. Sample preparation in advance of assay was SGS Lakefield's standard sample preparation methodology. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established | Typical analytical techniques, including use of duplicates and blanks, have been adopted. Assays have been determined using SGS Canada's GC_ICP42C, GEICP40Q12, or GE_ICP40Q100 methods for base metals, silver and over limits; and GO FAA303, GO_FAG30V, or FAG30V5 method for gold. | | Criteria | JORC Code Explanation | Commentary | |---------------------------------------|--|--| | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data | Analytical data have been incorporated into
the Company's Project database. Significant
intersections of mineralisation were then
calculated by the Company's technical
personnel. | | Location of data points | Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Drill hole collars have been determined within 50cm using a hand-held GPS unit utilising the UTM NAD 83 Zone 12 datum and projection. Azimuth values are reported relative to true north. Collar alignment is completed using a Reflex TN14 Gyro Compass. Down-hole orientation surveys were undertaken every 30m using a Reflex Gyro Sprint-IQ. A digital surface model generated by the Company in April 2021, accurate to 5cm, has been used to generate collar elevations and to verify the accuracy of historical drill collar elevations. | | Data Spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | 100% of drill core is logged. Samples containing visible sulphide mineralisation and/or significant alteration are sent to a laboratory for assay. Sample intervals through the visible sulphide mineralisation were generally no greater than 0.5m in length. The sample spacing is suitable for use in Mineral Resource estimations. No sample compositing has been applied. Significant intersections of mineralisation were calculated by the Company's technical personnel. | | Criteria | JORC Code Explanation | Commentary | |---|--|---| | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | All holes completed to date have been drilled as close to perpendicular to the geological horizon and/or structures that are interpreted to be hosting mineralisation as practicable, given there are topographic limitations on where drill rigs can operate from. | | Sample Security | The measures taken to ensure sample security | Drill core is being stored and processed within
a secure workshop facility. Samples are
regularly dispatched to a laboratory for
analysis as they are processed. | | Audits or reviews | The results of any audits or
reviews of sampling
techniques and data | Not undertaken. | # **Section 2: Reporting of Exploration Results** (Criteria listed in section 1 also apply to this section) | Criteria | JORC Code Explanation | Commentary | |---|---|---| | Mineral tenement and land tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area | In January 2020 New World entered into an option agreement that provided it the right to acquire a 100% interest in 2 patented mining claims (approximately 40 acres) that cover most of the Antler Deposit and 7 Federal mining claims (approximately 340 acres) that cover the area immediately to the west, south and east of the Antler Deposit. The terms of this agreement were summarized in an ASX announcement on 14 January, 2020. In October 2021, New World exercised its option, thereby taking 100% ownership of the 2 patented mining claims and surrounding Federal mining claims. New World's ongoing obligations are summarized in an ASX announcement dated 5 October 2021. New World will be required to obtain local, state and/or federal permits to operate at the Antler Project. There is a long history of exploration and mining in the project area, so it is considered likely requisite permits will be obtained as and when they are required. The northernmost, deep, down-dip extension of the Antler Deposit lies beneath lands that were zoned "Wilderness" in 1990. New World has received legal advice that, in accordance with Federal mining laws that were established in 1872 (and continue in existence today), the Company has the right to mine these down-dip extensions as far north as the lateral projection of the end line of the boundary of the patented claim because they comprise the continuation of the outcropping Antler Deposit that was patented in 1894 (provided no surface infrastructure is constructed within the Wilderness area). | | Exploration
done by other
parties | Acknowledgment and
appraisal of exploration by
other parties. | A summary of the history of previous
exploration activities was included in an ASX
announcement on 14 January, 2020. | | Geology | Deposit type, geological
setting and style of
mineralisation | The mineralisation at the Antler Copper Project
comprises volcanogenic massive sulphide
(VMS)-type mineralisation within Proterozoic
metasedimentary and meta-volcanic rocks. | | Criteria | JORC Code Explanation | Commentary | |--------------------------|--|---| | Drillhole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case | Drill hole collar details are tabulated in this announcement. Depths and lengths of intercepts discussed in this announcement are down-hole depths and lengths. A long section in the announcement illustrates the location of the mineralisation intersected in these drill holes relative to the known mineralisation at the Project. | | Criteria | JORC Code Explanation | Commentary | |---|---|---| | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | All significant intersections of mineralisation in new drill holes reported in this announcement refer to down-hole thicknesses of mineralisation. In most holes reported here, true thickness is considered to be at least 90% of the down-hole thickness. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views | A long section in the announcement illustrates
the location of the mineralisation intersected
in the recent drill holes relative to the known
mineralisation at the Project. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results | The Company has previously released to the ASX summaries of all material information in its possession relating to the Antler Project. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to) geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | The Company has previously released to the ASX summaries of all material information in its possession relating to the Antler Project. | | Criteria | JORC Code Explanation | Commentary | |--------------|---|---| | Further Work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | New World intends undertaking further drilling to test for extensions of thick high-grade mineralisation. Infill drilling, to improve confidence in some of the mineral resources, may also be undertaken. New World recently completed a Scoping Study into the development of the Antler Project the results of which were disclosed in an ASX announcement on 11 July 2022. It is now undertaking a Pre-Feasibility Study while concurrently preparing to apply for mine permits. New World commenced an induced polarisation ground geophysics survey in early October 2022 to assist in target delineation in advance of initial drilling it intends conducting along strike from the Antler Deposit in late-2022 and into 2023. |