

High-Grade Gold and Base Metal Results Delivered at the Springdale Project, New South Wales

* Gold rock sample results up to 31.7 g/t Au *

****** Significant Rare Earth Element (REE) potential at Springdale with results up to 1,222 ppm TREO **

*** Base metal mineralisation potential with results up to 1,100 ppm Cu, 2,370 ppm Zn and 5.830 ppm Pb ***

******** Manganese and Cobalt mineralisation potential with results up to 1.77% Mn and 1,090 ppm Co ****

***** Results confirm high-grade gold potential at historic workings across the Springdale project area *****

Highlights:

- Reconnaissance field visit to the historical workings and other geological targets at the Springdale Project has returned exceptional high-grade gold results up to 31.7g/t Au as well as 11.9 g/t Au and 11.7 g/t Au
- Coincident base metal mineralisation is also apparent in the samples with results including up to 1,100ppm Cu, 2,370ppm Zn and 5,830ppm Pb
- The results also include a maximum of 1.77% Mn, 1,090ppm Co and Total Rare Earth Oxides of up to 1,222ppm TREO
 - Significant REE potential exists at the Springdale Project which will be followed up in future exploration campaigns
- Springdale Project is situated along strike of the Junee Copper-Gold Porphyry Project held by DevEx Resources Limited (ASX: DEV) and to the east of the Temora Copper-Gold Deposits held by Sandfire Resources Limited (ASX: SFR)
 - Covers more than 30km strike of fertile volcanic and sedimentary stratigraphy
- Springdale has previously produced high-grade gold from artisanal mining with more than 30 separate workings throughout the tenement area
- Springdale has yet to be subjected to modern exploration, however previous shallow drilling has unearthed some interesting intercepts including:
 - 4.1m at 2.19 g/t Au from 65.8m down-hole; and
 - 8m at 0.99 g/t gold from just 16m down-hole
- Further exploration activities planned to evaluate the mineralisation potential of the project further

Registered Office Askari Metals Limited (ASX:AS2) 17 Lacey Street Perth WA 6000 T + 61 400 408 878 E info@askarimetals.com

Board of Directors and Senior Management Chairman - Mr Robert Downey Executive Director - Mr Gino D'Anna Technical Director - Lithium - Mr Chris Evans Company Secretary / CFO - Mr Paul Fromson VP Exploration and Geology - Mr Johan Lambrechts Exploration Manager - Mr Tsogo Amartavian

Projects Yarrie Lithium Project (Li) Yarrie Lithium Project (Li) Myrnas Hill Lithium Project (Li) Talga East Lithium Project (Li) Barrow Creek Lithium Project (Li) Red Peak REE Project (REE) Springdale Copper-Gold Project (Cu/Au) Horry Copper Project (Cu) Callawa Copper Project (Ću) Burracoppin Gold Project (Au) Mt Maguire Gold & Base Metal Project (Au)

100% owned

100% owned 100% owned 100% owned

100% owned 100% owned 100% owned

100% owned 100% owned 100% owned

Askari Metals Limited (ASX: AS2) ("Askari Metals" or "Company"), an Australian based exploration company with a portfolio of battery metals (Li +Cu) and precious metals (Au + Ag) projects across Western Australia, Northern Territory and New South Wales, is pleased to announce that the Company has received the results of the first field reconnaissance program from its Springdale Project located on the Lachlan Fold Belt, approximately 16km from the town of Temora and on the crustal-scale Gilmore Suture.

The field reconnaissance visit aimed to investigate and sample all of the historical gold workings at the Springdale Project as well as several other high-priority targets identified during the Company's geological review. The results revealed some exceptional high-grade gold mineralisation from samples collected in situ and from historical mullock piles. In addition, the results also identified base metal mineralisation in the form of copper, lead-zinc anomalism and elevated cobalt and rare earth anomalism in some samples.

The Company will review each mineral suite individually to ensure we tailor our future exploration approach appropriately.

Commenting on the results of the initial reconnaissance exploration visit at the Springdale Project, Vice President - Exploration and Geology, Mr Johan Lambrechts, stated:

"The gold potential of the Springdale Project has been known for some time and was actively mined and exploited by the artisanal miners historically with more than 30 separate workings and artisanal mines across the project area. The Gundagai-Temora area is also known to have copper associated with its gold mineralisation and results including 31.7g/t gold with 1,100ppm copper is a very exciting start to the Company's exploration activities on Springdale. The elevated zinc, lead, manganese, cobalt and rare earth values are further cause for excitement and the Company will design its future exploration activities with these additional metals in mind. We look forward to keeping our investors informed about our progress as we move to the next phase of exploration at the Springdale Project."

Gold Mineralisation

One hundred and ninety-six samples were collected at several of the historical workings and areas of interest throughout the Springdale Project area. Of these, twenty-five samples returned gold results greater than one gram per ton with the highest gold result being 31.7g/t Au. In general, gold mineralisation is associated with arsenic, antimony and tungsten, and the results do not indicate any significant silver mineralisation associated with the gold.

The Kangaroo mine, Fiddlers Hill and Elmore West areas all returned very encouraging gold values from the samples collected there, but the area has seen some activities from previous explorers, including limited shallow-depth drilling. The Company will evaluate our results in conjunction with historical exploration and determine the best exploration path forward.

The historical sites of Specimen Hill, Blackwall South and Little Wonder also returned very good gold values from assays and, by contrast, have seen very limited exploration activities. This area suggests that significant exploration upside exists and the potential to join the zones of mineralisation remains high.

These areas will form the main focus of future exploration activities on the Springdale Project, in conjunction with a few areas that the Company is still planning to visit to collect additional data and samples.

Table 1 below tabulates the gold results greater than one gram per ton.

SampleID	Prospect	Au_ppm	As_ppm	W_ppm	Sb_ppm
AS208602	Kangaroo Mine	31.7	4470	1.7	25.7
AS208681	Specimen Hill	11.9	181	13.9	12.9
AS208603	Kangaroo Mine	11.7	5120	2.0	23.1
AS208533	Little Wonder	5.1	556	6.9	7.5
AS208612	Kangaroo Mine	4.5	512	3.3	11.1
AS208529	Little Wonder	4.4	1800	5.2	12.4
AS208637	Fiddlers Hill	4.3	1350	2.9	25.4
AS208658	Elmore West	4.1	238	3.4	9.7
AS208634	Fiddlers Hill	3.3	1440	3.7	26.6
AS208601	Kangaroo Mine	3.2	1320	5.6	18.3
AS208599	Kangaroo Mine	2.6	25 <mark>50</mark>	3.8	16.1
AS208652	Fiddlers Hill	2.6	302	2.5	31.0
AS208605	Kangaroo Mine	2.5	831	3.5	15.9
AS208598	Kangaroo Mine	2.5	2960	5.0	19.0
AS208693	Blackwall South	2.4	419	9.7	0.9
BR05	Blackwall South	2.4	92	15.9	0.7
AS208629	Fiddlers Hill	2.2	1370	3.3	24.2
AS208587	Macauley's find	1.9	312 <mark>0</mark>	8.4	8.1
AS208633	Fiddlers Hill	1.9	474	0.5	15.4
AS208640	Victoria North	1.4	926	5.7	3.5
AS208534	Little Wonder	1.4	1080	6.9	10.3
AS208613	Kangaroo Mine	1.3	440	3.7	6.7
AS208586	Macauley's find	1.1	845	4.1	6.6
AS208656	Elmore West	1.0	206	0.9	8.3
AS208679	Specimen Hill	1.0	35	2.9	2.3

Table1:GoldresultsoftheSpringdalereconnaissanceprogram

Figure 2: Photograph of an old working on the Springdale Project

Copper and Base Metal Anomalism

The results of the reconnaissance program also revealed copper, zinc, lead and manganese anomalism. The relationships between the metals differ depending on their location, but in general zinc, lead and manganese have a good correlation, while copper shares the correlation only in certain prospects. The tenor of the base metal results are encouraging in their own right with results of up to 1,100ppm copper (Cu), 2,370ppm zinc (Zn), 5,830ppm lead (Pb) and 1.77% manganese (Mn). The geology and distribution of each metal is still to be explored, but the Company is excited by the strong anomalism of these results.

Table 2 below tabulates the best results for copper, lead, zinc and manganese.

SampleID	Cu	_ppm	SampleID	Zn	_ppm	SampleID	Pb	_ppm	SampleID	Mn	_ppm
AS208602		1100	AS208598		2370	AS208598		5830	AS208622		17700
AS208603		494	AS208604		1690	AS208602		2590	AS208621		1420 0
AS208587		432	AS208602		1530	AS208601		1360	AS208627		<mark>135</mark> 00
AS208598		334	AS208577		1040	AS208603		1340	AS208533		<mark>118</mark> 00
AS208544		324	AS208603		808	AS208599		1340	AS208523		10200
AS208621		312	AS208622		798	AS208611		635	AS208675		7430
AS208601		280	AS208599		724	AS208609		577	AS208640		7180
AS208622		248	AS208601		662	AS208610		280	AS208568		6610
AS208649		236	AS208607		634	AS208565		243	AS208569		6170

Table 2: Table of the best copper, zinc, lead and manganese results

Rare Earth and Cobalt Potential

The area around Temora is known to host some rare earth element (REE) potential and there are companies exploring REE potential nearby. The REE potential of the Springdale Project was not clearly defined until these most recent results revealed some very encouraging REE targets, with total rare earth oxide (TREO) values of up to 1,222ppm TREO.

At the same time, the results of the initial reconnaissance program identified some exceptional cobalt results, with the best being as high as 1,090ppm Co.

SampleID	Co_ppm		Co_ppm		Co_ppm		Co_ppm		SampleID	TREO_ppm
AS208621		1090	AS208568	1222						
AS208622		422	AS208622	981						
AS208523		265	AS208690	956						
AS208675		262	AS208675	900						
AS208640		213	AS208596	815						
AS208533		175	AS208681	795						
AS208623		154	AS208531	759						
AS208639		150	AS208523	633						
AS208627		130	AS208595	609						

Table 3: Table tabulating the best cobalt and Total Rare Earth Element Oxides Results from the recent reconnaissance program

Figure 3: Plan view of the gold result obtained from the recently completed reconnaissance program on the Springdale Project

Future Work

The Company will analyse the results thoroughly with consideration for the multi-element anomalism now identified. Future work will likely include additional field mapping and sampling programs and a more in-depth historic data review. The abundance of historic workings likely indicates that the most effective way of testing these prospects is through drilling. The Company will consider this approach as soon as possible.

ENDS

For further information, contact:

Gino D'Anna Executive Director M +61 400 408 878 gino@askarimetals.com Rod North, Managing Director Bourse Communications Pty Ltd M: +61 408 670 706 rod@boursecommunications.com.au

Johan Lambrechts Vice President – Exploration and Geology M +61 431 477 145 johan@askarimetals.com

About Askari Metals Limited

Askari Metals was incorporated for the primary purpose of acquiring, exploring and developing a portfolio of high-grade battery (Li + Cu) and precious (Au + Ag) metal projects across Western Australia, Northern Territory and New South Wales. The Company has assembled an attractive portfolio of lithium, copper, gold and copper-gold exploration/mineral resource development projects in Western Australia, Northern Territory and New South Wales.

For more information please visit: www.askarimetals.com

Caution Regarding Forward-Looking Information

This document contains forward-looking statements concerning Askari Metals Limited. Forwardlooking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes.

Forward looking statements in this document are based on the Company's beliefs, opinions and estimates of Askari Metals Limited as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Competent Person Statement

The information in this report that relates to Exploration Targets, Exploration Results or Mineral Resources is based on information compiled by Johan Lambrechts, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr. Lambrechts is a full-time employee of Askari Metals Limited, who has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Lambrechts consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

ASX Compliance

Information contained within this announcement has been prepared based on information contained in the Company's Prospectus lodged with the ASIC and the ASX on 10 May 2021.

Springdale Copper-Gold Project, NSW (Askari Metals - 100%)

The Springdale Project is located in the highly prospective central east Lachlan Fold Mineral Belt approximately 330km WSW of Sydney. The town of Temora lies 16 km to the west of the tenement.

Figure 4: Springdale Project, Lachlan Fold Belt NSW - Location Map

The Springdale Project is situated to the east of the Gilmore Suture on the eastern margin of the Springdale Rift. The area is underlain by siltstones, sandstone and coarse quartzite cobble conglomerates, which appear to belong to the Combaning Formation (Silurian age).

A dominant approximate 330 degree cleavage is observed throughout the licence, possibly a reflection of deformation associated with the Gilmore Suture. Several north-westerly regional structures are also present for distances up to 20km, such as structures dissecting the Gundibindyal Granite and Merri Hill areas.

Figure 5: Geology plan for the Springdale Project

Porphyries and related acid volcanics intrude quartzite pebble conglomerate sediments in the south-east of the licence. Several mafic intrusives occur within the Springdale Licence including north-trending dolerite dykes, a circular reversely magnetised olivine dolerite/basalt breccia pipe at the Yarra Glen prospect and ultramafics and serpentinites at the Merri Hill Prospect.

Several major structures are present within the licence with northerly and north-westerly trends as seen in the regional aeromagnetic imaging. The Springdale Fault on the western side of the project is a N-S splay off the major crustal-scale Gilmore Suture to the south.

More than 20 historical gold workings are known within the tenement area along the N-S structural trends at an angle to the Springdale fault zone, generally hosted by sediments associated with intrusives or structurally controlled by quartz veining in sediments.

The area covered is considered prospective for intrusive related gold mineralisation, however other potential styles of mineralisation include structurally controlled gold mineralisation as well as intrusive related nickel, copper, tin and tungsten. Numerous stocks and dykes associated with acid volcanics were potentially hydrothermally altered and may be copper and gold mineralised targets.

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	Rock chip samples o These samples are collected from outcrop, float, or other exposure. Samples are clear of organic matter.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details.	N.A
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	N.A
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource Estimation, mining studies and metallurgical studies.	Samples were logged, recording of colour, rock type and other comments in the field before being placed into Calico bags.
Sub-sampling techniques and sample preparation	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 All rock chip samples are crushed then pulverised in a ring pulveriser (LM5) to a nominal 90% passing 75 micron. An approximately 100g pulp sub-sample is taken from the large sample and residual material stored. A quartz flush (approximately 0.5 kilogram of white, medium-grained sand) is put through the LM5 pulveriser prior to each new batch of samples. A number of quartz flushes are also put through the pulveriser after each massive sulphide sample to ensure the bowl is clean prior to the next sample being processed. A selection of this pulverised quartz flush material is then analysed and reported by the lab to gauge the potential level of contamination that may be carried through from one sample to the next.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All AS2 samples were submitted to Bureau Veritas laboratories. The samples were sorted, wet-weighed, dried then weighed again. Primary preparation involved crushing and splitting the sample with a riffle splitter were necessary to obtain a sub-fraction which was pulverised in a vibrating pulveriser. All coarse residues have been retained. The samples have been analysed by a 40g lead collection fire assay as well as multi-acid digest with an Inductively Coupled Plasma (ICP) Optical Emission Spectrometry finish for multi-elements The lab randomly inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. AS2 also inserted Certified Reference Material (CRM) samples and blanks were inserted at least every 10 samples to assess the accuracy and reproducibility of the drill core results. All of the QAQC data has been statistically assessed to determine if the results were within the certified standard deviations of the reference material. If required a batch or a portion of the batch may be reassayed. (no re-assays were required for the data in the release).

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 An internal review of results was undertaken by Company personnel. No independent verification was undertaken at this stage. Validation of both the field and laboratory data is undertaken prior to final acceptance and reporting of the data. Quality control samples from both the Company and the Laboratory are assessed by the Company geologists for verification. All assay data must pass this data verification and quality control process before being reported.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Samples were collected and GPD located in the field using a hand help GPS with roughly a 1-2m error.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The samples reported in this announcement were collected randomly from outcrop by the geologist in the field.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	N.A
Sample security	• The measures taken to ensure sample security.	 All samples were collected and accounted for by AS2 employees. All samples were bagged into calico bags. Samples were transported to Perth from the site by AS2 employees and courier companies. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits have been conducted on the historic data to our knowledge.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	The Springdale Project comprises a single granted exploration licence EL9217 about 16km from the town of Temora in NSW.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	A detailed historic exploration review is in progress.
Geology	Deposit type, geological setting and style of mineralisation.	The Springdale Project is situated to the east of the Gilmore Suture on the eastern margin of the Springdale Rift. The area is underlain by siltstones, sandstone and coarse quartzite cobble conglomerates, which appear to belong to the Combaning Formation (Silurian age). A dominant approximate 330 degree cleavage is observed throughout the licence, possibly a reflection of deformation associated with the Gilmore Suture. Several north-westerly regional structures are also present for distances up to 20km, such as structures dissecting the Gundibindyal Granite and Merri Hill areas. Porphyries and related acid volcanics intrude quartzite pebble conglomerate sediments in the southeast of the licence, interpreted to be part of the Combaning Formation. Several mafic intrusives occur within the Springdale Licence including north-trending dolerite dykes, a circular reversely magnetised olivine dolerite/basalt breccia pipe at the Yarra Glen prospect and ultramafics and serpentinites at the Merri Hill Prospect. Several major structures are present within the licence with northerly and north-westerly trends as seen in the regional aeromagnetic imaging. The Springdale Fault on the western side of the project is a N-S splay off the major crustal-scale Gilmore Suture to the south. More than 20 historical gold workings are known within the tenement area along the N-S structural trends at an angle to the Springdale fault zone, generally hosted by sediments associated with intrusives or structurally controlled by quartz veining in sediments. The area covered is considered prospective for intrusive related gold mineralisation, however other potential styles of mineralisation include structurally controlled gold mineralisation as well as intrusive related nickel, copper, tin and tungsten. Numerous stocks and dykes associated with acid volcanics were potentially hydrothermally altered and may be copper and gold mineralised targets.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	N.A
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some 	No grade aggregation, weighting, or cut-off methods were used for this announcement.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
	typical examples of such aggregations should be shown in detail.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	N.A
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Diagrams are included in the body of the document
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of results. 	All results of Askari Metals' samples have been reported in this releaseSee Appendix 2
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	None
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). 	Currently under assessment. Follow-up work is required, as mentioned in body of the announcement.

Appendix 3: Table of assay results pertaining to this announcement

SampleID	Au_ppb	As_ppm	W_ppm	Sb_ppm	Cu_ppm	Zn_ppm	Pb_ppm	Mn_ppm	Co_ppm	TREO_ppm
AS208501	1	2.6	1.7	1.05	14	12	6	148	1.1	48
AS208502	1	8.6	3.6	1.95	28	104	19.5	194	10.3	262
AS208503	1	7.2	3.6	1.85	36	80	29.5	294	15	316
AS208504	1	9	3.8	1.95	28	88	23.5	348	12.9	275
AS208505	1	11.2	3.3	1.7	24	76	19.5	254	11.8	269
AS208506	1	13.8	3	1.35	42	78	23	260	16.2	244
AS208507	1	2.6	2	1.3	10	32	19	576	7.4	166
AS208508	1	13.6	0.8	0.45	10	4	1	126	0.8	6
AS208509	1	22.6	2.1	1.05	20	30	16	214	3.4	151
AS208510	1	47.6	1.6	1.15	6	20	11.5	172	3.6	110
AS208511	1	26.2	1.5	1.4	10	20	9.5	132	3.4	93
AS208512	1	60.2	2.1	2.05	24	48	27	78	12.3	360
AS208513	1	55.6	1.9	2.15	32	94	24.5	112	13.9	233
AS208514	1	33	1.6	1.45	14	16	13.5	102	3.7	134
AS208515	1	18	2.3	1.35	24	86	20.5	126	9.6	240
AS208516	9	18.6	2.9	1.9	28	82	19	108	6.3	227
AS208517	1	6.6	3.1	1.5	28	74	24	412	10.1	272
AS208518	1	1.6	0.6	0.55	6	8	9.5	136	1.1	10
AS208519	1	13.2	2.4	2	28	88	16.5	326	12.5	258
AS208521	3	143	4.3	4.15	54	66	13.5	1230	32.4	349
AS208522	3	85.2	3.3	2.6	50	64	19.5	1220	84	389
AS208523	/	11/0	3.4	4	132	220	35.5	10200	265	633
AS208524	559	1010	/	7.25	50	94	204	2590	86.4	605
AS208525	59	226	4.6	3.7	40	64	104	696	8.1	488
AS208526	5	62.6	3.8	2.2	40	60	28.5	228	9	270
AS208527	70	311	5.2	4.9	50	110	30	1350	18.1	379
A5208528	448	199	5.8 F.2	5.45 12.4	40	98	35 20 F	1230	14.4	270
A5208529	4300	102	5.2	12.4	50	16	30.5	574	11.9	148
AS208550	149	22.4	27	2.1	54	10	24.5	5100	1.1	750
AS208551	190	JZ.4	5.2	6.05	54	144	J4.J	1020	26.7	220
AS208552	5100	556	5.5	7.5	100	144	44 64	11200	175	220
AS208533	1440	1080	6.9	10.3	84	130	30.5	1000	56.5	375
AS208534	190	302	0.9	3 /	28	22	65	1730	36.3	5/
AS208535	412	302	2 2 2	3.4	20	34	13	468	10.6	170
AS208537	13	18.6	19	1 45	10	8	18	74	2 1	164
AS208537	7	8	1.5	0.85	6	80	16.5	152	6.7	145
AS208539	1	5	12	0.05	24	16	24.5	42	23	205
AS208541	3	10	1.5	3.7	10	22	188	68	3.4	190
AS208542	1	20.8	1.5	1.6	18	44	26	86	4.5	168
AS208543	1	13	1.2	1.35	18	38	19	106	5.9	170
AS208544	1	1.4	0.2	1	324	4	2.5	108	0.7	12
AS208545	1	76.8	1.4	2.95	32	28	30.5	14	13.1	199
AS208546	1	42.6	2	3.2	28	20	27.5	32	7.6	208
AS208547	1	17.8	4.5	1.85	14	38	25.5	64	2.8	258
AS208548	1	11	2.8	1.7	30	46	21	224	13	186
AS208549	1	6	1.3	0.85	14	62	10	350	8.2	70
AS208550	1	1.6	0.7	0.75	6	22	10.5	182	2.6	30
AS208551	2	61.6	0.9	1.15	116	158	16.5	202	15.5	117
AS208552	1	4.4	0.6	0.75	14	28	21	154	3.1	59
AS208553	1	3.2	0.5	1.2	14	54	6.5	190	4	62
AS208554	1	25.6	1.4	0.9	48	436	19.5	38	7.4	94
AS208555	5	14.6	2.4	1.85	26	72	23.5	94	10.7	245
AS208556	2	19.6	2.5	2.35	34	54	20	86	2.7	161
AS208557	23	25.2	1.9	3.1	48	94	30.5	104	19.3	407
AS208558	8	20.6	0.9	2.3	22	78	19.5	72	6.2	148
AS208559	6	24.6	2.7	2.6	34	40	23	94	4.3	254
AS208561	5	44.4	7	3.85	52	274	26.5	1110	24.5	192
AS208562	4	46.4	2.5	3.85	104	116	62	80	4.6	342
AS208563	6	13	2.3	1.45	10	6	7.5	124	1	31
AS208564	1	7.8	2.4	1.05	68	158	48	60	12	287
AS208565	1	16.4	1.3	2.05	34	134	243	136	12	181
AS208566	3	8.8	2.2	0.95	20	88	24.5	60	11.6	270
A3208567	1	14.8	1.3	1.2	38 73	400	21.5	200	22.0	240
AS208508	4/	0	1.8	1.15	69	260	/9.5	6170	40.5	252
A3200309	5	0	2.1	1.15	00	550	41	0110	123	552

SampleID	Au_ppb	As_ppm	W_ppm	Sb_ppm	Cu_ppm	Zn_ppm	Pb_ppm	Mn_ppm	Co_ppm	TREO_ppm
AS208570	2	37	3.5	2.95	22	18	18.5	102	2.8	190
AS208571	2	51.8	2.1	6.15	56	144	35	50	3.6	325
AS208572	1	31	2.1	2.95	42	56	30.5	38	1.6	124
AS208573	2	32.2	1.3	3.35	108	176	37.5	62	3.8	247
AS208574	7	14	2.4	1.9	44	122	28	184	12.7	304
AS208575	1	29	1.3	1.15	34	174	21.5	96	24.2	108
AS208576	1	13.4	0.7	0.5	14	90	14.5	48	4.4	89
AS208577	1	57.4	0.8	1.4	116	1040	91.5	1000	36.2	185
AS208578	10	20	10	2.35	16	40	11	118	8.6	320
AS208579	2	7.8	10.1	4.7	18	12	4	44	10.6	320
AS208580	2 1	Z.4	4.5	3.35	10	4	2.5	70	2.9	354
AS208581	1	5.8 2.6	3.7 2 E	3.4	14	10	5.5	70	5.8 6 E	202
AS208582	2	2.0	3.5	3.05	6	8	4.5	52	0.5	299
AS208584	2	2.4	2.9	2.85	14	8	3.5	54	5.4	443
AS208585	77	131	0.7	2.75	14	2	6	118	0.8	28
AS208586	1060	845	4.1	6.6	34	28	34.5	98	2	197
AS208587	1920	3120	8.4	8.1	432	90	52	158	7.7	579
AS208588	599	794	4.7	4.4	34	76	19	94	4	212
AS208589	10	23.6	0.9	0.55	18	2	2	106	0.6	10
AS208590	5	9.6	0.8	0.7	18	2	6.5	100	0.7	123
AS208591	7	43.8	3	3.15	30	30	13	48	2.2	273
AS208592	31	12	3.5	0.75	30	20	18.5	64	2.8	332
AS208593	1	10.8	5.3	0.95	44	52	16	220	7.8	281
AS208594	1	5.4	3.8	1.9	52	70	10.5	532	14.9	275
AS208595	1	17.8	3	1.05	64	30	8.5	88	8.6	609
AS208596	9	27.6	3	1.25	52	34	31.5	358	49.9	815
AS208597	8	63.4	4.1	2.45	52	46	29.5	212	21.8	360
AS208598	2470	2960	5.0	19.0	334	2370	5830	1440	32.1	285
AS208599	2590	2550	3.8	16.1	132	724	1340	620	7.3	196
AS208601	3160	1320	5.6	18.3	280	662	1360	2460	119	335
AS208602	31700	4470	1./	25.7	1100	1530	2590	2080	25.7	96
AS208603	11/00	5120	2.0	23.1	494	808	1340	1110	6	98
AS208604	230	2010	4.1	11.8	154	1690	70 06 F	984	/1.1	259
AS208005	2530	200	5.5	15.9	120	438	90.5	130 62	11.5	198
AS208607	JJ0 //10	1010	5.9	9.7 10.8	210	63/	209	2660	11.0	375
AS208608	11	262	4.4	6.25	56	92	11	420	43.1 21 <i>A</i>	230
AS208609	731	482	4.5	93	80	232	577	248	19.3	230
AS208610	145	517	7.4	6.7	44	376	280	38	7.7	266
AS208611	130	231	3.8	4.6	76	314	635	1800	75.4	418
AS208612	4480	512	3.3	11.1	88	100	98	218	21.1	433
AS208613	1310	440	3.7	6.7	64	122	65.5	554	19.3	277
AS208614	18	25.4	3.5	1.4	44	52	14	52	7.3	288
AS208615	4	14.4	2.4	0.65	44	66	17	302	17.3	305
AS208616	11	16	2.3	1.65	42	82	16.5	166	13.9	185
AS208617	300	369	3.8	6.6	56	70	26	98	8.2	196
AS208618	3	131	3.9	4.3	48	98	21.5	110	11	242
AS208619	21	168	4	3.05	170	126	23.5	1210	20.8	284
AS208621	4	28.4	1	1.45	312	632	24.5	14200	1090	425
AS208622	1	14.6	0.4	0.6	248	798	46.5	17700	422	981
AS208623	1	9.6	1	1.6	80	596	1/	1500	154	475
AS208624	1	19.4	0.2	0.3	120	300	25	180	9.4 41 F	110
AS208625	3	16.0	0.8	0.55	96	590	18	450	41.5 80	290
AS208020	1	5.8	0.8	0.55	80	J/4 /16	7	13500	130	183
AS208628	2	5.6	0.5	0.65	52	104	26	190	2.7	27
AS208629	2160	1370	3.3	24.2	44	128	32.5	582	23.7	285
AS208630	547	625	2.6	13	38	96	22.5	428	13	239
AS208631	18	38.6	3	5.4	42	114	26	296	9.4	307
AS208632	38	60.2	2.4	5.8	38	114	27.5	564	14.3	296
AS208633	1890	474	0.5	15.4	18	18	11	162	3.1	33
AS208634	3310	1440	3.7	26.6	56	88	32	458	18.1	297
AS208635	17	19.2	0.4	1.05	10	2	2	168	1.1	8
AS208636	9	16.4	2.2	2.4	52	106	30.5	162	14.7	312
AS208637	4330	1350	2.9	25.4	52	96	32.5	426	16.2	259
AS208638	49	42.2	1.6	3	18	18	22	142	4.8	304
AS208639	128	265	3.3	2.2	30	38	104	4180	150	166

SampleID	Au_ppb	As_ppm	W_ppm	Sb_ppm	Cu_ppm	Zn_ppm	Pb_ppm	Mn_ppm	Co_ppm	TREO_ppm
AS208640	1440	926	5.7	3.5	66	78	63	7180	213	264
AS208641	14	306	3.8	2.45	102	124	33	764	37.8	308
AS208642	100	62.6	2.1	2.8	30	24	15.5	142	10.3	264
AS208643	82	92.2	0.9	1.05	26	4	9.5	304	10	40
AS208644	1	2.6	0.4	0.45	10	2	1	136	1.6	21
AS208645	16	4.4	0.4	1.05	10	4	2	130	1	10
AS208646	345	279	2.7	4.95	48	108	21	370	24	281
AS208647	4	21	1.6	2.2	28	66	18	462	11.3	167
AS208648	4	30.4	2.1	3.25	64	68	30.5	106	7.9	181
AS208649	7	6.2	2.7	1.45	236	40	8.5	96	9.2	194
AS208650	16	27	2.9	2.9	138	46	19	62	8.1	289
AS208651	1	2.8	0.7	1.05	70	4	2.5	158	2	29
AS208652	2570	302	2.5	31.0	48	16	6.5	34	1.5	210
AS208653	59	47.4	2.1	2.8	48	74	13	124	7.9	203
A\$208654	257	130	4.5	11.8	60	52	8.5	764	6.7	398
AS208655	288	53	1	5.2	60	34	10	138	2.8	93
AS208656	1040	206	0.9	8.3	56	176	11	68	7.6	138
A\$208657	417	202	0.9	6.65	46	160	27.5	78	53	115
A\$208658	4050	238	3.4	9.7	34	30	28	128	4.4	314
A\$208659	11	42	3.1	6.05	194	406	9	246	26.6	239
AS208661	129	201	3.2	4.6	96	140	13.5	78	14.2	286
AS208662	65	76	4.7	4.0	218	82	13.5	110	19.3	200
A\$208663	14	36.4	1	1.7	34	24	3 5	106	2.6	49
AS208003	2	/8.2	35	2.7	28	24	20	100	2.0	278
AS208665	2	106	2.4	2.7	110	20	20	78	S.7 8.4	206
AS208003	11	100	2.4	2.2	52	210	14 5	6020	27.9	200
AS208000	10	101	2.2	2.5	20	66	17.5	126	57.8	267
AS208007	10	40.4	1.2	3.2	20	212	74 5	2700	60.0	114
AS208008	110	20.6	2.7	2.5	00 74	02	74.5	3790	10.4	252
AS208009	220	161	5.7 2.7	5.2	/4	120	20.5	160	10.0	552 277
AS208070	220	25.4	2.7	0.05	40	100	33.5	24	22.0	161
AS208671	4	35.4 29.6	3.2	2.85	120	200	23	34	22.8	101
AS208672	2	38.0	5.2	5.1	02	200	20 12 F	2520	80.4 27	495
AS208673	1	8.4	1.2	1.0	92	88	13.5	362	Z/	132
AS208674	52	205	3.9	2.25	28	40	15	130	2.1	354
AS208075	52	23.8	3	1.15	100	230	10.5	7430	202	900
AS208070	10	197	1.1	2.05	14	28	21.5	010	2.7	210
AS208077	195	201	5.5	3.35	70	24	25 10 F	154	4.5	394
AS208078	/	77.2	2.5	1.35	22	24	10.5	208	2 71 1	202
AS208679	990	35	2.9	2.3	38	58	12.5	3340	/1.1	705
AS208681	11900	101	13.9	12.9	00	100	230	1030	55.9	795
A5208082	12	12.0	27	2.05	14	40	18.5	330	5.2	358
AS208085	40	20.2	5.7	2.95	14	100	24	1720	1.4	520
AS208084	22	29.0	5.9	1.45	74	20	20	1/50	/0.4	222
AS208085	752	55.Z	5.5 12.7	2.4	20	52	27.5	1150	4.3 40 E	237
AS208080	755	057	15.7	2.4	70	100	29.5	109	40.5	240
AS200087	52	170	5.9	3.95	50	160	9Z 150	72	7.1 5./	437 521
AS208088	5Z 01	270	2.1	5.5 12.4	20	124	139	72	2.4	252
AS208089	207	170	5.5	15.4	50	124	157	70	2.0	555
AS208690	397	117	5 0.0	0.7	40	124	230	192	0.8	950
AS208091	712	117	0.9	1.15	124	4	1.5	154	2.4	15
AS208692	2420	110	0.4	0.95	104	80	10	/08	37.0	96
AS208093	2420	265	9.7	0.9	52	02	0.5 E	1010	21 6	92
AS208094	39	205	4.5	0.75	32	02		1010	21.0	109
AS208095	590	51.0	3.5	1.2	42	00	5.5 12 E	950	20	108
A5208090	14	12 2	1.7	0.3	10	64	13.5	1070	3.9	12
AS208097	274	270	10.7	1.7	40	04 E 4	2	266	16 4	100
AS208698	12	3/8	10.7	1.15	14	54	2	500 016	10.4	112
A3208699	13	47.8	2.2	0.65	22	50	0	910	24.0	112
DRU5	2410	92	12.9	0.7	40	10	3	208	9.8	30
BR00	204	12 0	2.2	1.05	20	2	0.5	112	1.2	4
BD00	204	43.8	1	1.05	50	22	4.5	000	2.1	101
DRUO	0	13.0	1	0.55	4	2	0.5	1/0	J.T	0