ASX ANNOUNCEMENT

Significant Zones of Sulphides intercepted in Diamond Drilling at Brandy Hill South

Key Highlights

- First two diamond holes testing modelled conductor (BHD026-3) completed at Brandy Hill South
- Both drillholes intersected zones of massive sulphides, blebby sulphides and disseminated sulphide mineralisation and broadly coincided with the location of the position of the highorder conductor BHD026-3
- Drilling ongoing, three more diamond holes planned to test a further 2 high priority conductors
- First diamond drillholes west of the Salt Creek Shear intercept significant sulphide mineralisation
- Assay results pending from the eight pre-collars targeting shallow nickel mineralisation
- Visual copper sulphide mineralisation observed reinforces the fertility of the host rocks

Recharge Metals Limited (ASX: REC, Recharge or the **Company**) is pleased to provide an update on the Company's diamond drilling activities at the Brandy Hill South Project located within the Archaean Gullewa Greenstone Belt in Western Australia.

Two diamond drillholes have now been completed for a combined total of 843.8m. BHRCD027 and BHRCD028 are the first holes that Recharge has collared west of the Salt Creek Shear and were designed to test the modelled DHTEM conductor (BHD026-3). Both holes intercepted a mafic-ultramafic complex, intruded by felsic porphyry, including extensive zones of massive, semi- massive to disseminated sulphides within holes BHRCD027 and BHRCD028 (refer to Figures 1 and 2). The zones of massive sulphides, blebby sulphides and disseminated sulphide mineralisation broadly coincided with the location of the position of the high-order conductor (~7,000 siemen) BHD026-3.

Recharge is currently completing the remaining three holes testing other DHTEM modelled conductors.

Recharge Managing Director Brett Wallace commented:

"Recharge is very pleased to announce the successful interception of the modelled DHTEM conductor (BHD026-3) including extensive zones of massive, semi- massive to disseminated pyrite, chalcopyrite and pyrrhotite.

Significantly, both holes were collared in untested ground west of the Salt Creek Shear - a great result for Recharge.

We now look forward to completing three further diamond holes testing the remaining DHTEM conductor and receiving the assay results from the eight pre-collar holes."

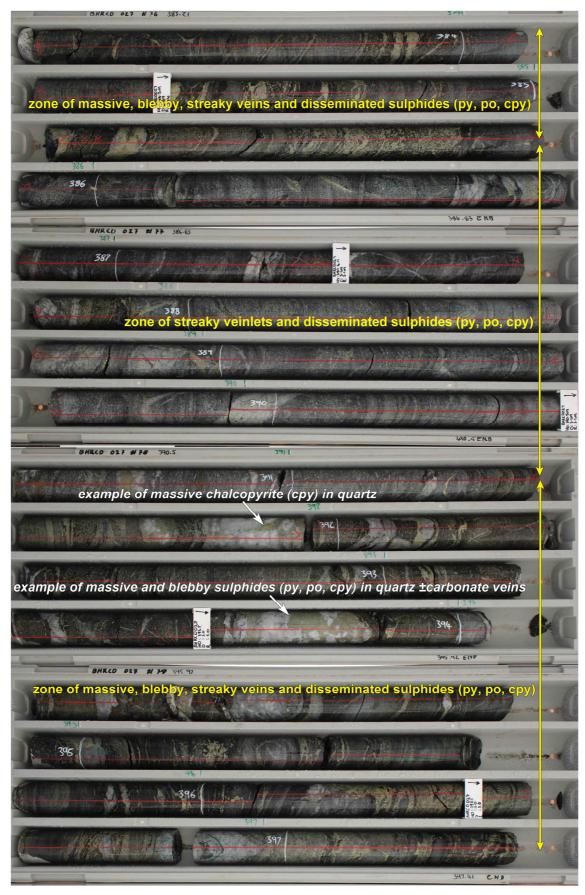


Figure 1: Drill core from 383.21 to 397.5m BHRCD027, showing massive, blebby and disseminated sulphides

Figure 2: Drill core from 162.3 to 169.5m BHRCD028, showing massive, blebby and disseminated sulphides

Diamond Drilling Update

Five (5) diamond holes were designed to test the two high-order conductors (2,400 siemens & 7,000 siemens) identified from drillhole BHD026 and other DHTEM conductors identified from drillhole BHRC017 (refer to ASX announcement "DHTEM Delineates Strong Conductors at Brandy Hill South" dated 14 July 2022).

BHRCD027 was completed to a depth of 450.5m. Preliminary observations of the drill core identified the following stratigraphic sequence;

- I. ultramafic lithologies (komatiitic basalts to dunites) to 368.9m,
- II. 368.9 to 395.82m strongly pyrite-pyrrhotite-chalcopyrite mineralised felsic porphyry (the potential source of the DTEM anomaly),
- III. 395.82 to 439.00m well laminated to bedded tuffaceous sediments including BIF, and
- IV. 439.0 to 450.50m gabbro (End of Hole)

All lithologies were variably foliated (weak to strong) and altered (K-metasomatised). Mineralisation consisting dominantly of pyrite-pyrrhotite-chalcopyrite was also variable but the best host to mineralisation is logged as a felsic porphyry. Mineralisation is hosted by quartz stockwork veining as disseminations to blebby aggregates and veins.

BHD028 was drilled to a depth of 393.3m. Preliminary observations from the drill core identified following stratigraphic sequence,

- I. Mafic and ultramafic lithologies (komatiitic basalts to gabbro) to 163.8m,
- II. 163.38 to 167.80m strongly pyrite-pyrrhotite-chalcopyrite mineralised massive sulphide
- III. 167.80 to 393.3– Mafic and ultramafic lithologies (gabbro, porphrytic basalts, and komatiite) (End of Hole)

All lithologies were variably foliated (weak to strong) and altered (K-metasomatised and serpentinised). Mineralisation consisting dominantly of pyrite-pyrrhotite-chalcopyrite was also variable but the best host to mineralisation is logged as a quartz vein. Mineralisation is hosted by quartz stockwork veining as disseminations to blebby aggregates and veins.

A geological summary of the drillholes can be found in Tables 1.and 2 This information is based primarily on the visual inspection of the core. The core from BHRCD027 and BHRCD208 is yet to be assayed and analysed. The presence of copper is supported by in-field readings taken using a portable x-ray fluorescence instrument (pXRF)¹.

Table 1: Observations in BHRCD027 and BHRCD028

Hole ID	Interval (m)	Sulphide Style	Sulphide Minerals	%	Observations
BHRCD027	120.51-141.7				Komatiite, variably K-metasomatised
	141.7-143.2 143.2-149.15	DS	ру	1	Gabbro, comprising pyrite. Fine grained ultramafic, moderately K-metasomatised
		50		_	Fine grained ditraffiality, moderately K-metasomatised Fine grained Komatiitic basalt with zoned and
	149.15-156.62	DS	ру	1	disseminated sulphides comprising pyrite and pyrrhotite
	156.62-189.6	DS & Znd	py, po, cpy	1	Fine grained ultramafic, with quartz and carbonate veining, comprising pyrite and trace chalcopyrite
	189.6-223.9				Fine grained Komatiitic basalt with variable carbonate veining
	223.9-234.2				Spinifex textured Komatiite
	234.2-284.0	DS & Vnn	ру	1	Fine grained ultramafic with variable quartz and carbonate veining, comprising disseminated pyrite
	284.0-303.4	DS & VIt	ро	1	Ultramafic with zones of serpentinisation and chrysotile,
	303.4-309.64				comprising disseminated pyrrhotite Foliated K-metasomatised ultramafic containing magnetite
	309.64-324.5				Foliated ultramafic containing magnetite , chlorite and biotite
	324.5-351.1	DS	ро	1	Ultramafic becoming Gabbroic containing magnetite with blebby and disseminated sulphides comprising pyrite and chalcopyrite
	351.1-368.0				Serpentinised, brecciated dunite to peridotite
	368.0-368.9	BL, DS & Vsk	ру, ср	4	Mesomulate komatiite, with chrysotile, comprising blebby, disseminated and stockwork sulphides including pyrite and chalcopyrite
	368.9-395.82	Vsk	ру, ср	2	Mineralised porphyry, with blebby and veining sulphides comprising pyrite and chalcopyrite
	395.82-407.63	DS & Vsk	ру, ср	3	Foliated tuffaceous sediment with quartz veining and disseminated and veining sulphides comprising pyrite and chalcopyrite
	407.63-414.57	DS and Vsk	ру, ср	5	K-metasomatised BIF to tuffaceous sediment with quartz veining and disseminated and veining sulphides comprising pyrite and chalcopyrite
	414.57-434.77	DS and Vsk	ру, ср	2	K-metasomatised laminated tuffaceous sediment with quartz veining and disseminated and veining sulphides comprising pyrite and chalcopyrite
	434.77-438.75	BL & DS	ру, ср	5	Mineralised porphyry, with blebby and disseminated sulphides comprising pyrite and chalcopyrite
	438.75-439	DS & Vnn	ру, ср	2	K-metasomatised laminated tuffaceous sediment with quartz veining and disseminated and veining sulphides comprising pyrite and chalcopyrite
	439.0-450.5 EOH	DS & Vnn		2	Variably K-metasomatised gabbro with disseminated and veining sulphides comprising pyrite and chalcopyrite
BHRCD028	120.0-124.7	DS	py, cpy (trace)	1	Porphyry with carbonate and quartz veining and disseminated sulphides comprising pyrite, pyrrhotite and trace chalcopyrite
	124.7-133.62	DS	ру	2	Serpentinised mafic with disseminated sulphides comprising pyrite
	132.62- 134,.78	DS	py, po	1	Brecciated serpentinised ultramafic with disseminated sulphides comprising pyrite and trace chalcopyrite
	134.78-137.9	DS	py, po, cpy (trace)	1	Fine grained k-metasomatised Komatiitic with quartz veining and disseminated sulphides comprising pyrite, pyrrhotite and trace chalcopyrite
	137.9-163.38	DS	py, po	1	Gabbro, with quartz veining and disseminated sulphides comprising pyrite and pyrrhotite.
	163.38-167.8	MAS	py, po, cpy	15	Ultramafic with significant quartz veining and massive and blebby sulphides comprising pyrite, pyrrhotite and chalcopyrite

¹ The Company cautions that visual mineralisation observations in the field - even when accompanied by pXRF values - are indicative only and are considered subordinate to conventional laboratory analysis

167.8-244.4	DS	py, po	2	Gabbro, with quartz veining and disseminated sulphides comprising pyrite and pyrrhotite.
244.4-253.0	DS	py, po, cpy (trace)	1	Foliated ultramafic with variable quartz veining, comprising disseminated pyrite, pyrrhotite and trace chalcopyrite
253.0-305.17	DS	py, po	1	Foliated serpentinised Komatiite comprising disseminated pyrite and pyrrhotite
305.17-338.63				Foliated gabbro with zones of shearing
338.63-376.5	DS	py, po, cpy (trace)	2	Sheared porphyritic basalt with quartz veining comprising disseminated pyrite, pyrrhotite and trace chalcopyrite
376.5-393.2 EOH	DS	py, po	1	Foliated K-metasomatised Komatiite comprising disseminated pyrrhotite

MAS - Massive Sulphide

DS – Disseminated Sulphide

BL - Blebby Sulphides

Vsk – stockwork sulphide

Znd – Zoned sulphide

py – Pyrite

Vnn – veining sulphide cpy – Chalcopyrite po - pyrrhotite

In relation to the disclosure of visual mineralisation included in Table 1, the Company cautions that the information is based solely on visual inspection of the core which is yet to be assayed. The presence of copper and nickel is supported by in-field portable XRF but is considered indicative only and subordinate to laboratory assays. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available.

Table 2: Drill hole collar details for Brandy Hill South

Drill Hole	Hole Type ¹	East ² (m)	North ² (m)	RL ³	Dip	Azi (mag)	Depth (m)
BHRC006	RC	444201	6805514	280	-60	90	150
BHRC007	RC	444172	6805508	280	-60	90	146
BHRC008	RC	444220	6805320	280	-60	90	154
BHRC009	RC	444153	6805325	280	-60	90	163
BHRC010	RC	444144	6805310	279	-60	90	210
BHRC011	RC	444099	6805305	275	-60	90	210
BHRC012	RC	444177	6805251	277	-60	90	166
BHRC013	RC	444175	6805410	279	-60	90	180
BHRC014	RC	444171	6805410	278	-60	90	210
BHRC015	RC	444094	6805411	276	-60	90	210
BHRC016	RC	444139	6805249	277	-60	90	210
BHRC017	RC	444097	6805249	275	-60	90	230
BHRCD018	RCD	444068	6805244	278	-60	90	96
BHRCD019	RCD	444057	6805307	277	-60	90	90
BHRC020	RC	444132	6805732	264	-60	90	160
BHRC021	RC	444630	6804600	280	-60	90	137
BHRCD022	RC	444135	6805502	276	-60	90	209
BHRC023	RCD	444104	6805507	271	-60	90	84
BHRC024	RC	444039	6805700	277	-60	90	179
BHRC025	RC	444460	6805600	280	-60	90	180
BHD026	DD	444098	6805507	271	-60	90	357.5

BHRCD027	RCD	443800	6805684	275	-60	90	450.5
BHRCD028	RCD	443773	6805546	275	-60	90	393.3
BHRC029	RC	444002	6805701	275	-60	90	97
BHRC030	RCD	444000	6805648	275	-60	90	120
BHRC031	RC	444097	6805597	275	-60	90	100
BHRC032	RC	444051	6805598	275	-60	90	100
BHRC033	RC	444000	6805598	275	-60	90	100
BHRC034	RC	444078	6805230	275	-60	90	100

¹ RC = Reverse Circulation Drillhole, RCD = Reverse Circulation Precollar with Diamond Tail, DD = Diamond Drillhole

³ Reduced Level (RL) is referenced to Australia Height Datum (AHD)

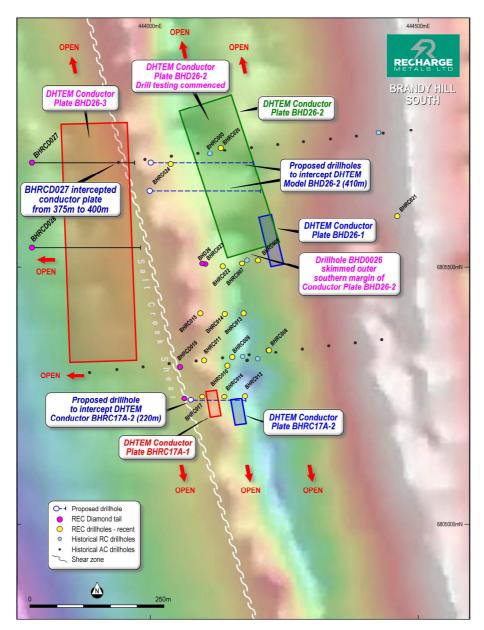


Figure 3: Brandy Hill South – Plan showing existing and proposed drilling, DHTEM/fixed loop survey and modelled FLEM conductor plates, overlying TMI magnetics image

² Easting and Northing Coordinate System = UTM GDA94 Zone 50

About the Brandy Hill South Project

The 100% owned Brandy Hill South Project is located within the Archaean Gullewa Greenstone Belt within the Murchison Province, Yilgarn Craton. Recharge acquired the project from Revolution Mining Pty Ltd (Revolution) during 2021.

During 2019, Revolution drilled three shallow reconnaissance RC holes aimed at 'proof of concept' testing of the inferred strike of the Salt Creek Shear (and subsidiary structures) beneath the cover. All three holes intersected significant copper mineralisation over a substantial strike length with all holes finishing in copper mineralisation.

Significant copper (and nickel) mineralisation was intersected over a wide zone ($300m \ge 1,000ppm$ Cu) central to a 100 - 150m wide subsidiary shear zone east of the main interpreted Salt Creek Shear. The drilling program encountered copper sulphide mineralisation in shear altered dolerite.

Recharge acquired the project based upon the exploration potential of the main geological structure within the Brandy Hill South Project, the Salt Creek Shear, which runs north-south and deforms the belt on a regional scale. The principal exploration target within the Project is volcanic-hosted massive Cu-Zn sulphide mineralisation within the felsic volcanic sequence of the Windaning Formation of the Luke Creek Group. The Windaning Formation and underlying Gabanintha Formation are concealed beneath 20 to 65m of unconsolidated Quaternary sand.

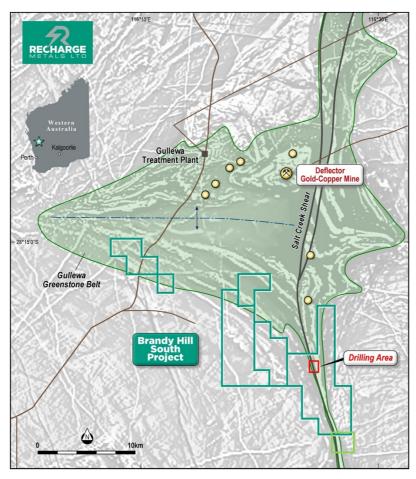


Figure 4: Brandy Hill South Project tenements and deposit locations over magnetics and geology

Next Steps at Brandy Hill South

- Completion of remaining three diamond holes.
- Detailed analysis of all drill core before being submitted to the laboratory for analysis.
- Assays are pending from eight pre-collar holes.

This announcement has been authorised for release by the Board.

Contacts

For more information, please contact:

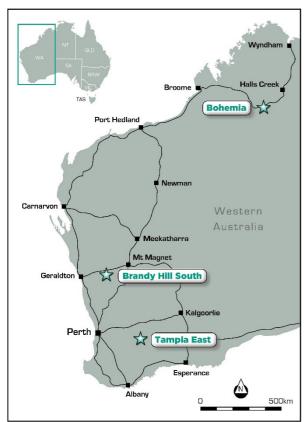
Mr Brett Wallace Mr Alex Cowie

Managing Director Media & Investor Relations

info@rechargemetals.com.au alexc@nwrcommunications.com.au

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on information compiled and fairly represented by Mr Brett Wallace, Managing Director of Recharge Metals Ltd, who is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM). Mr Wallace has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he has undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Wallace consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.


Previous Disclosure

The Company confirms that it is not aware of any new information or data that materially affects the Exploration Results information included in this report from previous Company announcements, including Exploration Results extracted from the Company's Prospectus announced to the ASX on 7 October 2021 and the Company's subsequent ASX announcements of 15 November 2021, 8 February 2022, 29 March 2022, 5 April 2022, 10 May 2022, 18 May 2022, 9 June 2022, 14 July 2022, 8 August 2022, and 15 September 2022.

About Recharge Metals

Recharge Metals Ltd is an Australian copper developer and explorer, focusing on Australian copper projects.

Three 100% owned Western Australian development and exploration projects:

- Brandy Hill South Cu-Au mineralisation
- Tampia East Cu-Ni-Au mineralisation
- Bohemia Cu- Pb-Zn mineralisation

Appendix A JORC Code, 2012 Edition – Table 1 Report - Brandy Hill South Project n 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.) Section 1

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond Drilling was used to obtain samples for geological logging and assaying. Drillholes were undertaken to test geochemical and geophysical anomalies as well as understanding the stratigraphy to enable further target testing Drill core was measured, oriented and marked up in the field. Oriented core was placed in an orientation rack with a line drawn along the core A handheld Bruiker XRF instrument was used at various intervals on the recovered drill core to determine the concentration of the elements of interest.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 A track mounted drill rig was used to drill Diamond core in HQ through the regolith and oriented till the end of hole All HQ diamond drill core orientated using Reflex ACT III Orientation Tool
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Intervals of core loss were logged and entered into the database. There is no observed sample bias, nor a relationship observed between grade and recovery. Diamond Core measured using standard measuring tape. Length of core is then compared to the recorded interval drilled from core blocks placed in trays at end of runs All care taken to obtain 100% core recovery (HQ); core trays photographed wet and dry Core recoveries were excellent and usually 98-100%. Rare core loss was present only in fracture zones
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate	Diamond drilling – All HQ drill core is photographed, core recovery calculated; core marked up along the orientation line, and logged by

Criteria	JORC Code explanation	Commentary
	 Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 experienced geologists familiar with the style of deposit and stratigraphy The percentage of visible sulphide (pyrrhotite, pyrite, chalcopyrite, bornite etc) is estimated for each significant geological unit Geological logging is both qualitative and quantitative. Lithology, alteration, mineralisation, veins and structural data is captured digitally and stored securely in the Recharge Metals database Specific gravity (S.G.) will be collected for representative samples of each rock type
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Recharge has its own internal QAQC procedure involving the use of blanks QAQC has been checked with no apparent issues. Sampling is yet to be completed on the Diamond core There has been no statistical work carried out at this stage It is unknown whether the sample sizes are appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Portable XRF assay results have not been reported. The use of handheld XRF, XRD, magnetometers and other tools are in progress on the diamond core Reference sampling has not yet been carried out on the diamond core

Criteria	JORC Code explanation	Commentary		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drilling and significant intersections are verified and signed off by the Managing Director of Recharge Metals Ltd who is also a Competent Person. No pre-determined twin holes were drilled during this program. Geological logging was entered digitally then sent to the Company's database. Sampling, collar, and laboratory assay data is captured electronically and also sent to the Company's database. Uploaded data is reviewed and verified by the geologist responsible for the data collection. No adjustments or calibrations were made to any assay data reported. 		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Hole collar locations are based on handheld GPS accurate to within 3m. Downhole surveys were completed on all RC percussion and diamond drill holes using a gyro downhole survey tool at downhole intervals of approximately every 30m. Core orientation was completed using Reflex ACT III Orientation Tool The grid system used for location of all drill holes as shown in tables and on figures is MGA Zone 50, GDA94. Hole collar RLs were estimated from local surveyed topographic control. Hole collars are routinely surveyed prior to rehabilitation with highly accurate DGPS instruments 		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole spacing is variable, being on nominal 100m x 50m, 100m x 100m and 200m x 100m grid. Drill hole spacing and distribution is not considered sufficient as to make geological and grade continuity assumptions appropriate for Mineral Resource estimation. The holes completed are for exploration purposes. Sampling will be undertaken on diamond core through all potential mineralisation zones and structural zones with contacts determined by geological contacts or sulphide density. Sampling usually at 1m intervals 		
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 At present it is not believed that the drilling orientation has introduced any sampling bias. The understanding of the structure and geology intersected in drilling is in progress and accurate true widths cannot be assumed at this time 		
Sample security	The measures taken to ensure sample security.	 Sample chain of custody is managed by Recharge. Sampling is carried out by Recharge field staff. 		

Criteria	JORC Code explanation	Commentary
		 Samples are stored at a secure site and transported to the Perth laboratory by Recharge employees. Core is collected and processed on site, core cutting and sampling has
		not yet occurred
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audit or review has been carried out.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results relate to drilling completed on exploration licence E59/2181 The tenements are held 100% by Recharge. The tenement mainly overlays pastoral land The tenement is held securely and no impediments to obtaining a licence to operate have been identified.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Programs of aircore and RC percussion, along with geological mapping and airborne (magnetics) geophysical surveys.
Geology	Deposit type, geological setting and style of mineralisation.	 The mineralisation is interpreted to be of sulphide style which occurs within a possible larger scale Archean subduction related geological setting The deposit and host rocks have been deformed and metamorphosed to upper amphibolite facies. The mineralisation at Brandy Hill South typically consists of chalcopyrite + pyrite + diginite, massive sulphides, blebby and semi massive sulphides and disseminations and stringers within high Mg Basalt and Ultramafics. The mineralisation typically forms broad, folded, tabular zones in the order of 50-100m true thickness and may contain zones of higher grade material with less continuity.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Drill hole information for the drilling discussed in this report is listed in Table 1 in the context of this report.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) 	

Criteria	JORC Code explanation	Commentary
	 of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 There are no Exploration Results included in this Announcement. Previously reported intersections have been length weighted to provide the intersection width using a cut-off grade of 0.25% Cu with a maximum internal dilution of 1m. For significant intersections, a maximum of 1m of internal waste have been included in the calculation of intersection widths. All significant intersections have been reported. No metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 RC percussion and diamond drill holes reported in this announcement were completed approximately perpendicular to the interpreted dip of the mineralised zones. Reported intercepts are down hole lengths – true widths are unknown at this stage.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant and relevant intercepts have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• None

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further RC percussion or diamond drilling will be undertaken for infill and extension of the known mineralisation resource at the Brandy Hill South Prospect.