

#### 17 October 2022

# RC drilling results delineate a continuous 1.4km strike of shallow gold mineralisation at Kokoseb

#### **Highlights**

- Results received from eleven reverse circulation drill holes at Kokoseb extend shallow mineralisation along strike, including:
  - KRC012: 11m at 1.87 g/t Au from 23m
    - 42m at 1.57 g/t Au from 37m
  - KRC009: 6m at 2.43 g/t Au from 23m
  - o KRC005: 36m at 1.18 g/t Au from 67m
  - o KRC004: 23m at 1.22 g/t Au from 27m
  - KRC003 : 27m at 1.71 g/t Au from 72m
- Reverse circulation drilling progressing well, with 24 holes for 4,902 metres completed at the end of September and further assay results expected in the coming weeks

**Wia Gold Limited** (ASX: WIA) (**Wia** or the **Company**) is pleased to report the final results from eleven reverse circulation (**RC**) drill holes – KRC002 to KRC012 – completed at the Kokoseb Gold Discovery (**Kokoseb**), situated on the Company's Damaran Gold Project located in Namibia. Drill holes KRC002 to KRC011 were drilled along 1.4km strike of the northern side of Kokoseb, while drill hole KRC012 is located on the western flank of the anomaly. Best results include 42m at 1.57 g/t Au, 11m at 1.87 g/t Au and 27m at 1.71 g/t Au.

At the end of September, 24 RC holes for 4,902 metres have been completed at Kokoseb, the drill rig is currently progressing towards the south on the western flank of the anomaly.

#### Wia's Chairman, Andrew Pardey, commented:

"These latest RC results demonstrate the potential to intersect in-situ significant gold mineralisation under all of the 6km strike outline of the Kokoseb gold anomaly.

"RC drilling is quickly progressing the surface reconnaissance along strike, having already validated 1.4km strike length and currently extending the reconnaissance towards the south on the western flank of Kokoseb. Mineralisation intersected to date is open in all directions and at depth.

*"We look forward to ramping up drilling activity at Kokoseb in 2023 with the addition of a second drill rig, which will focus on infilling and tracing down dip the actual results."* 

#### RC drilling unlocks 1.4 km strike at Kokoseb

Eleven RC drill holes, KRC001 (previously reported) to KRC011, were drilled on the northern flank of the Kokoseb gold anomaly, which also includes Trench 5 and 6 results and diamond holes KDD007, KDD008, KDD010 and KDD012. The RC drill sections were spaced at 100m intervals on the western margin, around Trench 5 and then spaced at 200m intervals towards the east. At this stage, all sections along strike on the eastern side include single holes, the objective of which is to define the in situ mineralised zone before further systematic infill drilling commences.



The main mineralised zone of the northern flank was intersected in all drill holes at widths varying from 25m to over 50m and at vertical depths varying from surface to approximately 70m. The intersections add up to a continuous zone of 1.4km strike, part of the potential total 6km outlined by the soil anomalism and by the diamond drill holes.

KRC012 is drilled on the top part of the western flank of Kokoseb, starting the reconnaissance of the mineralised trend that wraps around the granitic pluton, which includes drill holes KDD001 to KDD006.

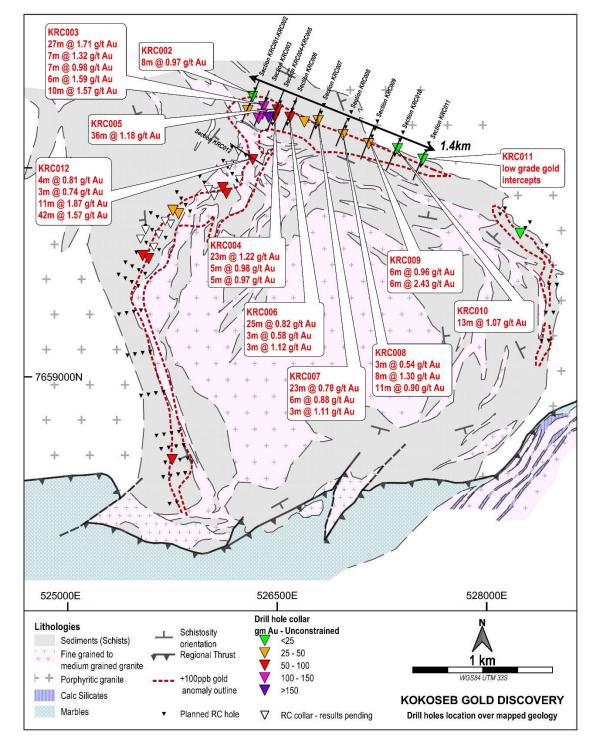



Figure 1 – Drilled and planned holes located on Kokoseb geology; significant intercepts on drillholes (in red, reported in this release and in black, previously reported); all intercepts >0.5 g/t Au<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Intercept calculated using 0.5 g/t cut-off grade and 2m max consecutive internal low grade. See ASX announcements 7 June 2022, 27 July 2022 and 17 August 2022 for further information on previously reported results of diamond and RC drilling.



**KRC002** is drilled on section with KRC001 and is the westernmost one drilled on the northern flank of Kokoseb (Figure 2). The mineralised zones on the drill section are split by a granitic intrusive, at this stage it is unclear whether the two sides correspond to different zones of mineralisation, as there are two distinct zones that were intersected in the next section 100m to the east (Figure 3). KRC002 includes a single intercept of **8m at 0.97 g/t Au from 123m**.

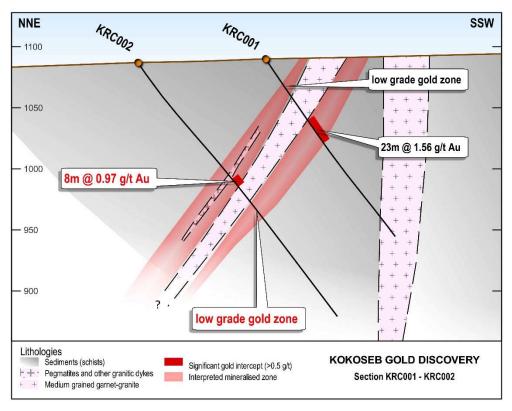



Figure 2 – Drill section KRC001-KRC002 (intercepts in red, reported in this release)

The next section, which is located 100m east, includes drill holes KDD008, KDD012 and KRC003 (Figure 3). Two wide and high-grade gold zones were intersected on the drill section, the upper zone and the lower zone. The upper zone correlates along strike towards the east and makes up the core zone of the northern flank of Kokoseb (the "main zone"). The lower zone has an unclear orientation and could be cutting through the upper zone (outside of the section). KRC003 includes the following intercepts:

27m at 1.71 g/t Au from 72m, including 14m at 2.13 g/t Au (upper zone) 7m at 1.32 g/t Au from 105m (upper zone) 7m at 0.98 g/t Au from 115m (upper zone) 6m at 1.59 g/t Au from 158m (lower zone) 10m at 1.57 g/t Au from 169m, including 5m at 2.56 g/t Au (lower zone)

Drill section **KRC004-KRC005** is drilled 100m east of the section that includes KRC003 (Figure 4). Both the drill holes have intersected significant mineralisation that is over 30m wide, correlating well with the upper zone from the previous drill section, including:

23m at 1.22 g/t Au from 27m, including 7m at 1.91 g/t Au (KRC004) 5m at 0.98 g/t Au from 53m (KRC004) 5m at 0.97 g/t Au from 70m (KRC004) 36m at 1.18 g/t Au from 67m, including 12m at 1.99 g/t Au (KRC005)



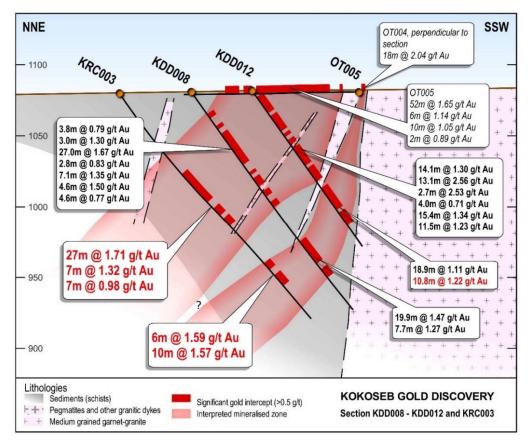



Figure 3 – Drill section KRC003 (intercepts in red, reported in this release and in black, previously reported; trenches intercepts in italic)<sup>2</sup>

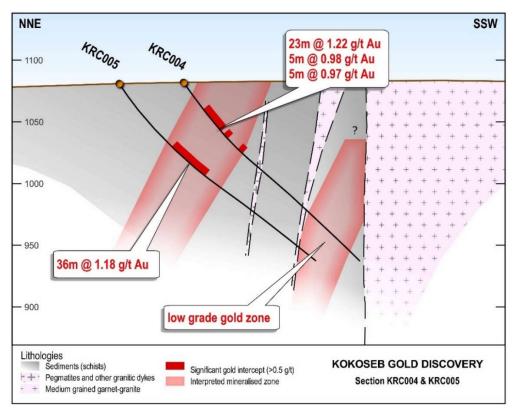



Figure 4 – Drill section KRC004-KRC005 (intercepts in red, reported in this release)

<sup>&</sup>lt;sup>2</sup> See ASX announcements 7 June 2022 and 17 August 2022 for further information on previously reported results of diamond drilling.



**KRC006** is drilled on section (Figure 5) located 100m east from the drill section KRC004-KRC005. The main mineralised zone has been intersected in the top part of the fresh horizon as a single intercept of 25m at 0.82 g/t. The drill hole includes the following intercepts:

#### 25m at 0.82 g/t Au from 45m

#### 3m at 0.58 g/t Au from 232m

#### 3m at 1.12 g/t Au from 252m

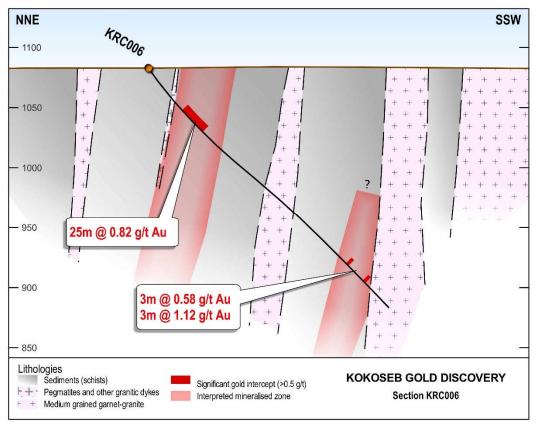



Figure 5 – Drill section KRC006 (intercepts in red, reported in this release)

**KRC007** is drilled on section (Figure 6) located 200m east from drill hole KRC006 and 100m east of drill hole KDD007. The next drill holes, **KRC008** to **KRC011** are all drilled as single holes per section that are spaced at 200m intervals progressing towards the east from KRC007 (Figures 6 to 10). Drill holes **KRC007** to **KRC009** have intersected the main mineralised zone in the oxide horizon. Both the drill holes **KRC010** and **KRC011** have intersected the zone in the top part of the fresh horizon. Drill hole KRC011 has not returned any significant intercept that could be calculated, the zone only showing low-grade gold results. All of these drill holes will have follow-up infill down dip and along strike drilling closing the drilling spacing. Significant intercepts include:

23m at 0.78 g/t Au from 24m, including 7m at 1.28 g/t Au (KRC007) 6m at 0.88 g/t Au from 52m (KRC007) 3m at 1.11 g/t Au from 68m (KRC007) 3m at 0.54 g/t Au from 1m (KRC008) 8m at 1.30 g/t Au from 15m (KRC008) 11m at 0.90 g/t Au from 28m (KRC008) 6m at 0.96 g/t Au from 14m (KRC009) 6m at 2.43 g/t Au from 23m (KRC009) 13m at 1.07 g/t Au from 56m (KRC010)



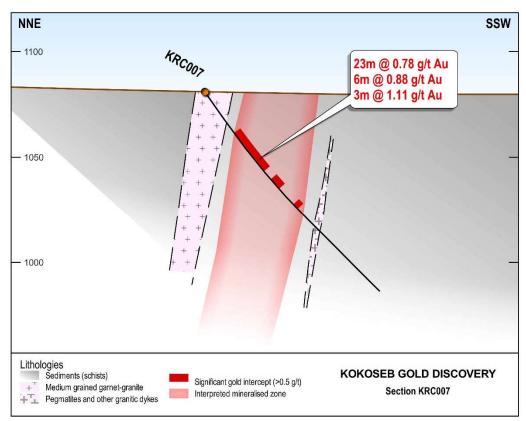



Figure 6 – Drill section KRC007 (intercepts in red, reported in this release)

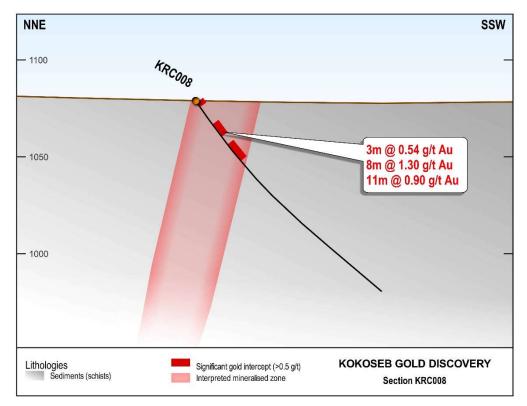
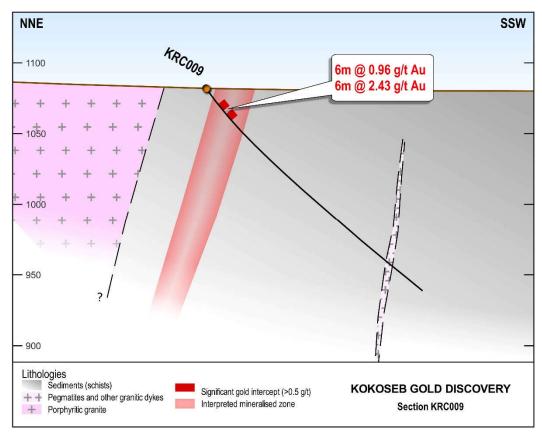




Figure 7 – Drill section KRC008 (intercepts in red, reported in this release)







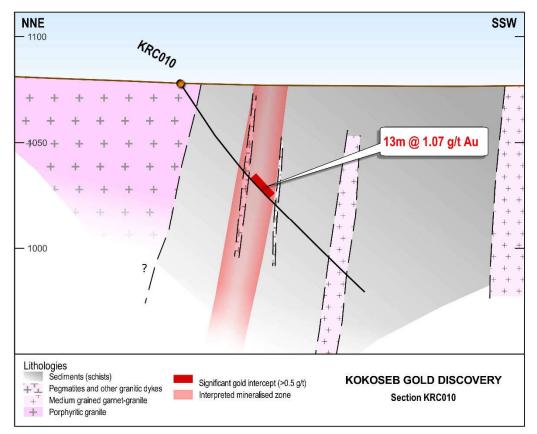
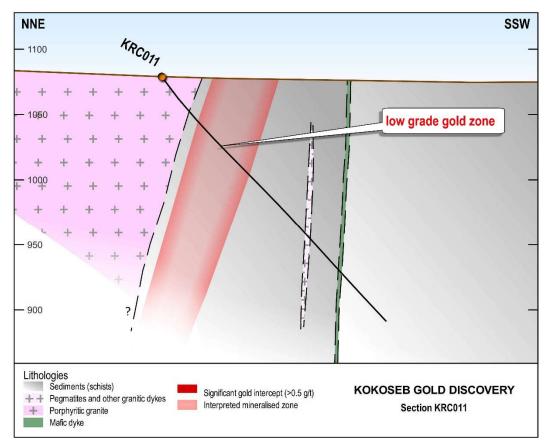




Figure 9 – Drill section KRC010 (intercepts in red, reported in this release)







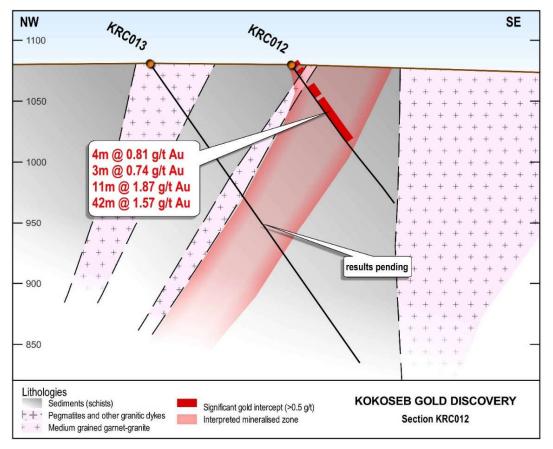



Figure 11 – Drill section KRC012 (intercepts in red, reported in this release)



**KRC012** is located on the western flank of the Kokoseb gold anomaly (Figure 12), 300m north from drill section KDD005-KDD006 that returned unconstrained intercepts of 43.0m at 1.14 g/t Au (KDD005, from surface) and 34.4 at 1.56 g/t Au (KDD006). The main mineralised zone in KRC012 was intersected as an unconstrained intercept of 58m at 1.52 g/t Au, which includes **11m at 1.87 g/t Au** and **42m at 1.57 g/t Au**. Geology on this part of the anomaly is positively complex and includes a swarm of granitic and pegmatitic intrusions within the sediment package. The drillhole includes the following intercepts:

4m at 0.81 g/t Au from surface 3m at 0.74 g/t Au from 7m 11m at 1.87 g/t Au from 23m 42m at 1.57 g/t Au from 37m

#### **RC drilling program progress**

At the end of September, 24 RC holes for 4,902 metres have been completed at Kokoseb, with assay results pending for 12 holes. The RC drill rig is progressing towards the south, drilling one to two holes per section, depending on the understanding of the geological context.

A second drill rig will be mobilised from January 2023, which will focus on infill drilling on the current sections, while the other rig continues to focus on along strike reconnaissance drilling.

This announcement has been authorised for release by the board of directors of Wia Gold Limited.

#### **Contact details**

Andrew Pardey Chairman +61 8 9381 5686

#### **Competent Person's Statement**

The information in this announcement that relates to exploration results at the Kokoseb Gold Anomaly located on the Company's Damaran Gold Project is based on information compiled by Company geologists and reviewed by Mr Pierrick Couderc, in his capacity as Exploration Manager of WiaGold Limited. Mr. Couderc is a member of both the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australiasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Couderc consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

#### **Reference to previous ASX Announcements**

In relation to previously reported exploration results included in this announcement, the dates of which are referenced, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements.

#### About Wia's Namibia Projects

Since 2018 the Company has successfully consolidated a very large land position on the Damaran belt in central Namibia (the **Damaran Project**), which is strategically located along key regional structures. The Damaran Project consists of 12 tenements with a total area of over 2,700km<sup>2</sup> held under joint venture with the state-owned mining company, Epangelo and a local Namibian group.

The location of the Company's Namibian Projects is shown in Figure 12.



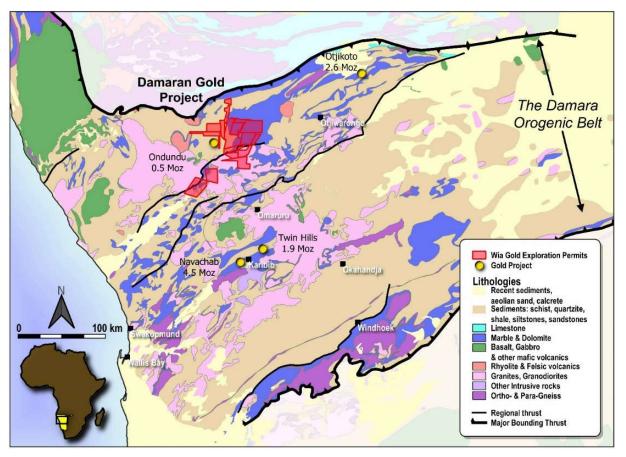



Figure 12 – Location of Wia's Namibia Projects

#### Appendix 1. Kokoseb – Location of RC drillholes

| Hole ID | Easting | Northing | RL   | Length (m) | Dip (°) | Azi (°) |
|---------|---------|----------|------|------------|---------|---------|
| KRC002  | 526324  | 7661011  | 1087 | 264        | -55     | 200     |
| KRC003  | 526404  | 7660938  | 1080 | 209        | -55     | 200     |
| KRC004  | 526482  | 7660865  | 1082 | 204        | -55     | 200     |
| KRC005  | 526501  | 7660914  | 1081 | 216        | -55     | 200     |
| KRC006  | 526591  | 7660862  | 1083 | 283        | -55     | 200     |
| KRC007  | 526793  | 7660838  | 1081 | 126        | -55     | 200     |
| KRC008  | 526971  | 7660736  | 1079 | 138        | -55     | 200     |
| KRC009  | 527155  | 7660673  | 1082 | 210        | -55     | 200     |
| KRC010  | 527361  | 7660637  | 1078 | 132        | -55     | 200     |
| KRC011  | 527543  | 7660561  | 1079 | 255        | -55     | 205     |
| KRC012  | 526325  | 7660558  | 1080 | 144        | -54.5   | 119     |



## Appendix 2. RC drill holes gold assays, using a cut-off grade of 0.2 g/t gold and max 2m consecutive internal waste material

| KRC002         99         100         0.307           KRC002         100         101         0.712           KRC002         102         103         0.428           KRC002         102         103         0.428           KRC002         103         104         0.012           KRC002         105         106         0.2           KRC002         107         108         0.295           KRC002         109         110         0.97           KRC002         110         111         0.173           KRC002         112         113         0.23           KRC002         113         114         0.189           KRC002         114         115         0.911           KRC002         115         116         0.271           KRC002         122         123         0.365           KRC002         122         123         0.365           KRC002         124         125         1.735           KRC002         126         127         0.196           KRC002         128         129         2.41           KRC003         53         54         0.293                                             | Hole ID | From (m) | To (m) | Gold g/t |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------|----------|
| KRC002         101         102         0.286           KRC002         103         104         0.012           KRC002         104         105         0.114           KRC002         106         107         0.027           KRC002         106         107         0.027           KRC002         108         109         0.046           KRC002         109         110         0.73           KRC002         111         111         0.173           KRC002         113         114         0.189           KRC002         114         115         0.271           KRC002         113         114         0.189           KRC002         122         123         0.365           KRC002         124         125         1.735           KRC002         126         127         0.196           KRC002         128         129         2.41           KRC003         52         53         0.201           KRC003         54         55         0.201           KRC003         55         56         0.365           KRC003         52         53         0.244                                               | KRC002  | 99       | 100    | 0.307    |
| KRC002         102         103         104         0.012           KRC002         103         104         0.012           KRC002         105         106         0.114           KRC002         105         106         0.2           KRC002         107         108         0.295           KRC002         109         110         0.97           KRC002         110         111         0.435           KRC002         111         112         0.435           KRC002         113         114         0.189           KRC002         115         116         0.271           KRC002         115         116         0.271           KRC002         122         123         0.365           KRC002         124         125         1.735           KRC002         126         127         0.196           KRC002         128         129         2.41           KRC003         52         53         0.201           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         55         56         0.365                                      |         |          |        |          |
| KRC002         103         104         0.012           KRC002         105         106         0.2           KRC002         106         107         0.027           KRC002         108         109         0.046           KRC002         109         110         0.97           KRC002         110         111         0.173           KRC002         110         111         0.173           KRC002         113         114         0.189           KRC002         113         114         0.189           KRC002         115         116         0.271           KRC002         122         123         0.365           KRC002         122         123         0.365           KRC002         125         126         0.562           KRC002         127         128         0.304           KRC002         127         128         0.304           KRC003         52         53         0.244           KRC003         54         55         0.201           KRC003         55         56         0.365           KRC003         57         58         1.17                                                 |         |          |        |          |
| KRC002         104         105         0.114           KRC002         105         106         0.2           KRC002         107         108         0.295           KRC002         109         110         0.97           KRC002         110         111         0.173           KRC002         111         112         0.435           KRC002         113         114         0.189           KRC002         113         114         0.189           KRC002         115         116         0.271           KRC002         115         116         0.271           KRC002         122         123         0.365           KRC002         124         125         1.735           KRC002         127         128         0.304           KRC002         127         128         0.304           KRC002         127         128         0.304           KRC003         52         53         0.244           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17                                                 |         |          |        |          |
| KRC002         106         107         108         0.025           KRC002         107         108         0.295           KRC002         109         110         0.73           KRC002         110         111         0.173           KRC002         111         1112         0.435           KRC002         113         114         0.189           KRC002         114         115         0.911           KRC002         115         116         0.271           KRC002         122         123         0.658           KRC002         122         123         0.658           KRC002         126         127         0.196           KRC002         128         129         2.41           KRC002         128         129         2.41           KRC003         52         53         0.201           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         56         57         0.186           KRC003         57         58         1.17 <th></th> <th></th> <th></th> <th></th> |         |          |        |          |
| KRC002         107         108         0.295           KRC002         108         109         0.046           KRC002         110         111         0.73           KRC002         111         1112         0.435           KRC002         111         1112         0.435           KRC002         113         114         0.23           KRC002         115         116         0.271           KRC002         122         123         0.365           KRC002         122         123         0.365           KRC002         124         125         1.735           KRC002         124         125         0.562           KRC002         126         127         0.304           KRC002         128         129         2.41           KRC003         52         53         0.244           KRC003         54         55         0.201           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         57         58         1.17           KRC003         57         58         1.17                                                     |         |          |        |          |
| KRC002         108         109         100         0.046           KRC002         109         110         0.73           KRC002         111         111         0.73           KRC002         111         111         0.73           KRC002         111         1113         0.23           KRC002         113         114         0.189           KRC002         114         115         0.911           KRC002         112         123         0.658           KRC002         122         123         0.365           KRC002         126         127         0.196           KRC002         126         127         0.196           KRC002         128         129         2.41           KRC003         52         53         0.244           KRC003         54         55         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         73         74         1.385                                             |         |          |        |          |
| KRC002         109         110         0.97           KRC002         110         111         0.173           KRC002         111         112         0.435           KRC002         113         114         0.189           KRC002         113         114         0.189           KRC002         115         116         0.271           KRC002         122         123         0.365           KRC002         124         125         1.735           KRC002         126         127         0.96           KRC002         127         128         0.304           KRC002         128         129         2.41           KRC003         53         54         0.293           KRC003         53         54         0.293           KRC003         55         56         0.201           KRC003         55         56         0.201           KRC003         57         58         1.17           KRC003         58         59         0.284           KRC003         61         62         0.392           KRC003         77         78         1.735                                                         |         |          |        |          |
| KRC002         110         111         0.173           KRC002         111         112         0.435           KRC002         113         114         0.189           KRC002         114         115         0.911           KRC002         114         115         0.911           KRC002         115         116         0.271           KRC002         122         123         0.365           KRC002         122         123         0.365           KRC002         122         123         0.365           KRC002         126         127         0.196           KRC002         127         128         0.304           KRC002         128         129         2.41           KRC003         52         53         0.244           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         59         60         0.08           KRC003         72         73         5.97                                                        |         |          |        |          |
| KRC002         111         112         0.435           KRC002         112         113         0.23           KRC002         114         115         0.911           KRC002         115         116         0.271           KRC002         112         123         0.365           KRC002         122         123         0.365           KRC002         124         125         1.735           KRC002         124         125         1.735           KRC002         126         127         0.196           KRC002         128         129         2.41           KRC002         128         129         2.41           KRC003         52         53         0.244           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         117           KRC003         59         60         0.08           KRC003         57         58         0.214           KRC003         61         62         0.392                                                           |         |          |        |          |
| KRC002         113         114         0.189           KRC002         115         116         0.271           KRC002         115         116         0.271           KRC002         122         123         0.365           KRC002         122         123         0.365           KRC002         123         124         0.558           KRC002         126         127         0.196           KRC002         126         127         0.196           KRC002         128         129         2.41           KRC002         129         130         0.11           KRC003         52         53         0.244           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         59         60         0.08           KRC003         59         60         0.08           KRC003         61         62         0.332           KRC003         72         73         5.97           KRC003         75         76         0.579                                                            |         |          |        |          |
| KRC002         114         115         0.911           KRC002         115         116         0.271           KRC002         112         123         0.365           KRC002         122         123         0.365           KRC002         124         125         1.735           KRC002         124         125         1.735           KRC002         126         127         0.196           KRC002         127         128         0.304           KRC002         128         129         2.41           KRC003         52         53         0.244           KRC003         54         55         0.201           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         59         60         0.08           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         72         73         5.97           KRC03         75         76         0.579           KRC03         75         76         0.579           <                                                   |         |          |        |          |
| KRC002         115         116         0.271           KRC002         112         123         0.365           KRC002         122         123         0.365           KRC002         124         125         1.735           KRC002         124         125         1.735           KRC002         126         0.562           KRC002         127         128         0.304           KRC002         128         129         2.41           KRC002         128         129         2.41           KRC003         52         53         0.244           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         59         60         0.305           KRC003         61         62         0.392           KRC003         72         73         5.97           KRC003         75         76         0.579           KRC003                                                         |         |          |        |          |
| KRC002         116         117         0.478           KRC002         122         123         0.365           KRC002         123         124         0.558           KRC002         122         125         1.735           KRC002         126         127         0.196           KRC002         127         128         0.304           KRC002         127         128         0.304           KRC002         129         130         0.11           KRC003         52         53         0.241           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         58         59         0.284           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         61         62         0.321           KRC003         72         73         5.97           KRC03         74         7.5         0.412           KRC03         77         78         0.579           <                                                   |         |          |        |          |
| KRC002         122         123         0.365           KRC002         123         124         0.658           KRC002         125         126         0.562           KRC002         126         127         0.196           KRC002         127         128         0.304           KRC002         129         130         0.11           KRC002         129         130         0.11           KRC003         52         53         0.244           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         61         62         0.31           KRC003         73         74         1.385           KRC003         75         76         0.579           KRC003         77         78         1.735           KRC003         78         79         0.501           K                                                       |         |          |        |          |
| KRC002         123         124         0.658           KRC002         124         125         126         0.562           KRC002         126         127         0.196           KRC002         127         128         0.304           KRC002         127         128         0.304           KRC002         129         130         0.11           KRC003         52         53         0.244           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         62         63         0.524           KRC003         72         73         597           KRC003         74         1.385         KRC003         75           KRC003         75         76         0.579           KRC003         78         79         0.501           KRC003         78         79 <td< th=""><th></th><th></th><th></th><th></th></td<> |         |          |        |          |
| KRC002         125         126         0.562           KRC002         126         127         0.196           KRC002         127         128         0.304           KRC002         129         130         0.11           KRC002         129         130         0.11           KRC003         52         53         0.244           KRC003         54         55         0.201           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         62         63         0.524           KRC003         72         73         5.97           KRC003         74         75         0.412           KRC003         77         78         1.735           KRC003         77         78         1.735           KRC003         79         80         0.559           KRC00                                                       |         |          |        |          |
| KRC002         126         127         0.196           KRC002         127         128         0.304           KRC002         128         129         2.41           KRC002         130         131         1.76           KRC003         52         53         0.244           KRC003         52         53         0.244           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         56         57         0.186           KRC003         58         59         0.284           KRC003         59         60         0.08           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         63         64         0.231           KRC003         73         74         1.385           KRC003         75         76         0.579           KRC003         77         78         1.735           KRC003         77         78         1.735           KRC003         79         80         0.559           KRC00                                                       |         |          |        |          |
| KRC002         127         128         0.304           KRC002         128         129         2.41           KRC002         129         130         0.11           KRC003         52         53         0.244           KRC003         52         53         0.244           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         59         600         0.08           KRC003         60         61         0.058           KRC003         61         62         0.392           KRC003         61         62         0.311           KRC003         72         73         5.97           KRC003         74         75         0.412           KRC003         75         76         0.579           KRC003         78         79         0.501           KRC003         78         79         0.501           KRC003         79         80         0.559           KRC003         81         84         3.45           KRC003 </th <th></th> <th></th> <th></th> <th></th>            |         |          |        |          |
| KRC002         128         129         2.41           KRC002         129         130         0.11           KRC003         52         53         0.244           KRC003         52         53         0.244           KRC003         54         55         0.201           KRC003         54         55         0.201           KRC003         55         56         0.3655           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         61         62         0.392           KRC003         63         64         0.231           KRC003         73         74         1.385           KRC003         75         76         0.579           KRC003         75         76         0.579           KRC003         77         78         1.735           KRC003         79         80         0.559           KRC003         81         82         2.66           KRC003         84         85         0.208           KRC003 <th></th> <th></th> <th></th> <th></th>                  |         |          |        |          |
| KRC002         129         130         0.11           KRC003         52         53         0.244           KRC003         53         54         0.293           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         60         61         0.058           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         72         73         5.97           KRC003         74         75         0.412           KRC003         75         76         0.579           KRC003         78         79         0.501           KRC003         78         79         0.501           KRC003         79         80         0.559           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003                                                             |         |          |        |          |
| KRC002         130         131         1.76           KRC003         52         53         0.244           KRC003         53         54         0.293           KRC003         55         56         0.365           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         60         61         0.058           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         72         73         5.97           KRC003         73         74         1.385           KRC003         74         75         0.412           KRC003         77         78         1.735           KRC003         77         78         1.735           KRC003         79         80         0.559           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003                                                             |         |          |        |          |
| KRC003         52         53         0.244           KRC003         53         54         0.293           KRC003         54         55         0.201           KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         61         62         0.392           KRC003         63         64         0.231           KRC003         72         73         5.97           KRC003         74         75         0.412           KRC003         76         77         1.135           KRC003         76         77         1.155           KRC003         78         79         0.501           KRC003         78         79         0.501           KRC003         81         82         2.66           KRC003         83         84         3.45           KRC003         85         86         1.12           KRC003                                                                 |         |          |        |          |
| KRC003         54         55         0.201           KRC003         55         56         0.365           KRC003         56         57         0.186           KRC003         58         59         0.284           KRC003         59         60         0.08           KRC003         60         61         0.058           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         72         73         5.97           KRC003         72         73         5.97           KRC003         74         75         0.412           KRC003         74         75         0.412           KRC003         76         77         1.155           KRC003         78         79         0.501           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         85         86         1.12           KRC003                                                               | KRC003  |          |        |          |
| KRC003         55         56         0.365           KRC003         57         58         1.17           KRC003         57         58         1.17           KRC003         59         60         0.08           KRC003         60         61         0.058           KRC003         61         62         0.392           KRC003         61         62         0.392           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         72         73         5.97           KRC003         74         1.385           KRC003         74         75         0.412           KRC003         75         76         0.579           KRC003         78         79         0.501           KRC003         78         79         0.501           KRC003         81         82         2.66           KRC003         81         82         2.66           KRC003         85         86         1.12           KRC003         87         88         1.075           KRC003         89                                                                 |         |          |        |          |
| KRC003         56         57         0.186           KRC003         57         58         1.17           KRC003         58         59         0.284           KRC003         60         61         0.058           KRC003         61         62         0.392           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         72         73         5.97           KRC003         72         73         5.97           KRC003         74         75         0.412           KRC003         76         77         1.155           KRC003         76         77         1.155           KRC003         78         79         0.501           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         85         86         1.12           KRC003         87         88         0.208           KRC003                                                               |         |          |        |          |
| KRC003         57         58         1.17           KRC003         58         59         0.284           KRC003         60         61         0.058           KRC003         61         62         0.392           KRC003         61         62         0.392           KRC003         63         64         0.231           KRC003         72         73         5.97           KRC003         73         74         1.385           KRC003         74         75         0.412           KRC003         76         77         0.579           KRC003         76         77         1.155           KRC003         78         79         0.501           KRC003         78         79         0.501           KRC003         81         82         2.66           KRC003         81         82         2.66           KRC003         84         3.45         KRC003           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         87         88         1.075           KRC003 <th></th> <th></th> <th></th> <th></th>                   |         |          |        |          |
| KRC003         58         59         0.284           KRC003         59         60         0.08           KRC003         61         62         0.392           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         62         63         0.524           KRC003         72         73         5.97           KRC003         74         1.385           KRC003         74         75         0.412           KRC003         74         75         0.412           KRC003         75         76         0.579           KRC003         77         78         1.735           KRC003         79         80         0.559           KRC003         79         80         0.559           KRC003         81         82         2.66           KRC003         81         82         0.208           KRC003         84         35         0.208           KRC003         84         85         0.208           KRC003         87         88         1.075           KRC003         91                                                             |         |          |        |          |
| KRC003         60         61         0.058           KRC003         61         62         0.392           KRC003         63         64         0.231           KRC003         72         73         5.97           KRC003         72         73         5.97           KRC003         72         73         0.579           KRC003         74         75         0.412           KRC003         76         77         1.155           KRC003         76         77         1.155           KRC003         78         79         0.501           KRC003         78         79         0.501           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         87         88         1.075           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003                                                                  |         |          |        |          |
| KRC003         61         62         0.392           KRC003         62         63         0.524           KRC003         72         73         5.97           KRC003         72         73         5.97           KRC003         74         1.385           KRC003         74         75         0.412           KRC003         75         76         0.579           KRC003         77         78         1.735           KRC003         78         79         0.501           KRC003         79         80         0.559           KRC003         81         82         2.66           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         87         88         1.075           KRC03         90         0.936         KRC03         91         9.3           KRC03         91         92         5.3         KRC003                                                      |         |          |        |          |
| KRC003         62         63         0.524           KRC003         63         64         0.231           KRC003         72         73         5.97           KRC003         73         74         1.385           KRC003         74         75         0.412           KRC003         75         76         0.579           KRC003         76         77         1.155           KRC003         77         78         1.735           KRC003         79         80         0.501           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         81         82         2.66           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003                                                                 |         |          |        |          |
| KRC003         63         64         0.231           KRC003         72         73         5.97           KRC003         73         74         1.385           KRC003         74         75         0.412           KRC003         75         76         0.579           KRC003         76         77         1.155           KRC003         77         78         1.735           KRC003         79         80         0.559           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         82         83         0.717           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         89         90         0.336           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003                                                               |         |          |        |          |
| KRC003         72         73         5.97           KRC003         73         74         1.385           KRC003         74         75         0.412           KRC003         75         76         0.579           KRC003         76         77         1.155           KRC003         77         78         1.735           KRC003         78         79         0.501           KRC003         78         79         0.501           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         81         82         2.66           KRC003         83         84         3.45           KRC003         85         86         1.12           KRC003         85         86         1.12           KRC003         87         88         1.0752           KRC003         87         88         1.0752           KRC003         99         0         0.936           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003                                                                   |         |          |        |          |
| KRC003         74         75         0.412           KRC003         75         76         0.579           KRC003         76         77         1.155           KRC003         77         78         1.735           KRC003         77         78         1.735           KRC003         79         80         0.559           KRC003         80         81         1.065           KRC003         82         83         0.717           KRC003         82         83         0.717           KRC003         84         82         2.66           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         87         88         1.075           KRC03         89         90         0.936           KRC03         91         92         5.3           KRC03         91         92         5.3           KRC03         92         93         5.08           KRC03         95         96         1.56           KRC03 <td< th=""><th></th><th></th><th></th><th></th></td<>                  |         |          |        |          |
| KRC003         75         76         0.579           KRC003         76         77         1.155           KRC003         77         78         1.735           KRC003         78         79         0.501           KRC003         79         80         0.559           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         89         90         0.936           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003                                                                   | KRC003  | 73       |        | 1.385    |
| KRC003         76         77         1.155           KRC003         77         78         1.735           KRC003         78         79         0.501           KRC003         79         80         0.559           KRC003         80         81         1.055           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         82         83         0.717           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         85         86         1.075           KRC003         87         88         1.075           KRC003         89         90         0.936           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         95         96         1.56           KRC003         95         96         1.51           KRC003                                                                   |         |          |        |          |
| KRC003         77         78         1.735           KRC003         78         79         0.501           KRC003         79         80         0.559           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         82         83         0.717           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         90         91         1.35           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         91         92         5.4           KRC003         91         92         0.34           KRC003         95         96         1.56           KRC003                                                                    |         |          |        |          |
| KRC003         78         79         0.501           KRC003         79         80         0.559           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         82         83         0.717           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         87         88         1.075           KRC003         87         88         1.0752           KRC003         89         90         0.336           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         92         93         5.04           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         97         98         0.668           KRC003                                                                   |         |          |        |          |
| KRC003         79         80         0.559           KRC003         80         81         1.065           KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         82         83         0.717           KRC003         82         83         0.717           KRC003         84         84         3.45           KRC003         84         84         3.45           KRC003         85         86         1.12           KRC003         87         88         10.75           KRC003         87         88         1.075           KRC003         89         90         0.936           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         94         95         0.34           KRC003         94         95         0.34           KRC003         97         98         0.668           KRC003         97         98         0.668           KRC003                                                                     |         |          |        |          |
| KRC003         81         82         2.66           KRC003         82         83         0.717           KRC003         83         84         3.45           KRC003         84         85         0.208           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         85         86         1.27           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         89         90         0.936           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         95         96         1.56           KRC003         97         98         0.668           KRC003         99         100         0.217           KRC003         <                                                            |         | 79       | 80     | 0.559    |
| KRC003         82         83         0.717           KRC003         83         84         3.45           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         85         86         1.72           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         89         90         0.936           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         94         2.4         KRC003         95         0.611           KRC003         95         96         1.56         KRC003         97         98         0.668           KRC003         97         98         0.668         KRC003         103         104         0.454           KRC003                                            |         |          |        |          |
| KRC003         83         84         3.45           KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         85         86         1.12           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         88         89         0.732           KRC003         89         90         0.936           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         93         94         2.4           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         97         98         0.668           KRC003         97         98         0.668           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         105         106         0.517           KRC003         105         106         0.517           KRC003                                                              |         |          |        |          |
| KRC003         84         85         0.208           KRC003         85         86         1.12           KRC003         86         87         3.7           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         88         89         0.732           KRC003         89         90         0.936           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         92         93         5.04           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         97         98         0.668           KRC003         97         98         0.668           KRC003         99         100         0.217           KRC003         104         105         0.454           KRC003         104         105         0.454           KRC003         106         107         0.258           KRC003                                                              |         |          |        |          |
| KRC003         85         86         1.12           KRC003         86         87         3.7           KRC003         87         88         1.075           KRC003         87         88         1.075           KRC003         88         89         0.732           KRC003         89         90         0.936           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         94         95         0.34           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         97         98         0.668           KRC003         97         98         0.668           KRC003         99         100         0.217           KRC03         103         104         0.406           KRC03         104         105         0.454           KRC03         106         107         0.258           KRC03                                                                   |         |          |        |          |
| KRC003         87         88         1.075           KRC003         88         89         0.732           KRC003         89         90         0.936           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         95         96         1.56           KRC003         97         98         0.668           KRC003         98         99         0.79           KRC003         103         104         0.406           KRC003         103         104         0.406           KRC003         105         106         0.517           KRC003         105         106         0.517           KRC003         107         108         0.167           KRC003                                                            | KRC003  | 85       |        | 1.12     |
| KRC003         88         89         0.732           KRC003         89         90         0.936           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         93         94         2.4           KRC003         95         96         1.56           KRC003         95         96         1.56           KRC003         97         98         0.668           KRC003         99         0.79         KRC03           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         103         104         0.454           KRC003         105         106         0.517           KRC003         107         108         0.167           KRC003         108         109         1.515           KRC003<                                                       |         |          |        |          |
| KRC003         89         90         0.936           KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         93         94         2.4           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         95         96         1.56           KRC003         97         98         0.668           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         103         104         0.406           KRC003         105         106         0.517           KRC003         105         106         0.517           KRC003         107         108         0.167           KRC003         109         1.515         54           KRC003         109         110         2.69           KRC003<                                                       |         |          |        |          |
| KRC003         90         91         1.35           KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         93         94         2.4           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         95         96         1.56           KRC003         97         98         0.668           KRC003         97         98         0.668           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         104         105         0.454           KRC003         106         107         0.258           KRC003         107         108         0.167           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                             |         |          |        |          |
| KRC003         91         92         5.3           KRC003         92         93         5.08           KRC003         92         93         5.08           KRC003         93         94         2.4           KRC003         94         95         0.34           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         96         97         0.611           KRC003         97         98         0.668           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         104         105         0.454           KRC003         106         107         0.258           KRC003         107         108         0.167           KRC003         107         108         0.167           KRC03         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                           |         |          |        |          |
| KRC003         93         94         2.4           KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         95         96         1.56           KRC003         96         97         0.611           KRC003         97         98         0.668           KRC003         98         99         0.79           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         105         106         0.517           KRC003         105         106         0.517           KRC003         107         108         0.167           KRC003         107         108         0.167           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                 | KRC003  | 91       | 92     | 5.3      |
| KRC003         94         95         0.34           KRC003         95         96         1.56           KRC003         96         97         0.611           KRC003         97         98         0.668           KRC003         97         98         0.679           KRC003         98         99         0.79           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         103         104         0.454           KRC003         105         106         0.517           KRC003         107         108         0.167           KRC003         109         1.515         KRC003         109           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                    |         |          |        |          |
| KRC003         95         96         1.56           KRC003         96         97         0.611           KRC003         97         98         0.668           KRC003         97         98         0.79           KRC003         98         99         0.79           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         103         104         0.454           KRC003         105         106         0.517           KRC003         105         106         0.517           KRC003         107         108         0.167           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                        |         |          |        |          |
| KRC003         96         97         0.611           KRC003         97         98         0.668           KRC003         98         99         0.79           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         104         105         0.454           KRC003         106         107         0.258           KRC003         106         107         0.258           KRC003         108         109         1.515           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |        |          |
| KRC003         97         98         0.668           KRC003         98         99         0.79           KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         104         105         0.454           KRC003         106         107         0.258           KRC003         106         107         0.258           KRC003         107         108         0.167           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |        |          |
| KRC003         99         100         0.217           KRC003         103         104         0.406           KRC003         104         105         0.454           KRC003         105         106         0.517           KRC003         106         107         0.258           KRC003         107         108         0.167           KRC003         109         1.515         KRC003         109           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 97       | 98     |          |
| KRC003         103         104         0.406           KRC003         104         105         0.454           KRC003         105         106         0.517           KRC003         106         107         0.258           KRC003         107         108         0.167           KRC003         108         109         1.515           KRC003         109         110         2.69           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |          |        |          |
| KRC003         104         105         0.454           KRC003         105         106         0.517           KRC003         106         107         0.258           KRC003         107         108         0.167           KRC003         107         108         0.167           KRC003         109         1.515         5           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |        |          |
| KRC003         105         106         0.517           KRC003         106         107         0.258           KRC003         107         108         0.167           KRC003         108         109         1.515           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          |        |          |
| KRC003         106         107         0.258           KRC003         107         108         0.167           KRC003         108         109         1.515           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |          |        |          |
| KRC003         108         109         1.515           KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KRC003  | 106      |        | 0.258    |
| KRC003         109         110         2.69           KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          |        |          |
| KRC003         110         111         2.85           KRC003         111         112         1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |        |          |
| KRC003 111 112 1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |          |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KRC003  | 115      | 116    | 2.1      |
| KRC003 116 117 1.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KRC003  | 116      | 117    | 1.175    |

| Hole ID                    | From (m)          | To (m)            | Gold g/t       |
|----------------------------|-------------------|-------------------|----------------|
| KRC003                     | 117               | 118               | 1.595          |
| KRC003                     | 118               | 119               | 0.59           |
| KRC003                     | 119               | 120               | 0.674          |
| KRC003                     | 120               | 121               | 0.199          |
| KRC003                     | 121               | 122<br>123        | 0.533          |
| KRC003<br>KRC003           | 122<br>123        | 123               | 0.025<br>0.362 |
| KRC003                     | 125               | 124               | 0.302          |
| KRC003                     | 124               | 12.5              | 0.443          |
| KRC003                     | 126               | 127               | 0.317          |
| KRC003                     | 127               | 128               | 0.025          |
| KRC003                     | 128               | 129               | 0.618          |
| KRC003                     | 129               | 130               | 0.473          |
| KRC003                     | 130               | 131               | 0.38           |
| KRC003                     | 131               | 132               | 0.278          |
| KRC003<br>KRC003           | 132<br>133        | <u>133</u><br>134 | 0.179<br>0.212 |
| KRC003                     | 135               | 135               | 0.279          |
| KRC003                     | 134               | 135               | 0.399          |
| KRC003                     | 136               | 137               | 0.246          |
| KRC003                     | 137               | 138               | 0.516          |
| KRC003                     | 157               | 158               | 0.293          |
| KRC003                     | 158               | 159               | 3.67           |
| KRC003                     | 159               | 160               | 0.995          |
| KRC003                     | 160               | 161               | 3.46           |
| KRC003                     | 161               | 162               | 0.156          |
| KRC003                     | 162               | 163               | 0.65           |
| KRC003<br>KRC003           | 163<br>164        | 164<br>165        | 0.617<br>0.312 |
| KRC003                     | 164               | 166               | 0.312          |
| KRC003                     | 165               | 167               | 0.289          |
| KRC003                     | 167               | 168               | 0.386          |
| KRC003                     | 168               | 169               | 0.207          |
| KRC003                     | 169               | 170               | 2.99           |
| KRC003                     | 170               | 171               | 2.66           |
| KRC003                     | 171               | 172               | 2.15           |
| KRC003                     | 172               | 173               | 2.92           |
| KRC003                     | 173               | 174               | 2.19           |
| KRC003<br>KRC003           | <u>174</u><br>175 | <u>175</u><br>176 | 0.79<br>0.667  |
| KRC003                     | 175               | 176               | 0.867          |
| KRC003                     | 170               | 177               | 0.562          |
| KRC003                     | 178               | 179               | 0.629          |
| KRC003                     | 179               | 180               | 0.401          |
| KRC003                     | 180               | 181               | 0.098          |
| KRC003                     | 181               | 182               | 0.213          |
| KRC003                     | 182               | 183               | 0.009          |
| KRC003                     | 183               | 184               | 0.247          |
| KRC003                     | 184               | 185               | 0.543          |
| KRC003<br>KRC003           | 185<br>186        | 186<br>187        | 0.127          |
| KRC003                     | 185               | 187               | 0.926          |
| KRC003                     | 188               | 189               | 0.39           |
| KRC003                     | 189               | 190               | 0.43           |
| KRC003                     | 190               | 191               | 0.067          |
| KRC003                     | 191               | 192               | 0.376          |
| KRC003                     | 192               | 193               | 0.327          |
| KRC004                     | 15                | 16                | 0.206          |
| KRC004<br>KRC004           | <u>16</u><br>17   | 17<br>18          | 0.251<br>0.15  |
| KRC004<br>KRC004           | 17                | 18                | 0.15           |
| KRC004                     | 18                | 20                | 0.335          |
| KRC004                     | 20                | 20                | 0.134          |
| KRC004                     | 21                | 22                | 0.237          |
| KRC004                     | 22                | 23                | 1.075          |
| KRC004                     | 23                | 24                | 0.366          |
| KRC004                     | 24                | 25                | 0.267          |
| KRC004                     | 25                | 26                | 0.352          |
| KRC004                     | 26                | 27                | 0.374          |
| KRC004                     | 27                | 28                | 0.651          |
| KRC004                     | 28<br>29          | <u>29</u><br>30   | 0.783<br>1.195 |
|                            |                   | 30                | 0.523          |
| KRC004                     |                   | 21                | 0.525          |
| KRC004                     | 30<br>31          | 22                | 1 1 2          |
| KRC004<br>KRC004           | 31                | <u>32</u><br>33   | 1.13<br>0.552  |
| KRC004<br>KRC004<br>KRC004 | 31<br>32          | 33                | 0.552          |
| KRC004<br>KRC004           | 31                |                   |                |



| Hole ID          | From (m)        | To (m)          | Gold g/t             |
|------------------|-----------------|-----------------|----------------------|
| KRC004           | 36              | 37              | 1.49                 |
| KRC004           | 37              | 38              | 1.095                |
| KRC004<br>KRC004 | <u>38</u><br>39 | <u>39</u><br>40 | 0.739<br>1.785       |
| KRC004<br>KRC004 | 40              | 40              | 0.667                |
| KRC004           | 40              | 42              | 1.555                |
| KRC004           | 42              | 43              | 0.2                  |
| KRC004           | 43              | 44              | 1.345                |
| KRC004           | 44              | 45              | 1.49                 |
| KRC004           | 45              | 46              | 0.557                |
| KRC004<br>KRC004 | <u>46</u><br>47 | 47<br>48        | <u> </u>             |
| KRC004<br>KRC004 | 47              | 48              | 1.545                |
| KRC004           | 49              | 50              | 0.771                |
| KRC004           | 50              | 51              | 0.404                |
| KRC004           | 51              | 52              | 0.473                |
| KRC004           | 52              | 53              | 0.498                |
| KRC004           | 53              | 54              | 1.19                 |
| KRC004<br>KRC004 | 54<br>55        | 55<br>56        | 2.16                 |
| KRC004<br>KRC004 | 56              | 57              | 0.429<br>0.347       |
| KRC004           | 57              | 58              | 0.77                 |
| KRC004           | 58              | 59              | 0.471                |
| KRC004           | 59              | 60              | 0.39                 |
| KRC004           | 60              | 61              | 0.209                |
| KRC004           | 68              | 69              | 0.242                |
| KRC004           | 69<br>70        | 70<br>71        | 0.251                |
| KRC004<br>KRC004 | 70<br>71        | 71              | 0.577<br>2.21        |
| KRC004           | 72              | 73              | 0.502                |
| KRC004           | 73              | 73<br>74        | 0.995                |
| KRC004           | 74              | 75              | 0.59                 |
| KRC004           | 147             | 148             | 0.48                 |
| KRC004           | 148             | 149             | 0.348                |
| KRC004<br>KRC004 | 149<br>150      | 150<br>151      | 0.073<br>0.051       |
| KRC004<br>KRC004 | 150             | 151             | 0.309                |
| KRC005           | 61              | 62              | 0.216                |
| KRC005           | 62              | 63              | 0.154                |
| KRC005           | 63              | 64              | 0.119                |
| KRC005           | 64              | 65              | 0.461                |
| KRC005           | 65              | 66              | 0.44                 |
| KRC005<br>KRC005 | 66<br>67        | 67<br>68        | 0.292<br>0.971       |
| KRC005           | 68              | 69              | 0.241                |
| KRC005           | 69              | 70              | 1.19                 |
| KRC005           | 70              | 71              | 0.355                |
| KRC005           | 71              | 72              | 0.52                 |
| KRC005           | 72              | 73              | 0.973                |
| KRC005<br>KRC005 | 73<br>74        | 74 75           | 1.54                 |
| KRC005           | 75              | 76              | 1.375                |
| KRC005           | 76              | 77              | 0.906                |
| KRC005           | 77              | 78              | 1.88                 |
| KRC005           | 78              | 79              | 1.03                 |
| KRC005           | 79              | 80              | 1.795                |
| KRC005<br>KRC005 | 80<br>81        | 81<br>82        | <u>1.45</u><br>1.455 |
| KRC005           | 82              | 83              | 1.945                |
| KRC005           | 83              | 84              | 1.62                 |
| KRC005           | 84              | 85              | 7.86                 |
| KRC005           | 85              | 86              | 0.687                |
| KRC005           | 86              | 87              | 0.244                |
| KRC005<br>KRC005 | 87<br>88        | <u>88</u><br>89 | <u>0.531</u><br>0.77 |
| KRC005           | 88<br>89        | 90              | 1.365                |
| KRC005           | 90              | 90              | 0.569                |
| KRC005           | 91              | 92              | 2.5                  |
| KRC005           | 92              | 93              | 1.875                |
| KRC005           | 93              | 94              | 0.65                 |
| KRC005           | 94              | 95              | 0.216                |
| KRC005           | 95              | 96              | 1.25                 |
| KRC005<br>KRC005 | 96<br>97        | 97<br>98        | 0.282<br>0.379       |
| KRC005           | 98              | 99              | 0.834                |
| KRC005           | 99              | 100             | 0.604                |
| KRC005           | 100             | 101             | 0.449                |
| KRC005           | 101             | 102             | 0.479                |
| KRC005           | 102             | 103             | 0.779                |
| KRC005           | 103             | 104             | 0.296                |

| Hole ID                    | From (m)       | To (m)           | Gold g/t       |
|----------------------------|----------------|------------------|----------------|
| KRC006                     | 37             | 38               | 0.676          |
| KRC006                     | 38             | 39               | 0.399          |
| KRC006                     | 39             | 40               | 0.229          |
| KRC006<br>KRC006           | 40<br>41       | <u>41</u><br>42  | 0.192<br>0.19  |
| KRC006                     | 41             | 42               | 0.225          |
| KRC006                     | 43             | 44               | 0.064          |
| KRC006                     | 44             | 45               | 0.259          |
| KRC006                     | 45             | 46               | 0.527          |
| KRC006                     | 46             | 47               | 0.858          |
| KRC006                     | 47             | 48               | 1.14           |
| KRC006<br>KRC006           | 48<br>49       | <u>49</u><br>50  | 0.719<br>0.101 |
| KRC006                     | 50             | 51               | 0.179          |
| KRC006                     | 51             | 52               | 0.619          |
| KRC006                     | 52             | 53               | 2.18           |
| KRC006                     | 53             | 54               | 0.335          |
| KRC006                     | 54             | 55               | 1.055          |
| KRC006                     | 55             | 56               | 0.713          |
| KRC006                     | 56             | 57               | 0.391          |
| KRC006<br>KRC006           | 57<br>58       | <u>58</u><br>59  | 0.168<br>0.756 |
| KRC006                     | 59             | 60               | 0.565          |
| KRC006                     | 60             | 61               | 1.505          |
| KRC006                     | 61             | 62               | 0.523          |
| KRC006                     | 62             | 63               | 4.05           |
| KRC006                     | 63             | 64               | 0.577          |
| KRC006                     | 64             | 65               | 0.511          |
| KRC006<br>KRC006           | 65<br>66       | 66<br>67         | 0.657<br>0.541 |
| KRC006                     | 67             | 68               | 0.341          |
| KRC006                     | 68             | 69               | 0.409          |
| KRC006                     | 69             | 70               | 1.04           |
| KRC006                     | 70             | 71               | 0.118          |
| KRC006                     | 71             | 72               | 0.359          |
| KRC006                     | 72             | 73               | 0.366          |
| KRC006                     | 73             | 74               | 0.259          |
| KRC006<br>KRC006           | 74<br>75       | 75<br>76         | 0.065<br>0.389 |
| KRC006                     | 75             | 76               | 0.389          |
| KRC006                     | 70             | 78               | 0.557          |
| KRC006                     | 78             | 79               | 0.128          |
| KRC006                     | 79             | 80               | 0.28           |
| KRC006                     | 224            | 225              | 0.652          |
| KRC006                     | 225            | 226              | 0.899          |
| KRC006                     | 226            | 227              | 0.121          |
| KRC006<br>KRC006           | 227<br>232     | 228<br>233       | 0.238<br>0.638 |
| KRC006                     | 232            | 233              | 0.038          |
| KRC006                     | 234            | 235              | 0.949          |
| KRC006                     | 235            | 236              | 0.387          |
| KRC006                     | 236            | 237              | 0.256          |
| KRC006                     | 237            | 238              | 0.226          |
| KRC006                     | 238            | 239              | 0.21           |
| KRC006<br>KRC006           | 239<br>240     | 240<br>241       | 0.24           |
| KRC006                     | 240            | 241              | 1.58           |
| KRC006                     | 241            | 242              | 0.8            |
| KRC006                     | 243            | 244              | 0.312          |
| KRC006                     | 244            | 245              | 0.241          |
| KRC006                     | 245            | 246              | 0.157          |
| KRC006                     | 246            | 247              | 0.241          |
| KRC006<br>KRC006           | 247<br>251     | 248<br>252       | 0.478<br>0.45  |
| KRC006<br>KRC006           | 251            | 252              | 0.45           |
| KRC006                     | 253            | 253              | 1.345          |
| KRC006                     | 254            | 255              | 1.235          |
| KRC006                     | 255            | 256              | 0.185          |
| KRC006                     | 256            | 257              | 0.036          |
| KRC006                     | 257            | 258              | 0.256          |
| KRC006                     | 258            | 259              | 0.236          |
| KRC006                     | 259            | 260              | 0.354          |
| KRC006                     | 260<br>24      | <u>261</u><br>25 | 0.444<br>0.571 |
| KRC007                     |                | 25               | 1.66           |
| KRC007<br>KRC007           | 25             |                  |                |
| KRC007<br>KRC007<br>KRC007 | 25<br>26       | 27               | 0.561          |
| KRC007                     |                |                  | 0.561<br>0.301 |
| KRC007<br>KRC007           | 26<br>27<br>28 | 27<br>28<br>29   |                |
| KRC007<br>KRC007<br>KRC007 | 26<br>27       | 27<br>28         | 0.301          |



| Hole ID                    | From (m)        | To (m)          | Gold g/t       |
|----------------------------|-----------------|-----------------|----------------|
| KRC007                     | 31              | 32              | 0.203          |
| KRC007                     | 32              | 33              | 0.603          |
| KRC007                     | 33              | 34              | 0.273          |
| KRC007<br>KRC007           | 34<br>35        | 35<br>36        | 0.308<br>0.719 |
| KRC007                     | 35              | 37              | 0.939          |
| KRC007                     | 37              | 38              | 2.79           |
| KRC007                     | 38              | 39              | 1.895          |
| KRC007                     | 39              | 40              | 0.374          |
| KRC007                     | 40              | 41              | 0.194          |
| KRC007                     | 41              | 42              | 0.59           |
| KRC007                     | 42              | 43              | 2.04           |
| KRC007                     | 43              | 44              | 1.105          |
| KRC007<br>KRC007           | 44<br>45        | <u>45</u><br>46 | 0.309<br>0.875 |
| KRC007                     | 45              | 40              | 0.606          |
| KRC007                     | 40              | 48              | 0.000          |
| KRC007                     | 48              | 49              | 0.265          |
| KRC007                     | 49              | 50              | 0.274          |
| KRC007                     | 50              | 51              | 0.318          |
| KRC007                     | 51              | 52              | 0.174          |
| KRC007                     | 52              | 53              | 1.425          |
| KRC007                     | 53              | 54              | 0.187          |
| KRC007                     | 54              | 55              | 0.393          |
| KRC007                     | 55              | 56              | 0.591          |
| KRC007                     | 56              | 57              | 2.15           |
| KRC007<br>KRC007           | 57<br>58        | <u>58</u><br>59 | 0.562<br>0.396 |
| KRC007                     | 59              | 60              | 0.396          |
| KRC007                     | 60              | 61              | 0.226          |
| KRC007                     | 61              | 62              | 0.357          |
| KRC007                     | 62              | 63              | 0.462          |
| KRC007                     | 63              | 64              | 0.111          |
| KRC007                     | 64              | 65              | 1.115          |
| KRC007                     | 65              | 66              | 0.295          |
| KRC007                     | 66              | 67              | 0.009          |
| KRC007                     | 67              | 68              | 0.144          |
| KRC007                     | 68              | 69              | 0.75           |
| KRC007                     | <u>69</u><br>70 | 70<br>71        | 1.48<br>1.085  |
| KRC007<br>KRC007           | 70              | 72              | 0.2            |
| KRC008                     | 0               | 1               | 0.275          |
| KRC008                     | 1               | 2               | 0.582          |
| KRC008                     | 2               | 3               | 0.439          |
| KRC008                     | 3               | 4               | 0.6            |
| KRC008                     | 4               | 5               | 0.325          |
| KRC008                     | 12              | 13              | 0.272          |
| KRC008                     | 13              | 14              | 0.279          |
| KRC008                     | 14              | 15              | 0.225          |
| KRC008                     | 15              | 16              | 1.665          |
| KRC008<br>KRC008           | 16<br>17        | 17<br>18        | 0.972<br>1.835 |
| KRC008                     | 17              | 18              | 2.18           |
| KRC008                     | 18              | 20              | 0.567          |
| KRC008                     | 20              | 21              | 0.283          |
| KRC008                     | 21              | 22              | 0.249          |
| KRC008                     | 22              | 23              | 2.66           |
| KRC008                     | 23              | 24              | 0.13           |
| KRC008                     | 24              | 25              | 0.48           |
| KRC008                     | 25              | 26              | 0.207          |
| KRC008<br>KRC008           | <u>26</u><br>27 | 27<br>28        | 0.212          |
| KRC008                     | 27              | 28              | 2.2            |
| KRC008                     | 28              | 30              | 1.16           |
| KRC008                     | 30              | 31              | 0.726          |
| KRC008                     | 31              | 32              | 2.19           |
| KRC008                     | 32              | 33              | 0.364          |
| KRC008                     | 33              | 34              | 0.295          |
| KRC008                     | 34              | 35              | 1.405          |
| KRC008                     | 35              | 36              | 0.068          |
| KRC008                     | 36              | 37              | 0.57           |
| KRC008                     | 37              | 38              | 0.25           |
| KRC008                     | <u>38</u><br>39 | <u>39</u><br>40 | 0.648          |
| KRC008<br>KRC008           | <u> </u>        | 40 41           | 0.379<br>0.292 |
| KRC008                     | 40              | 41 42           | 0.292          |
|                            |                 | 10              | 0.279          |
| KRC009                     |                 | 10              |                |
| KRC009<br>KRC009           |                 |                 | 0.174          |
| KRC009<br>KRC009<br>KRC009 | 10<br>11        | 11<br>12        | 0.174<br>0.393 |

| Hole ID          | From (m)        | To (m)          | Gold g/t       |
|------------------|-----------------|-----------------|----------------|
| KRC009           | 13              | 14              | 0.466          |
| KRC009           | 14              | 15              | 0.735          |
| KRC009           | 15              | 16              | 0.14           |
| KRC009<br>KRC009 | 16<br>17        | 17<br>18        | 0.274<br>2.73  |
| KRC009           | 17              | 18              | 1.05           |
| KRC009           | 19              | 20              | 0.824          |
| KRC009           | 20              | 21              | 0.151          |
| KRC009           | 21              | 22              | 0.219          |
| KRC009           | 22              | 23              | 0.113          |
| KRC009           | 23              | 24              | 5.1            |
| KRC009           | 24              | 25              | 0.834          |
| KRC009<br>KRC009 | 25<br>26        | 26<br>27        | 2.18<br>4.39   |
| KRC009           | 20              | 28              | 1.58           |
| KRC009           | 28              | 29              | 0.524          |
| KRC009           | 29              | 30              | 0.395          |
| KRC009           | 30              | 31              | 0.205          |
| KRC009           | 31              | 32              | 0.128          |
| KRC009           | 32              | 33              | 0.214          |
| KRC009<br>KRC009 | <u>33</u><br>34 | 34<br>35        | 0.169<br>0.497 |
| KRC009           | 34              | 35              | 0.242          |
| KRC009           | 35              | 30              | 2.01           |
| KRC010           | 48              | 49              | 0.449          |
| KRC010           | 49              | 50              | 1.52           |
| KRC010           | 50              | 51              | 0.261          |
| KRC010           | 56              | 57              | 0.551          |
| KRC010           | 57              | 58              | 2.74           |
| KRC010<br>KRC010 | <u>58</u><br>59 | 59<br>60        | 0.262<br>1.31  |
| KRC010           | 60              | 61              | 0.457          |
| KRC010           | 61              | 62              | 0.161          |
| KRC010           | 62              | 63              | 2.35           |
| KRC010           | 63              | 64              | 2.8            |
| KRC010           | 64              | 65              | 1.285          |
| KRC010           | 65<br>66        | 66<br>67        | 0.212          |
| KRC010<br>KRC010 | 67              | 68              | 0.165<br>0.706 |
| KRC010           | 68              | 69              | 0.869          |
| KRC010           | 69              | 70              | 0.059          |
| KRC010           | 70              | 71              | 0.219          |
| KRC010           | 71              | 72              | 0.363          |
| KRC011<br>KRC011 | 51<br>52        | <u>52</u><br>53 | 0.59<br>0.555  |
| KRC011           | 53              | 54              | 0.499          |
| KRC012           | 0               | 1               | 0.826          |
| KRC012           | 1               | 2               | 0.464          |
| KRC012           | 2               | 3               | 1.105          |
| KRC012           | 3               | 4               | 0.835          |
| KRC012<br>KRC012 | <u>4</u><br>5   | <u>5</u><br>6   | 0.324<br>0.444 |
| KRC012<br>KRC012 | 6               | 7               | 0.444          |
| KRC012           | 7               | 8               | 1.015          |
| KRC012           | 8               | 9               | 0.141          |
| KRC012           | 9               | 10              | 1.06           |
| KRC012           | 23              | 24              | 1.99           |
| KRC012           | 24              | 25              | 0.142          |
| KRC012<br>KRC012 | 25<br>26        | 26<br>27        | 0.972<br>0.621 |
| KRC012<br>KRC012 | 26              | 28              | 0.128          |
| KRC012           | 28              | 29              | 1.175          |
| KRC012           | 29              | 30              | 1.625          |
| KRC012           | 30              | 31              | 1.15           |
| KRC012           | 31              | 32              | 2.9            |
| KRC012           | <u>32</u><br>33 | <u>33</u><br>34 | 9.28<br>0.594  |
| KRC012<br>KRC012 | 33              | 34              | 0.236          |
| KRC012<br>KRC012 | 35              | 36              | 0.230          |
| KRC012           | 36              | 37              | 0.145          |
| KRC012           | 37              | 38              | 0.707          |
| KRC012           | 38              | 39              | 2.63           |
| KRC012           | 39              | 40              | 0.62           |
| KRC012           | 40              | 41              | 0.945          |
| KRC012<br>KRC012 | 41<br>42        | <u>42</u><br>43 | 2.06<br>1.52   |
| KRC012<br>KRC012 | 42              | 43              | 1.52           |
| KRC012<br>KRC012 | 44              | 44              | 3.79           |
| KRC012           | 45              | 46              | 2.95           |
| KACUIZ           | 19              |                 |                |



| Hole ID | From (m) | To (m) | Gold g/t |
|---------|----------|--------|----------|
| KRC012  | 47       | 48     | 0.765    |
| KRC012  | 48       | 49     | 0.035    |
| KRC012  | 49       | 50     | 0.075    |
| KRC012  | 50       | 51     | 0.869    |
| KRC012  | 51       | 52     | 1.325    |
| KRC012  | 52       | 53     | 0.623    |
| KRC012  | 53       | 54     | 0.711    |
| KRC012  | 54       | 55     | 0.265    |
| KRC012  | 55       | 56     | 0.717    |
| KRC012  | 56       | 57     | 5.07     |
| KRC012  | 57       | 58     | 2.99     |
| KRC012  | 58       | 59     | 15.25    |
| KRC012  | 59       | 60     | 1.89     |
| KRC012  | 60       | 61     | 0.277    |
| KRC012  | 61       | 62     | 0.209    |
| KRC012  | 62       | 63     | 0.609    |
| KRC012  | 63       | 64     | 0.547    |
| KRC012  | 64       | 65     | 0.299    |
| KRC012  | 65       | 66     | 1.505    |

| Hole ID | From (m) | To (m) | Gold g/t |
|---------|----------|--------|----------|
| KRC012  | 66       | 67     | 0.777    |
| KRC012  | 67       | 68     | 0.521    |
| KRC012  | 68       | 69     | 1.04     |
| KRC012  | 69       | 70     | 0.989    |
| KRC012  | 70       | 71     | 0.231    |
| KRC012  | 71       | 72     | 0.746    |
| KRC012  | 72       | 73     | 0.765    |
| KRC012  | 73       | 74     | 0.351    |
| KRC012  | 74       | 75     | 0.743    |
| KRC012  | 75       | 76     | 1.38     |
| KRC012  | 76       | 77     | 3.91     |
| KRC012  | 77       | 78     | 1.295    |
| KRC012  | 78       | 79     | 0.635    |
| KRC012  | 79       | 80     | 0.389    |
| KRC012  | 80       | 81     | 0.305    |
| KRC012  | 105      | 106    | 0.433    |
| KRC012  | 106      | 107    | 0.681    |
| KRC012  | 107      | 108    | 0.39     |



#### Appendix 3. JORC Table 1 Reporting

#### Section 1 Sampling Techniques and Data

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Reverse circulation (RC) drilling was completed using a dedicated RC rig. Drillholes were angled -55° from surface.</li> <li>RC sampling was undertaken along the entire length of the drill holes. Samples were collected from the rig cyclone, split through a riffle splitter and then bagged in a plastic sample bag; samples are typically 1m length and a circa 2-4kg weight. A duplicate sample was retained on site for future reference.</li> </ul> |
| Drilling<br>techniques   | <ul> <li>Drill type (eg core, reverse circulation,<br/>open-hole hammer, rotary air blast,<br/>auger, Bangka, sonic, etc) and details<br/>(eg core diameter, triple or standard<br/>tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core<br/>is oriented and if so, by what method,<br/>etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>RC drilling was carried out using a 140mm face sampling hammer</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core<br/>and chip sample recoveries and results<br/>assessed.</li> <li>Measures taken to maximise sample<br/>recovery and ensure representative<br/>nature of the samples.</li> <li>Whether a relationship exists between<br/>sample recovery and grade and whether<br/>sample bias may have occurred due to<br/>preferential loss/gain of fine/coarse<br/>material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>RC recoveries were determined by weighting each drill metre bag. Samples are sieved and logged by supervising Geologist; sample weight, quality, moisture and any contamination are recorded.</li> <li>RC samples quality and recovery was excellent, with dry samples and consistent weight obtained.</li> </ul>                                                                                                                                            |
| Logging                  | <ul> <li>Whether core and chip samples have<br/>been geologically and geotechnically<br/>logged to a level of detail to support<br/>appropriate Mineral Resource<br/>estimation, mining studies and<br/>metallurgical studies.</li> <li>Whether logging is qualitative or</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>All drill holes were logged in the field by<br/>Company Geologists.</li> <li>On the RC holes, lithologies, alteration,<br/>minerals were recorded. Samples chips are<br/>collected and sorted into chip trays for future<br/>geological references.</li> <li>Drill holes were logged in full. Logging was</li> </ul>                                                                                                                                         |



| Criteria                                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | <ul> <li>quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | qualitative and quantitative in nature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and<br/>whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube<br/>sampled, rotary split, etc and whether<br/>sampled wet or dry.</li> <li>For all sample types, the nature, quality<br/>and appropriateness of the sample<br/>preparation technique.</li> <li>Quality control procedures adopted for<br/>all sub-sampling stages to maximise<br/>representivity of samples.</li> <li>Measures taken to ensure that the<br/>sampling is representative of the in situ<br/>material collected, including for instance<br/>results for field duplicate/second-half<br/>sampling.</li> <li>Whether sample sizes are appropriate to<br/>the grain size of the material being<br/>sampled.</li> </ul> | <ul> <li>The RC samples were collected from the rig cyclone and passed through a riffle splitter to reduce sample weight to a circa 2-4kg.</li> <li>The sampling technique is considered industry standard and effective for this style of drilling.</li> <li>Samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay.</li> <li>RC samples were assayed using method Au-AA24 for gold.</li> <li>The sample preparation procedures carried out are considered acceptable. Blanks, standards (CRM) and duplicates are used to monitor Quality Control and representativeness of samples.</li> </ul> |
| Quality of<br>assay data<br>and<br>laboratory<br>tests      | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul>                                                                                                                                 | <ul> <li>RC samples were assayed by 50g Lead collection fire assay in new pots and analysed by Atomic Absorption Spectroscopy (AAS) for gold.</li> <li>Industry best practice procedures were followed and included submitting blanks, field duplicates and Certified Reference Material. Acceptable levels of accuracy and precision have been confirmed.</li> </ul>                                                                                                                                                                                                                                                                                           |
| Verification<br>of sampling<br>and<br>assaying              | <ul> <li>The verification of significant<br/>intersections by either independent or<br/>alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data<br/>entry procedures, data verification, data<br/>storage (physical and electronic)<br/>protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>At this stage, the intersections have been verified by the Company Geologists.</li> <li>All field data is manually collected, entered into excel spreadsheets, validated and loaded into a database.</li> <li>Electronic data is stored on a cloud server and routinely backed up.</li> <li>Data is exported from the database for processing in a number of software packages.</li> </ul>                                                                                                                                                                                                                                                             |
| Location of<br>data points                                  | <ul> <li>Accuracy and quality of surveys used to<br/>locate drill holes (collar and down-hole<br/>surveys), trenches, mine workings and<br/>other locations used in Mineral<br/>Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic<br/>control.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Drill holes collar locations were recorded at the completion of each hole by hand-held GPS.</li> <li>Coordinates collected are in the WGS84 Zone 33S grid system</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>spacing and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing and<br/>distribution is sufficient to establish the<br/>degree of geological and grade<br/>continuity appropriate for the Mineral<br/>Resource and Ore Reserve estimation<br/>procedure(s) and classifications applied.</li> <li>Whether sample compositing has been<br/>applied.</li> </ul>     | <ul> <li>RC drill holes reported here were planned on a<br/>set grid with spacing varying between 100m<br/>and 200m, depending on the sections. They<br/>should be considered as early-stage<br/>exploration holes and will require further infill.</li> </ul>                                         |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>Drill holes were positioned using geological<br/>information collected from the trenches and<br/>from the detailed mapping completed over the<br/>prospect. They are positioned perpendicular to<br/>the main schistosity and so to the inferred<br/>mineralisation main controls.</li> </ul> |
| Sample<br>security                                                  | <ul> <li>The measures taken to ensure sample<br/>security.</li> </ul>                                                                                                                                                                                                                                                                                                                              | <ul> <li>Sampling is supervised by a Company<br/>Geologist and all samples are delivered to the<br/>laboratory in Okahandja by company staff.</li> </ul>                                                                                                                                               |
| Audits or<br>reviews                                                | <ul> <li>The results of any audits or reviews of<br/>sampling techniques and data.</li> </ul>                                                                                                                                                                                                                                                                                                      | No reviews or audits have been conducted.                                                                                                                                                                                                                                                              |

#### Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement<br>and land<br>tenure<br>status | <ul> <li>Type, reference name/number, location<br/>and ownership including agreements or<br/>material issues with third parties such as<br/>joint ventures, partnerships, overriding<br/>royalties, native title interests, historical<br/>sites, wilderness or national park and<br/>environmental settings.</li> <li>The security of the tenure held at the<br/>time of reporting along with any known<br/>impediments to obtaining a licence to<br/>operate in the area.</li> </ul> | <ul> <li>The Damaran Project comprises 12 exclusive prospecting licenses (EPLs 6226, 4833, 8039, 7246, 4818, 4953, 6534, 6535, 6536, 8249,7327,7980) and located in central Namibia.</li> <li>EPL6226 is 100% held by WiaGold in the name of Aloe Investments One Hundred and Ninety Two (Pty) Ltd.</li> <li>EPL4833, 4818, 7246, 8039 and 8249 are held under an 80% earn-in and join venture agreement with Epangelo Mining Limited, a private mining investment company with the Government of the Republic of Namibia as the sole shareholder.</li> <li>EPL6534, 6535, 6536, and 4953 are held under a company called Gazina Investments which is owned 90% by Wia and 10% by the vendor.</li> <li>EPL7980 is 100% held by WiaGold in the name of Damaran Exploration Namibia (PTY) Ltd.</li> <li>EPL7327 is under an agreement with an exclusive option to acquire the permit under a NewCo at Wia election.</li> <li>All granted tenements are in good standing and there are no material issues affecting the</li> </ul> |



| Criteria                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tenements.                                                                                                                                                                                                                                                                             |
| Exploration<br>done by<br>other<br>parties                   | <ul> <li>Acknowledgment and appraisal of<br/>exploration by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Work completed prior to WiaGold includes<br/>stream sediment sampling, mapping, soil and<br/>rock chip sampling by Teck Cominco Namibia<br/>but data is unavailable.</li> <li>This work did not cover the Okombahe permit,<br/>host of the Kokoseb gold discovery.</li> </ul> |
| Geology                                                      | <ul> <li>Deposit type, geological setting and style of mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • Kokoseb mineralisation is hosted by sediments (biotite-schists) which have been intruded by several granitic phases. The gold anomaly appears as a contact like aureole of the central granitic pluton, with a diameter of approximately 3km in each direction                       |
| Drill hole<br>Information                                    | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>see tables in the appendix.</li> </ul>                                                                                                                                                                                                                                        |
| Data<br>aggregation<br>methods                               | <ul> <li>In reporting Exploration Results,<br/>weighting averaging techniques,<br/>maximum and/or minimum grade<br/>truncations (eg cutting of high grades)<br/>and cut-off grades are usually Material<br/>and should be stated.</li> <li>Where aggregate intercepts incorporate<br/>short lengths of high-grade results and<br/>longer lengths of low-grade results, the<br/>procedure used for such aggregation<br/>should be stated and some typical<br/>examples of such aggregations should<br/>be shown in detail.</li> <li>The assumptions used for any reporting<br/>of metal equivalent values should be<br/>clearly stated.</li> </ul>                                                                                                   | <ul> <li>Reported intercepts are calculated using<br/>weighted average at a cut-off grade of 0.5 g/t<br/>Au and allowing internal dilution of maximum<br/>2m consecutive low-grade material.</li> </ul>                                                                                |
| Relationshi<br>p between<br>mineralisati<br>on widths<br>and | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Results reported in this announcement are considered to be of an early stage in the exploration of the project.</li> <li>Mineralisation geometry is not accurately known so intercepts are reported as they appear from the sampling.</li> </ul>                              |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| intercept<br>lengths                        | lengths are reported, there should be a<br>clear statement to this effect (eg 'down<br>hole length, true width not known').                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |
| Diagrams                                    | <ul> <li>Appropriate maps and sections (with<br/>scales) and tabulations of intercepts<br/>should be included for any significant<br/>discovery being reported These should<br/>include, but not be limited to a plan view<br/>of drill hole collar locations and<br/>appropriate sectional views.</li> </ul>                                                                                                                                     | <ul> <li>Plan view maps of all drillhole are included.</li> </ul>                                                         |
| Balanced<br>reporting                       | <ul> <li>Where comprehensive reporting of all<br/>Exploration Results is not practicable,<br/>representative reporting of both low and<br/>high grades and/or widths should be<br/>practiced to avoid misleading reporting<br/>of Exploration Results.</li> </ul>                                                                                                                                                                                 | <ul> <li>All samples with assays have been reported.</li> </ul>                                                           |
| Other<br>substantive<br>exploration<br>data | <ul> <li>Other exploration data, if meaningful<br/>and material, should be reported<br/>including (but not limited to): geological<br/>observations; geophysical survey<br/>results; geochemical survey results; bulk<br/>samples – size and method of<br/>treatment; metallurgical test results; bulk<br/>density, groundwater, geotechnical and<br/>rock characteristics; potential<br/>deleterious or contaminating<br/>substances.</li> </ul> | <ul> <li>No other exploration data is being reported at this time.</li> </ul>                                             |
| Further<br>work                             | <ul> <li>The nature and scale of planned further<br/>work (eg tests for lateral extensions or<br/>depth extensions or large-scale step-out<br/>drilling).</li> <li>Diagrams clearly highlighting the areas<br/>of possible extensions, including the<br/>main geological interpretations and<br/>future drilling areas, provided this<br/>information is not commercially<br/>sensitive.</li> </ul>                                               | <ul> <li>Refer to the text in the announcement for<br/>information on follow-up and/or next work<br/>programs.</li> </ul> |