

ASX ANNOUNCEMENT

17 October 2022

ASX: GED

Khusib Springs Drilling Intersects 96m Zone with Massive, Semi-Massive and Disseminated Copper-Sulphides and XRF Readings up to 37% Copper

- Golden Deeps has completed 7 diamond drillholes for 1,432m of a planned 9 hole, 2,000m program at its Khusib Springs very high-grade copper-silver deposit (past production 300,000t at 10% copper (Cu) and 584 g/t silver (Ag)¹), in the Otavi Mountain Land Copper District of Namibia.
- The first deep hole completed, KHDD006, tested for extensions of the very-high grade Khusib Springs copper-silver orebody at depth to the south of a normal/wrench fault². The hole intersected 96m of predominantly disseminated with massive to semi-massive copper-sulphides (tennantite Cu₁₂As₄S₁₃ and chalcopyrite CuFeS₂) from 385m downhole across the brecciated T3 dolomite/ T2 limestone contact (see drillhole details & descriptions of mineralisation, Appendix 2).
- Handheld XRF spot readings on drillcore within this 96m zone average 0.9% Cu, 0.2% zinc (Zn) and include readings ranging from less than detection up to 37% Cu (see massive copper sulphide tennantite, Photo 1 and see pXRF (portable XRF) spot-readings in KHDD006, Appendix 3).

Photo 1: KHDD006, massive to semi-massive tennantite (copper-sulphide, Cu₁₂As₄S₁₃) in brecciated limestone at 456m downhole (pXRF spot reading: 37% Cu, 3.6% Zn, 5,936g/t Ag, see Appendix 3)

- Results received from the first of five shallow holes includes a high-grade zinc-silver intersection in KHDD001 associated with semi-massive to disseminated sphalerite in veined and brecciated dolomite located immediately southwest of the Khusib Springs Cu-Ag deposit (Photo 1):
 - 11.86m @ 3.25% Zn, 14.7 g/t Ag, 0.13% Cu, 0.17% Pb from 10.34m (downhole) in KHDD001, including: 5.0m @ 7.45% Zn, 20.9 g/t Ag, 0.08% Cu, 0.24% Pb from 16.0m (downhole)
- Downhole electromagnetics (DHEM) is in progress in KHDD006 and in a second deep hole, KHDD007 that was drilled 30m to the southwest of KHDD006 (see description, Appendix 2).
- Also, a moving loop electromagnetics (MLEM) program carried out 1km along strike from Khusib Springs has detected a broad EM conductor. Drilling is underway to test the conductor for a repeat of the high-grade copper-silver mineralisation at Khusib Springs.

The CEO of Golden Deeps Ltd, Jon Dugdale, said:

"The intersection of a 96m zone of copper-sulphide mineralisation in the first deeper hole at Khusib Springs is very encouraging.

"We are now completing DHEM and surface EM surveys to detect a repeat of the Khusib Springs massive-sulphide copper-silver orebody for further drill-testing."

"Discovery of extensions or a repeat of this very high-grade copper-silver deposit would be a gamechanger for Golden Deeps and would provide a springboard to re-starting development from the existing Khusib Springs decline mine."

Golden Deeps Limited ("Golden Deeps" or "the Company") is very pleased to announce that it has completed 7 holes of a 9 diamond drillhole program² (see drillhole details, Appendix 1), targeting extensions and/or repeats of its very high-grade Khusib Springs copper-silver deposit (see cross section, Figure 1) in the Otavi Mountain Land Copper District (OMLCD) of Namibia (see location, Figure 3).

The first deeper hole completed, KHDD006, tested for a repeat or offset of the Khusib Springs deposit at depth to the south of a potentially offsetting normal or wrench fault². The target zone lies below the brecciated T3 dolomite / T2 platy limestone contact at a depth of approximately 350m to 400m below surface (see Figure 1).

The drillhole intersected the brecciated T3 dolomite with fine and/or blebby copper-sulphides (tennantite, chalcopyrite) and pyrite from 385m to 442m then a zone containing massive to semi-massive sulphide stringers and disseminated tennantite in the targeted platy-limestone from 442m to 481m (total 96m sulphide zone from 385m - *see details and descriptions of mineralisation in KHDD007, Appendix 2*).

Portable XRF (pXRF) spot readings on drillcore averaged 0.9% Cu, 0.2% Zn across the 97m zone and includes a 56.5m interval with XRF readings ranging from less than detection up to 37% Cu, 3.6% Zn, 5,936 g/t Ag Ag (see Photo 1) and averages 1.6% Cu, 0.26% Zn. This zone also includes a 16m interval within the targeted T2 platy-limestone from 442m that includes the 35% Cu reading as well as a 26% Cu reading and averages 4.3% Cu, 0.6% Zn (see pXRF spot-readings in KHDD006, Appendix 3).

The broadly copper-sulphide mineralised zone intersected in KHDD006 is approximately true-width and occurs across the brecciated T3 dolomite / T2 limestone contact, which is the same position as the Khusib Springs deposit, predominantly hosted within the T2 platy limestone below the contact (see Figure 1).

A second deeper hole, KHDD007, drilled 30m to the southwest of KHDD006 intersected intermittently developed sulphide mineralisation from 374m to 535m downhole (161m) including zones of disseminated and/or euhedral crystals of tennantite and chalcopyrite across the T3 dolomite / T2 limestone brecciated contact at around 430m. The hole also intersected a lower zone of "well distributed" medium grained sphalerite (zinc sulphide) from 487m to 500m downhole (*see descriptions of mineralisation, Appendix 2*).

Downhole electromagnetics (DHEM) is in progress for KHDD006 and KHDD007, to determine the extent of in-hole and/or off hole conductors in the vicinity of these holes.

Subject to the results of the DHEM and XRF results in KHDD007, a third deeper hole will be carried out to test for massive sulphides and/or extensions to the broad sulphide zone intersected in KHDD006.

Drillcore from KHDD006 is currently being sampled for analysis. Results will be reported when available.

Figure 1: Khusib Springs cross section with latest drilling intersections and mined area of Khusib Springs deposit

Shallow drilling in the vicinity of the mined high-grade copper-silver deposit at Khusib Springs (production: **300,000t of ore at a very high grade of 10% Cu and 584g/t Ag**¹) includes an intersection of veined and brecciated dolomite with semi-massive zone of sphalerite in KHDD001 that produced the following high-grade zinc and silver with copper and lead (Pb) intersections (see Table 1 and Photo 2):

- 11.86m @ 3.25% Zn, 14.7 g/t Ag, 0.13% Cu, 0.17% Pb from 10.34m (downhole) in KHDD001

Including: 5.0m @ 7.45% Zn, 20.9 g/t Ag, 0.08% Cu, 0.24% Pb from 16.0m (downhole)

The intersection in KHDD001 indicates that zinc mineralisation is developed on the periphery of the highgrade copper-silver zone at Khusib Springs. This zone remains open to the southwest at shallow depth and represents a zone of zinc-silver-copper resource potential for further shallow resource definition drilling.

Hole ID	From	То	m	Zn%	Cu %	Pb%	Ag g/t	Cut off (Zn%)
KHDD001	10.34	22.20	11.86	3.25	0.13	0.17	14.7	>0.2% Zn
incl.	16.00	21.00	5.00	7.45	0.08	0.24	20.9	>1.0% Zn

Photo 2: KHDD001, veined and brecciated dolomite with semi-massive sphalerite (zinc sulphide) lenses and veins

Geophysical Program to Detect a Repeat of the Khusib Springs Deposit:

At the same time as the new diamond drilling program a large Moving Loop Electromagnetics (MLEM) survey has been carried out to the southwest of the Khusib Springs deposit.

Symons Geophysics in Namibia have conducted an initial program of 25, 100m spaced lines of MLEM in three loops, covering a 2.5km corridor from Khusib Springs heading southwest to the tenement boundary.

The first loop carried out (Loop 2), located southwest of the Khusib Springs deposit, detected a relatively large early-time EM conductor, modelled to dip/plunge shallowly to the south (see Figure 2 below).

The conductor is interpreted to be located below the T3 dolomite contact and may represent:

- Tennantite/Tetrahedrite copper-silver sulphide mineralisation. However, a more conductive body and a steeper dip or plunge would be expected if it is a massive sulphide, or alternatively,
- A low angled fault/ thrust or a conductor that is part of the stratigraphy such as a graphitic horizon.

A second conductor has been detected further southwest on Loop 2 (currently being modelled).

A diamond drillhole (KHDD008) is in progress, testing the Loop 2 conductor across the T3 dolomite / T2 limestone contact and well into the footwall through the targeted Khusib Springs deposit position.

If sulphides are intersected by this drilling, associated with the conductor, then further drilling will be carried out at depth and the Loop 1 conductor will be tested.

"The intersection of sulphides associated with these conductors would be a significant breakthrough for the Company, as it would represent discovery of a new zone with potential to host a Khusib Springs copper-silver deposit repeat", Mr Dugdale said.

Figure 2: Loop 2 MLEM anomaly, southwest of the Khusib Springs, with modelled conductor and drillhole position

About the Golden Deeps Otavi Mountain Land Projects and Programs:

The Company's key projects in the world-class Otavi Mountain Land Copper District (OMLCD) of Namibia are located on two Exclusive Prospecting Licences (EPLs) - EPL5496 and EPL3543 (see location, Figure 3).

The OMLCD includes major historic mines such as the **Tsumeb** deposit that historically produced **30Mt of** ore grading **4.3% Cu**, **10% Pb and 3.5% Zn³** from 1905 to 1996 (Figure 3).

The focus of the Company's exploration and development programs are the **Abenab** high-grade vanadiumzinc-lead resource; the **Nosib** high-grade vanadium-copper-lead-silver discovery and the **Khusib Springs** very high-grade copper-silver deposit (see locations, Figure 3).

At the **Abenab Project** the Company has a Mineral Resource estimate of an Inferred **2.80Mt** @ **0.66%** V_2O_5 , **2.35% Pb, 0.94% Zn at a 0.2%** V_2O_5 **cut-off**⁴. Gravity concentrate testwork is in progress⁵, targeting a 10 to 15 times upgrade (to between 10% and 15% V_2O_5) and 3 to 5kg of material for further downstream hydrometallurgical testwork⁵ to produce high-value vanadium products as well as lead, zinc and copper by-products.

The **Nosib Project** is a new discovery that has produced a number of exceptional, thick and high-grade, vanadium-copper-lead-silver RC and diamond drilling intersections over the last 12 months^{6,7,8}. Mineral Resource modelling and estimation is currently being carried out by Shango Solutions⁵, focussed on the supergene vanadium-copper-lead-silver zone at Nosib that will then be the subject of initial open-pit optimisation. Metallurgical testwork focussed on gravity concentration of the vanadium minerals, descloisite and mottramite, is also being carried out prior to hydrometallurgical testwork along the same lines as the Abenab material⁵.

Key operating and capital cost information will be derived from the gravity testwork on both projects for input to the **integrated mine development and processing study** ("the Study")⁵ on the Company's near surface, high-grade, vanadium with copper, lead, zinc and silver deposits in the OMLCD (see Figure 3, below).

Figure 3: OMLCD Tenements and geology with location of Khusib Springs and other key projects.

See Appendix 1 for details of drilling completed to date; Appendix 2 for descriptions of mineralisation in KHDD006 and 007; Appendix 3 for pXRF values in KHDD006 and Appendix 4 includes JORC Tables Sections 1-2.

References

¹ King C M H 1995. Motivation for diamond drilling to test mineral extensions and potential target zones at the Khusib Springs Cu-Pb-Zn-Ag deposit. Unpublished Goldfields Namibia report.

² Golden Deeps Ltd ASX announcement, 08 August 2022. Drilling Underway Testing Khusib Springs Very-High-Grade Copper-silver Deposit.

³ Tsumeb, Namibia. PorterGeo Database: <u>www.portergeo.com.au/database/mineinfo.asp?mineid=mn290</u>

⁴ Golden Deeps Ltd ASX announcement, 31 January 2019. Major Resource Upgrade at Abenab Vanadium Project.

⁵ Golden Deeps Ltd ASX announcement, 21 June 2022. Major Study on High-Grade Vanadium Cu-Pb-Ag Development.

⁶ Golden Deeps Ltd ASX announcement 4 April 2022 Exceptional Copper-Vanadium Intersection at Nosib.

⁷ Golden Deeps Ltd ASX announcement, 2 Dec. 2021. Another Exceptional Copper-Vanadium Intersections at Nosib.

⁸ Golden Deeps Ltd ASX announcement, 22 February 2022. Nosib Very High-Grade Copper & Vanadium Intersected.

This announcement was authorised for release by the Board of Directors.

ENDS

For further information, please refer to the Company's website or contact:

Michael Muhling Company Secretary Golden Deeps Limited +61 (08) 9481 7833

Cautionary Statement regarding Forward-Looking information

This document contains forward-looking statements concerning Golden Deeps Ltd. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes.

Forward looking statements in this document are based on the company's beliefs, opinions and estimates of Golden Deeps Ltd as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Competent Person Statement

The information in this report that relates to exploration results, mineral resources and metallurgical information has been reviewed, compiled and fairly represented by Mr Jonathon Dugdale. Mr Dugdale is the Chief Executive Officer of Golden Deeps Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ('FAusIMM'). Mr Dugdale has sufficient experience, including over 34 years' experience in exploration, resource evaluation, mine geology and finance, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ('JORC') Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Dugdale consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Hole #	Easting (UTM34S)	Northing (UTM34S)	mRL	Azimuth (True)	Dip	EOH	Drilling Target
KHDD001	187,384	7,849,266	1467	315.0	60.00	41.14	Shallow test up plunge of Khusib Ore-body.
KHDD002	187,372	7,849,244	1467	315.0	90.00	21.60	Shallow test up plunge of Khusib Ore-body abandoned.
KHDD003	187,372	7,849,244	1467	315.0	90.00	41.44	Shallow test up plunge of Khusib Ore-body. No significant mineralisation.
KHDD004	187,609	7,849,424	1460	315.0	90.00	131.59	Shallow drillhole 1 to test mineralisation on the T2-T3 contact. No significant mineralisation.
KHDD005	187,631	7,849,444	1460	315.0	90.00	131.61	Shallow drillhole 1 to test mineralisation on the T2-T3 contact. No significant mineralisation.
KHDD006	187,594	7,848,874	1475	318.0	63.00	521.74	Testing mineralisation south of wrench fault (near previous KH66 intersection) and in footwall north of fault.
KHDD007	187,572	7,848,853	1476	318.0	65.00	542.81	Step out hole from KHDD006, 30 m towards the southwest, targeting deep minerailsation south of the wrench fault.
	·			•	Total	1,432	

APPENDIX 1: Khusib Springs drillhole details:

APPENDIX 2: Descriptions of mineralisation referred to in this release:

Hole_ID	m_From	m_To	Min-description
KHDD006	141.95	143.60	Trace of copper mineralisation, poorly distributed
KHDD006	293.00	296.00	Trace of malachite, frequently associated with specs of tennantite in calcite veinlets and or alteration
KHDD006	360.04	364.95	Poorly distributed traces of malachite in a dolomite breccia
KHDD006	374.46	377.83	Patchy traces of malachite in brecciated zones (Calcite cementation)
KHDD006	384.88	432.00	Fine to blebs of Cu-sulphides (0.1% to 0.5%) tennantite, Cpy) and Pyrite, well distributed within a dolomitic breccia-calcite matrix
KHDD006	425.10	442.34	Fine to blebs of Cu-sulphides (0.1% to 5%) tennantite, Cpy) and Pyrite, well distributed within a limestone breccia-calcite matrix
KHDD006	442.34	481.00	Euhedral tennantite semi-massive (5% to 20%) to disseminated (0.1% to 1%) in a thinly bedded limestone
KHDD006	503.14	503.76	Breccia with mottled semi-massive sphalerite (20%) and thin galena veinlet
KHDD007	107.50	112.00	Malachite specs within zones of brecciation, seldomly associated with tennantite
KHDD007	227.00	248.00	Patchy distribution of tennantite, malachite and possibly enargite traces in zones of calcite-dolomite brecciation
KHDD007	253.64	255.53	Minor tennantite and malachite developed in breccia zones, mal+azurite fracture coating
KHDD007	258.00	269.40	Minor tennantite and malachite and some azurite developed in breccia zones
KHDD007	293.00	295.00	Trace of tennantite, poorly disseminated
KHDD007	357.00	357.05	Fracture-fill tennantite in calcite vein
KHDD007	374.00	381.45	Medium grained, euhedral tennantite within fresh dolomite and poor (0.1%) to fair distribution (dissemination – 1%) of fine to
			medium grained tennantite developed in breccia zones, some fracture-fill chalcopyrite.
KHDD007	385.20	387.33	Poorly disseminated medium grained tennantite (0.5% to 1%).
KHDD007	418.90	419.30	Fine grained chalcopyrite well distributed (0.5% to 1%) within a dolomitic breccia, trace tennantite
KHDD007	487.63	499.65	Well distributed medium grained sphalerite (1 to 5%), occasional fracture infill
KHDD007	500.89	501.20	Fine to medium grained tennantite fairly distributed (0.5% to 1%) in brecciated zones
KHDD007	506.50	535.00	Disseminated medium grained tennantite (0.1% to 0.5%), common in zones of brecciation, rare euhedral medium grained tennantite poorly disseminated in fresh rock

Cautionary note regarding visual estimates:

In relation to the disclosure of visual mineralisation in the tables below, the Company cautions that visual estimates of oxide, carbonate and/or sulphide mineralisation material abundance should never be considered a proxy or substitute for laboratory analyses. Laboratory ICP-MS and ICP-OES analyses are required to determine widths and grade of the elements (e.g., copper, Cu) associated with the visible mineralisation reported from preliminary geological logging. The Company will update the market when laboratory analytical results are received and compiled.

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	290.5	ND	0.027	0.210	0.012	ND	ND	ND	ND	ND
KHDD006	291.0	ND	0.268	1.754	0.006	0.004	0.004	0.007	ND	ND
KHDD006	291.5	ND	0.013	0.061	ND	ND	0.002	ND	ND	ND
KHDD006	292.0	ND	0.230	0.291	ND	ND	0.003	ND	ND	ND
KHDD006	292.5	ND	0.076	0.657	ND	0.005	0.005	ND	ND	ND
KHDD006	293.0	ND	0.018	0.312	ND	0.006	ND	ND	ND	ND
KHDD006	293.5	ND	0.026	0.243	ND	0.007	0.003	ND	ND	ND
KHDD006	294.0	ND	0.024	0.388	ND	0.004	0.002	ND	ND	ND
KHDD006	294.5	ND	0.014	0.192	ND	0.004	ND	ND	ND	ND
KHDD006	295.0	ND	0.015	0.156	ND	ND	ND	ND	ND	ND
KHDD006	295.5	ND	0.016	0.220	ND	0.004	0.003	ND	ND	ND
KHDD006	296.0	ND	0.025	0.793	0.017	0.017	0.006	0.005	ND	ND
KHDD006	296.5	ND	0.015	0.113	ND	ND	0.001	ND	ND	ND
KHDD006	297.0	ND	0.026	0.255	ND	ND	ND	ND	ND	ND
KHDD006	297.5	ND	0.018	0.120	ND	0.005	0.005	ND	ND	ND
KHDD006	298.0	ND	0.045	0.120	ND	0.004	0.001	ND	ND	ND
KHDD006	298.5	ND	0.025	0.190	ND	0.004	0.003	ND	ND	ND
KHDD006	299.0	ND	0.077	0.325	ND	0.006	0.017	ND	ND	ND
KHDD006	299.5	ND	0.018	0.238	ND	0.003	0.005	ND	ND	ND
KHDD006	300.0	ND	0.031	0.457	ND	0.005	0.006	ND	ND	ND
KHDD006	300.5	ND	0.016	0.079	ND	ND	0.002	ND	ND	ND
KHDD006	301.0	ND	0.089	0.987	ND	0.005	0.011	ND	ND	ND
KHDD006	301.5	ND	0.005	0.031	ND	ND	0.002	ND	ND	ND
KHDD006	302.0	ND	0.021	0.135	ND	0.005	0.005	ND	ND	ND
KHDD006	302.5	ND	0.176	0.078	0.011	0.004	0.005	ND	ND	ND
KHDD006	303.0	ND	0.090	0.224	ND	0.004	0.014	ND	ND	ND
KHDD006	303.5	ND	0.024	0.081	ND	ND	0.006	ND	ND	ND
KHDD006	304.0	ND	0.070	0.147	ND	ND	0.006	ND	ND	ND
KHDD006	304.5	ND	0.019	0.070	ND	ND	0.010	ND	ND	ND
KHDD006	305.0	ND	0.012	0.119	ND	0.004	0.009	ND	ND	ND
KHDD006	305.5	ND	0.013	0.067	ND	0.003	0.005	ND	ND	ND
KHDD006	306.0	ND	0.010	0.043	ND	ND	0.002	ND	ND	ND
KHDD006	306.5	0.044	0.085	0.668	0.080	0.019	0.211	ND	ND	ND
KHDD006	307.0	ND	0.049	0.015	ND	ND	ND	ND	ND	ND
KHDD006	307.5	ND	0.214	0.020	ND	ND	0.002	ND	ND	ND
KHDD006	308.0	ND	0.450	0.028	ND	ND	0.005	ND	ND	ND
KHDD006	308.5	ND	0.095	0.013	ND	ND	ND	ND	ND	ND
KHDD006	309.0	0.824	0.016	0.987	3.990	0.020	3.700	2.600	ND	153
KHDD006	309.5	ND	0.218	0.013	ND	ND	0.001	ND	ND	ND
KHDD006	310.0	ND	0.103	0.021	ND	ND	ND	ND	ND	ND
KHDD006	310.5	ND	0.376	0.025	ND	ND	0.002	ND	ND	ND
KHDD006	311.0	ND	0.221	0.042	ND	ND	0.001	ND	ND	ND
KHDD006	311.5	ND	0.085	0.028	ND	ND	ND	ND	ND	ND

APPENDIX 3: Hand held p-XRF spot readings on drill-core, KHDD006

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	312.0	ND	0.076	0.049	ND	ND	0.002	ND	ND	ND
KHDD006	312.5	ND	0.089	0.014	ND	ND	ND	ND	ND	ND
KHDD006	313.0	ND	0.078	0.014	ND	ND	ND	ND	ND	ND
KHDD006	313.5	ND	0.062	0.015	ND	ND	ND	ND	ND	ND
KHDD006	314.0	ND	0.059	0.025	ND	ND	0.001	ND	ND	ND
KHDD006	314.5	ND	0.052	0.020	ND	ND	ND	ND	ND	ND
KHDD006	315.0	ND	0.037	0.017	ND	ND	ND	ND	ND	ND
KHDD006	315.5	ND	0.014	0.069	ND	ND	ND	ND	ND	ND
KHDD006	316.0	ND	0.018	0.080	ND	ND	ND	ND	ND	ND
KHDD006	316.5	ND	ND	0.084	ND	ND	ND	ND	ND	ND
KHDD006	317.0	ND	0.018	0.082	ND	ND	0.002	ND	ND	ND
KHDD006	317.5	ND	0.054	0.344	ND	0.005	0.009	ND	ND	ND
KHDD006	318.0	ND	0.028	0.845	ND	ND	0.011	ND	ND	ND
KHDD006	318.5	ND	0.018	0.147	ND	ND	ND	ND	ND	ND
KHDD006	319.0	ND	0.102	0.395	ND	0.004	0.024	ND	ND	ND
KHDD006	319.5	ND	0.017	0.139	ND	0.004	0.002	ND	ND	ND
KHDD006	320.0	ND	0.026	0.073	ND	ND	0.001	ND	ND	ND
KHDD006	320.5	1.050	ND	1.227	1.227	0.037	2.013	0.273	ND	ND
KHDD006	321.0	ND	0.060	0.022	ND	ND	0.020	ND	ND	ND
KHDD006	321.5	ND	0.044	0.006	ND	ND	ND	ND	ND	ND
KHDD006	322.0	ND	0.082	0.015	ND	ND	ND	ND	ND	ND
KHDD006	322.5	ND	0.068	0.009	ND	ND	ND	ND	ND	ND
KHDD006	323.0	ND	0.088	0.054	ND	ND	ND	ND	ND	ND
KHDD006	323.5	ND	0.084	0.070	ND	ND	ND	ND	ND	ND
KHDD006	324.0	ND	0.072	0.010	ND	ND	ND	ND	ND	ND
KHDD006	324.5	ND	0.068	0.023	ND	ND	ND	ND	ND	ND
KHDD006	325.0	ND	0.359	0.017	ND	ND	ND	ND	ND	ND
KHDD006	325.5	ND	0.687	0.033	ND	ND	0.002	ND	ND	ND
KHDD006	326.0	ND	0.063	0.017	ND	ND	ND	ND	ND	ND
KHDD006	326.5	ND	0.061	0.014	ND	ND	ND	ND	ND	ND
KHDD006	327.0	ND	0.060	0.012	ND	ND	0.001	ND	ND	ND
KHDD006	327.5	ND	0.641	ND	ND	ND	ND	ND	ND	ND
KHDD006	328.0	ND	0.423	0.186	0.121	0.015	0.071	0.068	ND	ND
KHDD006	328.5	ND	0.100	1.384	0.152	ND	0.003	ND	ND	ND
KHDD006	329.0	ND	0.025	0.238	ND	0.005	0.003	ND	ND	ND
KHDD006	329.5	ND	0.655	0.023	ND	ND	ND	ND	ND	ND
KHDD006	330.0	ND	0.098	0.302	ND	0.009	ND	ND	ND	ND
KHDD006	330.5	ND	0.027	0.135	0.007	0.004	ND	ND	ND	ND
KHDD006	331.0	ND	0.542	0.057	ND	ND	ND	ND	ND	ND
KHDD006	331.5	ND	0.090	0.021	ND	ND	0.005	ND	ND	ND
KHDD006	332.0	ND	0.105	0.016	ND	ND	ND	ND	ND	ND
KHDD006	332.5	ND	0.100	0.007	ND	ND	0.001	ND	ND	ND
KHDD006	333.0	ND	0.106	0.020	ND	ND	ND	ND	ND	ND
KHDD006	333.5	ND	0.226	ND	ND	ND	ND	ND	ND	ND

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	334.0	ND	0.058	0.009	ND	ND	ND	ND	ND	ND
KHDD006	334.5	ND	0.078	0.007	ND	ND	ND	ND	ND	ND
KHDD006	335.0	ND	0.080	0.013	ND	ND	ND	ND	ND	ND
KHDD006	335.5	ND	0.105	0.012	ND	ND	ND	ND	ND	ND
KHDD006	336.0	ND	0.066	0.023	ND	ND	0.001	ND	ND	ND
KHDD006	336.5	ND	0.059	0.015	ND	ND	ND	ND	ND	ND
KHDD006	337.0	ND	0.092	0.016	ND	ND	ND	ND	ND	ND
KHDD006	337.5	ND	0.552	0.027	ND	ND	ND	ND	ND	ND
KHDD006	338.0	ND	0.071	0.013	ND	ND	ND	ND	ND	ND
KHDD006	338.5	ND	0.311	0.059	ND	ND	0.002	ND	ND	ND
KHDD006	339.0	ND	0.619	0.022	ND	ND	ND	ND	ND	ND
KHDD006	339.5	ND	0.075	0.008	ND	ND	ND	ND	ND	ND
KHDD006	340.0	ND	0.280	0.085	0.017	0.007	ND	ND	ND	ND
KHDD006	340.5	ND	0.014	0.073	ND	ND	ND	ND	ND	ND
KHDD006	341.0	ND	0.037	0.159	ND	0.004	ND	ND	ND	ND
KHDD006	341.5	ND	0.538	0.034	ND	ND	ND	ND	ND	ND
KHDD006	342.0	ND	0.076	0.018	ND	ND	ND	ND	ND	ND
KHDD006	342.5	ND	0.056	0.010	ND	ND	ND	ND	ND	ND
KHDD006	343.0	ND	0.078	0.012	ND	ND	ND	ND	ND	ND
KHDD006	343.5	ND	0.285	0.018	ND	ND	ND	ND	ND	ND
KHDD006	344.0	ND	0.685	0.019	ND	ND	ND	ND	ND	ND
KHDD006	344.5	ND	0.300	0.012	ND	ND	ND	ND	ND	ND
KHDD006	345.0	ND	0.058	0.006	ND	ND	ND	ND	ND	ND
KHDD006	345.5	ND	0.065	0.006	ND	ND	ND	ND	ND	ND
KHDD006	346.0	ND	0.593	0.035	ND	ND	ND	ND	ND	ND
KHDD006	346.5	ND	0.078	0.014	ND	ND	ND	ND	ND	ND
KHDD006	347.0	ND	0.068	0.020	ND	ND	0.002	ND	ND	ND
KHDD006	347.5	ND	0.489	0.271	ND	0.009	0.002	0.002	ND	ND
KHDD006	348.0	ND	0.659	0.017	ND	0.005	0.002	0.003	ND	ND
KHDD006	348.5	ND	0.294	1.538	0.025	0.042	0.010	0.007	ND	ND
KHDD006	349.0	ND	0.055	0.186	ND	0.008	0.002	ND	ND	ND
KHDD006	349.5	ND	0.027	0.079	ND	0.005	ND	ND	ND	ND
KHDD006	350.0	ND	0.023	0.158	0.004	0.008	ND	ND	ND	ND
KHDD006	350.5	ND	0.057	0.204	ND	0.015	ND	ND	ND	ND
KHDD006	351.0	ND	0.022	0.064	0.004	ND	ND	ND	ND	ND
KHDD006	351.5	ND	0.045	0.165	0.006	ND	ND	ND	ND	ND
KHDD006	352.0	ND	0.067	0.792	0.027	ND	ND	ND	ND	ND
KHDD006	352.5	ND	0.033	0.315	ND	ND	0.001	ND	ND	ND
KHDD006	353.0	ND	0.155	2.349	0.007	0.013	0.001	0.006	ND	ND
KHDD006	353.5	ND	0.023	0.377	ND	ND	ND	ND	ND	ND
KHDD006	354.0	ND	0.029	0.224	ND	0.004	ND	ND	ND	ND
KHDD006	354.5	ND	0.645	0.023	ND	ND	ND	ND	ND	ND
KHDD006	355.0	ND	0.053	0.287	ND	0.005	0.006	ND	ND	ND
KHDD006	355.5	ND	0.027	0.218	ND	ND	0.002	ND	ND	ND

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	356.0	ND	0.076	0.352	ND	0.012	0.007	ND	ND	ND
KHDD006	356.5	ND	0.014	0.067	ND	ND	0.001	ND	ND	ND
KHDD006	357.0	ND	0.058	0.708	0.005	0.013	0.004	0.003	ND	ND
KHDD006	357.5	ND	0.028	0.161	ND	0.004	0.003	ND	ND	ND
KHDD006	358.0	ND	0.031	0.198	ND	0.004	0.004	ND	ND	ND
KHDD006	358.5	ND	0.574	0.028	ND	0.004	0.001	ND	ND	ND
KHDD006	359.0	ND	0.512	0.053	ND	ND	ND	ND	ND	ND
KHDD006	359.5	ND	0.592	0.044	ND	ND	0.001	ND	ND	ND
KHDD006	360.0	ND	0.342	0.152	0.006	0.016	0.014	ND	ND	ND
KHDD006	360.5	ND	0.533	0.019	ND	ND	ND	ND	ND	ND
KHDD006	361.0	ND	0.073	0.545	ND	0.011	0.024	ND	ND	ND
KHDD006	361.5	ND	0.709	0.051	ND	ND	0.002	ND	ND	ND
KHDD006	362.0	ND	0.039	0.084	ND	0.003	0.002	ND	ND	ND
KHDD006	362.5	ND	0.093	0.071	ND	ND	ND	ND	ND	ND
KHDD006	363.0	ND	0.158	1.036	ND	ND	ND	ND	ND	ND
KHDD006	363.5	ND	0.191	0.801	0.005	ND	0.002	ND	ND	ND
KHDD006	364.0	ND	0.206	0.270	ND	0.005	ND	ND	ND	ND
KHDD006	364.5	ND	0.430	0.075	ND	ND	ND	ND	ND	ND
KHDD006	365.0	ND	0.567	0.116	ND	0.005	ND	ND	ND	ND
KHDD006	365.5	ND	0.030	0.309	ND	ND	ND	ND	ND	ND
KHDD006	366.0	ND	0.054	0.273	ND	0.004	ND	ND	ND	ND
KHDD006	366.5	ND	0.014	0.046	ND	ND	ND	ND	ND	ND
KHDD006	367.0	ND	0.743	0.026	ND	ND	ND	ND	ND	ND
KHDD006	367.5	ND	0.029	0.065	ND	ND	ND	ND	ND	ND
KHDD006	368.0	ND	0.080	0.155	ND	0.004	ND	ND	ND	ND
KHDD006	368.5	ND	0.078	0.872	ND	ND	ND	ND	ND	ND
KHDD006	369.0	ND	0.011	0.162	ND	0.005	ND	ND	ND	ND
KHDD006	369.5	ND	0.689	0.014	ND	ND	ND	ND	ND	ND
KHDD006	370.0	ND	0.200	0.486	0.006	0.004	ND	ND	ND	ND
KHDD006	370.5	ND	0.086	0.181	ND	ND	ND	ND	ND	ND
KHDD006	371.0	ND	0.176	0.267	ND	0.008	0.005	ND	ND	ND
KHDD006	371.5	ND	0.527	0.148	0.015	0.006	0.032	ND	ND	ND
KHDD006	372.0	ND	0.460	0.173	ND	ND	ND	ND	ND	ND
KHDD006	372.5	ND	0.515	0.047	ND	ND	ND	ND	ND	ND
KHDD006	373.0	ND	0.300	0.565	ND	ND	0.002	ND	ND	ND
KHDD006	373.5	ND	0.070	0.071	ND	0.008	ND	ND	ND	ND
KHDD006	374.0	ND	0.037	0.252	ND	0.009	ND	ND	ND	ND
KHDD006	374.5	ND	0.389	0.163	0.008	0.025	ND	ND	ND	ND
KHDD006	375.0	ND	0.640	0.041	ND	0.005	ND	ND	ND	ND
KHDD006	375.5	ND	0.553	0.021	ND	ND	ND	ND	ND	ND
KHDD006	376.0	ND	0.084	0.163	0.005	0.007	ND	0.002	ND	ND
KHDD006	376.5	ND	0.027	0.051	ND	ND	ND	ND	ND	ND
KHDD006	377.0	ND	0.487	0.068	ND	ND	ND	ND	ND	ND
KHDD006	377.5	ND	0.009	0.053	ND	ND	ND	ND	ND	ND

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	378.0	ND	0.584	0.045	ND	ND	ND	ND	ND	ND
KHDD006	378.5	ND	0.442	0.080	ND	0.003	ND	ND	ND	ND
KHDD006	379.0	ND	0.163	0.055	ND	ND	ND	ND	ND	ND
KHDD006	379.5	ND	0.499	0.031	ND	ND	ND	ND	ND	ND
KHDD006	380.0	ND	ND	0.357	ND	0.006	ND	0.006	ND	ND
KHDD006	380.5	ND	0.237	0.679	ND	ND	ND	0.006	ND	ND
KHDD006	381.0	ND	0.712	0.026	ND	ND	ND	ND	ND	ND
KHDD006	381.5	ND	0.413	0.060	ND	ND	ND	ND	ND	ND
KHDD006	382.0	ND	0.072	0.655	ND	0.005	ND	0.002	ND	ND
KHDD006	382.5	ND	0.208	0.226	ND	ND	ND	ND	ND	ND
KHDD006	383.0	ND	0.065	0.485	ND	0.026	0.002	ND	ND	ND
KHDD006	383.5	ND	0.361	0.685	ND	0.005	ND	ND	ND	ND
KHDD006	384.0	ND	0.199	0.467	ND	0.011	0.002	ND	ND	ND
KHDD006	384.5	ND	0.154	0.412	ND	0.012	ND	ND	ND	ND
KHDD006	385.0	ND	0.588	0.020	ND	ND	ND	ND	ND	ND
KHDD006	385.5	ND	0.642	0.033	ND	ND	ND	ND	ND	ND
KHDD006	386.0	ND	0.519	0.054	ND	0.020	0.002	ND	ND	ND
KHDD006	386.5	ND	0.614	0.141	0.022	ND	ND	ND	ND	ND
KHDD006	387.0	ND	0.347	1.600	ND	0.010	ND	ND	ND	ND
KHDD006	387.5	ND	0.639	0.056	ND	ND	ND	ND	ND	ND
KHDD006	388.0	ND	0.622	0.114	ND	ND	ND	ND	ND	ND
KHDD006	388.5	ND	0.269	0.316	ND	0.004	ND	0.002	ND	ND
KHDD006	389.0	ND	0.556	0.068	ND	ND	ND	ND	ND	ND
KHDD006	389.5	ND	0.299	1.210	ND	ND	ND	0.003	ND	ND
KHDD006	390.0	ND	0.450	0.165	ND	ND	ND	ND	ND	ND
KHDD006	390.5	ND	0.075	0.915	ND	0.007	ND	0.005	ND	ND
KHDD006	391.0	ND	0.050	0.066	ND	ND	ND	ND	ND	ND
KHDD006	391.5	ND	0.462	0.173	ND	ND	ND	ND	ND	ND
KHDD006	392.0	ND	0.164	0.352	ND	0.010	0.001	ND	ND	ND
KHDD006	392.5	ND	0.016	0.062	ND	ND	ND	ND	ND	ND
KHDD006	393.0	ND	0.248	0.247	ND	0.005	ND	ND	ND	ND
KHDD006	393.5	ND	0.604	0.037	ND	ND	ND	ND	ND	ND
KHDD006	394.0	ND	0.487	0.164	ND	ND	ND	ND	ND	ND
KHDD006	394.5	ND	0.066	0.312	ND	ND	ND	ND	ND	ND
KHDD006	395.0	ND	0.245	0.158	ND	ND	ND	ND	ND	ND
KHDD006	395.5	ND	0.555	0.032	ND	ND	ND	ND	ND	ND
KHDD006	396.0	ND	0.595	0.030	ND	ND	ND	ND	ND	ND
KHDD006	396.5	ND	0.595	0.051	ND	ND	ND	ND	ND	ND
KHDD006	397.0	ND	0.620	0.018	ND	0.005	ND	ND	ND	ND
KHDD006	397.5	ND	0.538	0.076	ND	ND	ND	ND	ND	ND
KHDD006	398.0	ND	0.602	0.010	ND	ND	ND	ND	ND	ND
KHDD006	398.5	ND	0.185	0.794	ND	0.007	ND	ND	ND	ND
KHDD006	399.0	ND	0.420	0.199	ND	ND	ND	ND	ND	ND
KHDD006	399.5	ND	0.048	0.199	ND	ND	ND	ND	ND	ND

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	400.0	ND	0.044	0.177	ND	ND	ND	ND	ND	ND
KHDD006	400.5	ND	0.104	1.824	ND	ND	ND	ND	ND	ND
KHDD006	401.0	ND	0.050	0.079	ND	ND	0.001	ND	ND	ND
KHDD006	401.5	ND	0.268	0.465	ND	ND	ND	ND	ND	ND
KHDD006	402.0	ND	0.381	0.412	1.242	0.224	0.002	0.235	ND	ND
KHDD006	402.5	ND	0.443	0.235	0.010	ND	ND	0.003	ND	ND
KHDD006	403.0	ND	0.408	0.498	0.587	0.107	ND	0.153	ND	ND
KHDD006	403.5	ND	0.411	0.185	0.035	0.007	ND	0.011	ND	ND
KHDD006	404.0	ND	0.370	0.865	0.327	0.146	0.005	0.066	ND	ND
KHDD006	404.5	ND	0.246	0.780	1.440	1.199	0.004	0.324	ND	ND
KHDD006	405.0	ND	0.168	0.482	ND	0.015	0.002	ND	ND	ND
KHDD006	405.5	ND	0.154	0.734	0.006	0.042	0.003	ND	ND	ND
KHDD006	406.0	ND	0.358	0.149	ND	ND	0.002	ND	ND	ND
KHDD006	406.5	ND	0.235	0.307	ND	ND	ND	ND	ND	ND
KHDD006	407.0	ND	0.426	0.491	1.033	0.140	0.015	0.177	ND	ND
KHDD006	407.5	ND	0.101	0.568	ND	0.006	ND	ND	ND	ND
KHDD006	408.0	ND	0.568	0.027	ND	ND	0.012	ND	ND	ND
KHDD006	408.5	ND	0.337	0.493	0.296	0.151	0.009	0.062	ND	ND
KHDD006	409.0	ND	0.150	0.533	0.014	0.004	0.003	0.004	ND	ND
KHDD006	409.5	ND	0.206	0.401	ND	0.034	ND	ND	ND	ND
KHDD006	410.0	ND	0.361	0.635	0.314	0.031	0.003	0.059	ND	ND
KHDD006	410.5	ND	0.352	0.840	0.211	0.175	0.002	0.050	ND	ND
KHDD006	411.0	ND	0.622	0.023	ND	ND	ND	ND	ND	ND
KHDD006	411.5	ND	0.266	0.630	1.170	0.238	0.009	0.236	ND	ND
KHDD006	412.0	ND	0.555	0.142	0.518	0.096	0.104	0.092	ND	ND
KHDD006	412.5	ND	0.511	0.040	ND	0.004	ND	ND	ND	ND
KHDD006	413.0	ND	0.294	0.771	0.845	0.515	0.005	0.160	ND	ND
KHDD006	413.5	ND	0.311	0.137	ND	0.004	ND	ND	ND	ND
KHDD006	414.0	ND	0.250	0.341	ND	0.007	0.002	0.003	ND	ND
KHDD006	414.5	ND	0.176	0.902	0.032	0.011	0.004	0.014	ND	ND
KHDD006	415.0	ND	0.260	0.628	0.275	0.040	0.002	0.066	ND	ND
KHDD006	415.5	ND	0.191	0.686	0.622	0.100	0.002	0.146	ND	ND
KHDD006	416.0	ND	0.236	1.410	2.019	0.393	0.003	0.464	ND	ND
KHDD006	416.5	ND	0.103	0.773	ND	0.024	0.002	0.003	ND	ND
KHDD006	417.0	ND	0.357	0.062	ND	0.004	ND	ND	ND	ND
KHDD006	417.5	ND	0.345	0.645	0.190	0.033	0.002	0.056	ND	ND
KHDD006	418.0	ND	0.097	0.633	0.091	0.030	0.003	0.014	ND	ND
KHDD006	418.5	ND	0.168	0.808	ND	0.031	0.003	ND	ND	ND
KHDD006	419.0	ND	0.469	0.075	0.024	0.008	ND	0.006	ND	ND
KHDD006	419.5	ND	0.310	0.200	ND	0.009	ND	ND	ND	ND
KHDD006	420.0	ND	0.271	1.162	1.105	0.567	0.009	0.471	ND	ND
KHDD006	420.5	ND	0.399	0.398	0.190	0.029	0.002	0.006	ND	ND
KHDD006	421.0	ND	0.419	0.260	0.643	0.101	0.005	0.075	ND	ND
KHDD006	421.5	ND	0.085	1.198	1.069	0.046	0.003	0.142	ND	ND

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	422.0	ND	0.277	0.245	1.387	0.067	0.018	0.021	ND	ND
KHDD006	422.5	ND	0.379	0.203	0.005	ND	ND	0.002	ND	ND
KHDD006	423.0	ND	0.362	0.218	ND	ND	ND	ND	ND	ND
KHDD006	423.5	ND	0.302	0.187	ND	ND	ND	ND	ND	ND
KHDD006	424.0	ND	0.279	0.561	ND	0.008	0.001	ND	ND	ND
KHDD006	424.5	ND	0.193	1.288	0.253	0.063	0.005	0.042	ND	ND
KHDD006	425.0	ND	0.320	0.303	ND	0.008	ND	ND	ND	ND
KHDD006	425.5	ND	0.204	1.225	1.531	0.280	0.008	0.285	ND	ND
KHDD006	426.0	ND	0.196	1.293	0.006	0.036	0.003	0.008	ND	ND
KHDD006	426.5	ND	0.044	0.890	ND	0.091	0.004	0.007	ND	42
KHDD006	427.0	ND	0.218	1.310	0.054	0.018	ND	0.016	ND	ND
KHDD006	427.5	ND	0.196	0.791	ND	0.023	0.002	ND	ND	ND
KHDD006	428.0	ND	0.214	0.754	2.479	0.439	0.006	0.387	ND	ND
KHDD006	428.5	ND	0.208	1.133	0.046	0.039	0.011	0.014	ND	ND
KHDD006	429.0	ND	0.170	0.434	ND	0.010	0.002	ND	ND	ND
KHDD006	429.5	ND	0.059	0.445	ND	0.013	ND	ND	ND	ND
KHDD006	430.0	ND	0.034	0.238	ND	0.011	ND	ND	ND	ND
KHDD006	430.5	ND	0.068	0.435	ND	0.008	ND	ND	ND	ND
KHDD006	431.0	ND	0.038	0.203	ND	0.003	0.001	ND	ND	ND
KHDD006	431.5	ND	0.220	0.356	ND	0.009	ND	ND	ND	ND
KHDD006	432.0	ND	0.061	0.165	ND	0.006	ND	ND	ND	ND
KHDD006	432.5	ND	0.287	1.181	ND	0.005	ND	ND	ND	ND
KHDD006	433.0	ND	0.588	0.259	ND	ND	ND	ND	ND	ND
KHDD006	433.5	ND	0.333	0.737	0.010	0.028	0.016	ND	ND	ND
KHDD006	434.0	ND	0.507	0.237	ND	ND	ND	ND	ND	ND
KHDD006	434.5	ND	0.261	0.749	0.022	0.012	0.004	0.007	ND	ND
KHDD006	435.0	ND	0.064	0.024	ND	ND	ND	ND	ND	ND
KHDD006	435.5	ND	0.056	0.176	0.740	0.157	0.001	0.106	ND	ND
KHDD006	436.0	ND	0.242	0.785	0.463	0.100	ND	0.091	ND	ND
KHDD006	436.5	ND	0.499	0.071	ND	ND	0.002	ND	ND	ND
KHDD006	437.0	ND	0.159	1.196	ND	0.005	ND	0.004	ND	ND
KHDD006	437.5	ND	0.461	0.041	ND	ND	ND	ND	ND	ND
KHDD006	438.0	ND	0.202	0.192	ND	ND	ND	ND	ND	ND
KHDD006	438.5	ND	0.287	0.543	ND	0.007	ND	ND	ND	ND
KHDD006	439.0	ND	0.562	0.177	ND	0.008	ND	ND	ND	ND
KHDD006	439.5	ND	0.263	0.864	ND	0.007	ND	ND	ND	ND
KHDD006	440.0	ND	0.541	0.039	0.006	ND	ND	ND	ND	ND
KHDD006	440.5	ND	0.590	0.022	ND	ND	ND	ND	ND	ND
KHDD006	441.0	ND	0.671	0.077	ND	ND	ND	ND	ND	ND
KHDD006	441.5	ND	0.427	0.461	0.050	0.097	ND	0.005	ND	ND
KHDD006	442.0	ND	0.370	0.191	ND	0.004	ND	ND	ND	ND
KHDD006	442.5	ND	0.070	0.722	0.326	0.005	ND	0.002	ND	ND
KHDD006	443.0	ND	0.043	1.687	26.970	4.050	0.002	8.320	ND	ND
KHDD006	443.5	ND	0.435	0.165	ND	ND	ND	ND	ND	ND

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	444.0	ND	0.315	0.573	0.047	0.022	ND	0.009	ND	ND
KHDD006	444.5	ND	0.375	0.237	0.031	0.018	ND	0.008	ND	ND
KHDD006	445.0	ND	0.561	0.236	ND	0.004	ND	ND	ND	ND
KHDD006	445.5	ND	0.508	0.124	ND	ND	ND	ND	ND	ND
KHDD006	446.0	ND	0.531	0.237	0.279	0.039	ND	0.057	ND	ND
KHDD006	446.5	ND	0.420	0.315	ND	ND	ND	ND	ND	ND
KHDD006	447.0	ND	0.482	0.343	1.842	0.308	ND	0.268	ND	ND
KHDD006	447.5	ND	0.613	0.134	0.668	0.130	0.004	0.121	ND	ND
KHDD006	448.0	ND	0.392	0.618	0.009	0.005	ND	0.003	ND	ND
KHDD006	448.5	ND	0.423	0.616	ND	ND	ND	ND	ND	ND
KHDD006	449.0	ND	0.226	0.328	ND	ND	ND	ND	ND	ND
KHDD006	449.5	ND	0.264	0.667	ND	ND	ND	ND	ND	ND
KHDD006	450.0	ND	0.166	0.874	ND	0.005	ND	ND	ND	ND
KHDD006	450.5	ND	0.350	0.586	0.015	0.020	ND	0.003	ND	ND
KHDD006	451.0	ND	0.264	1.652	0.011	ND	0.003	0.006	ND	ND
KHDD006	451.5	ND	0.366	0.679	0.006	0.004	0.002	0.002	ND	ND
KHDD006	452.0	ND	0.236	0.619	ND	0.004	0.002	ND	ND	ND
KHDD006	452.5	ND	0.319	0.402	0.005	ND	ND	ND	ND	ND
KHDD006	453.0	ND	0.379	0.704	0.233	0.082	0.002	0.040	ND	ND
KHDD006	453.5	ND	0.480	0.190	ND	ND	ND	ND	ND	ND
KHDD006	454.0	ND	0.446	1.181	0.438	0.075	0.002	0.045	ND	ND
KHDD006	454.5	ND	0.201	0.272	ND	ND	ND	ND	ND	ND
KHDD006	455.0	ND	0.433	0.673	0.019	0.014	ND	0.005	ND	ND
KHDD006	455.5	ND	0.492	0.307	ND	0.009	ND	ND	ND	ND
KHDD006	456.0	ND	ND	0.464	35.140	3.560	0.002	6.220	5,936	ND
KHDD006	456.5	ND	0.530	0.331	ND	ND	ND	ND	ND	ND
KHDD006	457.0	ND	0.484	0.416	0.006	ND	ND	0.002	ND	ND
KHDD006	457.5	ND	0.446	0.501	ND	ND	0.001	ND	ND	ND
KHDD006	458.0	ND	0.243	0.939	1.742	0.323	ND	0.245	ND	ND
KHDD006	458.5	ND	0.512	0.848	0.540	0.151	0.001	0.075	ND	ND
KHDD006	459.0	ND	0.710	0.164	ND	ND	0.034	ND	ND	ND
KHDD006	459.5	ND	0.550	0.788	0.017	0.015	ND	0.005	ND	ND
KHDD006	460.0	ND	0.620	0.396	0.014	0.005	ND	0.004	ND	ND
KHDD006	460.5	ND	0.536	0.586	ND	ND	0.013	ND	ND	ND
KHDD006	461.0	ND	0.499	1.137	ND	0.006	0.001	ND	ND	ND
KHDD006	461.5	ND	0.577	0.351	ND	ND	ND	ND	ND	ND
KHDD006	462.0	ND	0.643	0.136	ND	ND	ND	ND	ND	ND
KHDD006	462.5	ND	0.418	1.102	ND	0.003	0.002	ND	ND	ND
KHDD006	463.0	ND	0.500	0.487	ND	0.165	ND	ND	ND	ND
KHDD006	463.5	ND	0.499	0.363	ND	ND	ND	ND	ND	ND
KHDD006	464.0	ND	0.592	0.606	ND	ND	ND	ND	ND	ND
KHDD006	464.5	ND	0.520	0.599	ND	ND	0.001	ND	ND	ND
KHDD006	465.0	ND	0.620	0.861	0.032	0.005	ND	0.009	ND	ND
KHDD006	465.5	ND	0.557	0.400	ND	ND	ND	ND	ND	ND

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	466.0	ND	0.551	0.189	ND	ND	ND	ND	ND	ND
KHDD006	466.5	ND	0.288	2.039	0.026	0.006	0.002	0.014	ND	ND
KHDD006	467.0	ND	0.300	1.601	0.021	0.005	ND	0.012	ND	ND
KHDD006	467.5	ND	0.268	0.630	ND	ND	ND	ND	ND	ND
KHDD006	468.0	ND	0.510	0.385	ND	ND	ND	ND	ND	ND
KHDD006	468.5	ND	0.302	1.235	0.598	0.116	ND	0.106	ND	ND
KHDD006	469.0	ND	0.154	3.061	ND	ND	0.003	0.003	ND	27
KHDD006	469.5	ND	0.061	0.234	ND	ND	ND	ND	ND	ND
KHDD006	470.0	ND	0.054	0.053	ND	ND	ND	ND	ND	ND
KHDD006	470.5	ND	0.058	2.609	0.164	0.722	0.007	0.024	ND	ND
KHDD006	471.0	ND	0.305	0.824	ND	0.022	0.040	ND	ND	ND
KHDD006	471.5	ND	0.397	0.667	ND	0.015	0.028	ND	ND	ND
KHDD006	472.0	ND	0.230	1.260	ND	0.011	0.019	ND	ND	ND
KHDD006	472.5	ND	0.244	1.074	ND	0.006	0.004	ND	ND	ND
KHDD006	473.0	ND	0.223	0.816	0.033	ND	0.002	ND	ND	ND
KHDD006	473.5	ND	0.251	0.526	ND	ND	0.002	ND	ND	ND
KHDD006	474.0	ND	0.312	0.659	ND	ND	0.003	0.003	ND	ND
KHDD006	474.5	ND	0.285	0.525	ND	ND	0.002	ND	ND	ND
KHDD006	475.0	ND	0.080	0.450	ND	ND	ND	ND	ND	ND
KHDD006	475.5	ND	0.066	0.066	ND	ND	ND	ND	ND	ND
KHDD006	476.0	ND	0.214	1.188	0.006	ND	ND	0.005	ND	ND
KHDD006	476.5	ND	0.279	1.617	ND	0.015	0.003	0.004	ND	ND
KHDD006	477.0	ND	0.258	1.445	0.011	0.008	0.002	0.005	ND	ND
KHDD006	477.5	ND	0.300	0.617	ND	ND	ND	0.002	ND	ND
KHDD006	478.0	ND	0.041	0.333	ND	ND	ND	ND	ND	ND
KHDD006	478.5	ND	0.071	0.597	0.017	ND	0.001	0.005	ND	ND
KHDD006	479.0	ND	0.181	1.283	ND	ND	0.002	ND	ND	ND
KHDD006	479.5	ND	0.274	1.160	ND	ND	0.002	ND	ND	ND
KHDD006	480.0	ND	0.080	0.805	ND	ND	ND	ND	ND	ND
KHDD006	480.5	ND	0.271	1.371	0.017	ND	ND	0.012	ND	ND
KHDD006	481.0	ND	0.245	1.171	ND	ND	0.001	ND	ND	ND
KHDD006	481.5	ND	0.040	0.039	ND	ND	ND	ND	ND	ND
KHDD006	482.0	ND	0.007	0.069	ND	ND	ND	ND	ND	ND
KHDD006	482.5	ND	0.651	0.025	ND	ND	ND	ND	ND	ND
KHDD006	483.0	ND	0.029	0.078	ND	ND	ND	ND	ND	ND
KHDD006	483.5	ND	0.022	0.184	ND	ND	ND	ND	ND	ND
KHDD006	484.0	ND	0.021	0.084	ND	ND	ND	ND	ND	ND
KHDD006	484.5	ND	0.012	0.068	ND	ND	0.001	ND	ND	ND
KHDD006	485.0	ND	0.018	0.186	ND	ND	ND	ND	ND	ND
KHDD006	485.5	ND	0.036	0.205	ND	ND	ND	ND	ND	ND
KHDD006	486.0	ND	0.445	0.227	ND	ND	ND	ND	ND	ND
KHDD006	486.5	ND	0.403	0.460	ND	0.004	ND	ND	ND	ND
KHDD006	487.0	ND	0.051	0.284	ND	ND	ND	ND	ND	ND
KHDD006	487.5	ND	0.021	0.216	ND	ND	ND	ND	ND	ND

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	488.0	ND	0.028	0.359	ND	ND	0.001	ND	ND	ND
KHDD006	488.5	ND	0.072	0.357	ND	ND	ND	ND	ND	ND
KHDD006	489.0	ND	0.058	0.223	ND	ND	ND	ND	ND	ND
KHDD006	489.5	ND	0.010	0.070	ND	ND	ND	ND	ND	ND
KHDD006	490.0	ND	0.027	0.830	ND	ND	0.001	ND	ND	ND
KHDD006	490.5	ND	0.011	0.206	ND	ND	ND	ND	ND	ND
KHDD006	491.0	ND	0.016	0.201	ND	ND	0.001	ND	ND	ND
KHDD006	491.5	ND	0.042	0.262	ND	ND	0.002	ND	ND	ND
KHDD006	492.0	ND	0.063	0.361	ND	ND	ND	ND	ND	ND
KHDD006	492.5	ND	0.041	0.317	ND	ND	ND	ND	ND	ND
KHDD006	493.0	ND	0.042	0.580	ND	ND	ND	ND	ND	ND
KHDD006	493.5	ND	0.060	0.200	ND	ND	ND	ND	ND	ND
KHDD006	494.0	ND	0.030	0.257	ND	ND	0.001	ND	ND	ND
KHDD006	494.5	ND	0.023	0.317	ND	ND	ND	ND	ND	ND
KHDD006	495.0	ND	0.021	0.259	ND	ND	ND	ND	ND	ND
KHDD006	495.5	ND	0.589	0.036	ND	ND	ND	ND	ND	ND
KHDD006	496.0	ND	0.500	0.358	ND	ND	ND	ND	ND	ND
KHDD006	496.5	ND	0.555	0.324	ND	ND	ND	ND	ND	ND
KHDD006	497.0	ND	0.490	0.312	ND	ND	ND	ND	ND	ND
KHDD006	497.5	ND	0.078	0.588	ND	ND	ND	ND	ND	ND
KHDD006	498.0	ND	0.341	0.253	ND	ND	ND	ND	ND	ND
KHDD006	498.5	ND	0.052	0.277	ND	ND	ND	ND	ND	ND
KHDD006	499.0	ND	0.014	0.205	ND	ND	ND	ND	ND	ND
KHDD006	499.5	ND	0.020	0.438	ND	ND	ND	ND	ND	ND
KHDD006	500.0	ND	0.028	0.334	ND	ND	ND	ND	ND	ND
KHDD006	500.5	ND	0.025	0.733	ND	ND	0.002	ND	ND	ND
KHDD006	501.0	ND	0.014	0.085	ND	ND	ND	ND	ND	ND
KHDD006	501.5	ND	0.085	1.046	ND	ND	0.016	ND	ND	ND
KHDD006	502.0	ND	0.044	0.190	ND	ND	ND	ND	ND	ND
KHDD006	502.5	ND	0.290	0.059	ND	ND	ND	ND	ND	ND
KHDD006	503.0	ND	0.483	0.077	ND	0.007	ND	ND	ND	ND
KHDD006	503.5	ND	0.606	0.306	ND	0.415	0.007	ND	ND	ND
KHDD006	504.0	ND	0.015	0.058	ND	ND	ND	ND	ND	ND
KHDD006	504.5	ND	0.012	0.551	ND	ND	0.039	ND	ND	ND
KHDD006	505.0	ND	0.009	0.239	ND	ND	ND	ND	ND	ND
KHDD006	505.5	ND	0.009	0.253	ND	ND	ND	ND	ND	ND
KHDD006	506.0	ND	0.008	0.213	ND	ND	ND	ND	ND	ND
KHDD006	506.5	ND	0.010	0.248	ND	ND	0.001	ND	ND	ND
KHDD006	507.0	ND	0.012	0.348	ND	ND	ND	ND	ND	ND
KHDD006	507.5	ND	0.012	0.271	ND	ND	ND	ND	ND	ND
KHDD006	508.0	ND	ND	0.333	ND	ND	ND	ND	ND	ND
KHDD006	508.5	ND	ND	0.244	ND	ND	ND	ND	ND	ND
KHDD006	509.0	ND	0.010	0.266	ND	ND	0.001	ND	ND	ND
KHDD006	509.5	ND	0.009	0.441	ND	ND	0.001	ND	ND	ND

Hole_ID	Depth	V%	Mn%	Fe%	Cu%	Zn%	Pb%	As%	Ag ppm	Bi ppm
KHDD006	510.0	ND	ND	0.053	ND	ND	ND	ND	ND	ND
KHDD006	510.5	ND	0.007	0.064	ND	ND	0.001	ND	ND	ND
KHDD006	511.0	ND	0.022	0.257	ND	0.042	ND	ND	ND	ND
KHDD006	511.5	ND	ND	0.049	ND	ND	ND	ND	ND	ND
KHDD006	512.0	ND	ND	0.052	ND	ND	ND	ND	ND	ND
KHDD006	512.5	ND	0.012	0.235	ND	ND	ND	ND	ND	ND
KHDD006	513.0	ND	0.010	0.299	ND	ND	ND	ND	ND	ND
KHDD006	513.5	ND	0.017	0.285	ND	ND	ND	ND	ND	ND
KHDD006	514.0	ND	ND	0.224	ND	ND	ND	ND	ND	ND
KHDD006	514.5	ND	0.007	0.701	ND	ND	ND	ND	ND	ND
KHDD006	515.0	ND	ND	0.082	ND	ND	ND	ND	ND	ND
KHDD006	515.5	ND	ND	0.067	ND	ND	ND	ND	ND	ND
KHDD006	516.0	ND	ND	1.623	ND	ND	0.002	ND	ND	ND
KHDD006	516.5	ND	ND	0.052	ND	ND	0.001	ND	ND	ND
KHDD006	517.0	ND	ND	0.058	ND	ND	ND	ND	ND	ND
KHDD006	517.5	ND	ND	0.053	ND	ND	ND	ND	ND	ND
KHDD006	518.0	ND	ND	0.073	ND	ND	ND	ND	ND	ND
KHDD006	518.5	ND	ND	0.068	ND	ND	ND	ND	ND	ND
KHDD006	520.0	ND	ND	0.052	ND	ND	ND	ND	ND	ND
KHDD006	520.5	ND	ND	0.041	ND	ND	ND	ND	ND	ND
KHDD006	521.0	ND	ND	0.039	ND	ND	ND	ND	ND	ND
KHDD006	521.5	ND	ND	0.171	ND	ND	ND	ND	ND	ND

Note: Readings are taken at intervals of 0.5m of actual core length within each mineralised zone. Readings are taken at bottom of core, unless core orientation cannot be determined. The p-XRF measurements are taken in Mining Mode. The values for copper (Cu), Lead (Pb) and Zinc (Zn) are indicative only. Silver (Ag) and Vanadium (V) values are not accurate or reliable and give very limited indication of final values expected in laboratory analyses. The pXRF readings are unrepresentative spot indications of grade only and laboratory assays (ICP-MS/OES) are required to confirm representative grades and intervals.

APPENDIX 4

JORC 2012 Edition - Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Previous exploration drillholes at Khusib Springs and Nosib the reverse circulation drilling was used to obtain 1 m samples from which approximately 3 kg were pulverised from which a small charge will be obtained for multi-element analysis using the ICP-MS method. Current diamond drilling sampled on approximately 1m intervals (varied subject to geological contacts) and analysed using the same procedure.
Drilling techniques	• Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Exploration drillholes at Khusib Springs and Nosib were Reverse Circulation percussion drilling method (RC drilling). Current drilling is diamond drillcore, NQ sized core.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond drilling recovery is reported in the detailed log. Where lost core is recorded assay grades are assumed to be zero. RC drilling from the exploration drillholes at Khusib Springs and Nosib were bagged on 1m intervals and an estimate of sample recovery has been made on the size of each sample.

Criteria	JORC Code explanation	Commentary
Logging	- Whather are and ship are less have been acclesically and	 The cyclone is shut off when collecting the sample and released to the sample bags at the completion of each metre to ensure no cross contamination. If necessary, the cyclone is flushed out if sticky clays are encountered. Samples were weighed at the laboratory to allow comparative analysis.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All holes were logged for lithology, structure and mineralisation. Diamond drilling logging intervals based on geological contacts. Logging of RC samples from exploration drillholes at Khusib Springs and Nosib based on 1m intervals.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No information is provided on the sampling method for the historical drillholes. For exploration drillholes at Khusib Springs and Nosib Every 1m RC interval was sampled as a dry primary sample in a calico bag off the cyclone/splitter. Diamond drilling sampling half to quarter core sampled on approximately 1m intervals using core-saw or splitter. Drill sample preparation (Intertek, Namibia) and analysis (Intertek, Perth) carried out at registered laboratory. Field sample procedures involve the insertion of registered Standards every 20m, and duplicates or blanks generally every 25m and offset. Sampling is carried out using standard protocols as per industry practice. Sample sizes range typically from 2 to 3kg and are deemed appropriate to provide an accurate indication of mineralisation.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 All samples are submitted to the Intertek Laboratories sample preparation facility at the Tschudi Mine near Tsumeb in Namibia where a pulp sample is prepared. The pulp samples are then transported to Intertek in Perth Australia for analysis. Pulp sample(s) have been digested with a mixture of four Acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids for a total digest. Cu, Pb, Zn, V, Ag have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. Hand-held XRF spot readings on drill-core are used to provide a guide regarding mineralised intervals and cannot be used for the purposes of estimating intersections.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 For current Khusib Springs and Nosib drilling all significant intercepts are reviewed and confirmed by two senior personnel before release to the market. No adjustments are made to the raw assay data. Data is imported directly to Datashed in raw original format. All data are validated using the QAQCR validation tool with Datashed. Visual validations are then carried out by senior staff members. Vanadium results are reported as V₂O₅ % by multiplication by atomic weight factor of 1.785.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The majority of the drill data was captured using the UTM33S grid. Location of the exploration drillholes at Khusib Springs and Nosib provided in Appendix 2.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral 	 Exploration drill holes were drilled at close spacing, commonly 15m to 20m or less because of the relatively

Criteria	JORC Code explanation	Commentary
	 Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	short strike length of the initial target and the plunging orientation of the Nosib mineralisation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Holes were angled to best intersect the plunging mineralisation. The majority of the angled holes were drilled on azimuth 143 magnetic / 180 degrees grid at a dip of -60 degrees (UTM33S grid).
Sample security	• The measures taken to ensure sample security.	 Recent drilling at Khusib Springs and Nosib - secure transport to registered laboratories.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 All previous drill data relating to the Khusib Springs project generated by Goldfields Namibia or other companies was reviewed and validated in detail by Shango Solutions, a geological consultancy based in South Africa. The data review included scanning level plans and cross sections to verify the position of drill holes in the 3D model. No previous exploration drilling is recorded for the Nosib prospect, apart from the work conducted by Golden Deeps Ltd.

JORC 2012 Edition - Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Drilling results are from the Nosib Block copper-vanadium-lead-silver prospect located on Golden Deeps Limited (Huab Energy Ltd) EPL3543 located near the town of Grootfontein in northeast Namibia. EPL3543 and EPL5496 both expire on 6th July 2022. Renewal applications were submitted in April 2022 and mining lease applications are planned to ensure security of tenure. There are no material issues or environmental constraints known to Golden Deeps Ltd which may be deemed an impediment to the continuity of EPL3543 or EPL5496.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 No prior drilling identified for the Nosib Block Prospect. Previous work limited to underground sampling of historical workings. The Khusib Springs copper prospect was primarily drilled by Goldfields Namibia from 1993 onwards following the intersection of massive tennantite in drill holes KH06 and KH08.
Geology	Deposit type, geological setting and style of mineralisation.	 The Nosib Mine was worked historically to produce copper and vanadium. The deposit is arenite / sandstone-hosted with chalcopyrite, bornite, galena and pyrite as well as secondary descloizite (Lead-Vanadium hydroxide). The mineralization is associated with prominent argillic alteration and occurs within an upper pyritic zone of the Nabis Formation sandstone, which is locally gritty to conglomeratic. The main zone of mineralization at Nosib cross-cuts the stratigraphy and also includes stratiform mineralization with significant chalcopyrite, striking northeast-southwest and dipping moderately to NW.

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
		• The Khusib Springs deposit is a small but high-grade pipe- like body that plunges steeply within brecciated carbonate rocks. The deposit resembles the Tsumeb deposit near the town of Tsumeb to the northeast.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to previous ASX announcements for drillhole details.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All exploration results are reported by a length weighted average. This ensures that short lengths of high-grade material receive less weighting than longer lengths of low-grade material. Voids/lost core intervals are incporated at zero grade. The assumptions used for reporting of metal equivalent values are detailed in Appendix 1 of this release.
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Drill holes and drill traverses were designed to intersect the targeted mineralised zones at a high angle where possible. Intersections reported approximate true width.

Criteria	JORC Code explanation	Commentary
intercept lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Refer to Figure 1, an oblique section through the Khusib Springs deposit. Figure 2 is a plan view of Khusib Springs and new MLEM anomalies; Figure 3 is a regional scale plan-view showing geology and prospect locations.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Intersections in all drillholes above designated cut-off grades are reported in Table 1 of the release.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other data is material to this report.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The diamond drilling results from the current program will interpreted and modelled prior to further drilling being planned. Conductors detected using MLEM geophysics will be modelled for further drill testing. Deeper targeting is planned for sulphide copper-silver mineralisation at depth at Nosib. The results of metallurgical work and mining studies on the Abenab and Nosib mineralisation will be integrated into the development Study in progress.