

Black Cat Syndicate Limited ("**Black Cat**" or "**the Company**") is pleased to announce an update on regional exploration activities at the Paulsens Gold Operation ("**Paulsens**").

HIGHLIGHTS

- A review of near-mine Resource growth opportunities has identified several high-priority exploration targets including the Paulsens Repeat structural target located below and parallel to the mine workings in a similar structural setting¹ which will be tested in a drill program commencing in late October.
- Initial review of the 2018 \$2M 3D seismic survey has identified two additional targets in similar interpreted structural settings to the east of Paulsens and reprocessing of this data is ongoing to further refine these targets prior to drill testing in 2023.
- Evaluation of regional exploration opportunities at Paulsens has also been ongoing since Black Cat completed the acquisition in June 2022. So far, this assessment has:
 - Identified four main prospective areas the 15km long Paulsens Structural Corridor ("PSC"), the Northern Anticline, Mt Clement/Eastern Hills and Electric Dingo;
 - Within each area, numerous gold, base metal and critical metals targets exist including ~5km of faultrelated base metal anomalism (Cu-Pb-Zn) within the PSC and high grade antimony (Sb) at Eastern Hills; and
 - Reprocessing of historic data has commenced, along with surveying and sampling activities to refine targets ahead of systematic drilling in 2023.
- Prior exploration work at Paulsens was heavily focussed on expanding the most readily minable parts of the ~1Moz Paulsens deposit. Regional activities, while encouraging, were less advanced and present a significant opportunity on multiple commodity fronts.

Figure 1: Black Cat field geologists Anthony Legge and Daniel Bochenek conducting reconnaissance sampling at the Eastern Hills Antimony prospect

Black Cat's Managing Director, Gareth Solly, said: "Paulsens is a well-known gold region but is also rich in other commodities. Near mine we see several structural targets with the potential for another Paulsens, while regionally we have seven advanced gold and base metal targets and three gold Resources that remain open with potential to grow rapidly. We also have critical minerals in the form of a high-grade antimony prospect and will work on upgrading the previous JORC 2004 Resource in early 2023. Add to all that, more than 5km of base metal anomalism and even a thermal coal deposit and it becomes clear that Paulsens has significant potential not just with gold but across a range of commodities. Field activity is ramping up as we assess these regional opportunities before systematic programs commence in 2023."

1 Refer to ASX announcement 14 October 2022

BLACK CAT SYNDICATE LIMITED (ASX:BC8)

Level 3, 52 Kings Park Road, West Perth WA 6005 PO Box 184, West Perth WA 6872 T: +61 458 007 713 | E: admin@bc8.com.au W: www.blackcatsyndicate.com.au ABN 63 620 896 282

DIRECTORS

Paul Chapman Gareth Solly Les Davis Philip Crutchfield Tony Polglase Non-Executive Chairman Managing Director Non-Executive Director Non-Executive Director Non-Executive Director

CORPORATE STRUCTURE

Ordinary shares on issue: 214M Market capitalisation: A\$67M (Share price A\$0.315) Cash (30 Jun 2022): A\$18.2M

SNAPSHOT – PAULSENS GOLD OPERATION

Large Scale Area, 100% Controlled by Black Cat

- 530km² of highly prospective ground is 100% owned and controlled by Black Cat.
- Current Resource of 217koz @ 4.9g/t Au.

Background

- Underground mining at Paulsens produced 907koz @ 7.3g/t Au at an average of 75koz pa.
- ~1Moz endowment including current Resources: Underground 89koz @ 5.9g/t Au; Mt Clement 51koz @ 1.8 g/t Au, Belvedere 30koz @ 3.9g/t Au, Electric Dingo 22koz @ 1.3g/t Au and Northern Anticline 24koz @ 1.4g/t Au.
- Previous regional exploration largely involved surface exploration with numerous gold and base metal anomalies identified but with only limited follow-up.

Infrastructure in Place, Ready for a Low-Cost Restart

- Paulsens has been kept on care and maintenance since 2018.
- Well maintained 450ktpa processing facility requiring minimal restart capital.
- +110-person camp on site, also rented out to third parties for short-medium term accommodation.
- Mine and advanced Resources on granted Mining Licences, minimal barriers to restart.
- Underground mine fully dewatered and ventilated; processing water readily available.
- Excellent access with sealed road and gas pipeline within 7kms of site.

Significant Opportunities at All Stages – Multi-metal Potential

- While traditionally regarded as a gold region, Paulsens has mutilimetal potential as is demonstrated by numerous base-metal (including Cu, Pb and Zn) targets, antimony at Eastern Hills and thermal coal at Kazput.
- Paulsens is located in a prospective regional setting for orogenic gold mineralisation and the multi-metal potential remains under-explored. There are four main prospect areas – the 15km long Paulsens Structural Corridor ("PSC"), the Northern Anticline, Mt Clement/Eastern Hills and Electric Dingo (Figure 2).
- The PSC is a complex zone of faults with the main structure through the PSC being the Hardey Fault. All gold mined to date at the Paulsens underground mine comes from where the Hardey Fault (and related fault splays) cuts through the Paulsens Mine Gabbro. Finding similar faulted-off gabbros is a priority given the obvious grade and scale potential.
- Underground drilling in 2022 includes:
 - Targets located close to existing infrastructure being the Gabbro Veins and Apollo with the potential of readily accessible ounces; and
 - Paulsens Repeat located 200m from the decline and representing a large-scale, faulted-off gabbro targeting "another Paulsens".

Figure 2: Regional map of the Paulsens Gold Operation showing the location of the Resources and the large-scale fault architecture

BACKGROUND

Paulsens is located on the Wyloo Dome in the Ashburton Basin of the Eastern Pilbara region of WA. The Wyloo Dome sits on the southwestern margin of the Pilbara Craton and is in a classic orogenic gold setting dominated by the crustal-scale Nanjulgardy Fault Zone and associated splays. As well as Paulsens, several other >1Moz Au deposits are found along the Nanjulgardy Fault Zone, including Karlawinda (2.1Moz) and Mt Olympus (1.65Moz) testifying to the prospectivity of this major structure. Mineralisation hosted in a quartz vein swarm at the Paulsens underground mine is located within the Hardey Fault Zone where the Paulsens Mine Gabbro is intersected.

Previous exploration work at Paulsens was focussed primarily on near mine exploration and Resource development around the Paulsens underground mine. Regional activities were primarily limited to surface sampling, geophysical surveying and targeted drilling at some prospects. The legacy surface data consists of ~41,000 total samples (~29,000 soil, ~3,500 auger, ~5,400 rock chip and ~3,100 stream sediment/vegetation/RAB holes). To the extent regional drilling was conducted, it was shallow and averaged only ~50m.

FINDING "ANOTHER PAULSENS" REGIONALLY

Black Cat completed the acquisition of Paulsens in June 2022 and immediately commenced a review of regional prospects. The low-cost, high-value-add, systematic review has included:

- Compilation of all legacy data;
- Reprocessing of historic geophysical data;
- Revisiting previous structural models of the Wyloo Dome to identify priority exploration targets; and
- Evaluation of the regional base and critical metals (Cu, Zn, Pb and Sb) potential and prioritising anomalies.

Apart from the immediate near mine area around Paulsens, Black Cat has been focused on four main prospect areas - the Paulsens Structural Corridor, the Northern Anticline, Mt Clement/Eastern Hills and Electric Dingo.

Figure 3: Long section looking northeast showing the relative locations of prospects discussed in the text. The Paulsens Structural Corridor is also labelled.

PAULSENS STRUCTURAL CORRIDOR

Paulsens Underground Mine Structural Targets

Cutting through the Wyloo Dome, the PSC is a complex zone of anastomosing faults, with individual faults having displacement of up to 800m. The main structure through the corridor is the Hardey Fault, which is a splay of the crustal-scale Nanjulgardy Fault Zone. At the Paulsens underground mine, the Hardey Fault (and subsidiary structures) host gold mineralisation where the fault cuts the Paulsens Mine Gabbro.

Interpretation of the 2018 3D seismic survey has identified three priority structural targets with similarities to Paulsens, including the Paulsens Repeat target located ~200m below and parallel to the mine workings, which is going to be targeted in the upcoming diamond drilling program¹. Reprocessing of the seismic data is ongoing, with final results expected in November, to further refine the two targets to the southwest of Paulsens as well as identify additional near-mine exploration targets.

Figure 4: Map of the PSC showing the fault architecture, historic drill collars coloured by maximum downole Au (g/t) and the surface projection of the three identified near mine seismic targets

Regional Targets

The PSC also hosts numerous surface gold (Au) and base metal (Cu-Pb-Zn) anomalies along the many anastomosing faults. Priority regional targets within the PSC include Amazon North (Au, Cu-Pb-Zn), Paulsens East (Au), Belvedere (Au-Cu), Eagles Lair (Au, Cu-Pb-Zn), Tombstone (Au-Cu), Billeroo (Au), Billeroo Bore (Au) and Ingrid (Au, Cu-Pb-Zn) (Figure 4). An ~5km long fault-related base metal anomaly has also been identified within the PSC that has not been drill tested historically.

A brief summary of each of the high priority regional targets in the PSC is provided below.

Figure 5: Map of the PSC showing the location of historic soil samples coloured by Au (ppb) and the location of the prospects discussed in the text.

Amazon North (Au-Cu-Pb-Zn)

Amazon North is located ~1km north of the Paulsens underground mine and includes four historic soil samples >100ppb Au along a ~1,500m strike length of a fault identified in the 3D seismic survey. No drilling has occurred at Amazon North and this area is considered prospective based on its faulted location along strike of the Paulsens underground mine with a coincident soil anomaly.

Paulsens East (Au)

Paulsens East is located ~600m east of the Paulsens underground mine and sits along a footwall splay of the Hardey Fault. Soil sampling has identified a ~175m long >25ppb Au soil anomaly with historic rock chips returning up to 29.7g/t Au. This area is considered prospective based on its structural setting combined with surface anomalism. Limited drilling focussed primarily on the western side of the anomaly and largely consisted of shallow drilling down to ~50m. Results included 1.0m @ 3.30g/t Au from 18m (RC89PM20)¹.

Belvedere (Au-Cu)

Belvedere is located ~6km southeast of the Paulsens underground mine and has seen small scale pre-WWII mining. Belvedere is associated with an ~600m long Au in soil anomaly and has seen detailed exploration in the immediate vicinity of the historic workings. Belvedere is associated with a high-angle normal fault and historical drilling results have identified high grade veins that remain open at depth and along strike to the east.

Limited shallow drilling of these regional targets requires additional follow up. Significant results include²:

- 4.0m @ 28.95g/t Au from 69m (PBERC0015)
- 9.0m @ 12.72g/t Au from 73m (PBERC0021)
- 5.0m @ 0.64% Cu from 56m (PBERC0029)
- 7.0m @ 0.45% Cu from 75m (PBRC0021)

The current Resource at Belvedere contains 0.24Mt @ 3.9g/t Au for 30koz which remains open. Mining studies are underway at Belvedere as potential mineable ounces are inventoried ahead of a processing facility restart.

² Refer to ASX Announcement dated 19 April 2022

Tombstone (Cu-Au)

Tombstone is located ~2km southeast of the Belvedere historical workings and is defined by an ~500m Au and Cu in soil anomaly as well as outcropping copper oxide mineralisation. Tombstone was worked on a small scale around the same time as Belvedere. Modern exploration has consisted of limited RC drilling and significant results include²:

- 2.0m @ 4.97g/t Au from 69m (TBRC0016)
- 8.0m @ 0.36% Cu from 20m (TBRC006)
- 28.0m @ 0.43% Cu from surface (TBRC002)
- 4.0m @ 0.44% Cu from 8m (TBRC001)

Figure 6: Field photo of copper oxide mineralisation outcropping at Tombstone

Eagles Lair (Au-Cu-Pb-Zn)

Eagles Lair is located ~500m north of Tombstone and is defined by an ~1km long Au and base metal in soil anomaly subparallel to a footwall splay of the Hardey Fault, which is interpreted to be the same fault that hosts the Paulsens East target. No historic drilling has been completed at Eagles Lair.

Billeroo (Au)

Billeroo is located ~3km along strike from Eagles Lair to the south and is defined by an ~250m Au in soil anomaly subparallel to the interpreted fault. No drilling has been conducted at Billeroo.

Billeroo Bore (Au)

Billeroo Bore is located along the northern margin of the Metawandy Granite along a NE-trending normal fault sub-parallel to the granite contact. Billeroo Bore is defined by an ~1km Au in soil anomaly and has had sporadic drilling completed with the best historic result of 1.0m @ 1.27g/t Au from 8m (BLRC0001)².

Ingrid (Au-Cu-Pb-Zn)

Ingrid is located ~250m NE of Billeroo Bore and is defined by a ~300m Au and base metal in soil anomaly as well as mapped surface quartz reef veining. Limited scout drilling completed at Ingrid did not adequately test the target.

>5km Long Base Metals Target

In addition to the Au-base metals targets above, there is an >5km long zone of fault-related base metal anomalism extending from Eagles Lair in the south to Paulsens East in the north that has not been drill tested previously (Figure 7). There are also several areas of base metal anomalism associated with interpreted fault intersections elsewhere in the PSC that require follow up field verification and drill testing.

Figure 7: Map of the PSC showing historic soil samples coloured by Cu+Pb+Zn (ppm). Location of the 5km long base metal soil anomaly is also indicated

NORTHERN ANTICLINE

The Northern Anticline targets are located along the northern margin of the Wyloo Dome where the dome plunges under younger sedimentary rocks of the Ashburton Formation. Four structural targets have been identified, all of which have had limited drilling with mineralisation remaining open. Merlin, Merlin South and Merlin East are all associated with a 3,000m x 600m zone of anomalous Au and base metal in soils (Figures 8 & 9). All three prospects are located in the hinge zone of the Wyloo Dome and significant results include²:

- 8.0m @ 4.29g/t Au from 97m (MD003)
- 4.0m @ 3.19g/t Au from 34.8m (MD001)
- 12.0m @ 0.21% Cu from 32m (MRC001)

The Duck Creek prospect is located at the northern end of the Hardey Fault Zone and is defined by a narrow linear Au in soil anomaly sub-parallel to the fault. This area is considered prospective based on its structural setting along the Hardey Fault Zone.

Figure 8: Map showing the location of historic soil samples coloured by Au (ppb) for the greater Paulsens area.

Figure 9: Map showing the location of historic soil samples coloured by Cu+Pb+Zn (ppm) for the greater Paulsens area

MOUNT CLEMENT/EASTERN HILLS

The Mount Clement/Eastern Hills prospect is located on granted mining leases ~20km to the southwest of the Paulsens underground mine. The area is prospective for gold and silver (Au & Ag) and base metal (Cu & Pb) mineralisation as well as antimony (Sb).

The Mt Clement Au-Ag deposit consists of multiple stacked lenses of mineralisation within sediment, breccia and talc rich lithologies. The deposit is separated into three distinct fault blocks, the eastern, central and western blocks. Gold mineralisation occurs in quartz breccia, talc rich units and sedimentary turbidite units as discrete stacked lenses. Within these lenses, gold mineralisation often occurs with elevated levels of base metal sulphides and silver. The most gold enriched zones are currently identified in near surface gossans in the western area of the deposit. The current Resource is 0.86Mt @ 1.9g/t Au and 25g/t Ag for 51koz Au and 681koz Ag. The deposit remains open in all directions.

Antimony-lead mineralisation at Eastern Hills is present in the form of a boulangerite-galena mineral assemblage with accessory pyrite, pyrrhotite and arsenopyrite. Artemis Resources released a JORC 2004 Resource for the Eastern Hills Sb-Pb deposit in November 2013 and Black Cat will update the Resource once additional geological activities are completed. Better historical Sb rock chip sampling results taken by Taipan Resources (1996) included:

- 33.0% Sb, 30.5% Pb, 0.50g/t Au (410119mE, 7474497mN)
- 21.5% Sb, 29.5% Pb, 0.39g/t Au (410125mE, 7474502mN)
- 19.5% Sb, 36.0% Pb, 0.32g/t Au (410233mE, 7474541mN)
- 10.8% Sb, 13.0% Pb, 0.21g/t Au (410149mE, 7474514mN)

Figure 10: Map of the Mt Clement/Eastern Hills prospect with historic soil/rock chip samples coloured by Cu+Pb+Zn (ppm - soils) and Sb (ppm - rock chips)

ELECTRIC DINGO

Electric Dingo is located ~100km SW of Paulsens underground mine along the Nanjulgardy Fault (Figure 2). Electric Dingo has had extensive drilling completed with a Resource of 0.54Mt @ 1.3g/t Au for 22koz. Mineralisation is open along strike and there is potential for additional mineralisation along the Nanjulgardy Fault. Significant historic drill results at Electric Dingo include²:

- 5.0m @ 5.34g/t Au from 80m (EDRC042)
- 5.0m @ 5.67g/t Au from 46m (EDRC048)

Immediate work plans for 2022 include a 25m line spaced airborne magnetic survey over Electric Dingo to refine the structural geology model of this area and to assist in extensional drill targeting.

ACTIVITIES UNDERWAY

Ongoing regional activities include:

- Reprocessing and re-interpretation of the \$2m 3D seismic survey at Paulsens to identify and further refine priority near-mine exploration targets. This work will be completed in October 2022.
- Reprocessing of other legacy geophysical data, including aeromagnetic and ground EM. This work is ongoing and results are expected to be received throughout October and November 2022.
- A 25m line spacing aeromagnetic survey has been scheduled for Electric Dingo. Field work will be completed in October 2022 with results expected in November 2022.
- Reconnaissance soil and rock chip sampling is ongoing at Belvedere to further refine gold and copper exploration targets. Reconnaissance rock chip sampling has also commenced at the Mt Clement (Au-Sb-Pb-Cu-Ag) and Eastern Hills (Sb-Pb) prospects.
- Reviewing and ranking of high-priority exploration target areas for 2023 work programs is ongoing, focussing on gold and base metal prospects within Paulsens.
- A structural review and interpretation of the Paulsens area will be undertaken by Model Earth during the December 2022 quarter to assist with future drill targeting activities.

PLANNED ACTIVITIES

Planned Activities	Oct-22	Nov-22	Dec-22	Jan- 23	Feb-23	Mar-23	Apr-23
Drilling - Kal East							
Drilling - Coyote							
Drilling - Paulsens							
Myhree - potential open pit mining & toll treatment							
Quarterly Reports							
Annual General Meeting							

For further information, please contact:

Gareth Solly Managing Director +61 458 007 713 admin@bc8.com.au Michael Vaughan Fivemark Partners +61 422 602 720 michael.vaughan@fivemark.com.au

This announcement has been approved for release by the Board of Black Cat Syndicate Limited.

ABOUT BLACK CAT SYNDICATE (ASX: BC8)

Key pillars are in place for Black Cat to become a multi operation gold producer at its three 100% owned operations. The three operations are:

Coyote Gold Operation: Coyote is located in Northern Australia, ~20km on the WA side of the WA/NT border, on the Tanami Highway. There is a well-maintained airstrip on site that is widely used by government and private enterprises. Coyote consists of an open pit and an underground mine, 300,000tpa processing facility, +180 person camp and other related infrastructure. The operation is currently on care and maintenance and has a Resource of 3.0Mt @ 5.1g/t Au for 488koz with numerous high-grade targets in the surrounding area.

Paulsens Gold Operation: Paulsens is located 180km west of Paraburdoo in WA. Paulsens consists of an underground mine, 450,000tpa processing facility, +110 person camp, numerous potential open pits and other related infrastructure. The operation is currently on care and maintenance, has a Resource of 2.7Mt @ 2.5g/t Au for 217koz and significant exploration and growth potential.

Kal East Gold Project: comprises ~800km² of highly prospective ground to the east of the world class mining centre of Kalgoorlie, WA. Kal East contains a Resource of 18.8Mt @ 2.1g/t Au for 1,294koz, including a preliminary JORC 2012 Reserve of 3.7Mt @ 2.0 g/t Au for 243koz.

Black Cat plans to construct a central processing facility near the Majestic Mining Centre, ~50km east of Kalgoorlie. The 800,000tpa processing facility will be a traditional carbon-in-leach gold plant which is ideally suited to Black Cat's Resources as well as to third party free milling ores located around Kalgoorlie.

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to geology, and planning was compiled by Dr. Wesley Groome, who is a Member of the AIG and an employee, shareholder and option holder of the Company. Dr. Groome has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Groome consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

Where the Company refers to the exploration results, Mineral Resources, and Reserves in this report (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource and Reserve estimates with that announcement continue to apply and have not materially changed.

i ne current in-situ, drill-defined	Resources	IOF BIACK C	al Syndica	ale are list	eu pelow.		1					
	Measu	ured Reso	urce	Indic	ated Res	ource	Infe	rred Reso	urce	Тс	otal Resou	irce
Mining Centre	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)
Kal East												
Open Pit	13	3.2	1	8,198	1.9	493	7,572	1.6	386	15,781	1.7	880
Underground	-	-	-	1,408	4.5	204	1,647	4.0	211	3,055	4.2	414
Kal East Resource	13	3.2	1	9,606	2.3	697	9,219	2.0	597	18,836	2.1	1,294
Coyote												
Open Pit	-	-	-	560	2.8	51	689	3.1	69	1,250	3.0	120
Underground	-	-	-	277	9.2	82	1,066	7.9	271	1,344	8.1	351
Stockpiles	-	-	-	375	1.4	17	-	-	-	375	1.4	17
Coyote Resource	-	-	-	1,212	3.8	150	1,755	6.0	340	2,969	5.1	488
Paulsens												
Open Pit	-	-	-	227	2.5	18	1,940	1.7	109	2,167	1.8	127
Underground	341	5.8	64	88	5.7	16	43	6.5	9	473	5.9	89
Stockpiles	11	2.8	1	-	-	-	-	-	-	11	2.8	1
Paulsens Resource	352	5.7	65	315	3.4	34	1,983	1.9	118	2,651	2.5	217
TOTAL Resource	365	5.6	66	11,133	2.5	881	12,957	2.5	1,055	24,456	2.5	2,000

APPENDIX A - JORC 2012 RESOURCE TABLE - BLACK CAT (100% OWNED)

The current in-situ, drill-defined Resources for Black Cat Syndicate are listed below.

Notes on Resources:

1. The preceding statements of Mineral Resources conforms to the 'Australasian Code for Reporting of Exploration Results Mineral Resources and Ore Reserves (JORC Code) 2012 Edition'.

2. All tonnages reported are dry metric tonnes.

3. Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding.

4. Resources have been reported as both open pit and underground with varying cut-offs based off several factors discussed in the corresponding Table 1 which can be found with the original ASX announcements for each Resource

5. Resources are reported inclusive of any Reserves

The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Resources are:

Kal East:

8.

- Boundary Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals Fortune".
- Trump Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals Fortune".
- Myhree Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals Fortune".
- Strathfield Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz".
- Majestic Black Cat ASX announcement on 25 January 2022 "Majestic Resource Growth and Works Approval Granted";
- Sovereign Black Cat ASX announcement on 11 March 2021 "1 Million Oz in Resource & New Gold Targets";
 Interview Black Cat ASX announcement on 11 March 2024 "1 Million Oz in Resource & New Gold Targets";
- Imperial Black Cat ASX announcement on 11 March 2021 "1 Million Oz in Resource & New Gold Targets";
 Jones Find Black Cat ASX announcement 04 March 2022 "Resource Growth Continues at Jones Find"
- Jones Find Black Cat ASX announcement 04 March 2022 Resource Growth Continues at Jones Find
 Crown Black Cat ASX announcement on 02 September 2021 "Maiden Resources Grow Kal East to 1.2Moz"
- Fingals Fortune Black Cat ASX announcement on 23 November 2021 "Upgraded Resource Delivers More Gold at Fingals Fortune".
- Fingals East Black Cat ASX announcement on 31 May 2021 "Strong Resource Growth Continues at Fingals".
- Trojan Black Cat ASX announcement on 7 October 2020 "Black Cat Acquisition adds 115,000oz to the Fingals Gold Project".
- Queen Margaret Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong".
- Melbourne United Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong".
- Anomaly 38 Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz".
- Wombola Dam Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with Silver Lake".
- Hammer and Tap Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources".
 Rowe's Find Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources".
- Rowe's Find Black Cat ASX announcement on 10 July 2020 ".
 Coyote Gold Operation
 - Coyote UG Black Cat ASX announcement on 19th April 2022 "Funded Acquisition of Coyote & Paulsens Gold Operations -Supporting Documents"
 - Sandpiper OP&UG Black Cat ASX announcement on 25th May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed"
 - Kookaburra OP Black Cat ASX announcement on 25th May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed"
 - Pebbles OP Black Cat ASX announcement on 25th May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed"
 Stockpiles SP (Coyote) Black Cat ASX announcement on 25th May 2022 "Coyote & Paulsens High-Grade JORC Resources
 - Stockpiles SP (Coyote) Black Cat ASX announcement on 25th May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed"
 Paulsens Gold Operation:
 - Paulsens Gold Operation:
 Paulsens UG Black Cat ASX announcement on 19th April 2022 Funded Acquisition of Coyote & Paulsens Gold Operations -
 - Supporting Documents
 Paulsens SP Black Cat ASX announcement on 19th April 2022 Funded Acquisition of Coyote & Paulsens Gold Operations -Supporting Documents
 - Belvedere OP Black Cat ASX announcement on 19th April 2022 Funded Acquisition of Coyote & Paulsens Gold Operations -Supporting Documents
 - Mt Clement Black Cat ASX announcement on 25th May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed"
 - Merlin Black Cat ASX announcement on 25th May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed"
 - Electric Dingo Black Cat ASX announcement on 25th May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed

APPENDIX B - JORC 2012 RESERVE TABLE - BLACK CAT (100% OWNED)

The current in-situ, drill-defined Reserves for the Kal East Gold Project are listed below.

	F	Proven Reser	ve	Pr	obable Rese	erve		Total Reserv	e
Mining Centre	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)
Open Pit Reserves									
Myhree	-	-	-	585	2.4	46	585	2.4	46
Boundary	-	-	-	120	1.5	6	120	1.5	6
Jones Find	-	-	-	350	1.5	17	350	1.5	17
Fingals Fortune	-	-	-	2,039	1.7	113	2,039	1.7	113
Fingals East	-	-	-	195	1.9	12	195	1.9	12
Sub Total	-	-	-	3,288	1.8	193	3,288	1.8	193
Underground Reserves									
Majestic	-	-	-	437	3.6	50	437	3.6	50
Sub Total	-	-	-	437	3.6	50	437	3.6	50
TOTAL Reserve	-	-	-	3,725	2.0	243	3,725	2.0	243
Notes on Reserve:	-								

Cut-off Grade: 1.

Open Pit - The Ore Reserves are based upon an internal cut-off grade greater than or equal to the break-even cut-off grade. 0

2.

3.

4.

 Open Pit - The Ore Reserves are based upon an internal cut-off grade greater than or equal to the break-even cut-off grade.
 Underground - The Ore Reserves are based upon an internal cut-off grade greater than or equal to the break-even cut-off grade.
 The commodity price used for the Revenue calculations was AUD \$2,300 per ounce.
 The Ore Reserves are based upon a State Royalty of 2.5% and a refining charge of 0.2%.
 Mineral Resources are reported as inclusive of Ore Reserves.
 Tonnes have been rounded to the nearest 100 to for open pit and 1000 t for underground, grade has been rounded to the nearest 0.1 g/t, ounces have been rounded to the nearest 100 oz. Discrepancies in summations may occur due to rounding. 5.

6. This Ore Reserve statement has been compiled in accordance with the guidelines of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code - 2012 Edition).

APPENDIX C – MT CLEMENT HISTORICAL ROCK CHIP SAMPLING RESULTS

East UTM	North UTM	Company	Sampled Date	Au PPM	Ag PPM	As PPM	Cu PPM	Pb PPM	Sb PPM	Zn PPM	Sample Comments
408472.174	7475054.606	NR	8/11/2002	0.0005	0.5	23	8	1103	1	6	7.2m, gossanous breccia and vein quartz
408476.174	7475060.606	NR	8/11/2002	0.001	0.5	24	8	498	1	7	7.1m, gossanous breccia and vein quartz
408481.174	7475065.606	NR	8/11/2002	0.002	1.1	26	10	147	1	6	7.6m, gossanous breccia and vein quartz
408484.174	7475072.606	NR	8/11/2002	0.0005	0.4	19	12	290	1	11	6.0m, gossanous breccia and vein quartz
408509.308	7474882.168	Taipan	17/10/1996	0.017	0.2	2050	27	104	18	31	Chert with minor qtz vning tr pervasive limonite
408515.307	7475019.165	Taipan	17/10/1996	0.012	0.2	600	38	290	29	135	Talc schist with 2cm thick chert/qtz band slightly ferr
408520.307	7474949.166	Taipan	17/10/1996	0.064	0.3	4000	46	72	40	22	Chert/bif weak fe staining
408521.306	7475066.164	Taipan	17/10/1996	0.01	0.6	1150	173	730	14	86	Strong ferr qtz minor Pb tr limonite
408523.306	7475066.164	Taipan	17/10/1996	2.55	2.8	190000	35	155	35	5	Pale gn chert brecciated qtz/minor arsenic tr limonite
408527.175	7475006.607	NR	8/11/2002	0.008	0.7	825	20	2575	3	71	4.5m, gossanous breccia and vein quartz
408529.175	7475010.607	NR	8/11/2002	0.002	0.5	544	30	124	7	114	4.0m, gossanous breccia and vein quartz
408530.175	7475014.607	NR	8/11/2002	0.036	1.3	583	33	307	6	134	5.1m, gossanous breccia and vein quartz
408531.174	7475116.605	Taipan	25/10/2000	0.05	0.6	2060	90	47	2.5	77	gn and bn gy cl-qz-he altered SMS
408531.175	7475019.607	NR	8/11/2002	0.02	1.9	1835	50	1774	11	228	4.5m, gossanous breccia and vein quartz
408533.175	7475023.607	NR	8/11/2002	0.001	0.4	714	20	208	1	149	5.0m, gossanous breccia and vein quartz
408533.175	7475028.606	NR	8/11/2002	0.001	0.5	38	6	181	1	9	4.1m, gossanous breccia and vein quartz
408534.175	7475032.606	NR	8/11/2002	0.002	0.1	45	10	56	1	129	5.1m, gossanous breccia and vein quartz
408535.175	7475037.606	NR	8/11/2002	0.003	0.2	36	4	12	1	66	4.1m, gossanous breccia and vein quartz
408536.175	7475041.606	NR	8/11/2002	0.003	0.2	51	11	165	1	87	4.5m, gossanous breccia and vein quartz
408538.175	7475045.606	NR	8/11/2002	0.009	0.6	287	61	1040	1	86	6.1m, gossanous breccia and vein quartz
408539.175	7475051.606	NR	8/11/2002	0.005	0.4	427	42	482	1	145	5.5m, gossanous breccia and vein quartz
408568.307	7475014.165	Taipan	17/10/1996	0.009	0.2	1160	135	45	44	37	Lt gy carb siltst + dolerite dyke- baked margin
408580.307	7474992.165	Taipan	17/10/1996	0.008	0.6	480	120	165	8	320	Baked margin btn dolerite and chert fe tr limonite
408590.175	7475018.607	NR	8/11/2002	0.005	2.4	709	24	123	24	66	5.8, gossanous breccia and vein quartz
408593.175	7475023.607	NR	8/11/2002	0.004	1.6	366	17	90	11	33	6.7m, gossanous breccia and vein quartz
408596.175	7475029.607	NR	8/11/2002	0.003	5.3	417	24	54	27	58	5.4m, gossanous breccia and vein quartz
408598.175	7475034.606	NR	8/11/2002	0.001	4.2	606	30	293	29	52	5.9m, gossanous breccia and vein quartz
408601.175	7475039.606	NR	8/11/2002	0.008	2.6	874	48	90	28	110	6.3m, gossanous breccia and vein quartz
408603.175	7475045.606	NR	8/11/2002	0.004	3.5	1538	19	147	24	94	6.1m, gossanous breccia and vein quartz

408604.175	7475051.606	NR	8/11/2002	0.0005	1.7	3351	15	254	62	146	6.0m, gossanous breccia and vein quartz
408611.307	7474999.165	Taipan	17/10/1996	0.007	4.8	320	23	72	21	12	fe breccia matrix cherty with brecc qtz vn
408617.307	7474985.165	Taipan	17/10/1996	0.017	0.3	4200	76	66	31	98	Lt bn oxidises carb siltst tr fe
408622.307	7475000.165	Taipan	17/10/1996	0.005	0.3	1500	33	125	42	45	Carb silst ct with fe breccia
408634.175	7475016.607	NR	8/11/2002	0.091	18.7	1191	87	493	42	112	4.5m, gossanous breccia and vein quartz
408638.175	7475018.607	NR	8/11/2002	0.047	0.9	747	55	184	17	55	3.2m, gossanous breccia and vein quartz
408641.175	7475019.607	NR	8/11/2002	0.147	2.2	1092	81	257	33	79	5.0m, gossanous breccia and vein quartz
408644.175	7474991.607	NR	8/11/2002	0.016	0.7	2114	75	5	10	78	5m, gossanous breccia and vein quartz
408645.175	7475022.607	NR	8/11/2002	0.042	0.9	897	83	1159	33	84	7.3m, gossanous breccia and vein quartz
408647.175	7474995.607	NR	8/11/2002	0.0005	0.1	1712	75	10	12	63	8m, gossanous breccia and vein quartz
408647.175	7475007.607	NR	8/11/2002	0.005	0.5	797	42	10	12	59	5m, gossanous breccia and vein quartz
408648.175	7475023.607	NR	8/11/2002	0.079	2	729	46	407	21	54	4.6m, gossanous breccia and vein quartz
408650.175	7475011.607	NR	8/11/2002	0.001	1.3	3008	114	68	50	145	5m, gossanous breccia and vein quartz
408651.175	7475002.607	NR	8/11/2002	0.002	0.05	2054	83	8	18	87	5m, gossanous breccia and vein quartz
408652.175	7475024.607	NR	8/11/2002	0.026	2	1125	72	328	31	100	4.5m, gossanous breccia and vein quartz
408655.675	7475027.607	NR	8/11/2002	0.006	11.5	1785	139	427	102	161	4.5m, gossanous breccia and vein quartz
408760.176	7474949.608	NR	8/11/2002	0.001	0.1	911	7	16	1	102	2.2m, gossanous breccia and vein quartz
408762.176	7474950.608	NR	8/11/2002	0.0005	0.1	403	5	11	1	56	3.0m, gossanous breccia and vein quartz
408765.176	7474950.608	NR	8/11/2002	0.0005	0.1	534	5	11	1	96	2.2m, gossanous breccia and vein quartz
408767.176	7474951.608	NR	8/11/2002	0.002	0.6	1069	8	7	1	42	3.2m, gossanous breccia and vein quartz
408770.176	7474952.608	NR	8/11/2002	0.009	0.2	743	9	11	1	41	3.1m, gossanous breccia and vein quartz
408773.176	7474953.608	NR	8/11/2002	0.173	1	2185	13	21	1	30	3.0m, gossanous breccia and vein quartz
408780.176	7474964.608	NR	8/11/2002	0.01	0.5	781	25	79	28	106	3.0, gossanous breccia and vein quartz
408783.176	7474964.608	NR	8/11/2002	0.013	1	535	57	72	7	62	3.2m, gossanous breccia and vein quartz
408786.176	7474965.608	NR	8/11/2002	0.031	0.8	373	22	48	10	36	3.2m, gossanous breccia and vein quartz
408789.176	7474964.608	NR	8/11/2002	0.014	0.5	225	17	22	4	19	3.0m, gossanous breccia and vein quartz
408794.176	7474938.608	NR	8/11/2002	0.025	27.6	409	82	10	40	12	3.0m, gossanous breccia and vein quartz
408797.176	7474938.608	NR	8/11/2002	0.003	6.9	41	16	15	2	7	3.0m, gossanous breccia and vein quartz
408800.176	7474938.608	NR	8/11/2002	0.014	1	30	6	151	5	5	3.0m, gossanous breccia and vein quartz
408807.176	7474951.608	NR	8/11/2002	0.087	0.7	35	8	182	1	4	4.1m, gossanous breccia and vein quartz
408811.176	7474952.608	NR	8/11/2002	0.002	0.2	84	11	40	3	16	4.2m, gossanous breccia and vein quartz
408815.176	7474953.608	NR	8/11/2002	0.027	0.3	466	39	51	18	60	4.5m, gossanous breccia and vein quartz

408819.176	7474955.608	NR	8/11/2002	0.004	0.7	3068	135	181	98	342	4.0m, gossanous breccia and vein quartz
409103	7475102	Intrepid	19/12/2008	11.9	686		20300	161.5	1455	68	Various hydrothermally altered, from nr adit. Green mineral?
409346.314	7474045.181	Taipan	5/12/1996	0.005	2.2	2200	48	640	170	62	20cm wide/1m long pod of gy/gn brecciated silicified siltstone 5% gy minerals
409349.314	7474051.181	Taipan	5/12/1996	0.01	0.7	1180	48	1200	200	48	Highly sheared brecciated qtz vein 1m wide minor Dk gn minerals
409405.314	7474077.181	Taipan	5/12/1996	0.005	0.5	150	70	180	66	94	Qtz vn dk gy min 1% sericitised
409524.311	7474370.176	Taipan	3/10/1996	0.094	4.5	4400	82	760	84	14	V fn gn sed/schist sericite fe qtz py pseudos
409574.307	7474860.169	Taipan	21/10/1996	0.01	0.3	1200	24	84	2	235	Dolomite with sericite + gn minerals minor vn qtz
409624.312	7474290.177	Taipan	3/10/1996	0.033	3.6	18500	54	6400	2500	9	Coarse sst + py pseudos + qtz
409674.312	7474260.178	Taipan	21/10/1996	0.84	39	38000	200	98000	9800	17	Silica replaced original texture pb tr arsenates 3m width
409714.31	7474490.174	Taipan	2/10/1996	0.102	0.7	130000	13	3000	540	7	brecciated qtz abundant ox py greenish tinged sed
409739.309	7474640.173	Taipan	17/10/1996	0.003	0.5	400	28	380	235	58	Cooked qtz in sst
409774.311	7474440.175	Taipan	2/10/1996	0.011	4	6600	94	225	72	6	schistose tn/pk sed + py ox on qtz vn
409774.311	7474415.175	Taipan	2/10/1996	0.78	40	42000	170	70000	22500	15	v high sg qtz + ox sed (ferr minor)
409774.311	7474390.175	Taipan	2/10/1996	0.005	0.8	2300	165	250	180	29	numerous qtz veinlets in shred siltst
409774.311	7474410.175	Taipan	2/10/1996	0.023	0.9	5200	220	3100	600	15	Brecia qtz minor py pseudos
409774.311	7474445.175	Taipan	17/10/1996	0.037	96	13000	155	48000	10500	6	Gn sericitc sst + qtz vning
409774.311	7474430.175	Taipan	17/10/1996	1.25	9	52000	66	1400	340	6	Blue sst py pseudos sg high
409774.312	7474270.177	Taipan	17/10/1996	0.112	70	24500	215	76000	5600	19	Qtz vn on nth side of sst at end of ridge (sim to EHG 19)
409824.31	7474540.174	Taipan	2/10/1996	0.12	0.5	155000	58	1160	1500	13	dk color sandy silts py + olive colored ox
409864.309	7474540.174	Taipan	21/10/1996	0.82	4.4	210000	175	880	1080	5	V dk kh arsenate mins qtz vns
409874.309	7474540.174	Taipan	21/10/1996	0.32	0.9	160000	108	1200	560	3	Qtzite? With recrystallised qtz/fe/tr sericite
409904.31	7474490.174	Taipan	17/10/1996	0.021	3.6	0.05	38	1350	420	6	Gn sericitc sst + qtz vning
409934.31	7474490.174	Taipan	2/10/1996	0.005	0.4	580	28	1450	420	5	Qtz vein (py pseudomorphs) in It gn sandy siltst
409974.31	7474490.174	Taipan	2/10/1996	0.032	1.7	1450	46	2300	250	14	Boxwork qtz in micaceous coarse sst
410024.307	7474850.17	Taipan	2/10/1996	0.026	1.7	3200	33	8200	1900	17	Qtz sandy silt numerous py pseudos + micaceous cross cutting qtz vn
410044.307	7474890.17	Taipan	2/10/1996	0.003	0.2	5400	125	32	14	4	Yellow sandy silt (alt?) ptygmatic qtz
410054.307	7474890.17	Taipan	2/10/1996	0.029	0.4	9200	90	74	62	13	Qtz +tr py psuedos
410064.307	7474890.17	Taipan	21/10/1996	0.06	0.2	78000	38	29	200	4	Yw siltst limonitic sericite qtz dk kh min As?
410069.307	7474890.17	Taipan	5/12/1996	0.26	0.3	195000	25	320	800	9	Lt gn/bl recryst/aerated sst with x qtz veining
410074.307	7474890.17	Taipan	2/10/1996	0.014	0.2	50000	11	18	16	1	Qtx breccia ferr schistose sed \
410074.31	7474440.174	Taipan	2/10/1996	0.195	11.2	2950	90	18500	3900	26	Qtz py pseudos and sheared sed (silt) in coarse sst
410083.309	7474647.173	Taipan	5/12/1996	0.02	3.1	23500	43	29500	22000	6	Mod high sg sheared gn silt + qtz py pseudos

410083.309	7474650.173	Taipan	5/12/1996	0.01	2	82000	104	1750	295	8	Tn/yw silt mod ferr mod sg from ft zone
410091.309	7474644.173	Taipan	5/12/1996	0.005	0.4	1650	21	800	33	8	Breciated aerated qtz from ft zone
410108.31	7474491.174	Taipan	5/12/1996	1.25	135	80000	520	94000	86000	13	Alt Vq/sst yw/gn recryst vein min
410114.308	7474750.171	Taipan	2/10/1996	0.004	0.2	980	100	660	60	4	Qtz sandy silt numerous py pseudos + micaceous cross cutting qtz vn
410119.31	7474497.174	Taipan	5/12/1996	0.5	1500	34000	300	305000	330000	11	V high sg gy mineralised vein has bn silica assoc
410121.31	7474440.174	Taipan	17/10/1996	0.035	2.5	3900	76	8400	540	15	Coarse gn sst/qtz vn stringers tr As
410124.31	7474445.174	Taipan	2/10/1996	3.2	140	8200	420	130000	10600	12	Qtz py pseudos and sheared sed (silt)
410124.31	7474425.174	Taipan	17/10/1996	0.037	2.5	1650	37	700	360	29	V plain gy coarse sst tr he 10m sth of min zone
410125.31	7474502.174	Taipan	5/12/1996	0.39	140	33000	205	295000	215000	14	V high sg gy mineralised vein in brecciated qtz
410129.31	7474445.174	Taipan	20/09/1996	6.4	110	1950	620	280000	10000	14	Fe ox heavy qtz
410130.31	7474445.174	Taipan	20/09/1996	3.9	200	1900	510	290000	17000	12	
410130.31	7474502.174	Taipan	5/12/1996	0.38	18	29500	114	56000	43000	12	Sheared vn mineralisation bl/gy/gn As Pb Sb high sg
410132.31	7474442.174	Taipan	20/09/1996	0.34	16.5	20500	76	11600	1600	2	
410134.31	7474440.174	Taipan	17/10/1996	0.38	2.8	165000	155	1200	1050	8	Chert/vn qtz minor AS? Gn/ Bl
410136.31	7474501.174	Taipan	3/10/1996	0.078	37	45000	84	7800	5000	8	Smokey qtz (py) in lite gn shear/sed
410136.31	7474440.174	Taipan	17/10/1996	6.8	220	1150	245	33000	22000	11	Gy/bn sndy siltst v sheared minor limonite high sg
410149.309	7474624.173	Taipan	5/12/1996	0.04	0.2	270000	76	90	760	6	Lt gn/bl recryst and airated min qtz sst with xqtz vning
410149.31	7474514.174	Taipan	5/12/1996	0.21	21.5	66000	150	130000	108000	14	Alt sst (relic grains) high sg gn/gy ox Sulphs as mineralised
410177.307	7474861.17	Taipan	5/12/1996	0.35	1.6	108000	90	2650	250	10	Bl/gn sheared silty sst from x fault area + dk qtz py
410183.31	7474524.173	Taipan	5/12/1996	0.01	2.6	16000	200	1850	13000	125	V ferr(ironstone) sheared VQ + schistose silt
410222.309	7474505.174	Taipan	5/12/1996	0.82	35	45000	860	106000	62000	20	High sg silty sst v fer Py ox qtz vn in PWA
410224.307	7474790.17	Taipan	2/10/1996	0.012	1.9	5300	77	850	650	30	Qtz vein abundant py pseudos (ox)
410224.308	7474590.173	Taipan	3/10/1996	0.016	1.1	1750	33	1350	195	19	Qtz + sed peacock ore colors
410224.309	7474540.173	Taipan	3/10/1996	0.118	3	8600	230	4600	2150	31	Cooked up qtz on ridgeline in sed
410233.309	7474541.173	Taipan	29/11/1996	0.32	250	1750	110	360000	195000	26	V high sg vein qtz Pb sg min on Nth side sst 50cm wide
410234.309	7474415.174	Taipan	17/10/1996	0.008	3.2	16500	40	285	3400	22	Sandy siltst mod he veins/ fract qtz
410234.31	7474400.175	Taipan	17/10/1996	0.078	3.6	3400	18	4900	540	5	Splotchy Pk/Gn qtz numerous py ox holes
410239.31	7474415.174	Taipan	17/10/1996	0.009	0.5	310	7	360	165	4	Qtz It gn silt minor py ox
410242.309	7474560.173	Taipan	29/11/1996	0.74	20	135000	210	27500	3400	13	Bl/gn high sg mineralised qtz + sst
410244.306	7474890.17	Taipan	2/10/1996	0.34	0.3	200000	44	560	600	18	Lime green qtzose dyke?
410244.308	7474590.173	Taipan	3/10/1996	0.018	5.4	3400	108	3700	370	12	Sheared sugary qtz + sed major py pseudos
410264.306	7474915.17	Taipan	2/10/1996	0.004	0.1	960	11	82	29	17	Coarse sandstone py holes alt/ox carb?

410273.308	7474647.172	Taipan	29/11/1996	0.03	26	10800	140	33000	6000	3	laminated/sheared fn gn/gy siltstone mineralised
410294.309	7474507.173	Taipan	5/12/1996	0.1	8.6	28500	250	90000	82000	17	Fer alt sst + vq py pseudos bl/gn mod high sg
410300.308	7474662.172	Taipan	29/11/1996	0.03	2.2	11750	61	1190	150	11	Qtz in sst at end of min zone in nose of fold adjacent to mineral zone
410304.309	7474540.173	Taipan	3/10/1996	1.08	28	10500	750	60000	23000	27	Qtz + It gn schist minor py ox
410324.309	7474560.173	Taipan	3/10/1996	0.034	1.8	1350	86	1350	175	7	Qtz py ox in N/W trend qtz sst
410324.309	7474570.173	Taipan	3/10/1996	0.06	160	35500	92	86000	35000	7	Weird ox ore in qtz sst shear
410384.306	7474990.169	Taipan	2/10/1996	0.003	0.3	34000	62	420	120	31	Sugary qtz + schistose sed py psuedos
410384.306	7474960.169	Taipan	2/10/1996	0.088	0.6	370	780	46	12	21	Sugary qtz + ox py veinlets
410384.306	7474940.17	Taipan	2/10/1996	0.022	0.1	580	370	78	4	17	Qtz vn with malachite present
410404.306	7474990.169	Taipan	2/10/1996	0.008	0.4	4400	41	2800	66	5	Ox py in brecciated sandy siltstone
410678.304	7475227.168	Taipan	5/12/1996	0.03	2.3	17000	82	12500	500	155	Blue siltst/sst abund Py pseudos
410684.304	7475240.168	Taipan	5/12/1996	0.005	0.1	730	40	53	22	65	Sst with py pseudos
410684.304	7475227.168	Taipan	5/12/1996	0.005	0.4	560	27	1160	480	15	
410774.304	7475290.168	Taipan	5/12/1996	0.02	0.2	29500	62	440	104	9	Bl/gy py spotted qtz/silt in sst
410804.304	7475290.168	Taipan	5/12/1996	0.09	1.2	6200	24	2750	235	7	High sg As/Pb min? in sst down stk from 18

APPENDIX D - PAULSENS HISTORIC SURFACE SAMPLING 2012 JORC TABLE 1

Section 1: Sampling Techniqu	es and Data						
Criteria	JORC Code Explanation	Commentary					
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Soil Samples: A variety of soil sample field prep methods are included in the historic data set and are tabulated below. Spot checks on historic reporting for sieved samples indicate dry sieving was standard. Rock Chips: Rock chip sampling is a mixture of channel and grab sampling as indicated on the tables below					
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Soil sampling: The majority of soil sampling was conducted on regular grids (variable sample spacing) perpendicular to the strike of local geology Rock Chip Sampling: Rock chip sampling is a mixture of regular grid spacing and selective sampling, with most sampling being conducted on a grid					
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Where RC drilling is discussed, 1m samples were collected from a cone splitter on the rig from which 3kg was pulverized for either 30g charge fire assay or ICPMS analysis. Where diamond drilling is discussed, samples were collected on geologic intervals, crushed and pulverised and assayed as per RC samples. Surface samples were crushed, pulverised and assayed as per drill samples					
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Where drilling is referenced, standard RC drilling was utilized, Diamond drilling was a mix of HQ and NQ core size					
	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recovery was estimated whilst logging.					
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Soil Sampling: sampling was typically done on a regular grid spacing so no inherent bias is anticipated Rock Chip Sampling: Most rock chip sampling was completed on a grid so bias is expected to have been reduced. Grab samples are expected to have an inherent bias in what was collected					
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	None evident in the historic data					
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Not used for resource purposes					
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	RC and diamond core logging was qualitative					
	The total length and percentage of the relevant intersections logged.	All core and RC chips were historically logged					
	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were half core					
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Soil Samples are believed to have been systematically sieved whilst dry based on historic reporting. RC drill samples were collected via a cone splitter on the rig					
Sub-sampling techniques and	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Based on historic reporting, the sample preparation methods used in field are considered appropriate for early-stage exploration anomaly detection					
sample preparation	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Soil sampling was typically completed on a grid spacing					
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling.	No field repeats are evident in the historic data, although subsequent infill programs broadly confirm initial wide-spaced anomalism. Historic drilling had 4% QAQC samples inserted in the sample stream, including blanks, standards and field duplicates					

Section 1: Sampling Technique	ues and Data	
Criteria	JORC Code Explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	A variety of soil mesh sizes were used as tabulated below.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Appropriateness of the assay techniques is considered vali for the time period of analysis and for the intent of defining early stage anomalism
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools used
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Uncertain. The historic surface sampling database does not include information on QAQC samples
	The verification of significant intersections by either independent or alternative company personnel.	Subsequent infill sampling broadly correlates with initial results were conducted
Verification of sampling and	The use of twinned holes.	No twinned holes were completed
assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data was entered into an access database by previous explorers
	Discuss any adjustment to assay data.	No adjustments to assay data were conducted
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Surface sample data points were recorded using hand-held GPS units with an assumed accuracy of +/-5m. None used in mineral resource estimation
Ecodition of data points	Specification of the grid system used.	Data was collected in MGA94 Z50
	Quality and adequacy of topographic control.	Topographic control of drillholes is based on historic DGPS collar surveying.
	Data spacing for reporting of Exploration Results.	Grid spacing was highly variable during historic sampling
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Surface data referenced herein is not used for Resource estimation.
	Whether sample compositing has been applied.	No sample compositing as been applied
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Soil sampling was conducted on regular grid spacing, which was variable for different programs. Rock chip sampling was a mixture of grid sampling and grab sampling
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Historic drilling was largely oriented perpendicular to known mineralisation trends at the time as much as practicable.
Sample security	The measures taken to ensure sample security.	Samples were collected and despatched to commercial labs using standard processes
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Random confirmation of results against historic reporting was conducted, although not every sample was validated

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary						
Mineral tenement and land tenure status		The following tenements in the project area are 100% owned by Black Cat Syndicate:						
	Type_reference_name/number_location_and_ownership_including	E08/1649	E08/2791					
	agreements or material issues with third parties such as Joint Ventures,	E08/1650	E47/1553					
	partnerships, overriding royalties, native title interests, historical sites,	E08/1745	E47/1773					
	wilderness or national park and environmental settings.	E08/2000	E47/3305					
		E08/2065	E47/3396					

Section 2: Reporting of Expl	oration Results (Criteria listed in the preceding section also apply to this section	on.)						
Criteria	JORC Code Explanation	Commentary						
		E08/2499 M08/0099						
		E08/2555 M08/0191						
		E08/2556 M08/0192						
		E08/2558 M08/0193						
		E08/2560 M08/0196						
		EU0/2005 IVI00/U222 F08/2659 M08/0515						
		E08/2755						
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenements are currently in good standing						
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic exploration was conducted across the project area by several entities						
Geology	Deposit type, geological setting and style of mineralisation.	Regional geologic setting is discussed in the body of the announcement						
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:							
	 easing and northing of the drift fole conar, elevation on Deduced Level ("DL") (elevation shows see level in 							
	metres) of the drill hole collar;	Liistanis deillikala sallara rafaranaa dia khis ana suraamaat kawa kaan raaadad ayayisyalu ku Diask Cat. Dafarta ACV						
Drill hole information	 dip and azimuth of the hole; 	nisionic drill note collars referenced in this announcement have been reported previously by black Cat. Refer to ASA Announcement dated 19 April 2022						
	 down hole length and interception depth; 							
	 hole length; and 							
	 if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 							
		No weighted averaging was applied to surface sampling						
		No top cutting of grade was conducted						
	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated.	Weighted averaging of Au grades was conducted with a 1g/t Au cut-off with 2m maximum internal waste in the intercept and 1m contiguous waste						
Data aggregation methods		Weighted averaging of Cu grades reported was with a 0.1% cut-off grade with 2m maximum internal waste in the interval and 1m contiguous waste						
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	A total maximum of 2m internal waste was used with up to 1m contiguous waste when calculating intercepts						
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents were reported						
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	Surface sampling was conducted on grid spacing with grids approximately perpendicular to local geology						
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	As much as practicable, historic drilling was approximately perpendicular to local geology and widths are assumed to be approximately true widths						

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)		
Criteria	JORC Code Explanation	Commentary
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams are included in the body of this announcement
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high- grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All surface sampling data is displayed on the maps within the body of the release
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Historic surface samples referenced in the release are shown on the accompanying maps in the body of the text. A total of 14,486 historic soil samples are referenced on the maps in the body of this announcement. Sample spacing was highly variable across the district and sample locations are indicated on the maps within the body of the release. Soil samples were a mixture of grab samples and sieved samples. A total of 4,000 surface rock chip samples were reported historically for the prospects discussed in this release. Samples are a mixture of random grab samples and chips as well as grid chip sampling.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Black Cat is currently ranking targets and finalizing follow-up work plans, including RC drilling, for prospects discussed in this release