## 26 OCT 2022

# ABOUT ADRIATIC METALS (ASX:ADT, LSE:ADT1, OTCQX:ADMLF)

Adriatic Metals Plc is focused on the development of the 100%-owned, Vares high-grade silver project in Bosnia & Herzegovina, and exploration at the Raska base & precious metals project in Serbia.

## DIRECTORS

Mr Michael Rawlinson NON-EXECUTIVE CHAIRMAN

Mr Paul Cronin MANAGING DIRECTOR & CEO

Mr Peter Bilbe NON-EXECUTIVE DIRECTOR

Mr Julian Barnes NON-EXECUTIVE DIRECTOR

Ms Sandra Bates NON-EXECUTIVE DIRECTOR

Ms Sanela Karic NON-EXECUTIVE DIRECTOR

# adriaticmetals.com

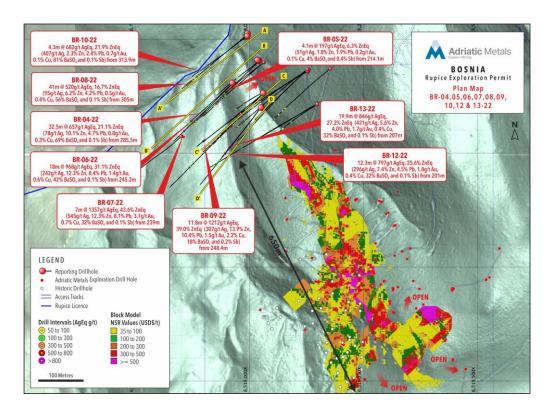


# HIGH-GRADE INTERCEPTS CONTINUE TO EXPAND RUPICE NORTHWEST EXTENSION

# VARES PROJECT EXPLORATION HIGHLIGHTS

Exploration drilling at Rupice Northwest, which lies outside the Company's current reserve and resource estimates, continues to intercept additional thick, high-grade massive sulphide mineralisation up-dip and down plunge from previously reported intersections.

The current exploration drilling campaign at Rupice Northwest is designed to confirm whether the high-grade mineralisation at the existing Rupice Mineral Resource ("RMR") continues along strike to the northwest. The intercepts announced are assay results from nine exploration drill holes out of nineteen completed in the year to date.


These assay results are in addition to the results announced previously on 30 June 2022.

Assay results from Rupice Northwest, as detailed below, confirm extension of mineralisation along strike of RMR. Widths and grades intercepted at Rupice Northwest are equivalent to those held within the existing high-grade RMR; continuity between approximately 80m spaced sections has been established over a strike extent of 250m.

Further drilling in the remainder of 2022 will reduce this spacing to approximately 40m between drill lines. By year end, a drilling gap of less than 90m will separate RMR from the adjacent Rupice Northwest mineralisation.

There is no evidence to indicate Rupice Northwest is not connected or is located on a separate geological system to RMR. In addition, the direct strike and plunge continuity suggests that even if faulted, there is minimal, if any, displacement between Rupice Northwest and RMR.





# Figure 1: Plan view map of Rupice and location of recent drilling activity

# Drillhole highlights:

Drillholes BR-04-22 and BR-05-22 are located 155m northwest of RMR. They are respectively drilled up-dip and down-dip of previously reported hole BR-12-21 (24.7m at 514g/t AgEq), intercept:

- BR-04-22 32.5m at 657 g/t AgEq, 21.1% ZnEq (78g/t Ag, 10.1% Zn, 4.7% Pb, 0.8g/t Au, 0.3% Cu, 69% BaSO4, 0.1% Sb) from 285.5m
  - including 2m at 1,331 g/t AgEq, 42.8% ZnEq (170g/t Ag, 19.7% Zn, 18.5% Pb, 0.5g/t Au, 1.2% Cu, 40% BaSO4, 0.2% Sb) from 315.0m.
- BR-05-22 4.1m at 197 g/t AgEq, 6.3% ZnEq (51g/t Ag, 1.8% Zn, 1.9% Pb, 0.2 g/t Au, 0.1% Cu, 4% BaSO4, 0.4% Sb) from 214.1m.

At the time of release, barium sulphate assays values for holes BR-06-22 to BR-13-22 are preliminary. All other assay results are final. Ag and Zn equivalent calculations have been completed using preliminary BaSO4 assay results.

Drillholes BR-06-22 and BR-07-22, located 175m northwest of RMR and drilled up-dip of the currently reported hole BR-04-22 (32.5m at 657 g/t AgEq), intercepted:

- BR-06-22 18m at 968 g/t AgEq, 31.1% ZnEq (242 g/t Ag, 12.3% Zn, 8.4% Pb, 1.4 g/t Au, 0.6% Cu, 42% BaSO4, 0.1% Sb) from 245.2m
  - including 3.8m at 1,848 g/t AgEq, 59.4% ZnEq (763 g/t Ag, 16.3% Zn, 15.2% Pb, 3.6g/t Au, 0.6% Cu, 31% BaSO4, 0.1% Sb) from 245.2m.
  - including 6.2m at 1,174 g/t AgEq, 37.7% ZnEq (169 g/t Ag, 19% Zn, 11.1% Pb, 1.2 g/t Au, 1.0% Cu, 42% BaSO4, 0.1% Sb) from 254.0m.
- BR-06-22 2.3m at 514 g/t AgEq, 16.5% ZnEq (139 g/t Ag, 2.4% Zn, 2.8% Pb, 1.3 g/t Au, 0.5% Cu, 3% BaSO4, 1.1% Sb) from 148.3m.



- BR-07-22 7.0m at 1,357 g/t AgEq, 43.6% ZnEq (545 g/t 12.3% Zn, 8.1% Pb, 3.1g/t Au, 0.7% Cu, 32% BaSO4, 0.1% Sb) from 239.0m
  - including 5.4m at 1,736 g/t, 55.8% ZnEq (700 g/t Ag, 15.7% Zn, 10.3% Pb, 4.0 g/t Au, 0.9% Cu, 42% BaSO4, 0.1% Sb) from 239.0m.

Drillholes BR-08-22 and BR-10-22, located 250m northwest of RMR and drilled down plunge of the previously reported hole BR-12-21 (24.7m at 514g/t AgEq), intercepted:

- BR-08-22 18.4m at 194 g/t AgEq, 6.2% ZnEq (91g/t Ag, 2.2% Zn, 0.9% Pb, 0.02 g/t Au, 0.02% Cu, 13% BaSO4, 0.1% Sb) from 267.0m.
- BR-08-22 9.0m at 95 g/t AgEq, 3.1% ZnEq (50g/t Ag, 1.0% Zn, 0.4% Pb, 0.01 g/t Au, 0.01% Cu, 7% BaSO4, 0% Sb) from 291.0m.
- BR-08-22 41.0m at 520 g/t AgEq, 16.7% ZnEq (95 g/t Ag, 6.2% Zn, 4.2% Pb, 0.5g/t Au, 0.4% Cu, 56% BaSO4, 0.1% Sb) from 305.0m
  - including 1.7m at 1,421 g/t AgEq, 45.7% ZnEq (160 g/t Ag, 19.4% Zn, 1.6g/t Au, 2.1% Cu, 28% BaSO4, 0.5% Sb) from 334.0m.
- BR-10-22 4.3m at 682 g/t AgEq, 21.9% ZnEq (407 g/t Ag, 2.3% Zn, 2.4% Pb, 0.7 g/t Au, 0.1% Cu, 81% BaSO4, 0.1% Sb) from 313.9m.

Drillhole BR-09-22, located 90m northwest of RMR and drilled to test the area between the previously reported holes BR-06-22 (18.0m at 968 g/t AgEq) and BR-02-22 (23.0m at 831g/t AgEq), intercepted:

- BR-09-22 11.8m at 1,212 g/t AgEq, 39.0% ZnEq (307g/t Ag, 13.9% Zn, 10.4% Pb, 1.5 g/t Au, 2.2% Cu, 18% BaSO4, 0.2% Sb) from 284.4m
  - including 9.0m at 1,497 g/t AgEq, 48.1% ZnEq (388 g/t Ag, 17.1% Zn, 13.2% Pb, 1.9g/t Au, 2.5% Cu, 23% BaSO4, 0.2% Sb) from 284.4m.

Drillholes BR-12-22 and BR-13-22, located 75m northwest of the existing RMR and drilled to test the southeast extension of the previous reported drill fan of BR-01-22, BR-02-22 and BR-03-22, intercepted:

- BR-12-22 12.3m at 797 g/t AgEq, 25.6% ZnEq (296 g/t Ag, 7.4% Zn, 4.5% Pb, 1.8g/t Au, 0.4% Cu, 35% BaSO4, 0.1% Sb) from 201.0m
  - including 7.0m at 1,312g/t AgEq, 42.2% ZnEq (495 g/t Ag, 12.1% Zn, 7.4% Pb, 2.9g/t Au, 0.6% Cu, 59% BaSO4, 0.1% Sb) from 201.0m.
- BR-13-22 19.9m at 846 g/t AgEq, 27.2% ZnEq (421g/t Ag, 5.6% Zn, 4.0% Pb, 1.7g/t Au, 0.4% Cu, 32% BaSO4, 0.1% Sb) from 207.0m
  - including 6.5m at 1,861 g/t AgEq, 59.8% ZnEq (1,020 g/t Ag, 12.1% Zn, 7.7% Pb, 3.8 g/t Au, 0.6% Cu, 54% BaSO4, 0.3% Sb) from 210.0m.

# 2022 Exploration Works

As previously announced on 30 June 2022, step-out exploration drilling intersected high-grade mineralisation in drill holes BR-01-22, BR-02-22 and BR-03-22 located 90m northwest of the existing RMR. Subsequently, the Company has focused exploration activities on testing of this northwest extension with continued success.

The new results have shown continuity of mineralisation up-dip and down plunge from previous reported drill hole BR-12-21. Hole BR-07-22 extended the previously known mineralisation 83m up-dip, while hole BR-05-22 confirmed continuity within the upper zone of mineralisation.

Drill holes BR-11-22, BR-14-22, BR-15-22, BR-16-22, BR-17-22 and BR-18-22 have also been completed and are awaiting assay results. Each of these holes intersected significant zones of massive sulphide mineralisation. Drilling of Rupice Northwest will continue to end of year with the objective of generating a maiden Inferred resource estimate for Rupice Northwest in Q1 2023.



**Paul Cronin, Adriatic's Managing Director and CEO, commented:** "The highly successful drilling campaign at Rupice Northwest further underpins Adriatic's strategy to increase the life of mine of Rupice to at least twenty years. The most encouraging aspect of the drilling results has been the consistency of not only the depths and widths of Rupice Northwest, but also the grades which are consistent with the reserve defined in the main Rupice orebody.

Assay results on 6 holes already drilled are still to be delivered and a further 2,500m of drilling is to be completed before the end of 2022. Adriatic Metals intends to publish a maiden resource for Rupice Northwest in Q1 2023."

For further information please visit <u>www.adriaticmetals.com</u>; <u>@AdriaticMetals</u> on Twitter; or contact:

| Adriatic Metals PLC<br>Paul Cronin / Klara Kaczmarek                                                         | Via Buchanan                                          |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| <b>Buchanan</b><br>Bobby Morse / Oonagh Reidy                                                                | Tel: +44 (0) 20 7466 5000<br>adriatic@buchanan.uk.com |
| <b>Canaccord Genuity Limited (Joint Corporate Broker)</b><br>Jeremy Dunlop (Australia)<br>James Asensio (UK) | Tel: +61 2 9263 2700<br>Tel: +44 (0) 207 523 8000     |
| <b>RBC Capital Markets (Joint Corporate Broker)</b><br>James Agnew / Jamil Miah                              | Tel: +44 (0) 20 7653 4000                             |
| Stifel Nicolaus Europe Limited (Joint Corporate Broker)<br>Ashton Clanfield / Callum Stewart                 | Tel: +44 (0) 20 7710 7600                             |
| <b>Citadel Magnus</b><br>Cameron Gilenko                                                                     | Tel: +61 2 8234 0100                                  |

# RUPICE NORTHWEST EXPLORATION RESULTS

Adriatic Metals PLC (ASX:ADT, LSE:ADT1, OTCQX:ADMLF) ("Adriatic" or the "Company") is pleased to report on recent exploration results at the Company's flagship Vares Silver Project in Bosnia & Herzegovina.

As previously announced on the 30 June 2022, exploration drilling intersected high-grade mineralisation in drill holes BR-01-22, BR-02-22 and BR-03-22, located 90m northwest of the existing Rupice Mineral Resource ("RMR"). Subsequently, the Company has focused exploration activities on testing this potential northwest extension ("Rupice Northwest") with continued success. Results from new drill holes BR-04-22, BR-05-22, BR-06-22, BR-07-22, BR-07-22, BR-09-22, BR-10-22, BR-12-22, and BR-13-22 are detailed below.

New results have shown continuity of mineralisation up-dip from previous drill hole BR-12-21. Drill hole BR-07-22 extended the previously known mineralisation 83m up-dip, while hole BR-05-22 confirmed continuity within the upper zone of mineralisation.

Drill holes BR-08-22 and BR-10-22 extended the already known mineralised orebody an additional 74m northwest from the previously reported drill hole BR-12-21. The mineralisation remains open to the northwest.

Defining extensions and confirming continuity of high-grade massive sulphide mineralisation at Rupice Northwest remains the core focus of the 2022 exploration plan. Two diamond drill rigs are dedicated to completion of the exploration drilling program to the end of 2022.

Additional to drilling in Q3, a ground gravity survey was completed across areas near to the Rupice orebody. The geophysical program targeted potential Rupice massive sulphide analogues at Semizova Ponikva (SP1 - SP2 targets) and Vares West as announced as part of the Vares Project Update on the 30 May 2022. The field



component of the geophysical survey was finished in Q3. A final interpretation of results is expected in Q4 2022. Drill testing of identified geophysical targets coincident with surface geochemistry anomalies will be completed in 2023.

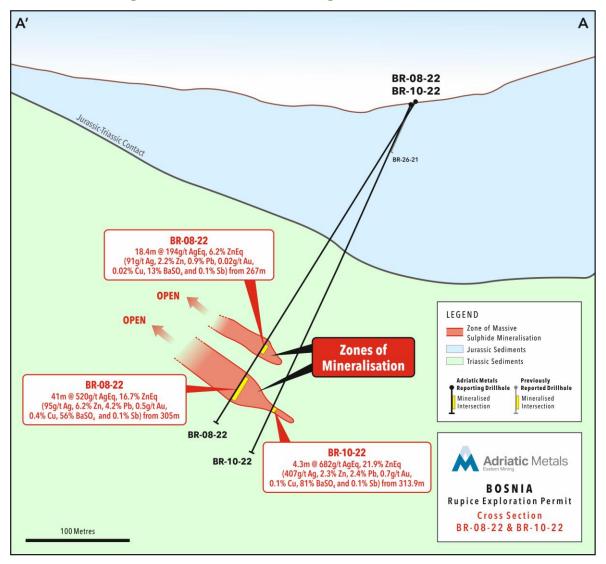
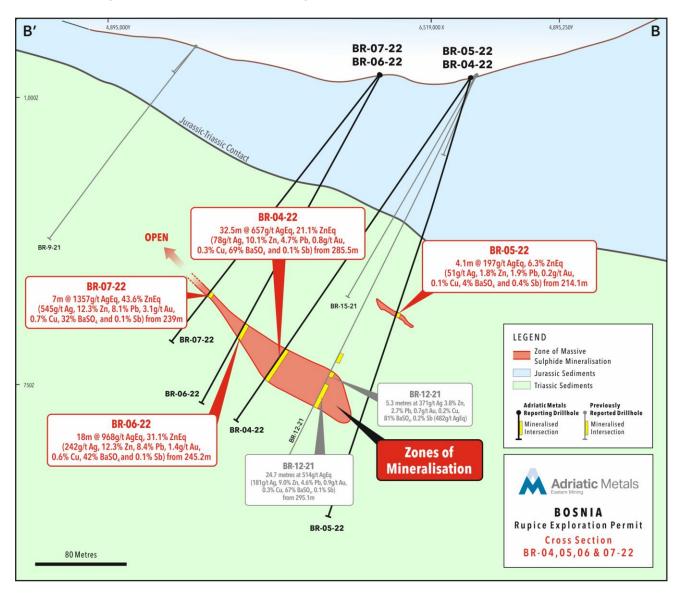
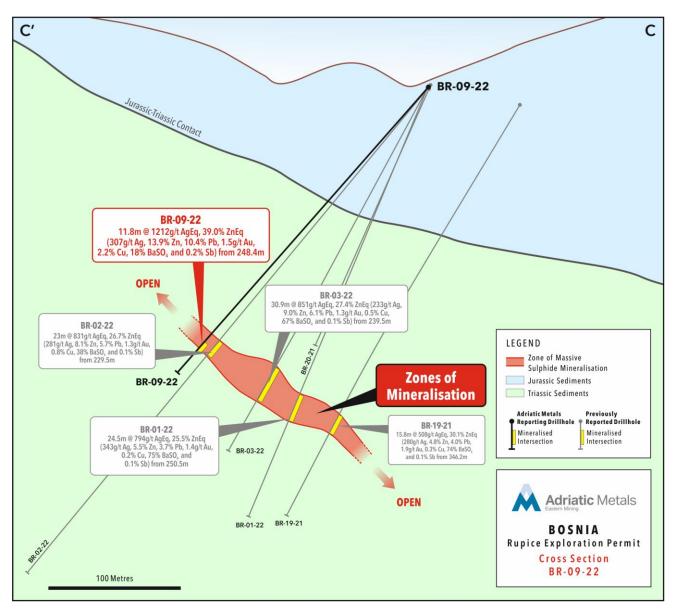




Figure 2: Cross-section (A'-A) through BR-08-22 and BR-10-22






## Figure 3: Cross-section (B'-B) through BR-04-22, BR-05-22, BR-06-22 and BR-07-22









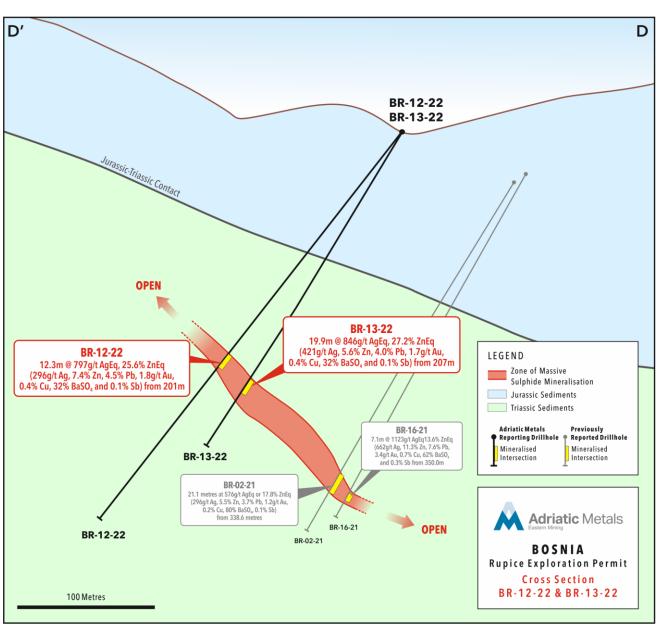
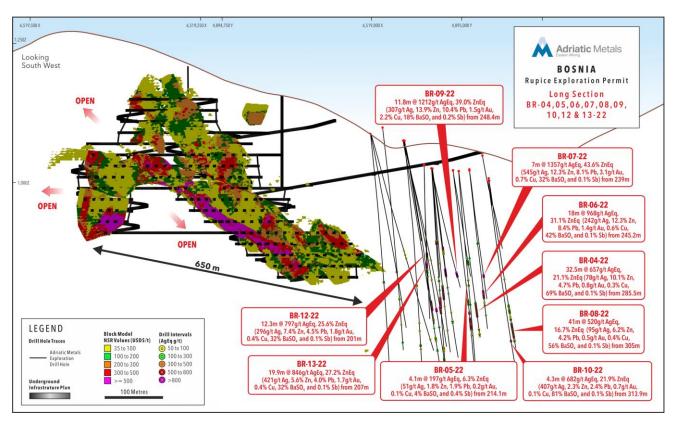




Figure 5: Cross-section (D'-D) through BR-12-22 and BR-13-22





## Figure 6: 3D view of Rupice looking southwest

#### -ends-

## MARKET ABUSE REGULATION DISCLOSURE

The information contained within this announcement is deemed by the Company (LEI: 549300OHAH2GL1DP0L61) to constitute inside information as stipulated under the Market Abuse Regulations (EU) No. 596/2014. The person responsible for arranging and authorising the release of this announcement on behalf of the Company is Paul Cronin, Managing Director and CEO.

# Authorised by Paul Cronin, Managing Director & CEO

## COMPETENT PERSONS REPORT

The information in this report which relates to exploration results is based on and fairly represents information and supporting documentation compiled by Mr Sergei Smolonogov, who is a member of the Australian Institute of Geoscientists (AIG). Mr Smolonogov is an employee of Adriatic Metals PLC and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Smolonogov consents to the inclusion in this report of the matters based on that information in the form and context in which it appears.



## ABOUT ADRIATIC METALS

Adriatic Metals PLC (ASX:ADT, LSE:ADT1, OTCQX:ADMLF) is a precious and base metals developer that is advancing the world-class Vares Silver Project in Bosnia & Herzegovina, as well as the Raska Zinc-Silver Project in Serbia.

The Vares Silver Project is fully funded to production, which is expected in Q3 2023. The 2021 Project Definitive Feasibility Study shows robust economics of US\$1,062 million post-tax NPV8, 134% IRR and a capex of US\$168 million. Concurrent with ongoing construction activities, the Company continues to explore across its highly prospective 42km<sup>2</sup> concession package.

The Mineral Resource estimate for the Rupice underground deposit comprising part of the Vares Silver Project was announced in accordance with ASX Listing Rule 5.8 on 1 September 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the previous announcement and that all material assumptions and technical parameters underpinning the estimate in the previous announcement continue to apply and have not materially changed.

The Ore Reserve estimate for the Rupice deposit comprising part of the Vares Silver Project was announced in accordance with ASX Listing Rule 5.9 on 19 August 2021. The Company confirms that it is not aware of any new information or data that materially affects the information included in the previous announcement and that all material assumptions and technical parameters underpinning the estimate in the previous announcement continue to apply and have not materially changed.

In accordance with ASX Listing Rule 5.19, the Company confirms that the production targets and forecast financial information for the Vares Project were first disclosed in accordance with ASX Listing Rules 5.16 and 5.17 in the Company's announcement dated 19 August 2021. The Company confirms that all the material assumptions underpinning the production target and the forecast financial information in the previous announcement continue to apply and have not materially changed.

## DISCLAIMER

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)", "potential(s)" and similar expressions are intended to identify forwardlooking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Our audience is cautioned not to place undue reliance on these forwardlooking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.



#### **APPENDIX 1- ASSAY TABLES**

| Hole ID   | From  | То    | Interval | AgEq  | ZnEq | Ag    | Zn          | Pb   | Au    | Cu   | BaSO₄ | Sb   |
|-----------|-------|-------|----------|-------|------|-------|-------------|------|-------|------|-------|------|
|           | (m)   | (m)   | (m)      | (g/t) | (%)  | (g/t) | (%)         | (%)  | (g/t) | (%)  | (%)   | (%)  |
| BR-04-22  | 285.5 | 318.0 | 32.5     | 657   | 21.1 | 78    | 10.1        | 4.7  | 0.8   | 0.3  | 69    | 0.1  |
| Including | 315.0 | 317.0 | 2.0      | 1,331 | 42.8 | 170   | <i>19.7</i> | 18.5 | 0.5   | 1.2  | 40    | 0.2  |
| BR-05-22  | 204,0 | 207,1 | 3,1      | 128   | 4,1  | 16    | 1.0         | 2.1  | 0.27  | 0.1  | 3     | 0.07 |
| BR-05-22  | 214.1 | 218.2 | 7,8      | 197   | 6.3  | 51    | 1.8         | 1.9  | 0.2   | 0.1  | 4     | 0.4  |
| BR-06-22  | 148.3 | 150.6 | 2.3      | 514   | 16,5 | 139   | 2.4         | 2.8  | 1.3   | 0.5  | 3     | 1.1  |
| BR-06-22  | 245.2 | 263.2 | 18.0     | 968   | 31,1 | 242   | 12.3        | 8.4  | 1.4   | 0.6  | 42    | 0.1  |
| Including | 245.2 | 249.0 | 3.8      | 1,848 | 59,4 | 763   | 16.3        | 15.2 | 3.6   | 0.6  | 31    | 0.1  |
| Including | 254.0 | 260.2 | 6.2      | 1,174 | 37,7 | 169   | 19          | 11.1 | 1.2   | 1.0  | 42    | 0.1  |
| BR-07-22  | 239.0 | 246.0 | 7.0      | 1,357 | 43,6 | 545   | 12.3        | 8.1  | 3.1   | 0.7  | 33    | 0.1  |
| Including | 239.0 | 244.4 | 5.4      | 1,736 | 55,8 | 700   | 15.7        | 10.3 | 4.0   | 0.9  | 42    | 0.1  |
| BR-08-22  | 211.3 | 213.3 | 2        | 87    | 2.8  | 27    | 1.0         | 0.3  | 0.3   | 0.02 | <1    | 0.03 |
| BR-08-22  | 267.0 | 285.4 | 18.4     | 194   | 6.2  | 91    | 2.2         | 0.9  | 0.02  | 0.02 | 13    | 0.1  |
| BR-08-22  | 291.0 | 300.0 | 9.0      | 95    | 3.1  | 50    | 1.0         | 0.   | 0.01  | 0.01 | 7     | 0    |
| BR-08-22  | 305.0 | 346.0 | 41.0     | 520   | 16.7 | 95    | 6.2         | 4.2  | 0.5   | 0.4  | 56    | 0.1  |
| Including | 334.0 | 335.7 | 1.7      | 1,421 | 45.7 | 160   | 19.4        | 17.1 | 1.6   | 2.1  | 28    | 0.5  |
| BR-09-22  | 248.4 | 260.2 | 11.8     | 1,212 | 39.0 | 307   | 13.9        | 10.4 | 1.5   | 2.2  | 18    | 0.2  |
| Including | 248.4 | 257.4 | 9.0      | 1,497 | 48.1 | 388   | 17.1        | 13.2 | 1.9   | 2.5  | 23    | 0.2  |
| BR-10-22  | 313.9 | 318.2 | 4.3      | 682   | 17.5 | 407   | 2.3         | 2.4  | 0.7   | 0.1  | 81    | 0.1  |
| BR-12-22  | 201.0 | 213.3 | 12.3     | 797   | 25.6 | 296   | 7.4         | 4.5  | 1.8   | 0.4  | 35    | 0.1  |
| Including | 201.0 | 208.0 | 7.0      | 1312  | 42.2 | 495   | 12.1        | 7.4  | 2.9   | 0.6  | 59    | 0.1  |
| BR-13-22  | 207.0 | 226.9 | 19.9     | 846   | 27.2 | 421   | 5.6         | 4.0  | 1.7   | 0.4  | 32    | 0.1  |
| Including | 210.0 | 216.5 | 6.5      | 1,861 | 59.8 | 1020  | 12.1        | 7.7  | 3.8   | 0.6  | 54    | 0.3  |

<u>Notes</u>

1. Significant intervals are estimated using a 50g/t AgEq cut off, 2m minimum interval and 5 metres consecutive internal dilution. Higher grade intervals have a 600g/t AgEq cut off

2. AgEq & ZnEq grades are based on the following metal prices used in the Rupice MRE: \$2000/oz gold, \$25/oz silver, \$2500/t zinc, \$2000/t lead, \$6500/t copper, \$150/t BaSO<sub>4</sub> & \$6500/t antimony

3. 90% metal recovery, as per the Rupice MRE, has been applied for all metals

4. 100% payability was assumed for all metals

5. The silver equivalent calculation is as follows: AgEq = (Au grade g/t \* 72.000) + (Ag grade g/t \* 0.900) + (Pb grade % \*22.395) + (Zn grade % \* 27.993) + (Cu grade % \* 72.782) + (BaSO4 grade % \* 1.680) + (Sb grade % \* 72.782)

6. The zinc equivalent calculation is as follows: ZnEq = AgEq / 31.1

7. It is the opinion of Adriatic Metals that all elements and products included in the metal equivalent formula have a reasonable potential to be recovered and sold.

8. Preliminary BaSO<sub>4</sub> results are reported for holes BR-06, 07, 08, 09, 10, 12, 13-22. All other assay results are final. Additional quality assurance and control checks are in progress for release of final BaSO<sub>4</sub> results. Preliminary BaSO<sub>4</sub> results have been used in AgEq and ZnEq calculations.

Table 2 – Collar information for reported drill holes

| Hole ID  | Easting (m) <sup>1</sup> | Northing (m) <sup>1</sup> | Elevation (m) | Depth (m) | Azimuth | Inclination |
|----------|--------------------------|---------------------------|---------------|-----------|---------|-------------|
| BR-04-22 | 6519022                  | 4895204                   | 1018          | 361.3     | 221     | -54.1       |
| BR-05-22 | 6519022                  | 4895205                   | 1018          | 400.6     | 225     | -71.9       |
| BR-06-22 | 6518962                  | 4895153                   | 1019          | 323.8     | 228     | -60.8       |
| BR-07-22 | 6518962                  | 4895153                   | 1019          | 295       | 225     | -52.1       |
| BR-08-22 | 6518997                  | 4895262                   | 1005          | 359.6     | 230     | -58.1       |
| BR-09-22 | 6519031                  | 4895132                   | 1023          | 285.2     | 231     | -48.8       |
| BR-10-22 | 6518995                  | 4895258                   | 1000          | 360.8     | 233     | -65.1       |
| BR-12-22 | 6519025                  | 4895100                   | 1029          | 350.7     | 218     | -52.0       |
| BR-13-22 | 6519025                  | 4895101                   | 1030          | 263.7     | 218     | -58         |

1. Coordinates are shown using Gauss Kruger MGI Balkan Zone 6



|          | 1        | reported di |              |          |         |         |                |         |           |         |
|----------|----------|-------------|--------------|----------|---------|---------|----------------|---------|-----------|---------|
| Hole ID  | From (m) | To (m)      | Interval (m) | Ag (g/t) | Zn (%)  | Pb (%)  | Au (g/t)       | Cu (%)  | BaSO4 (%) | Sb (%)  |
| BR-04-22 | 0.0      | 169.2       | 169.2        |          | 1       | In      | terval not sar | npled   |           |         |
| BR-04-22 | 169.2    | 170.5       | 1.3          | 0.25     | 0.008   | <0.005  | < 0.005        | < 0.005 | <1        | < 0.005 |
| BR-04-22 | 170.5    | 176.2       | 5.7          | 0.25     | 0.043   | 0.058   | 0.005          | < 0.005 | <1        | 0.01    |
| BR-04-22 | 176.2    | 178         | 1.8          | 0.25     | 0.012   | 0.078   | < 0.005        | 0.005   | <1        | 0.01    |
| BR-04-22 | 178      | 180.2       | 2.2          | 0.25     | 0.005   | 0.08    | < 0.005        | 0.007   | <1        | 0.02    |
| BR-04-22 | 180.2    | 181         | 0.8          | 0.25     | 0.007   | 0.05    | < 0.005        | 0.013   | <1        | 0.02    |
| BR-04-22 | 181      | 182.3       | 1.3          | 0.25     | 0.008   | 0.04    | 0.006          | 0.005   | <1        | 0.02    |
| BR-04-22 | 182.3    | 184         | 1.7          | 0.25     | 0.105   | 0.35    | 0.028          | 0.034   | <1        | 0.06    |
| BR-04-22 | 184      | 184.9       | 0.9          | 0.25     | 0.038   | 0.04    | < 0.005        | 0.018   | <1        | 0.03    |
| BR-04-22 | 184.9    | 186.4       | 1.5          | 0.25     | 0.037   | 0.015   | 0.01           | < 0.005 | <1        | 0.05    |
| BR-04-22 | 186.4    | 187.5       | 1.1          | 12.4     | 0.255   | 0.201   | 0.083          | 0.02    | 6         | 0.11    |
| BR-04-22 | 187.5    | 188.5       | 1            | 13.8     | 0.133   | 0.851   | 0.165          | 0.021   | 1         | 0.2     |
| BR-04-22 | 188.5    | 189.4       | 0.9          | 93.2     | 3.14    | 2.48    | 0.618          | 0.359   | 72        | 1       |
| BR-04-22 | 189.4    | 190.2       | 0.8          | 91.6     | 2.22    | 3.5     | 0.463          | 0.327   | 18        | 0.963   |
| BR-04-22 | 190.2    | 191.4       | 1.2          | 1.2      | 0.01    | 0.07    | 0.008          | < 0.005 | <1        | <0.005  |
| BR-04-22 | 191.4    | 193         | 1.6          | 1.1      | 0.02    | 0.09    | < 0.005        | < 0.005 | <1        | <0.005  |
| BR-04-22 | 193      | 193.7       | 0.7          | 0.25     | < 0.005 | 0.02    | 0.0025         | < 0.005 | <1        | <0.005  |
| BR-04-22 | 193.7    | 194.2       | 0.5          | 0.6      | < 0.005 | 0.03    | 0.0025         | < 0.005 | <1        | < 0.005 |
| BR-04-22 | 194.2    | 196.2       | 2            | 0.25     | 0.005   | 0.01    | 0.0025         | < 0.005 | <1        | < 0.005 |
| BR-04-22 | 196.2    | 197.5       | 1.3          | 0.25     | 0.007   | 0.005   | 0.0025         | < 0.005 | <1        | 0.006   |
| BR-04-22 | 197.5    | 199.5       | 2            | 0.5      | 0.01    | < 0.005 | 0.006          | < 0.005 | <1        | < 0.005 |
| BR-04-22 | 199.5    | 201         | 1.5          | 0.25     | 0.023   | < 0.005 | 0.025          | < 0.005 | <1        | < 0.005 |
| BR-04-22 | 201      | 202.8       | 1.8          | 0.25     | 0.015   | < 0.005 | < 0.005        | < 0.005 | <1        | < 0.005 |
| BR-04-22 | 202.8    | 204.8       | 2            | 0.25     | 0.016   | < 0.005 | < 0.005        | < 0.005 | <1        | < 0.005 |
| BR-04-22 | 204.8    | 279         | 74.2         |          |         | In      | terval not sar | npled   | •         |         |
| BR-04-22 | 279      | 281         | 2            | 0.25     | 0.007   | < 0.005 | 0.014          | < 0.005 | <1        | 0.01    |
| BR-04-22 | 281      | 283         | 2            | 0.25     | 0.005   | < 0.005 | < 0.005        | < 0.005 | <1        | 0.008   |
| BR-04-22 | 283      | 284.5       | 1.5          | 0.25     | < 0.005 | <0.005  | < 0.005        | 0.008   | <1        | 0.014   |
| BR-04-22 | 284.5    | 285         | 0.5          | 0.25     | 0.007   | 0.022   | 0.012          | 0.01    | 51        | 0.011   |
| BR-04-22 | 285      | 285.5       | 0.5          | 0.25     | 0.03    | 0.044   | 0.015          | 0.015   | 5         | 0.025   |
| BR-04-22 | 285.5    | 286.2       | 0.7          | 109      | 0.944   | 0.791   | 4.27           | 0.118   | 67        | 0.05    |
| BR-04-22 | 286.2    | 287         | 0.8          | 191      | 5.59    | 3.08    | 2.92           | 0.214   | 81        | 0.052   |
| BR-04-22 | 287      | 288         | 1            | 65.8     | 5.37    | 3.51    | 2.51           | 0.16    | 80        | 0.034   |
| BR-04-22 | 288      | 289         | 1            | 83.7     | 6.64    | 3.15    | 1.9            | 0.174   | 78        | 0.04    |
| BR-04-22 | 289      | 290         | 1            | 92.5     | 8.02    | 3.3     | 1.635          | 0.185   | 75        | 0.046   |
| BR-04-22 | 290      | 291         | 1            | 65.7     | 10.45   | 3.82    | 0.733          | 0.131   | 74        | 0.030   |
| BR-04-22 | 291      | 292         | 1            | 65.4     | 11.95   | 3.96    | 0.929          | 0.131   | 72        | 0.040   |
| BR-04-22 | 292      | 293         | 1            | 58       | 11.85   | 3.75    | 0.604          | 0.137   | 72        | 0.038   |
| BR-04-22 | 293      | 294         | 1            | 54       | 11.35   | 3.72    | 0.454          | 0.142   | 73        | 0.038   |
| BR-04-22 | 294      | 295         | 1            | 61.8     | 11.2    | 3.57    | 0.565          | 0.132   | 73        | 0.077   |
| BR-04-22 | 295      | 296         | 1            | 71       | 10.75   | 3.45    | 0.398          | 0.119   | 70        | 0.088   |
| BR-04-22 | 296      | 297         | 1            | 76.9     | 10.35   | 3.55    | 0.339          | 0.113   | 73        | 0.074   |
| BR-04-22 | 297      | 298         | 1            | 146      | 9.56    | 3.35    | 0.754          | 0.153   | 74        | 0.098   |
| BR-04-22 | 298      | 299         | 1            | 127      | 9.81    | 3.54    | 0.693          | 0.132   | 73        | 0.087   |
| BR-04-22 | 299      | 300         | 1            | 89.4     | 10.2    | 3.26    | 0.608          | 0.146   | 72        | 0.088   |
| BR-04-22 | 300      | 301         | 1            | 90.1     | 9.49    | 3.27    | 0.669          | 0.149   | 74        | 0.080   |
| BR-04-22 | 301      | 302         | 1            | 58.5     | 10.1    | 3.18    | 0.481          | 0.134   | 73        | 0.063   |
| BR-04-22 | 302      | 303         | 1            | 55.2     | 11.3    | 3.89    | 0.414          | 0.142   | 71        | 0.067   |
| BR-04-22 | 303      | 304         | 1            | 62.1     | 11.7    | 4.09    | 0.446          | 0.146   | 72        | 0.072   |
| BR-04-22 | 304      | 305         | 1            | 58.8     | 11.9    | 3.9     | 0.426          | 0.158   | 69        | 0.057   |
| BR-04-22 | 305      | 306         | 1            | 56       | 11.95   | 3.89    | 0.43           | 0.136   | 72        | 0.039   |
| BR-04-22 | 306      | 307         | 1            | 61.1     | 11.45   | 3.7     | 0.379          | 0.137   | 71        | 0.040   |
| BR-04-22 | 307      | 308         | 1            | 51.2     | 11.5    | 3.8     | 0.373          | 0.12    | 72        | 0.038   |
| BR-04-22 | 308      | 309         | 1            | 44.8     | 11.3    | 4.01    | 0.291          | 0.152   | 71        | 0.03    |
| L        |          |             | 1            |          |         |         |                |         | 1         |         |

Table 3 – Assay data for reported drill holes



| Hole ID  | From (m) | To (m) | Interval (m) | Ag (g/t) | Zn (%) | Pb (%) | Au (g/t)       | Cu (%)  | BaSO4 (%) | Sb (%)  |
|----------|----------|--------|--------------|----------|--------|--------|----------------|---------|-----------|---------|
| BR-04-22 | 309      | 310    | 1            | 43.4     | 8.94   | 4.48   | 0.251          | 0.211   | 74        | 0.041   |
| BR-04-22 | 310      | 311    | 1            | 41.1     | 11.35  | 3.99   | 0.275          | 0.132   | 72        | 0.047   |
| BR-04-22 | 311      | 312    | 1            | 40       | 7.45   | 4.53   | 0.237          | 0.211   | 76        | 0.06    |
| BR-04-22 | 312      | 313    | 1            | 52.2     | 8.87   | 5.59   | 0.268          | 0.227   | 72        | 0.050   |
| BR-04-22 | 313      | 314    | 1            | 48.8     | 10.35  | 4.73   | 0.313          | 0.223   | 73        | 0.043   |
| BR-04-22 | 314      | 315    | 1            | 55.5     | 7.54   | 5.56   | 0.286          | 0.259   | 75        | 0.05    |
| BR-04-22 | 315      | 315.9  | 0.9          | 88.1     | 12.85  | 8.93   | 0.561          | 0.752   | 62        | 0.113   |
| BR-04-22 | 315.9    | 316.5  | 0.6          | 241      | 25     | 20     | 0.883          | 1.515   | 24        | 0.295   |
| BR-04-22 | 316.5    | 317    | 0.5          | 232      | 24.9   | 20     | 0.118          | 1.76    | 20        | 0.329   |
| BR-04-22 | 317      | 317.5  | 0.5          | 134      | 4.77   | 6.03   | 0.596          | 5.17    | 7         | 0.432   |
| BR-04-22 | 317.5    | 318    | 0.5          | 27       | 0.583  | 1.08   | 0.173          | 0.433   | 3         | 0.12    |
| BR-04-22 | 318      | 320    | 2            | 2.6      | 0.05   | 0.117  | 0.051          | 0.023   | 1         | 0.015   |
| BR-04-22 | 320      | 322    | 2            | 4        | 0.104  | 0.152  | 0.02           | 0.032   | <1        | 0.019   |
| BR-04-22 | 322      | 324    | 2            | 5.3      | 0.461  | 0.146  | 0.107          | 0.02    | 1         | 0.022   |
| BR-04-22 | 324      | 326    | 2            | 4.4      | 0.174  | 0.045  | 0.087          | 0.005   | 1         | 0.009   |
| BR-04-22 | 326      | 328    | 2            | 6.6      | 0.136  | 0.031  | 0.064          | 0.017   | <1        | 0.018   |
| BR-04-22 | 328      | 343    | 15           |          | •      | In     | terval not san | npled   |           |         |
| BR-04-22 | 343      | 345    | 2            | 27.6     | 1.045  | 0.419  | 0.029          | 0.022   | 1         | 0.037   |
| BR-04-22 | 345      | 347    | 2            | 21.9     | 0.756  | 0.493  | 0.044          | 0.027   | <1        | 0.031   |
| BR-04-22 | 347      | 348.5  | 1.5          | 9.6      | 0.624  | 0.329  | 0.05           | 0.008   | 1         | 0.013   |
| BR-04-22 | 348.5    | 350.5  | 2            | 5.6      | 0.193  | 0.1    | 0.045          | 0.011   | 3         | 0.018   |
| BR-04-22 | 350.5    | 351.5  | 1            | 5.9      | 0.045  | 0.067  | 0.052          | 0.018   | <1        | 0.026   |
| BR-04-22 | 351.5    | 353    | 1.5          | 19.2     | 0.544  | 0.161  | 0.047          | 0.014   | 3         | 0.029   |
| BR-04-22 | 353      | 354.6  | 1.6          | 33.3     | 1.165  | 0.416  | 0.122          | 0.035   | 4         | 0.04    |
| BR-04-22 | 354.6    | 356.6  | 2            | 56.2     | 0.693  | 0.244  | 0.048          | 0.01    | 1         | 0.016   |
| BR-04-22 | 356.6    | 357.7  | 1.1          | 102      | 1.475  | 0.505  | 0.054          | 0.015   | 3         | 0.03    |
| BR-04-22 | 357.7    | 359.7  | 2            | 16.6     | 0.386  | 0.104  | 0.035          | < 0.005 | <1        | 0.007   |
| BR-04-22 | 359.7    | 361.3  | 1.6          | 64.6     | 1.18   | 0.42   | 0.048          | 0.01    | 2         | 0.02    |
| BR-05-22 | 0        | 176    | 176          |          |        | In     | terval not san | npled   |           |         |
| BR-05-22 | 176      | 178    | 2            | 0.25     | 0.02   | 0.077  | 0.009          | 0.015   | <1        | 0.018   |
| BR-05-22 | 178      | 180    | 2            | 0.25     | 0.008  | 0.035  | 0.016          | 0.01    | <1        | 0.007   |
| BR-05-22 | 180      | 181.6  | 1.6          | 0.25     | 0.01   | 0.019  | 0.008          | 0.013   | <1        | 0.01    |
| BR-05-22 | 181.6    | 183.6  | 2            | 0.25     | 0.056  | 0.032  | < 0.005        | 0.02    | <1        | 0.00    |
| BR-05-22 | 183.6    | 185    | 1.4          | 0.25     | 0.037  | 0.014  | < 0.005        | 0.002   | <1        | < 0.005 |
| BR-05-22 | 185      | 186.6  | 1.6          | 0.25     | 0.067  | 0.053  | 0.005          | 0.01    | <1        | < 0.005 |
| BR-05-22 | 186.6    | 188    | 1.4          | 0.25     | 0.060  | 0.064  | <0.005         | < 0.005 | <1        | < 0.005 |
| BR-05-22 | 188      | 189.6  | 1.6          | 0.5      | 0.088  | 0.129  | < 0.005        | < 0.005 | <1        | 0.008   |
| BR-05-22 | 189.6    | 190.2  | 0.6          | 0.25     | 0.043  | 0.105  | 0.005          | < 0.005 | <1        | < 0.005 |
| BR-05-22 | 190.2    | 191.8  | 1.6          | 0.25     | 0.008  | 0.016  | 0.005          | < 0.005 | <1        | < 0.005 |
| BR-05-22 | 191.8    | 193    | 1.2          | 0.25     | 0.008  | 0.024  | <0.005         | < 0.005 | <1        | 0.005   |
| BR-05-22 | 193      | 195    | 2            | 0.25     | 0.01   | 0.03   | <0.005         | < 0.005 | <1        | 0.005   |
| BR-05-22 | 195      | 197    | 2            | 0.25     | 0.006  | 0.014  | <0.005         | < 0.005 | <1        | 0.005   |
| BR-05-22 | 197      | 199    | 2            | 0.25     | 0.01   | 0.033  | <0.005         | < 0.005 | <1        | < 0.005 |
| BR-05-22 | 199      | 200.2  | 1.2          | 0.25     | 0.007  | 0.013  | <0.005         | < 0.005 | <1        | 0.005   |
| BR-05-22 | 200.2    | 201.7  | 1.5          | 0.25     | 0.042  | 0.077  | 0.007          | 0.01    | <1        | 0.047   |
| BR-05-22 | 201.7    | 203.4  | 1.7          | 1.1      | 0.018  | 0.044  | 0.013          | 0.005   | <1        | 0.092   |
| BR-05-22 | 203.4    | 204    | 0.6          | 11.3     | 0.092  | 0.573  | 0.056          | 0.017   | <1        | 0.039   |
| BR-05-22 | 204      | 205.5  | 1.5          | 13.8     | 0.483  | 1.135  | 0.298          | 0.023   | <1        | 0.043   |
| BR-05-22 | 205.5    | 207.1  | 1.6          | 17.8     | 1.49   | 3.03   | 0.25           | 0.194   | 5         | 0.104   |
| BR-05-22 | 207.1    | 213.5  | 6.4          |          |        | In     | terval not san | npled   |           |         |
| BR-05-22 | 213.5    | 214.1  | 0.6          | 18.9     | 0.022  | 0.47   | 0.077          | 0.023   | <1        | 0.057   |
| BR-05-22 | 214.1    | 215    | 0.9          | 48.1     | 4.68   | 4.39   | 0.375          | 0.125   | 4         | 0.209   |
| BR-05-22 | 215      | 216    | 1            | 92.6     | 1.755  | 2.12   | 0.202          | 0.23    | 2         | 0.463   |
| BR-05-22 | 216      | 217    | 1            | 46.6     | 0.718  | 1.225  | 0.145          | 0.101   | 10        | 0.45    |
| BR-05-22 | 217      | 218.2  | 1.2          | 21.8     | 0.445  | 0.521  | 0.203          | 0.026   | 1         | 0.318   |
|          |          |        |              |          |        |        | 0.005          | < 0.005 | <1        | < 0.005 |



| Hole ID              | From (m) | To (m) | Interval (m) | Ag (g/t) | Zn (%) | Pb (%)  | Au (g/t)        | Cu (%)  | BaSO4 (%) | Sb (%)  |
|----------------------|----------|--------|--------------|----------|--------|---------|-----------------|---------|-----------|---------|
| BR-05-22             | 220      | 222    | 2            | 0.7      | 0.026  | 0.02    | 0.007           | < 0.005 | <1        | < 0.005 |
| BR-05-22             | 222      | 224    | 2            | 0.25     | 0.004  | 0.01    | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-05-22             | 224      | 226    | 2            | 0.7      | 0.144  | 0.066   | 0.005           | < 0.005 | <1        | < 0.005 |
| BR-05-22             | 226      | 227.6  | 1.6          | 2.1      | 0.016  | 0.135   | <0.005          | < 0.005 | <1        | 0.011   |
| BR-05-22             | 227.6    | 229    | 1.4          | 0.25     | 0.009  | 0.009   | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-05-22             | 229      | 231    | 2            | 0.25     | 0.007  | <0.005  | <0.005          | < 0.005 | <1        | < 0.005 |
| BR-05-22             | 231      | 232.4  | 1.4          | 0.25     | 0.016  | < 0.005 | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-05-22             | 240      | 242    | 2            | 22.9     | 0.085  | 0.037   | < 0.005         | < 0.005 | <1        | 0.008   |
| BR-05-22             | 242      | 244    | 2            | 5.1      | 0.197  | 0.087   | 0.022           | 0.005   | <1        | 0.009   |
| BR-05-22             | 244      | 246    | 2            | 3.2      | 0.084  | 0.0337  | 0.025           | < 0.005 | <1        | < 0.005 |
| BR-05-22             | 246      | 248    | 2            | 2.7      | 0.249  | 0.055   | 0.028           | < 0.005 | <1        | < 0.005 |
| BR-05-22             | 248      | 250    | 2            | 10.6     | 0.186  | 0.136   | 0.049           | 0.007   | 1         | 0.008   |
| BR-05-22             | 250      | 251.4  | 1.4          | 10.2     | 0.189  | 0.14    | 0.034           | 0.008   | 1         | 0.008   |
| BR-05-22             | 251.4    | 252.8  | 1.4          | 141      | 2.81   | 2.15    | 0.093           | 0.142   | 1         | 0.111   |
| BR-05-22             | 252.8    | 254    | 1.2          | 24.8     | 0.016  | 0.006   | 0.055           | 0.021   | <1        | 0.017   |
| BR-05-22             | 254      | 255.5  | 1.5          | 5.7      | 0.273  | 0.066   | 0.037           | < 0.005 | <1        | 0.007   |
| BR-05-22             | 255.5    | 257.2  | 1.7          | 1.8      | 0.222  | 0.008   | 0.028           | 0.002   | <1        | < 0.005 |
| BR-06-22             | 0        | 138    | 138          |          |        | In      | terval not san  | npled   |           |         |
| BR-06-22             | 138      | 140    | 2            | 0.25     | 0.006  | 0.024   | < 0.005         | 0.015   | <1        | 0.017   |
| BR-06-22             | 140      | 142    | 2            | 0.25     | 0.009  | 0.016   | < 0.005         | 0.006   | <1        | 0.019   |
| BR-06-22             | 142      | 144    | 2            | 0.25     | 0.007  | 0.041   | < 0.005         | 0.007   | <1        | 0.02    |
| BR-06-22             | 144      | 146    | 2            | 3        | 0.026  | 0.241   | 0.1             | 0.029   | 1         | 0.037   |
| BR-06-22             | 146      | 147.3  | 1.3          | 4        | 0.01   | 0.151   | < 0.005         | 0.004   | <1        | 0.014   |
| BR-06-22             | 147.3    | 148.3  | 1            | 16       | 0.162  | 0.349   | 0.49            | 0.026   | 6         | 0.043   |
| BR-06-22             | 148.3    | 149    | 0.7          | 51       | 0.636  | 2.07    | 0.76            | 0.242   | 60        | 0.38    |
| BR-06-22             | 149      | 149.6  | 0.6          | 350      | 6.31   | 6.13    | 2.86            | 0.995   | 45        | 3.61    |
| BR-06-22             | 149.6    | 150.6  | 1            | 74       | 1.22   | 1.26    | 0.66            | 0.281   | 5         | 0.15    |
| BR-06-22             | 150.6    | 151.5  | 0.9          | 11       | 0.087  | 0.104   | 0.26            | 0.547   | 17        | 0.122   |
| BR-06-22             | 151.5    | 153    | 1.5          | 3        | 0.033  | 0.021   | 0.03            | 0.023   | 4         | 0.01    |
| BR-06-22             | 153      | 155    | 2            | 0.25     | 0.007  | 0.013   | 0.02            | < 0.005 | <1        | < 0.005 |
| BR-06-22             | 155      | 157    | 2            | 0.25     | 0.044  | 0.013   | 0.02            | < 0.005 | <1        | 0.007   |
| BR-06-22             | 157      | 159    | 2            | 2        | 0.048  | 0.03    | 0.03            | < 0.005 | <1        | 0.01    |
| BR-06-22             | 159      | 161    | 2            | 5        | 0.191  | 0.106   | < 0.005         | < 0.005 | <1        | 0.015   |
| BR-06-22             | 161      | 235    | 74           |          |        |         | iterval not san |         |           |         |
| BR-06-22             | 235      | 237    | 2            | 0.25     | 0.008  | < 0.005 | 0.005           | < 0.005 | <1        | 0.006   |
| BR-06-22             | 237      | 239    | 2            | 0.25     | 0.008  | < 0.005 | 0.005           | < 0.005 | <1        | 0.006   |
| BR-06-22             | 239      | 240.7  | 1.7          | 0.25     | 0.007  | 0.015   | 0.005           | 0.011   | <1        | 0.008   |
| BR-06-22             | 240.7    | 241    | 0.3          | 0.25     | 0.015  | 0.137   | 0.02            | 0.029   | 46        | 0.007   |
| BR-06-22             | 241      | 242.3  | 1.3          | 0.25     | 0.006  | < 0.005 | 0.02            | 0.009   | <1        | 0.011   |
| BR-06-22             | 242.3    | 243.3  | 1.5          | 0.25     | 0.014  | 0.045   | 0.005           | 0.047   | 19        | 0.006   |
| BR-06-22             | 243.3    | 244.2  | 0.9          | 0.25     | 0.011  | 0.007   | 0.005           | 0.012   | 15        | 0.006   |
| BR-06-22             | 244.2    | 245.2  | 1            | 10       | 0.032  | 0.093   | 0.05            | 0.012   | 40        | 0.009   |
| BR-06-22             | 245.2    | 246    | 0.8          | 1800     | 12.08  | 28.74   | 5.98            | 1.14    | 7         | 0.328   |
| BR-06-22             | 246      | 247    | 1            | 960      | 12.79  | 19.17   | 5.71            | 0.763   | 20        | 0.182   |
| BR-06-22             | 247      | 248    | 1            | 273      | 11.74  | 6.69    | 1.18            | 0.236   | 54        | 0.027   |
| BR-06-22             | 248      | 249    | 1            | 226      | 27.57  | 8.86    | 2.08            | 0.324   | 40        | 0.058   |
| BR-06-22             | 249      | 250    | 1            | 82       | 8.57   | 4.7     | 0.55            | 0.324   | 40<br>70  | 0.029   |
| BR-06-22             | 250      | 251    | 1            | 71       | 7.83   | 4.43    | 0.55            | 0.201   | 70        | 0.023   |
| BR-06-22             | 251      | 252    | 1            | 68       | 6.19   | 4.49    | 0.31            | 0.196   | 74        | 0.015   |
| BR-06-22             | 252      | 253    | 1            | 69       | 7.09   | 4.37    | 0.56            | 0.252   | 75        | 0.022   |
| BR-06-22             | 252      | 254    | 1            | 52       | 7.92   | 4.6     | 0.75            | 0.252   | 73        | 0.025   |
| BR-06-22             | 255      | 254    | 1            | 128      | 13.64  | 7.23    | 0.94            | 0.233   | 57        | 0.025   |
| BR-06-22             | 255      | 255    | 1            | 112      | 16.35  | 7.55    | 0.34            | 0.343   | 57        | 0.055   |
| BR-06-22             | 255      | 257    | 1            | 155      | 18.61  | 9.38    | 1.1             | 0.544   |           | 0.057   |
| BR-06-22<br>BR-06-22 | 257      | 258    | 1            | 135      | 20.95  | 11.71   | 1.18            | 0.544   | 46        | 0.091   |
| BR-06-22<br>BR-06-22 | 258      | 259    | 1            | 148      | 22.21  | 12.53   | 1.13            | 0.739   | 42        | 0.078   |
| DIV-00-22            | 200      | 677    | 1            | 140      | 22.21  | 12.33   | 1.12            | 0.135   | 38        | 0.070   |



| Hole ID              | From (m) | To (m) | Interval (m) | Ag (g/t) | Zn (%) | Pb (%)  | Au (g/t)        | Cu (%)  | BaSO4 (%) | Sb (%)  |
|----------------------|----------|--------|--------------|----------|--------|---------|-----------------|---------|-----------|---------|
| BR-06-22             | 259      | 260.2  | 1.2          | 265      | 21.73  | 17.37   | 1.81            | 3.03    | 17        | 0.439   |
| BR-06-22             | 260.2    | 261    | 0.8          | 39       | 3.28   | 1.84    | 0.21            | 0.616   | 2         | 0.058   |
| BR-06-22             | 261      | 262    | 1            | 22       | 0.686  | 0.178   | 0.31            | 0.053   | 1         | 0.025   |
| BR-06-22             | 262      | 263    | 1            | 25       | 0.854  | 0.263   | 0.26            | 0.061   | 3         | 0.033   |
| BR-06-22             | 263      | 265    | 2            | 6        | 0.14   | 0.056   | 0.29            | 0.014   | 1         | 0.015   |
| BR-06-22             | 265      | 267    | 2            | 0.25     | 0.029  | 0.015   | 0.02            | 0.012   | <1        | 0.013   |
| BR-06-22             | 267      | 269    | 2            | 3        | 0.147  | 0.067   | 0.04            | 0.006   | <1        | 0.01    |
| BR-06-22             | 269      | 271    | 2            | 41       | 0.468  | 0.192   | 0.08            | 0.173   | 2         | 0.042   |
| BR-06-22             | 271      | 273    | 2            | 3        | 0.313  | 0.095   | 0.08            | 0.01    | <1        | 0.007   |
| BR-06-22             | 273      | 275    | 2            | 2        | 0.09   | 0.032   | 0.05            | 0.004   | <1        | 0.007   |
| BR-06-22             | 275      | 277    | 2            | 84       | 2.86   | 2.31    | 0.13            | 0.184   | 9         | 0.072   |
| BR-06-22             | 277      | 279    | 2            | 14       | 0.47   | 0.206   | 0.05            | 0.029   | 1         | 0.016   |
| BR-06-22             | 279      | 281    | 2            | 15       | 0.583  | 0.157   | 0.03            | 0.035   | 1         | 0.011   |
| BR-06-22             | 281      | 283    | 2            | 10       | 0.393  | 0.201   | 0.04            | 0.009   | 1         | 0.01    |
| BR-06-22             | 283      | 285    | 2            | 0.25     | 0.011  | 0.013   | 0.03            | < 0.005 | <1        | 0.007   |
| BR-06-22             | 285      | 287    | 2            | 4        | 0.16   | 0.113   | 0.03            | 0.028   | <1        | 0.016   |
| BR-06-22             | 287      | 289    | 2            | 5        | 0.65   | 0.287   | 0.05            | < 0.005 | <1        | 0.006   |
| BR-06-22             | 289      | 291    | 2            | 0.25     | 0.018  | 0.008   | 0.02            | < 0.005 | <1        | 0.006   |
| BR-06-22             | 291      | 293    | 2            | 0.25     | 0.044  | < 0.005 | 0.005           | < 0.005 | <1        | 0.006   |
| BR-06-22             | 293      | 294    | 1            | 0.25     | 0.056  | 0.018   | 0.02            | < 0.005 | <1        | 0.01    |
| BR-06-22             | 294      | 295    | 1            | 0.25     | 0.008  | < 0.005 | 0.005           | < 0.005 | <1        | 0.006   |
| BR-06-22             | 295      | 296    | 1            | 0.25     | 0.016  | 0.051   | 0.02            | 0.039   | <1        | 0.039   |
| BR-06-22             | 296      | 296.8  | 0.8          | 38       | 2.7    | 2       | 0.08            | 0.135   | <1        | 0.069   |
| BR-06-22             | 296.8    | 298    | 1.2          | 0.25     | 0.102  | 0.029   | 0.05            | 0.006   | <1        | 0.008   |
| BR-07-22             | 0        | 228    | 228          | 0.20     | 0.102  |         | iterval not san |         |           | 0.000   |
| BR-07-22             | 228      | 230    | 2            | 0.25     | 0.008  | < 0.005 | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-07-22             | 230      | 232    | 2            | 0.25     | 0.007  | < 0.005 | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-07-22             | 232      | 234    | 2            | 0.25     | 0.006  | < 0.005 | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-07-22             | 234      | 236    | 2            | 0.25     | 0.008  | < 0.005 | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-07-22             | 234      | 238    | 2            | 0.25     | 0.007  | < 0.005 | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-07-22             | 238      | 239    | 1            | 7        | 0.02   | 0.079   | 0.01            | 0.016   | <1        | < 0.005 |
| BR-07-22             | 239      | 240    | 1            | 1414     | 13.1   | 13.82   | 4.57            | 0.841   | 2         | 0.26    |
| BR-07-22             | 240      | 241    | 1            | 1237     | 19.3   | 16.84   | 7.06            | 1.51    | 26        | 0.12    |
| BR-07-22             | 241      | 242    | 1            | 239      | 19.47  | 7.8     | 2.93            | 0.464   | 52        | 0.074   |
| BR-07-22             | 241      | 242    | 1            | 306      | 13.27  | 5.56    | 3.49            | 0.518   | 67        | 0.098   |
| BR-07-22             | 243      | 244    | 1            | 454      | 13.89  | 8.22    | 2.74            | 0.961   | 59        | 0.183   |
| BR-07-22             | 244      | 244.4  | 0.4          | 327      | 14.83  | 8.49    | 2.5             | 0.859   |           | 0.159   |
| BR-07-22             | 244.4    | 244.4  | 0.4          | 22       | 0.661  | 0.49    | 0.22            | 0.055   | 52<br>2   | 0.028   |
| BR-07-22             | 245      | 246    | 1            | 20       | 0.783  | 0.789   | 0.11            | 0.048   | <1        | 0.020   |
| BR-07-22             | 245      | 240    | 2            | 20       | 0.056  | 0.031   | 0.17            | < 0.040 | <1        | 0.006   |
| BR-07-22             | 248      | 250    | 2            | 3        | 0.102  | 0.21    | 0.09            | < 0.005 |           | < 0.005 |
| BR-07-22<br>BR-07-22 | 248      | 250    | 2            | 0.25     | 0.102  | 0.21    | 0.09            | < 0.005 | 1 <1      | < 0.005 |
| BR-07-22<br>BR-07-22 | 250      | 252    | 2            | 0.25     | 0.044  | 0.017   | 0.07            | < 0.005 | <1        | < 0.005 |
| BR-07-22<br>BR-08-22 | 0        | 202    | 202          | 0.20     | 0.07   |         | terval not san  |         |           | ~0.005  |
| BR-08-22<br>BR-08-22 | 202      | 202    | 1.3          | 0.25     | 0.035  | 0.094   | < 0.005         | <0.005  | <1        | 0.011   |
| BR-08-22<br>BR-08-22 | 202      | 205.5  | 1.5          | 0.25     | 0.033  | 0.094   | 0.02            | 0.015   | <1        | 0.017   |
| BR-08-22<br>BR-08-22 | 205.5    | 203    | 2            | 0.25     | 0.031  | 0.078   | 0.02            | 0.015   | <1        | 0.017   |
| BR-08-22<br>BR-08-22 | 205      | 207    | 2            | 0.25     | 0.022  | 0.08    | 0.01            | 0.015   | <1        | 0.024   |
| BR-08-22<br>BR-08-22 | 207      | 208    | 2            | 0.25     | 0.082  | 0.174   | 0.02            | 0.003   | <1        | 0.033   |
| BR-08-22<br>BR-08-22 |          |        |              | 2        |        |         |                 | 0.009   | <1        |         |
|                      | 210      | 211.3  | 1.3<br>2     |          | 0.11   | 0.121   | 0.02            |         |           | 0.011   |
| BR-08-22             | 211.3    | 213.3  |              | 27       | 1.01   | 0.317   | 0.31            | 0.02    | 1         | 0.029   |
| BR-08-22             | 213.3    | 215    | 1.7          | 9        | 0.668  | 0.173   | 0.06            | 0.008   | 2         | 0.022   |
| BR-08-22             | 215      | 217    | 2            | 0.25     | 0.058  | 0.008   | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-08-22             | 217      | 219    | 2            | 0.25     | 0.029  | 0.005   | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-08-22             | 219      | 221    | 2            | 0.25     | 0.009  | 0.002   | < 0.005         | < 0.005 | <1        | < 0.005 |
| BR-08-22             | 221      | 223    | 2            | 0.25     | 0.009  | 0.028   | < 0.005         | < 0.005 | <1        | 0.007   |



| BR-08-22<br>BR-08-22<br>BR-08-22 | 223            | 225          | 2          |           |              |               |                  |                |          |       |
|----------------------------------|----------------|--------------|------------|-----------|--------------|---------------|------------------|----------------|----------|-------|
| BR-08-22                         | 005            |              | ۷          | 0.25      | 0.007        | <0.005        | <0.005           | < 0.005        | <1       | 0.009 |
|                                  | 225            | 227          | 2          | 0.25      | 0.01         | < 0.005       | 0.02             | < 0.005        | <1       | 0.008 |
|                                  | 227            | 263          | 36         |           | T            | In            | terval not sam   | npled          |          |       |
| BR-08-22                         | 263            | 265          | 2          | 9         | 0.548        | 0.069         | 0.03             | 0.007          | <1       | 0.01  |
| BR-08-22                         | 265            | 267          | 2          | 16        | 0.655        | 0.256         | < 0.005          | 0.008          | 1        | 0.007 |
| BR-08-22                         | 267            | 267.7        | 0.7        | 67        | 1.46         | 0.633         | <0.005           | 0.013          | 7        | 0.011 |
| BR-08-22                         | 267.7          | 269          | 1.3        | 155       | 3.55         | 1.45          | 0.02             | 0.022          | 16       | 0.033 |
| BR-08-22                         | 269            | 271          | 2          | 76        | 0.861        | 0.385         | <0.005           | 0.011          | 10       | 0.031 |
| BR-08-22                         | 271            | 271.5        | 0.5        | 70        | 0.586        | 0.703         | < 0.005          | 0.007          | 14       | 0.107 |
| BR-08-22                         | 271.5          | 272.5        | 1          | 6         | 8.9          | 0.371         | 0.02             | 0.011          | 28       | 0.297 |
| BR-08-22                         | 272.5          | 273.5        | 1          | 9         | 0.413        | 0.248         | < 0.005          | 0.005          | 6        | 0.055 |
| BR-08-22                         | 273.5          | 274.5        | 1          | 20        | 0.944        | 0.648         | < 0.005          | 0.006          | 13       | 0.174 |
| BR-08-22                         | 274.5          | 276          | 1.5        | 26        | 0.826        | 0.92          | 0.16             | 0.029          | 48       | 0.282 |
| BR-08-22                         | 276            | 278          | 2          | 42        | 0.453        | 0.295         | 0.03             | 0.016          | 6        | 0.028 |
| BR-08-22                         | 278            | 278.6        | 0.6        | 298       | 3.14         | 2.46          | < 0.005          | 0.015          | 1        | 0.053 |
| BR-08-22<br>BR-08-22             | 278.6<br>279.4 | 279.4<br>281 | 0.8<br>1.6 | 664<br>90 | 9.8<br>2.12  | 5.32<br>0.878 | < 0.005          | 0.061          | 7        | 0.06  |
| BR-08-22<br>BR-08-22             | 279.4          | 283          | 2          | 90<br>70  | 1.55         | 0.365         | <0.005<br><0.005 | 0.008          | 16       | 0.022 |
| BR-08-22<br>BR-08-22             | 283            | 284.5        | 1.5        | 36        | 1.55         | 0.598         | 0.01             | 0.01           | 10       | 0.022 |
| BR-08-22<br>BR-08-22             | 284.5          | 285.4        | 0.9        | 30        | 2.12         | 1.14          | < 0.005          | 0.011          | 2        | 0.012 |
| BR-08-22                         | 285.4          | 287          | 1.6        | 10        | 0.561        | 0.271         | < 0.005          | < 0.005        | 8        | 0.008 |
| BR-08-22                         | 287            | 289          | 2          | 10        | 0.718        | 0.321         | < 0.005          | 0.006          | 2        | 0.008 |
| BR-08-22                         | 289            | 291          | 2          | 13        | 0.496        | 0.681         | < 0.005          | 0.006          | <1       | 0.00  |
| BR-08-22                         | 291            | 293          | 2          | 48        | 0.553        | 0.373         | < 0.005          | 0.006          | 8        | 0.01  |
| BR-08-22                         | 293            | 295          | 2          | 14        | 0.48         | 0.173         | < 0.005          | < 0.005        | 2        | 0.008 |
| BR-08-22                         | 295            | 296          | 1          | 30        | 0.677        | 0.503         | < 0.005          | 0.006          | 4        | 0.021 |
| BR-08-22                         | 296            | 298          | 2          | 61        | 1.71         | 0.556         | < 0.005          | 0.009          | 10       | 0.031 |
| BR-08-22                         | 298            | 300          | 2          | 86        | 1.32         | 0.407         | < 0.005          | 0.005          | 9        | 0.018 |
| BR-08-22                         | 300            | 300.5        | 0.5        | 19        | 0.475        | 0.116         | < 0.005          | 0.008          | 1        | 0.033 |
| BR-08-22                         | 300.5          | 302          | 1.5        | 2         | 0.009        | 0.007         | < 0.005          | < 0.005        | <1       | 0.023 |
| BR-08-22                         | 302            | 304          | 2          | 0.25      | 0.007        | <0.005        | < 0.005          | 0.012          | <1       | 0.015 |
| BR-08-22                         | 304            | 305          | 1          | 0.25      | 0.006        | 0.02          | 0.02             | 0.009          | 59       | 0.006 |
| BR-08-22                         | 305            | 306          | 1          | 347       | 0.78         | 1.7           | 1.13             | 0.166          | 80       | 0.037 |
| BR-08-22                         | 306            | 307          | 1          | 185       | 0.275        | 0.449         | 0.32             | 0.12           | 85       | 0.041 |
| BR-08-22                         | 307            | 308          | 1          | 77        | 0.822        | 0.584         | 0.22             | 0.056          | 72       | 0.015 |
| BR-08-22                         | 308            | 309          | 1          | 333       | 7.52         | 6.98          | 0.66             | 0.336          | 66       | 0.084 |
| BR-08-22                         | 309            | 310          | 1          | 187       | 8.87         | 6.1           | 1.09             | 0.186          | 73       | 0.065 |
| BR-08-22                         | 310            | 311          | 1          | 88        | 10           | 4.07          | 0.69             | 0.183          | 74       | 0.063 |
| BR-08-22                         | 311            | 312          | 1          | 101       | 11.77        | 4.31          | 0.64             | 0.137          | 76       | 0.052 |
| BR-08-22                         | 312            | 313          | 1          | 160       | 9.46         | 4.33          | 1.13             | 0.176          | 72       | 0.085 |
| BR-08-22                         | 313            | 314          | 1          | 154       | 10.33        | 4.1           | 1.05             | 0.166          | 77       | 0.074 |
| BR-08-22                         | 314            | 315          | 1          | 81        | 12.86        | 3.81          | 0.62             | 0.133          | 73       | 0.042 |
| BR-08-22                         | 315            | 316          | 1          | 97        | 11.13        | 4.38          | 0.63             | 0.2            | 79       | 0.057 |
| BR-08-22                         | 316            | 317          | 1          | 92        | 10.67        | 4.03          | 0.5              | 0.173          | 75       | 0.072 |
| BR-08-22                         | 317            | 318          | 1          | 104       | 9.06         | 4.16          | 0.28             | 0.201          | 77       | 0.126 |
| BR-08-22                         | 318            | 319          | 1          | 60        | 9.27         | 3.11          | 0.43             | 0.161          | 81       | 0.062 |
| BR-08-22                         | 319            | 320          | 1          | 44        | 7.04         | 3.04          | 0.49             | 0.141          | 82       | 0.054 |
| BR-08-22                         | 320            | 321          | 1          | 53        | 5.78         | 3.23          | 0.5              | 0.297          | 82       | 0.096 |
| BR-08-22                         | 321            | 322          | 1          | 48        | 3.73         | 3.3           | 0.39             | 0.248          | 85       | 0.09  |
| BR-08-22                         | 322            | 323          | 1          | 55        | 3.81         | 3.99          | 0.47             | 0.359          | 84       | 0.129 |
| BR-08-22                         | 323            | 324          | 1          | 76        | 8.63         | 4.23          | 0.51             | 0.174          | 77       | 0.071 |
| BR-08-22                         | 324            | 325          | 1          | 44        | 7.31         | 3.4           | 0.53             | 0.15           | 79       | 0.046 |
| BR-08-22<br>BR-08-22             | 325<br>326     | 326          | 1          | 40        | 6.9<br>10.68 | 3.5<br>4.41   | 0.36             | 0.163          | 81       | 0.038 |
| BR-08-22<br>BR-08-22             | 326            | 327<br>328   | 1          | 43        | 6.9          | 5.74          | 0.40             | 0.157<br>0.363 | 75<br>73 | 0.037 |
| BR-08-22<br>BR-08-22             | 327            | 320          | 1          | 40        | 3.34         | 5.74          | 0.32             | 0.363          | 81       | 0.072 |



| Hole ID  | From (m) | To (m) | Interval (m) | Ag (g/t) | Zn (%) | Pb (%)  | Au (g/t)       | Cu (%)      | BaSO4 (%) | Sb (%)  |
|----------|----------|--------|--------------|----------|--------|---------|----------------|-------------|-----------|---------|
| BR-08-22 | 329      | 330    | 1            | 70       | 6.72   | 4.65    | 0.23           | 0.335       | 79        | 0.084   |
| BR-08-22 | 330      | 331    | 1            | 77       | 2.66   | 7.13    | 0.42           | 1.34        | 74        | 0.169   |
| BR-08-22 | 331      | 332    | 1            | 71       | 2.79   | 8.88    | 0.39           | 0.589       | 73        | 0.11    |
| BR-08-22 | 332      | 333    | 1            | 164      | 5.81   | 6.07    | 0.44           | 1.21        | 69        | 0.354   |
| BR-08-22 | 333      | 334    | 1            | 91       | 6.52   | 13.97   | 0.52           | 0.903       | 55        | 0.243   |
| BR-08-22 | 334      | 335    | 1            | 158      | 15.27  | 21.83   | 1.41           | 2.01        | 29        | 0.528   |
| BR-08-22 | 335      | 335.7  | 0.7          | 164      | 25.29  | 10.4    | 1.85           | 2.2         | 28        | 0.438   |
| BR-08-22 | 335.7    | 336.1  | 0.4          | 93       | 4.35   | 2.53    | 0.59           | 1.820       | 7         | 0.352   |
| BR-08-22 | 336.1    | 336.6  | 0.5          | 8        | 0.368  | 0.15    | 0.19           | 0.017       | <1        | 0.013   |
| BR-08-22 | 336.6    | 337.2  | 0.6          | 283      | 13.09  | 9.29    | 0.72           | 0.689       | 2         | 0.404   |
| BR-08-22 | 337.2    | 338.4  | 1.2          | 80       | 4.59   | 1.75    | 0.27           | 0.129       | 1         | 0.065   |
| BR-08-22 | 338.4    | 340    | 1.6          | 5        | 0.159  | 0.073   | 0.08           | 0.01        | <1        | 0.006   |
| BR-08-22 | 340      | 342    | 2            | 18       | 0.837  | 0.732   | 0.09           | 0.232       | <1        | 0.05    |
| BR-08-22 | 342      | 344    | 2            | 40       | 0.506  | 0.27    | 0.09           | 0.268       | 3         | 0.117   |
| BR-08-22 | 344      | 346    | 2            | 81       | 1.56   | 0.601   | 0.15           | 0.329       | 4         | 0.136   |
| BR-08-22 | 346      | 347.3  | 1.3          | 10       | 0.202  | 0.074   | 0.04           | 0.033       | <1        | 0.018   |
| BR-08-22 | 347.3    | 348    | 0.7          | 0.25     | 0.071  | 0.019   | 0.02           | 0.021       | <1        | 0.023   |
| BR-08-22 | 348      | 350    | 2            | 5        | 0.209  | 0.223   | 0.03           | 0.043       | 1         | 0.042   |
| BR-08-22 | 350      | 352    | 2            | 3        | 0.01   | 0.012   | 0.03           | < 0.005     | <1        | 0.007   |
| BR-09-22 | 0        | 243    | 243          |          |        | In      | terval not san | npled       |           |         |
| BR-09-22 | 243      | 244.5  | 1.5          | 0.25     | 0.004  | < 0.005 | 0.01           | < 0.005     | <1        | < 0.005 |
| BR-09-22 | 244.5    | 246    | 1.5          | 0.25     | 0.007  | 0.025   | 0.03           | 0.017       | 44        | 0.005   |
| BR-09-22 | 246      | 247.8  | 1.8          | 0.25     | 0.004  | < 0.005 | 0.01           | 0.0014      | 85        | < 0.005 |
| BR-09-22 | 247.8    | 248.4  | 0.6          | 15       | 0.06   | 0.174   | 0.14           | 0.016       | 64        | 0.006   |
| BR-09-22 | 248.4    | 249    | 0.6          | 770      | 4.27   | 10.1    | 4.13           | 0.304       | 42        | 0.065   |
| BR-09-22 | 249      | 250    | 1            | 522      | 6.62   | 7.47    | 3.45           | 0.378       | 55        | 0.122   |
| BR-09-22 | 250      | 251    | 1            | 863      | 22.29  | 8.31    | 3.31           | 0.597       | 43        | 0.215   |
| BR-09-22 | 251      | 252    | 1            | 332      | 33.46  | 19.96   | 1.3            | 1.26        | 14        | 0.121   |
| BR-09-22 | 252      | 253    | 1            | 305      | 26.77  | 30.24   | 1.53           | 2.63        | 7         | 0.116   |
| BR-09-22 | 253      | 254    | 1            | 320      | 27.32  | 24.96   | 1.87           | 3.26        | 7         | 0.179   |
| BR-09-22 | 254      | 255.4  | 1.4          | 130      | 9.41   | 5.61    | 0.76           | 0.607       | 12        | 0.117   |
| BR-09-22 | 255.4    | 256.4  | 1            | 368      | 8.54   | 6.57    | 0.99           | 11.55       | 18        | 0.817   |
| BR-09-22 | 256.4    | 257.1  | 0.7          | 201      | 18.97  | 10.44   | 1.09           | 2.87        | 34        | 0.252   |
| BR-09-22 | 257.1    | 258    | 0.9          | 42       | 3.5    | 1.77    | 0.71           | 1.61        | 4         | 0.142   |
| BR-09-22 | 258      | 260.2  | 2.2          | 39       | 2.96   | 1.3     | 0.21           | 0.796       | 1         | 0.127   |
| BR-09-22 | 260.2    | 262    | 1.8          | 3        | 0.182  | 0.025   | 0.06           | 0.044       | <1        | 0.017   |
| BR-09-22 | 262      | 264    | 2            | 0.25     | 0.024  | 0.014   | 0.08           | 0.005       | <1        | 0.006   |
| BR-09-22 | 264      | 266    | 2            | 0.25     | 0.008  | 0.007   | 0.09           | 0.008       | <1        | 0.005   |
| BR-10-22 | 0        | 186    | 186          |          |        |         | terval not san |             |           | 1       |
| BR-10-22 | 186      | 188    | 2            | 0.25     | 0.007  | 0.008   | 0.01           | 0.008       | <1        | < 0.005 |
| BR-10-22 | 188      | 190    | 2            | 0.25     | 0.009  | 0.012   | 0.01           | 0.01        | <1        | 0.007   |
| BR-10-22 | 190      | 191.8  | 1.8          | 0.25     | 0.013  | 0.058   | 0.03           | 0.015       | <1        | 0.011   |
| BR-10-22 | 191.8    | 193.8  | 2            | 0.25     | 0.026  | 0.021   | < 0.005        | < 0.005     | <1        | < 0.005 |
| BR-10-22 | 193.8    | 194.7  | 0.9          | 0.25     | 0.072  | 0.08    | < 0.005        | 0.006       | <1        | 0.008   |
| BR-10-22 | 194.7    | 196.7  | 2            | 0.25     | 0.045  | 0.171   | 0.01           | 0.006       | <1        | 0.015   |
| BR-10-22 | 196.7    | 198.6  | 1.9          | 0.25     | 0.015  | 0.037   | 0.005          | < 0.005     | <1        | 0.007   |
| BR-10-22 | 198.6    | 200    | 1.4          | 0.25     | 0.338  | 0.303   | 0.02           | 0.0142      | <1        | 0.025   |
| BR-10-22 | 200      | 214.6  | 14.6         | 0.07     | 0.011  | 0.000   | 1              | not sampled | . 1       | 0.000   |
| BR-10-22 | 214.6    | 216.5  | 1.9          | 0.25     | 0.014  | 0.082   | 0.04           | 0.011       | <1        | 0.022   |
| BR-10-22 | 216.5    | 219.2  | 2.7          | 0.25     | 0.092  | 0.063   | < 0.005        | 0.009       | <1        | 0.022   |
| BR-10-22 | 226.4    | 228.4  | 2            | 0.25     | 0.006  | 0.003   | < 0.005        | < 0.005     | <1        | 0.006   |
| BR-10-22 | 228.4    | 230.4  | 2            | 0.25     | 0.007  | < 0.005 | < 0.005        | < 0.005     | <1        | < 0.005 |
| BR-10-22 | 230.4    | 232    | 1.6          | 0.25     | 0.006  | 0.005   | < 0.005        | < 0.005     | <1        | 0.007   |
| BR-10-22 | 232      | 234    | 2            | 0.25     | 0.022  | 0.011   | < 0.005        | < 0.005     | <1        | 0.011   |
| BR-10-22 | 234      | 308    | 74           |          | 0.005  | I       | terval not san | · ·         |           | 0.007   |
| BR-10-22 | 308      | 309.5  | 1.5          | 2        | 0.093  | 0.034   | 0.03           | < 0.005     | <1        | 0.005   |
| BR-10-22 | 309.5    | 311    | 1.5          | 8        | 0.258  | 0.108   | 0.02           | < 0.005     | 1         | 0.015   |



| Hole ID              | From (m)       | To (m)         | Interval (m) | Ag (g/t) | Zn (%) | Pb (%)  | Au (g/t)       | Cu (%)           | BaSO4 (%) | Sb (%)  |
|----------------------|----------------|----------------|--------------|----------|--------|---------|----------------|------------------|-----------|---------|
| BR-10-22             | 311            | 312.8          | 1.8          | 20       | 0.59   | 0.095   | 0.02           | < 0.005          | 6         | 0.015   |
| BR-10-22             | 312.8          | 313.9          | 1.1          | 22       | 0.233  | 0.108   | 0.03           | 0.012            | 3         | 0.028   |
| BR-10-22             | 313.9          | 315            | 1.1          | 280      | 2.49   | 2.39    | 0.53           | 0.09             | 79        | 0.063   |
| BR-10-22             | 315            | 316            | 1            | 785      | 3.38   | 2.16    | 0.71           | 0.118            | 82        | 0.092   |
| BR-10-22             | 316            | 317            | 1            | 490      | 2.56   | 3.68    | 0.76           | 0.127            | 83        | 0.059   |
| BR-10-22             | 317            | 317.6          | 0.6          | 105      | 0.377  | 0.791   | 0.46           | 0.039            | 85        | 0.01    |
| BR-10-22             | 317.6          | 318.2          | 0.6          | 176      | 1.8    | 2.18    | 0.95           | 0.08             | 78        | 0.037   |
| BR-10-22             | 318.2          | 320            | 1.8          | 3        | 0.139  | 0.007   | 0.02           | < 0.005          | 3         | 0.008   |
| BR-10-22             | 320            | 322            | 2            | 0.25     | 0.123  | 0.0127  | <0.005         | < 0.005          | <1        | 0.011   |
| BR-10-22             | 322            | 324            | 2            | 0.25     | 0.048  | < 0.005 | 0.02           | < 0.005          | 1         | 0.01    |
| BR-12-22             | 0              | 194            | 194          |          | 1      |         | terval not san |                  |           |         |
| BR-12-22             | 194            | 195.5          | 1.5          | 0.25     | 0.006  | < 0.005 | < 0.005        | < 0.005          | <1        | 0.005   |
| BR-12-22             | 195.5          | 197            | 1.5          | 0.25     | 0.014  | 0.005   | < 0.005        | 0.021            | 1         | 0.007   |
| BR-12-22             | 197            | 198.4          | 1.4          | 0.25     | 0.015  | 0.009   | 0.01           | 0.014            | 27        | 0.007   |
| BR-12-22             | 198.4          | 199            | 0.6          | 0.25     | 0.008  | < 0.005 | < 0.005        | < 0.005          | 53        | < 0.005 |
| BR-12-22             | 199            | 199.8          | 0.8          | 0.25     | 0.022  | 0.029   | 0.01           | < 0.005          | 64        | < 0.005 |
| BR-12-22             | 199.8          | 201            | 1.2          | 30       | 0.131  | 0.41    | 0.09           | 0.035            | 2         | 0.008   |
| BR-12-22             | 201            | 201.5          | 0.5          | 1000     | 6.52   | 9.39    | 2.83           | 0.571            | 43        | 0.054   |
| BR-12-22             | 201.5          | 202.2          | 0.7          | 1060     | 15.43  | 12.08   | 4.96           | 0.743            | 34        | 0.058   |
| BR-12-22             | 202.2          | 203            | 0.8          | 566      | 9.46   | 6.67    | 4.25           | 0.549            | 65        | 0.155   |
| BR-12-22             | 203            | 204            | 1            | 402      | 17.74  | 12.08   | 2.49           | 1.27             | 45        | 0.143   |
| BR-12-22             | 204            | 205            | 1            | 331      | 12.9   | 6.96    | 2.12           | 0.749            | 62        | 0.108   |
| BR-12-22             | 205            | 206            | 1            | 163      | 9.78   | 4.22    | 1.94           | 0.384            | 75        | 0.041   |
| BR-12-22             | 206            | 207            | 1            | 179      | 11.37  | 4.97    | 1.66           | 0.432            | 68        | 0.043   |
| BR-12-22             | 207            | 207.5          | 0.5          | 550      | 13.07  | 5.45    | 4.6            | 0.509            | 63        | 0.128   |
| BR-12-22             | 207.5          | 208            | 0.5          | 847      | 9.85   | 5.15    | 2.79           | 0.386            | 62        | 0.103   |
| BR-12-22             | 208            | 209.5          | 1.5          | 37       | 1.28   | 0.843   | 0.67           | 0.118            | 4         | 0.032   |
| BR-12-22             | 209.5          | 211            | 1.5          | 44       | 0.756  | 1.22    | 0.39           | 0.096            | 9         | 0.035   |
| BR-12-22             | 211            | 211.8          | 0.8          | 11       | 0.16   | 0.119   | 0.13           | 0.118            | <1        | 0.064   |
| BR-12-22             | 211.8          | 213.3          | 1.5          | 26       | 1.64   | 0.354   | 0.2            | 0.019            | <1        | 0.011   |
| BR-12-22             | 213.3          | 214.9          | 1.6          | 12       | 0.653  | 0.397   | 0.11           | 0.036            | 4         | 0.016   |
| BR-12-22             | 214.9          | 216            | 1.1          | 5        | 0.137  | 0.088   | 0.06           | 0.006            | 1<br><1   | 0.007   |
| BR-12-22             | 216            | 217.8          | 1.8          | 5        | 0.033  | 0.048   | < 0.005        | < 0.005          | <1        | 0.005   |
| BR-12-22             | 217.8          | 219.4          | 1.6<br>2     | 8        | 0.009  | 0.006   | 0.03           | < 0.005          | <1        | 0.005   |
| BR-12-22             | 219.4          | 221.4          |              | 0.25     | 0.008  | < 0.005 | 0.01           | < 0.005          | <1        | < 0.005 |
| BR-12-22             | 221.4          | 223            | 1.6          | 0.25     | 0.011  | < 0.005 | 0.01           | < 0.005          | <1        | < 0.005 |
| BR-12-22             | 223            | 224.7          | 1.7          | 0.25     | 0.017  | 0.005   | < 0.005        | 0.006            |           | 0.007   |
| BR-12-22             | 224.7          | 226.4          | 1.7          | 0.25     | 0.01   | 0.016   | 0.1            | < 0.005          | 2         | < 0.005 |
| BR-12-22             | 226.4          | 228.4          | 2            | 0.25     | 0.009  | < 0.005 | 0.05           | < 0.005          | 1 <1      | 0.005   |
| BR-12-22             | 228.4          | 230            | 1.6          | 0.25     | 0.01   | 0.002   | 0.21           | < 0.005          | <1        | < 0.005 |
| BR-12-22             | 230            | 232            | 2            | 0.25     | 0.013  | 0.017   | 0.04           | 0.014            |           | 0.013   |
| BR-12-22<br>BR-12-22 | 232<br>234     | 234<br>236     | 2            | 0.25     | 0.031  | 0.044   | 0.01           | 0.014            | 2         | 0.01    |
| BR-12-22<br>BR-12-22 | 234            | 236            | 1.5          | 0.25     | 0.031  | 0.007   | 0.05           | 0.017            | <1        | 0.018   |
| BR-12-22<br>BR-12-22 |                |                |              |          |        |         | 0.14           | 0.007            | 1         | 0.009   |
| BR-12-22<br>BR-12-22 | 237.5<br>238.8 | 238.8<br>239.7 | 1.3<br>0.9   | 4        | 0.348  | 0.251   | 0.06           | 0.018            | 0         | 0.015   |
| BR-12-22<br>BR-12-22 | 238.0          | 239.7          | 2            | 3        | 0.563  | 0.158   | 0.12           | 0.026            | 1         | 0.009   |
| BR-12-22<br>BR-12-22 | 239.7          | 241.7          | 1.3          | 3        | 0.563  | 0.156   | 0.09           | 0.021            | 1<br><1   | 0.009   |
| BR-12-22<br>BR-12-22 | 241.7          | 243            | 1.3          | 4        | 0.698  | 0.256   | 0.12           | 0.021            | <1        | 0.012   |
| BR-12-22<br>BR-12-22 | 243            | 244.8          |              | 5        | 0.251  | 0.212   | 0.07           | 0.026            | <1        | 0.014   |
| BR-12-22<br>BR-12-22 | 244.8          | 245.9          | 1.1<br>0.8   | 5<br>46  | 5.39   | 2.33    | 0.08           | 0.031            |           | 0.013   |
| BR-12-22<br>BR-12-22 |                |                |              |          |        | 0.007   |                | < 0.005          | 4<br><1   | 0.128   |
| BR-12-22<br>BR-12-22 | 246.7<br>248   | 248<br>250     | 1.3<br>2     | 0.25     | 0.014  | 0.007   | 0.05           | < 0.005          | <1        | 0.006   |
| BR-12-22<br>BR-12-22 | 240            | 250            | 2            | 0.25     | 0.102  | 0.033   | 0.05           | < 0.005<br>0.014 | <1        | 0.013   |
|                      |                |                |              |          |        |         |                |                  | <1        |         |
| BR-12-22             | 252            | 254            | 2            | 2        | 0.1    | 0.127   | 0.01           | 0.038            | <1        | 0.04    |
| BR-12-22             | 254            | 256            | 2            | 84       | 1.52   | 1.32    | 0.05           | 0.111<br><0.005  | <1        | 0.047   |
| BR-12-22             | 256            | 258            | 2            | 0.25     | 0.017  | <0.005  | 0.03           | <0.00J           | ~ 1       | < 0.005 |



| Hole ID  | From (m) | To (m) | Interval (m) | Ag (g/t) | Zn (%) | Pb (%)  | Au (g/t)        | Cu (%)     | BaSO4 (%) | Sb (%)  |
|----------|----------|--------|--------------|----------|--------|---------|-----------------|------------|-----------|---------|
| BR-12-22 | 258      | 260    | 2            | 0.25     | 0.012  | <0.005  | 0.04            | <0.005     | <1        | 0.007   |
| BR-12-22 | 260      | 262    | 2            | 0.25     | 0.039  | <0.005  | 0.005           | 0.038      | <1        | 0.034   |
| BR-12-22 | 262      | 264    | 2            | 0.25     | 0.05   | <0.005  | 0.07            | < 0.005    | <1        | 0.007   |
| BR-12-22 | 264      | 266    | 2            | 0.25     | 0.07   | 0.011   | 0.01            | < 0.005    | <1        | 0.005   |
| BR-12-22 | 266      | 268    | 2            | 0.25     | 0.08   | 0.012   | 0.07            | 0.006      | <1        | 0.01    |
| BR-12-22 | 268      | 270    | 2            | 0.25     | 0.16   | 0.026   | 0.07            | < 0.005    | <1        | 0.007   |
| BR-12-22 | 270      | 272    | 2            | 0.25     | 0.035  | < 0.005 | 0.04            | < 0.005    | <1        | 0.009   |
| BR-12-22 | 272      | 274    | 2            | 0.25     | 0.04   | < 0.005 | 0.05            | < 0.005    | <1        | 0.008   |
| BR-12-22 | 274      | 276    | 2            | 0.25     | 0.016  | < 0.005 | 0.05            | < 0.005    | <1        | 0.005   |
| BR-12-22 | 276      | 278    | 2            | 0.25     | 0.013  | < 0.005 | 0.08            | < 0.005    | <1        | 0.009   |
| BR-12-22 | 278      | 280    | 2            | 6        | 0.195  | 0.067   | 0.06            | 0.132      | <1        | 0.068   |
| BR-12-22 | 280      | 282    | 2            | 0.25     | 0.032  | 0.013   | 0.32            | 0.032      | 1         | 0.02    |
| BR-12-22 | 282      | 284    | 2            | 0.25     | 0.008  | < 0.005 | 0.05            | < 0.005    | 0         | 0.006   |
| BR-12-22 | 284      | 286    | 2            | 0.25     | 0.058  | 0.005   | 0.07            | 0.005      | <1        | 0.012   |
| BR-12-22 | 286      | 287.8  | 1.8          | 0.25     | 0.041  | 0.006   | 0.06            | < 0.005    | <1        | 0.007   |
| BR-12-22 | 287.8    | 289.6  | 1.8          | 15       | 0.467  | 0.156   | 0.13            | 0.0587     | 4         | 0.042   |
| BR-12-22 | 289.6    | 291    | 1.4          | 0.25     | 0.021  | <0.005  | 0.03            | < 0.005    | <1        | 0.007   |
| BR-12-22 | 291      | 293    | 2            | 0.25     | 0.024  | <0.005  | 0.02            | < 0.005    | <1        | 0.009   |
| BR-12-22 | 293      | 295    | 2            | 0.25     | 0.052  | <0.005  | 0.04            | < 0.005    | <1        | 0.005   |
| BR-12-22 | 295      | 297    | 2            | 0.25     | 0.009  | < 0.005 | 0.05            | < 0.005    | <1        | 0.008   |
| BR-12-22 | 297      | 299    | 2            | 0.25     | 0.044  | 0.043   | 0.14            | < 0.005    | <1        | 0.033   |
| BR-12-22 | 299      | 301    | 2            | 0.25     | 0.063  | 0.033   | 0.04            | < 0.005    | <1        | 0.009   |
| BR-12-22 | 301      | 301.8  | 0.8          | 7        | 0.52   | 0.223   | 0.05            | 0.2382     | 1         | 0.043   |
| BR-12-22 | 301.8    | 303    | 1.2          | 0.25     | 0.017  | 0.003   | 0.03            | 0.006      | <1        | 0.011   |
| BR-12-22 | 303      | 305    | 2            | 0.25     | 0.047  | 0.023   | 0.05            | 0.016      | <1        | 0.013   |
| BR-12-22 | 305      | 307    | 2            | 3        | 0.086  | 0.028   | 0.02            | 0.232      | <1        | 0.082   |
| BR-12-22 | 307      | 309    | 2            | 0.25     | 0.014  | 0.006   | <0.005          | 0.01       | <1        | 0.006   |
| BR-12-22 | 309      | 311    | 2            | 0.25     | 0.017  | <0.005  | <0.005          | < 0.005    | <1        | <0.005  |
| BR-12-22 | 311      | 313    | 2            | 0.25     | 0.133  | 0.014   | 0.01            | 0.015      | <1        | 0.008   |
| BR-12-22 | 313      | 315    | 2            | 0.25     | 0.014  | 0.051   | <0.005          | 0.018      | <1        | 0.008   |
| BR-12-22 | 315      | 317    | 2            | 0.25     | 0.07   | 0.023   | < 0.005         | 0.011      | <1        | 0.005   |
| BR-12-22 | 317      | 318.8  | 1.8          | 0.25     | 0.016  | 0.016   | 0.03            | 0.02       | <1        | 0.007   |
| BR-12-22 | 318.8    | 320.5  | 1.7          | 29       | 0.148  | 0.224   | 0.07            | 0.101      | <1        | 0.016   |
| BR-12-22 | 320.5    | 322    | 1.5          | 3        | 0.054  | 0.031   | 0.02            | 0.007      | 1         | < 0.005 |
| BR-12-22 | 322      | 324    | 2            | 0.25     | 0.017  | < 0.005 | 0.01            | < 0.005    | <1        | < 0.005 |
| BR-12-22 | 324      | 326    | 2            | 0.25     | 0.029  | < 0.005 | < 0.005         | < 0.005    | <1        | < 0.005 |
| BR-12-22 | 326      | 328    | 2            | 0.25     | 0.02   | <0.005  | 0.03            | < 0.005    | <1        | <0.005  |
| BR-12-22 | 328      | 330    | 2            | 0.25     | 0.012  | <0.005  | <0.005          | < 0.005    | <1        | 0.006   |
| BR-12-22 | 330      | 332    | 2            | 0.25     | 0.014  | < 0.005 | < 0.005         | < 0.005    | <1        | < 0.005 |
| BR-12-22 | 332      | 334    | 2            | 0.25     | 0.014  | < 0.005 | < 0.005         | 0.012      | <1        | 0.009   |
| BR-12-22 | 334      | 335.5  | 1.5          | 0.25     | 0.016  | < 0.005 | < 0.005         | 0.037      | <1        | 0.023   |
| BR-12-22 | 335.5    | 336.4  | 0.9          | 0.25     | 0.016  | < 0.005 | 0.02            | 0.006      | <1        | 0.007   |
| BR-12-22 | 336.4    | 337.3  | 0.9          | 0.25     | 0.014  | < 0.005 | 0.01            | 0.019      | <1        | 0.013   |
| BR-13-22 | 0        | 203.1  | 203.1        | -        |        |         | iterval not san | r <u> </u> |           |         |
| BR-13-22 | 203.1    | 205.1  | 2            | 3        | 0.08   | 0.091   | 0.02            | 0.019      | 5         | 0.01    |
| BR-13-22 | 205.1    | 207    | 1.9          | 0.25     | 0.006  | 0.004   | < 0.005         | 0.009      | <1        | 0.007   |
| BR-13-22 | 207      | 208    | 1            | 518      | 7.55   | 9.08    | 2.64            | 0.348      | 49        | 0.046   |
| BR-13-22 | 208      | 209    | 1            | 289      | 5.7    | 3.43    | 2.12            | 0.189      | 75        | 0.02    |
| BR-13-22 | 209      | 210    | 1            | 306      | 6.17   | 3.41    | 2.18            | 0.22       | 74        | 0.032   |
| BR-13-22 | 210      | 211    | 1            | 737      | 2.75   | 3.02    | 2.45            | 0.225      | 84        | 0.034   |
| BR-13-22 | 211      | 212    | 1            | 696      | 5.12   | 3.5     | 3.72            | 0.315      | 83        | 0.05    |
| BR-13-22 | 212      | 213    | 1            | 269      | 11.66  | 6.43    | 3.63            | 0.604      | 65        | 0.104   |
| BR-13-22 | 213      | 214    | 1            | 230      | 13.52  | 7.03    | 1.83            | 0.466      | 61        | 0.115   |
| BR-13-22 | 214      | 215    | 1            | 526      | 13.89  | 8.54    | 3.86            | 0.927      | 49        | 0.257   |
| BR-13-22 | 215      | 216    | 1            | 3458     | 23.68  | 17.13   | 7.27            | 1.34       | 4         | 0.844   |
| BR-13-22 | 216      | 216.5  | 0.5          | 1431     | 16.67  | 8.77    | 4.06            | 0.512      | 6         | 0.609   |



| Hole ID  | From (m) | To (m) | Interval (m) | Ag (g/t) | Zn (%) | Pb (%) | Au (g/t) | Cu (%)  | BaSO4 (%) | Sb (%)  |
|----------|----------|--------|--------------|----------|--------|--------|----------|---------|-----------|---------|
| BR-13-22 | 216.5    | 217.6  | 1.1          | 154      | 0.945  | 0.62   | 0.24     | 0.069   | 11        | 0.104   |
| BR-13-22 | 217.6    | 219    | 1.4          | 55       | 0.746  | 0.548  | 0.42     | 0.113   | 16        | 0.08    |
| BR-13-22 | 219      | 220.8  | 1.8          | 9        | 0.059  | 0.03   | 0.03     | < 0.005 | 4         | 0.012   |
| BR-13-22 | 220.8    | 221.8  | 1            | 182      | 2.39   | 5.28   | 0.74     | 1.6     | 22        | 0.205   |
| BR-13-22 | 221.8    | 223.1  | 1.3          | 46       | 1.4    | 3.36   | 0.28     | 0.298   | 11        | 0.067   |
| BR-13-22 | 223.1    | 225    | 1.9          | 20       | 1.55   | 0.488  | 0.18     | 0.734   | <1        | 0.049   |
| BR-13-22 | 225      | 226.9  | 1.9          | 43       | 2.45   | 1.16   | 0.32     | 0.06    | 2         | 0.027   |
| BR-13-22 | 226.9    | 229    | 2.1          | 5        | 0.013  | 0.012  | 0.03     | < 0.005 | <1        | 0.006   |
| BR-13-22 | 229      | 230.5  | 1.5          | 0.25     | 0.017  | 0.007  | 0.06     | 0.016   | 2         | 0.011   |
| BR-13-22 | 230.5    | 232    | 1.5          | 0.25     | 0.097  | 0.058  | 0.11     | < 0.005 | <1        | 0.006   |
| BR-13-22 | 232      | 234    | 2            | 0.25     | 0.129  | 0.024  | 0.14     | < 0.005 | <1        | < 0.005 |
| BR-13-22 | 234      | 236    | 2            | 0.25     | 0.042  | 0.013  | 0.07     | 0.011   | <1        | 0.0105  |
| BR-13-22 | 236      | 237.5  | 1.5          | 13       | 0.236  | 0.11   | 0.17     | 0.39    | 2         | 0.127   |
| BR-13-22 | 237.5    | 239    | 1.5          | 65       | 0.806  | 0.309  | 0.16     | 0.412   | 8         | 0.193   |
| BR-13-22 | 239      | 241    | 2            | 3        | 0.188  | 0.041  | 0.06     | 0.021   | <1        | 0.009   |
| BR-13-22 | 241      | 243    | 2            | 0.25     | 0.063  | 0.053  | 0.05     | 0.023   | <1        | 0.012   |
| BR-13-22 | 243      | 245    | 2            | 0.25     | 0.051  | <0.005 | 0.03     | < 0.005 | <1        | 0.006   |
| BR-13-22 | 245      | 247    | 2            | 0.25     | 0.024  | 0.007  | 0.03     | < 0.005 | <1        | < 0.005 |
| BR-13-22 | 247      | 249    | 2            | 0.25     | 0.045  | 0.009  | 0.04     | < 0.005 | <1        | 0.005   |

#### APPENDIX 2: JORC TABLES

| Criteria               | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | Nature and quality of sampling (e.g., cut channels,<br>random chips, or specific specialised industry standard<br>measurement tools appropriate to the minerals under<br>investigation, such as down hole gamma sondes, or<br>handheld XRF instruments, etc). These examples should<br>not be taken as limiting the broad meaning of sampling.                                                                                                                                                                                                                                                         | <ul> <li>Drill core samples were collected from half cut PQ3 and HQ3 diameter core, where the core was sawn exactly in half along a pre-defined cutting line.</li> <li>The half core samples, typically weighing between 4-12kg, were placed into labelled and tagged sample bags prior to dispatch to the ALS preparation facility in Bor, Serbia.</li> <li>Sample intervals were determined by the geologist, usually at 2m intervals within massive ore, otherwise separated on narrower intervals where geological boundaries exist.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | Include reference to measures taken to ensure sample<br>representivity and the appropriate calibration of any<br>measurement tools or systems used.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample intervals were selected by the logging geologist based on<br>geological criteria or using a nominal maximum 2m sample length in<br>homogenous massive sulphide ore. A minimum sample length of 0.2m is<br>employed where necessary. Sampling is based on visually mineralised<br>intervals, with a calibrated portable XRF device used only as a guide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | Aspects of the determination of mineralisation that are<br>Material to the Public Report. In cases where 'industry<br>standard' work has been done this would be relatively<br>simple (e.g. 'reverse circulation drilling was used to obtain<br>1 m samples from which 3 kg was pulverised to produce<br>a 30 g charge for fire assay'). In other cases more<br>explanation may be required, such as where there is<br>coarse gold that has inherent sampling problems.<br>Unusual commodities or mineralisation types (e.g.,<br>submarine nodules) may warrant disclosure of detailed<br>information. | For drill hole analyses, diamond drilling was used to obtain 4 to 12kg samples, prepared at ALS Bor, Serbia (code PREP-31) and SGS Ankara, Turkey (code PRP89). The pulp samples from drillholes BR-04-22 and BR-05-22 were sent to ALS Rosia Montana, Romania by air freight for gold analysis by 50-gram fire assay with AA finish (code FA-AA24), and multi-element analyses were conducted by ALS Loughrea, Ireland using a highly oxidising digestion with ICP-MS finish (code ME-ICP61m). Barite was assayed using lithium borate fusion prior to acid dissolution and ICP-MS analysis (code ME-ICP06). The core samples from BR-06-22, BR-07-22, BR-08-22, BR-09-22, BR-10-22, BR-12-22 and BR-13-22 were sent to SGS Ankara, Turkey by truck for gold analysis by 30-gram fire assay with AA finish (code FAA303), and multi-element analyses were conducted by the same lab using a highly oxidising digestion with ICP-AES finish (code ICP40B). Barite was assayed using lithium borate fusion prior to acid dissolution and ICP-AES analysis (code ICP95A). |



| Criteria                                                | JORC Code Explanation                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling techniques                                     | Drill type (e.g. core, reverse circulation, open-hole<br>hammer, rotary air blast, auger, Bangka, sonic, etc) and<br>details (e.g. core diameter, triple or standard tube, depth<br>of diamond tails, face-sampling bit or other type, whether<br>core is oriented and if so, by what method, etc). | All drill holes were drilled using PQ3 and HQ3 diameter core.<br>All drill holes were drilled by drilling contractor Drillex International d.o.o.<br>PQ3 and HQ3 core was held in a core barrel by a stainless steel "split" inner<br>tube. The use of the inner tube ensured that all core maintained its<br>orientation prior to removal into the core trays. Drill core was stored in<br>suitable core boxes and stacked inside at the exploration facility in Vares.<br>All drillholes were surveyed at 9m and every 30m thereafter. No significant<br>deviation or drilling problems occurred.              |
| Drill sample<br>recovery                                | Method of recording and assessing core and chip sample recoveries and results assessed.                                                                                                                                                                                                             | All core was geotechnically logged to verify drillers blocks, record run length, recovered length, core recovery (%) and RQD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         | Measures taken to maximise sample recovery and ensure<br>representative nature of the samples.<br>Whether a relationship exists between sample recovery<br>and grade and whether sample bias may have occurred<br>due to preferential loss/gain of fine/coarse material.                            | There is no observed relationship between sample recovery and grade, and with no loss of material. No sample bias occurred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Logging                                                 | Whether core and chip samples have been geologically<br>and geotechnically logged to a level of detail to support<br>appropriate Mineral Resource estimation, mining studies<br>and metallurgical studies.                                                                                          | Core samples have been geologically and geotechnically logged to a level<br>of detail to support appropriate Mineral Resource estimation, mining<br>studies and metallurgical studies.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                         | <i>Whether logging is qualitative or quantitative in nature.</i><br><i>Core (or costean, channel, etc) photography.</i>                                                                                                                                                                             | All core is photographed. Core logging is both qualitative and quantitative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                         | The total length and percentage of the relevant intersections logged.                                                                                                                                                                                                                               | 100% of drill core is logged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sub-sampling<br>techniques and<br>sample<br>preparation | <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i>                                                                                                                                                                                                                    | The drill core was cut in half using a diamond saw. Nominally 1 in 30 samples was cut in quarters, and both halves analysed (for purposes of field duplicates).                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P. CP. C. C.                                            | If non-core, whether riffled, tube sampled, rotary split, etc<br>and whether sampled wet or dry.                                                                                                                                                                                                    | Not applicable, as all samples are core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                         | For all sample types, the nature, quality and appropriateness of the sample preparation technique.                                                                                                                                                                                                  | Collection of around 4-6kg of half core material with subsequent<br>pulverisation of the total charge provided an appropriate and representative<br>sample for analysis. Sample preparation was undertaken at the ALS<br>laboratory in Bor and SGS Ankara, to industry best practice.                                                                                                                                                                                                                                                                                                                            |
|                                                         | <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i>                                                                                                                                                                                        | Whole rock blanks and certified standards (~1 in 15) were introduced to the sample run to ensure laboratory QAQC. Additionally, industry best practice was adopted by ALS and SGS for laboratory sub-sampling and the avoidance of any cross contamination.                                                                                                                                                                                                                                                                                                                                                      |
|                                                         | Measures taken to ensure that the sampling is<br>representative of the in-situ material collected, including<br>for instance results for field duplicate/second-half<br>sampling.                                                                                                                   | The half core sampling is considered a reasonable representation of the in-<br>situ material. Nominally 1 in 30 samples were cut in quarters, and both<br>halves' analyses (for purposes of field duplicates).                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                         | Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                                                                                                                                                               | Sample size of around 4-12kg is considered to be appropriate to reasonably represent the material being tested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Quality of assay<br>data and<br>laboratory tests        | The nature, quality and appropriateness of the assaying<br>and laboratory procedures used and whether the<br>technique is considered partial or total.                                                                                                                                              | Sample preparation was undertaken at the facilities of ALS in Bor, Serbia, and<br>SGS in Ankara, Turkey. Assay analysis was completed at ALS Loughrea<br>(Ireland), ALS Rosa Montana (Romania) and SGS Ankara (Turkey). All facilities<br>are industry best practice and ISO certified. Multi elements were assayed by<br>an ICP-AES technique following a four-acid digest. Gold was determined<br>using a fire assay on nominal 30g and 50g charges. Barite was determined<br>from a lithium meta-borate fusion followed by dissolution and ICP-AES<br>analysis. Total sulphur was determined by Leco analyzer |
|                                                         |                                                                                                                                                                                                                                                                                                     | At time of information release, ore grade assays of barium sulphate were preliminary for holes BR-06-22 to BR-13-22. Ag and Zn equivalent calculations have been completed with the preliminary BaSO4 results.                                                                                                                                                                                                                                                                                                                                                                                                   |



| Criteria                                            | JORC Code Explanation                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |                                                                                                                                                                                                                                              | Corrected AgEq and ZnEq values will be re-reported on return of the final BaSO4 ore grades.                                                                                                                                                                                                                                            |
|                                                     |                                                                                                                                                                                                                                              | All techniques were appropriate for the elements being determined.<br>Samples are considered a partial digestion when using an aqua regia digest.                                                                                                                                                                                      |
|                                                     | For geophysical tools, spectrometers, handheld XRF<br>instruments, etc, the parameters used in determining the<br>Analysis including instrument make and model, reading<br>times, calibrations factors applied and their derivation,<br>etc. | There was no reliance on determination of analysis by geophysical tools.                                                                                                                                                                                                                                                               |
|                                                     | Nature of quality control procedures adopted (e.g.,<br>standards, blanks, duplicates, external laboratory checks)<br>and whether acceptable levels of accuracy (i.e., lack of<br>bias) and precision have been established.                  | Certified Reference Material ("CRM") appropriate for the elements being<br>analysed were added at a rate better than 1 in 15. All results reported by<br>ALS and SGS on the CRMs were better than 3 standard deviations (3SD), it is<br>considered that acceptable levels of accuracy have been achieved.                              |
| Verification of sampling and                        | The verification of significant intersections by either<br>independent or alternative company personnel.                                                                                                                                     | There has been no independent logging of mineralised intervals, however, it has been logged by several company personnel and verified by senior staff.                                                                                                                                                                                 |
| assaying                                            | The use of twinned holes.                                                                                                                                                                                                                    | None of the reported holes are twin holes.                                                                                                                                                                                                                                                                                             |
|                                                     | Documentation of primary data, data entry procedures,<br>data verification, data storage (physical and electronic)<br>protocols.                                                                                                             | Data is stored on the Virtual Cloud and at various locations including Vares,<br>Bosnia & Herzegovina and Cheltenham, UK. And is managed by gDat data<br>solutions in an acQuire database, which is regularly backed-up.                                                                                                               |
|                                                     | Discuss any adjustment to assay data.                                                                                                                                                                                                        | No adjustments were necessary.                                                                                                                                                                                                                                                                                                         |
| Location of data<br>points                          | Accuracy and quality of surveys used to locate drill holes<br>(collar and down-hole surveys), trenches, mine workings<br>and other locations used in Mineral Resource estimation.                                                            | Sampling sites were surveyed using Total Station to better than 0.05m accuracy in the local BiH coordinate system.                                                                                                                                                                                                                     |
|                                                     | Specification of the grid system used.                                                                                                                                                                                                       | The grid system used MGI 1901 / Balkans Zone 6.                                                                                                                                                                                                                                                                                        |
|                                                     | Quality and adequacy of topographic control.                                                                                                                                                                                                 | The topographic surface of the immediate area was generated from a LiDAR survey to an accuracy of approximately 0.05m. It is considered sufficiently accurate for the Company's current activities.                                                                                                                                    |
| Data spacing and distribution                       | Data spacing for reporting of Exploration Results.                                                                                                                                                                                           | Drill hole spacing does not exceed 50m which is considered acceptable for reporting exploration results.                                                                                                                                                                                                                               |
|                                                     | Whether the data spacing and distribution is sufficient to<br>establish the degree of geological and grade continuity<br>appropriate for the Mineral Resource and Ore Reserve<br>estimation procedure(s) and classifications applied.        | Drill hole spacing is deemed sufficient to establish the degree of geological<br>and grade continuity appropriate for the Mineral Resource classifications<br>applied.                                                                                                                                                                 |
|                                                     | Whether sample compositing has been applied.                                                                                                                                                                                                 | Sample composite was not employed.                                                                                                                                                                                                                                                                                                     |
| Orientation of<br>data in relation to<br>geological | Whether the orientation of sampling achieves unbiased<br>sampling of possible structures and the extent to which<br>this is known, considering the deposit type.                                                                             | Drill holes are considered to have been drilled at between 70-90° to the mineralised body.                                                                                                                                                                                                                                             |
| structure                                           | If the relationship between the drilling orientation and<br>the orientation of key mineralised structures is<br>considered to have introduced a sampling bias, this<br>should be assessed and reported if material.                          | It is not considered that the drilling orientation has introduced a sampling<br>bias, as the drilling is considered to be drilled at a high angle to the<br>mineralised body.                                                                                                                                                          |
| Sample security                                     | <i>The measures taken to ensure sample security.</i>                                                                                                                                                                                         | Chain of Custody of digital data is managed by the Company. Physical material was stored on site and, when necessary, delivered to the assay laboratory. Thereafter laboratory samples were controlled by the nominated laboratory. All sample collection was controlled by digital sample control file(s) and hard-copy ticket books. |
| Audits or reviews                                   | <i>The results of any audits or reviews of sampling techniques and data.</i>                                                                                                                                                                 | Laboratory audits of ALS Bor and SGS, Bor sample preparation and analysis facilities was made by-Sergei Smolonogov, Head of Exploration of Adriatic Metals, in early October 2022. There were no material issues found for the 2022 drill programme.                                                                                   |



| Criteria JORC Code Explanation | Commentary |
|--------------------------------|------------|
|--------------------------------|------------|

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | Type, reference name/number,<br>location and ownership including<br>agreements or material issues with<br>third parties such as joint ventures,<br>partnerships, overriding royalties,<br>native title interests, historical<br>sites, wilderness or national park<br>and environmental settings. | The Rupice deposit is located within the Company's 100% owned Concession, No. 04-18-21389-1/13, located 13km west of Vares in Bosnia. There are no known material issues with any third party other than normal royalties due to the State.                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                  | The security of the tenure held at<br>the time of reporting along with<br>any known impediments to<br>obtaining a licence to operate in<br>the area.                                                                                                                                              | The Concession is in good standing with the governing authority and there is no known impediment to the Concession remaining in force until 2038 (25 years), subject to meeting all necessary reporting requirements.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Exploration<br>done by<br>other parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                     | Modern exploration commenced with the work of Energoinvest in the late 1960s. During 1968-1969 underground development of 455m of drives and cross cuts were made, and 11 surface trenches dug for a total length of 93.5mm. Between 1980 and 1989, 49 holes were drilled for an advance of 5,690.8m. Sample material from all of these programs was routinely analysed for lead, zinc, and barite, and on occasion silver and gold. The deposit was the subject of a number of reserve estimates in the 1980s. This work is documented in many reports which are certified by those geoscientists and Institutes that undertook the work.  |
|                                                  |                                                                                                                                                                                                                                                                                                   | The work is considered to be of a standard equal to that prevalent within today's exploration industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Geology                                          | Deposit type, geological setting<br>and style of mineralisation.                                                                                                                                                                                                                                  | The host rocks at Rupice comprises Middle Triassic limestone, dolostone, calcareous and dolomitic marl, and a range of mostly fine-grained siliciclastic rocks including cherty mudstone, mudstone, siltstone and fine-grained sandstone. The main mineralised horizon is a brecciated dolomitic unit that dips at around 50° to the northeast and has been preferentially mineralised with base, precious and transitional metals. The Triassic and Jurassic sequences has been intensely deformed both by early-stage ductile shearing and late stage brittle faulting.                                                                   |
|                                                  |                                                                                                                                                                                                                                                                                                   | The Rupice polymetallic mineralisation consists of sphalerite, galena, barite and chalcopyrite with gold, silver, tetrahedrite, boulangerite and bournonite, with pyrite. The majority of the high-grade mineralisation is hosted within the brecciated dolomitic unit, which is offset and cut by northwest striking, westerly dipping syn-post mineral faulting. This faulting displaces the mineralised body up to 20 metres in places. Thickening of the central portion of the orebody occurs where these faults flexure and deform. Mineralised widths up to 65 metres true thickness are seen in the central portion of the orebody. |
|                                                  |                                                                                                                                                                                                                                                                                                   | To date, the massive sulphide mineralisation at Rupice has a defined strike length of 650 metres, with<br>an average true-width thickness of around 20 metres. However, recent drilling northwest of Rupice has<br>intercepted a massive sulphide body referred to as Rupice NW. Rupice NW is yet not connected by<br>drilling to Rupice mineralisation across an approximate strike gap of 100m. Rupice NW currently has a<br>strike extent of 250 m with mineralisation remaining open in all directions.                                                                                                                                 |



| Criteria                                  | JORC Code Explanation                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill hole<br>information                 | A summary of all information<br>material to the understanding of<br>the exploration results including a<br>tabulation of the following<br>information for all Material drill<br>holes:                                                                                                 | Drilling data for the reported drill holes is included in Tables 1-3 of Appendix 1 in this document.                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | <ul> <li>easting and northing of the<br/>drill hole collar</li> <li>elevation or RL (Reduced Level<br/>– elevation above sea level in</li> </ul>                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                           | <i>metres) of the drill hole collar</i><br>o <i>dip and azimuth of the hole</i>                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                           | o downhole length and<br>interception depth                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                           | o hole length.<br>If the exclusion of this information<br>is justified on the basis that the<br>information is not Material and<br>this exclusion does not detract<br>from the understanding of the<br>report, the Competent Person<br>should clearly explain why this is<br>the case. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Data<br>aggregation<br>methods            | In reporting Exploration Results,<br>weighting averaging techniques,<br>maximum and/or minimum grade<br>truncations (e.g. cutting of high<br>grades) and cut-off grades are<br>usually Material and should be<br>stated.                                                               | Significant intercepts were calculated by applying a lower cut-off grade of 50g/t AgEq (see notes in<br>Table 1 for assumptions for AgEq & ZnEq calculations),<br>Grade recoveries of 90% and commodity prices as used for the Rupice updated MRE from 2020 were<br>applied, since no metallurgical test work has been conducted on the Rupice Northwest extension area.<br>2m minimum interval and maximum internal dilution of 5m. A top-cut was not applied. Significant<br>intercepts were reported as weighted averages. |
|                                           | Where aggregate intercepts<br>incorporate short lengths of high-<br>grade results and longer lengths<br>of low-grade results, the<br>procedure used for such<br>aggregation should be stated and<br>some typical examples of such<br>aggregations should be shown in<br>detail.        | Short lengths of high-grade results were defined as > 600 g/t AgEq, having a minimum 2m interval and maximum internal dilution of 5m. Results are shown in Table 1 of the main reporting document.                                                                                                                                                                                                                                                                                                                            |
|                                           | The assumptions used for any<br>reporting of metal equivalent<br>values should be clearly stated.                                                                                                                                                                                      | Equivalent explanations are described in the body of the text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relationship<br>between<br>mineralisation | These relationships are particularly<br>important in the reporting of<br>Exploration Results.                                                                                                                                                                                          | Only downhole lengths are reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| widths and<br>intercept<br>lengths        | If the geometry of the<br>mineralisation with respect to the<br>drill hole angle is known, its nature<br>should be reported.                                                                                                                                                           | The majority of the high-grade Rupice mineralisation is hosted within a brecciated dolomitic unit, which<br>is offset and cut by northwest striking, westerly dipping syn-post mineral faulting. This faulting<br>displaces the mineralised body up to 20m in places. Thickening of the central portion of the orebody<br>occurs where these faults flexure and deform. Mineralised widths up to 65m true thickness are seen in<br>the central portion of the orebody.                                                        |
|                                           |                                                                                                                                                                                                                                                                                        | To date, the massive sulphide mineralisation at Rupice has a defined strike length of 650m with an average true-width thickness of around 20m. However, mineralisation at Rupice still remains open towards the northwest and down-dip to the south.<br>Recent drilling by Eastern Mining was mostly inclined at between -50° and -67° to the southwest, perpendicular to the deposit strike, and intersected the mineralisation reasonably orthogonally.                                                                     |
|                                           | <i>If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').</i>                                                                                                                 | Only downhole lengths are reported, true widths are not known.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Criteria                                    | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                 |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagrams                                    | Appropriate maps and sections<br>(with scales) and tabulations of<br>intercepts should be included for<br>any significant discovery being<br>reported. These should include,<br>but not be limited to a plan view<br>of drill hole collar locations and<br>appropriate sectional views.                                                                                                                                   | Relevant maps and diagrams are included in the body of the report.                                                                                         |
| Balanced<br>reporting                       | Where comprehensive reporting of<br>all Exploration Results is not<br>practicable, representative<br>reporting of both low and high-<br>grades and/or widths should be<br>practiced to avoid misleading<br>reporting of Exploration Results.                                                                                                                                                                              | All assay tables for all reported holes are included in the main reporting document.                                                                       |
| Other<br>substantive<br>exploration<br>data | Other exploration data, if<br>meaningful and material, should<br>be reported including (but not<br>limited to): geological<br>observations; geophysical survey<br>results; geochemical survey results;<br>bulk samples – size and method of<br>treatment; metallurgical test<br>results; bulk density, groundwater,<br>geotechnical and rock<br>characteristics; potential<br>deleterious or contaminating<br>substances. | No substantive exploration data not already mentioned in the announcement or in this table have been used.                                                 |
| Further work                                | The nature and scale of planned<br>further work (e.g. tests for lateral<br>extensions or depth extensions or<br>large-scale step-out drilling).<br>Diagrams clearly highlighting the<br>areas of possible extensions,<br>including the main geological<br>interpretations and future drilling<br>areas, provided this information is<br>not commercially sensitive.                                                       | Further drilling will be undertaken for exploration along strike and up and down dip, the nature of which is dependent on exploration success and funding. |