

Targeting a new generation of Tier-1 mineral discoveries in Peru and Australia

ASX Announcement | 26 October 2022 | ASX: ICG

460m OF ELEVATED GOLD-SILVER-ZINC INTERSECTED AT MOUNT LAMB

Drill-hole FW220008 returns a 460m down-hole interval of anomalous precious and base metals correlating with silicic, carbonate and magnetite alteration, supporting the potential for a large-scale IOCG/SEDEX discovery

Highlights

- Broad intervals of elevated gold (Au), silver (Ag) and zinc (Zn) returned in diamond drill-hole FW220008 at Mount Lamb Northeast, along with copper (Cu), lead (Pb), bismuth (Bi), arsenic (As) and molybdenum (Mo) enrichment
- Precious and base metal zones associate with silicic, carbonate, iron oxide (haematite, magnetite) and sericitechlorite alteration, within veined sedimentary and meta-sedimentary lithologies
- The alteration and geochemical signatures provide strong support for the IOCG exploration model, increasing the potential for Mount Lamb Northeast to host economic grade mineralisation
- Broad intervals of alteration and geochemistry in addition to large scale geophysical models underline the Tier-1 sized opportunity at Mount Lamb
- Processing of Frewena drill core nearing completion with assays pending for the remaining six reconnaissance diamond drill tails from the Mount Lamb, Jumping Spider and Roadhouse prospects

Inca Minerals Limited (ASX: **ICG**) is pleased to report assay results for the second diamond drill-hole, FW220008, completed at the Mount Lamb NE prospect, part of its Frewena Group IOCG Project in the Northern Territory. This follows the results from the first hole, FW220007, reported on 20 September 2022.

FW220008 has returned broad zones of anomalous geochemistry including a 460m down-hole interval of elevated Au-Ag-Zn with lower tenor Cu-Pb-Bi-As-Mo from 237m down-hole.

Geochemical enrichment correlates with silicic, carbonate, iron oxide (haematite, magnetite) and sericite-chlorite alteration of veined sedimentary and meta-sedimentary lithologies, providing further support to the IOCG exploration model at Mount Lamb NE.

Peak 2m composite assay values from FW220008 include:

- 0.29g/t Au (267-269m)
- 2.97g/t Ag (249-251m)
- **0.86% Zn** (327-329m)
- **797ppm Cu** (239-241m)
- 0.31% Pb (327-329m)
- 483ppm Mo (239-241m)

Figure 1: Examples of FW220008 core including 238.1-241.5m (left) and 248.5-252m (right) with quartz-haematite-sulphide veins and sulphide disseminations; the interval 239-241m returned 98ppb Au + 2.85ppm Ag + 797ppm Cu + 483ppm Mo

"The stronger geochemistry encountered in FW220008, relative to the results reported in the first hole last month, provides additional support to the Company's IOCG exploration model at Mount Lamb," said Inca Exploration Manager, Mr Rob Heaslop. "From a geological and technical perspective, we believe are we are steadily closing-in on on the prize.

"Significant precious and base metal enrichment has now been encountered by three drill-holes completed at Mount Lamb NE, being Inca's FW220007 and FW220008 and the Government-funded drill-hole NDIBK04, over an open-ended strike distance of 4.5km. The combination of large-scale geophysical anomalies with broad intercepts of altered and geochemically enriched lithologies in drilling have confirmed that Mount Lamb is a Tier-1 exploration opportunity in the East Tennant region with further exploration highly warranted.

FW220008 was one of four holes drilled at Mount Lamb NE, which forms part of Inca's 15km long Mount Lamb prospect. The locations of drill-holes completed by Inca Minerals during the 2022 reconnaissance program, including the Government drill-hole NDIBK04, are shown in Figures 2 and 5 with collar details of the Company's drill-holes presented in Table 1.

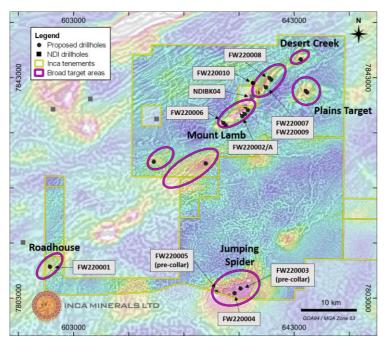


Figure 2: Filtered magnetic anomaly image (tmi-rtp transparent colour intensity image on tmi-rtp-2vd-agc greyscale background) showing planned and completed drill-hole locations within the Greater Frewena Group Project.

Prospect	Hole ID	Planned ID	Easting	Northing	RL	Dip	Azimuth	Reverse Circulation (m)	Diamond Core (m)	Total Depth (m)
Roadhouse	FW220001	RHDDP001	598714	7808682	265	-70	330	209.6	751.5	961.1
Mt Lamb South West	FW220002/A	MLSWDDP003	633603	7836030	281	-60	315	180.0	875.7	1,055.7
Jumping Spider	FW220003	JSDDP003	633289	7804736	230	-70	330	142.0	12	142.0
Jumping Spider	FW220004	JSDDP002	632195	7803905	270	-70	330	158.6	841.4	1,000.0
Jumping Spider	FW220005	JSDDP001	628731	7804455	256	-75	200	148.0	928	148.0
Mt Lamb South West	FW220006	MLSWDDP001	630195	7834772	238	-60	315	136.0	890.7	1,026.7
Mt Lamb North East	FW220007	MLNEDDP002	637896	7841249	227	-60	315	151.3	839.0	990.3
Mt Lamb North East	FW220008	MLNEDDP003	638584	7842900	237	-60	285	166.9	871.4	1,038.3
Mt Lamb North East	FW220009	7B	637903	7841242	239	-60	270	136.4	914.6	1,051.0
Mt Lamb North East	FW220010	Camp 1	635648	7841804	245	-60	315	120.7	939.7	1,060.4
										8,473.5

Table 1: Drill-hole parameters of the Frewena reconnaissance drill program.

FW220008 was designed to evaluate semi-coincident magnetic and gravity features in the north-eastern portion of the extensive Mount Lamb trend (Figures 2 and 5). The hole was collared approximately 1.8km north-northeast of Inca Minerals' drill-holes FW220007 and FW220009, and 4.5km away from Government drill-hole NDIBK04, and was drilled to a total depth of 1,038.3m comprising a Reverse Circulation (**RC**) pre-collar of 166.9m and a diamond tail of 871.4m.

The RC pre-collar penetrated through the Georgina Basin sedimentary units and into the Helen Springs Volcanics that occur above the Proterozoic basement. Two metre composite RC samples of the Georgina Basin cover sequence rocks were collected during the RC phase of the drilling but have yet to be submitted for geochemical analysis.

The Helen Springs Volcanics-Alroy Formation contact was intersected at 218.3m down-hole with the Alroy Formation being a competent schistose shale unit cross-cut by quartz veins with haematite staining. From c. 228m to 254m, stronger

lamination/foliation of the host rock associated with haematite-quartz veining, pyrite and minor pyrrhotite and intermittent brecciation was logged. Breccia clasts are angular and cemented by carbonates. This zone corresponds to an increase in Au-Ag-Cu-Mo. Abundant pyrite laminations and quartz-carbonate veins and veinlets with trace chalcopyrite (Cu sulphide) occur throughout this interval.

From c. 255m to 600m, the host rock lithology is dominated by laminated shale and dolomitic siltstone with significant overprinting by pyrite and trace sphalerite (Zn sulphide). Zones of silica, magnetite, chlorite, graphite and sericitic-chloritic alteration are pervasive and variable throughout this interval. Abundant pyrite-pyrrhotite veins and veinlets occur concordant with foliation planes while trace chalcopyrite occurs intermittently as dissemination within pyrite-pyrrhotite veins.

From c. 625 to 800m, the host rock lithology is dominated by competent siltstone intercalated by marble hosting pyrite, sphalerite and minor pyrrhotite overprinting. Chlorite, magnetite, and carbonate alteration is commonly observed with variable intensities and mostly associate with fracture planes. Minor magnetite occurs within the rock matrix and is reflected by anomalous magnetic susceptibility readings, which corelate with modelled magnetic features. Quartz-carbonate veins and veinlets occur throughout this interval.

From c. 800m towards bottom-of-hole at 1,038m, the host rock lithology is dominated by siltstone with minor shale interbeds. Across this interval there is a marked decrease in magnetite and pyrrhotite, corresponding to zones of modelled magnetic lows. Pyrite disseminations occur intermittently with rare specks of chalcopyrite.

With the receipt of diamond core assays undertaken as 2m composite samples down the entire length of core, broad zones of elevated Au, Ag, As, Bi, Cu, iron (Fe), Pb, sulphur (S) and Zn were identified and are presented in Appendix 2.

While the assay results are not considered economic, notable intersections include:

- Broad 460m zone of elevated Au-Ag-Zn anomalism from 237m including:
 - 2m @ 98ppb Au from 239m
 - 2m @ 295ppb Au from 267m
 - 2m @ 98ppb from 355m
 - 16m @ 1.9g/t Ag from 239m including 4m @ 2.9g/t Ag from 247m
 - 96m @ 1.09g/t Ag from 431m
 - 18m @ 2,145ppm Zn from 313m including 2m @ 8,630ppm from 327m
 - 96m @ 788ppm Zn from 431m

A positive correlation is noted in FW220008 between geochemical and alteration tenor and the modelled gravity feature that was targeted by the drill-hole, as shown in Figure 3.

FW220008 indicates that shale and siltstone are the most common host lithologies in the area, with alteration dominated by silicification, carbonate and magnetite with lesser graphite, chlorite, sericite and biotite. The widespread geochemical anomalism and alteration assemblages intercepted at Mount Lamb NE are suggestive of a large-scale hydrothermal system.

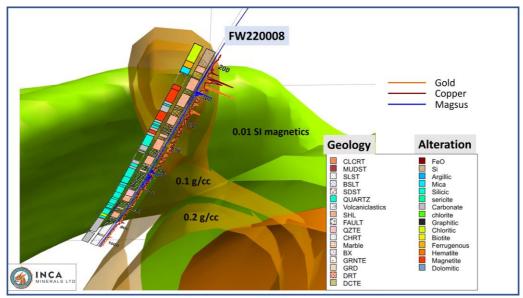


Figure 3: Cross-section of FW220008 showing the 3D magnetic (green isoshell) and gravity (brown isoshell) models with logged geology, alteration, magnetic susceptibility, and Cu-Au variability downhole. For sense of scale, FW220008 drill trace is 1,038m long.

Importance of Results

As with the previously reported assay results from FW220007, while the elevated geochemistry encountered in FW220008 is not of economic grade, it provides further confirmation of polymetallic enrichment occurring over broad intervals and heightens the prospectivity of Mount Lamb NE to host economic grade mineralisation.

Directly comparing assay results between the two holes, it is pleasing to see more coherent zones of stronger tenor Au-Ag-Zn anomalism occurring over broader intervals in FW220008 compared with FW220007. These anomalous zones correlate with stronger Cu-Bi-Mo-As and indicate a hydrothermal source.

This polymetallic geochemical signature has now been intersected at Mount Lamb NE in all three drill-holes assayed so far (Inca holes FW220007 and FW220008 and Government hole NDIBK04) over an open-ended strike distance of 4.5km, confirming the metallic fertility of the area and further enhancing its potential to host a large-scale IOCG and/or SEDEX mineral system.

These results are considered by Inca as a major technical success that strongly validates both the IOCG/SEDEX exploration model being used at the Greater Frewena Project and the Company's decision to be a first mover into the region by acquiring a large land package boasting exceptional discovery potential.

Confirmation of IOCG/SEDEX fertile geochemistry in FW220007 and FW220008 – in addition to geological observations from other Mount Lamb drill-holes – also strongly endorses Inca's exploration process at Frewena, supported by the use of robust magnetic and gravity modelling to identify the most prospective areas and 'zoom-in' to focus its first-pass drilling activities.

To achieve such a major technical success – the discovery of a blind, large-scale IOCG system – in a greenfield, frontier terrane using geophysics is an outstanding achievement at such an early stage of the Project's evolution.

The hydrothermal and broad alteration systems identified at Mount Lamb NE as demonstrated in FW220007 (Figure 4) bears strong resemblance to generic IOCG models, which are typically defined by zonation of haematite, magnetite, and sodic alteration, followed by enrichment of Au-Ag-Cu-Fe and associated metals such as Bi-Mo-As, significant veining, brecciation, and faulting of Proterozoic host lithologies. Pleasingly, the scale of the magnetic and gravity anomalies at Mount Lamb compares favourably to those of known Tier-1 IOCG deposits including Prominent Hill, Carrapateena and Ernest Henry (Figure 5).

The combined data from FW220007 (previously reported through Inca's ASX announcement 20 September) and FW220008 confirms the discovery of an IOCG mineralising and alteration system, with the next challenge being to successfully vector within these systems to identify zones of higher-grade mineralisation. To facilitate this, a comprehensive review of the project will be undertaken once all assay results are received. At the time of writing, 100% of diamond core from Inca Minerals' 2022 Frewena drill program has been geologically logged with cutting and sampling of core nearing completion.

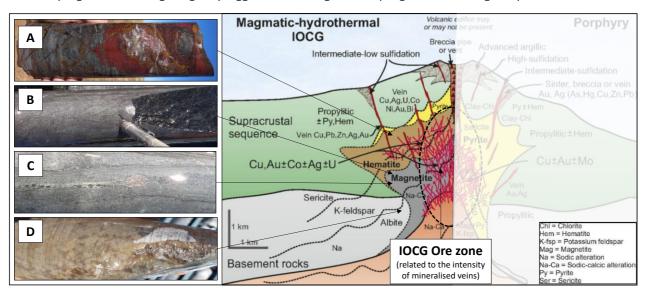
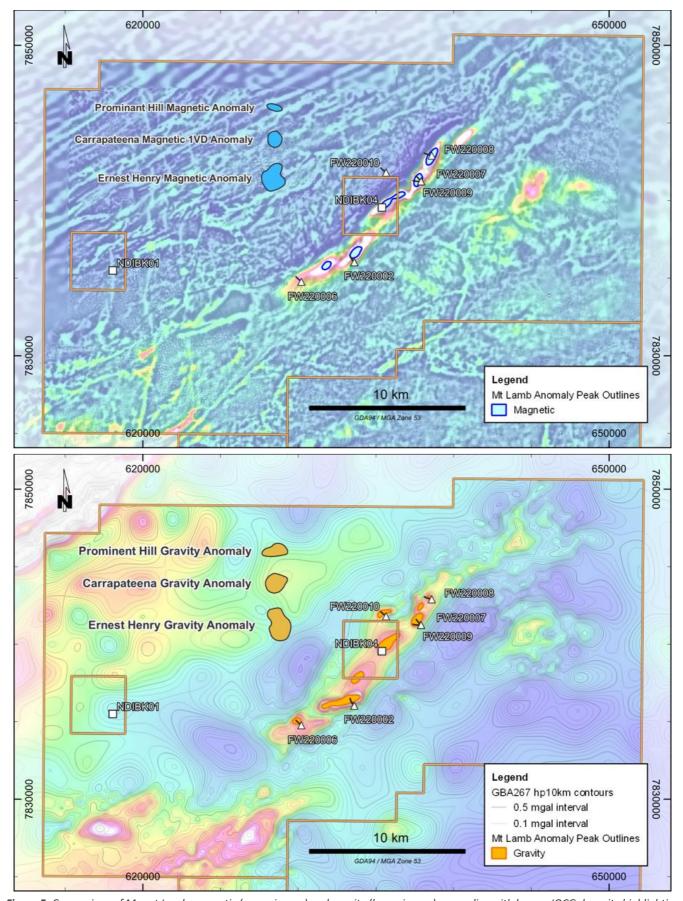



Figure 4: Schematic model of IOCG deposits (right) showing vertical and horizontal geochemical and mineralogical zonation in relation to ore zones. Geology and geochemistry in FW220007 correlate favourably to this model with (photos left, top to bottom) a haematite-quartz zone 212-280m (A), lying above a magnetite zone 550-700m (B, C), with sodic alteration noted below (D). While additional exploration is required to further evaluate this model at Mount Lamb, results to date indicate that follow up work is strongly warranted. Figure modified from Seedorff et al 2005.

Figure 5: Comparison of Mount Lamb magnetic (upper image) and gravity (lower image) anomalies with known IOCG deposits highlighting the size significance of the Mount Lamb trend.

This announcement has been authorised for release by the Board of Inca Minerals Limited.

Investor inquiries – Rob Heaslop, Consultant Exploration Manager - Inca Minerals – (08) 6145 0300 Media Inquiries/Investor Relations – Nicholas Read, Read Corporate - 0419 929 046

Competent Person's Statements

The information in this report that relates to exploration activities for the Frewena Group Project in the Northern Territory, is based on information compiled by Mr Robert Heaslop BSc (Hons), MAusIMM, SEG, Consulting Exploration Manager, Inca Minerals Limited, who is a Member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience, which is relevant to the exploration activities, style of mineralisation and types of deposits under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Heaslop is a part time consultant for Inca Minerals Limited and consents to the report being issued in the form and context in which it appears.

Appendix 1: FW220008 Core Photos

Figure Ap1(A): Core photo collage showing the progression of geology, alteration and veins down FW220008, including: A) quartz-(haematite) matrix in breccia zone within mica schist at 221m, B) quartz-haematite and quartz veinlets cutting mica schist at 234m, C) pyrite occurring at laminations parallel to foliation in mica schist and pyrite-quartz-haematite-(chalcopyrite) veins at 240m, D) abundant pyrite in mica schist foliations cut by 1cm wide quartz-haematite-pyrite-(chalcopyrite) vein at 251m, E) quartz-pyrite vein cutting pyritic shale-schist at 253m, F) laminated and pyritic shale with very fine grained to coarse grained garnets that show variable overprinting by quartz-(pyrite) at 286m, G) laminated and pyritic shale-siltstone with very fine grained to coarse grained garnets that show variable overprinting by quartz-(pyrite) at 286.5m, H) 50cm wide massive pyrite zone at 287 within strong silicification, and I) core tray image including Photo H of massive pyrite within strong silicification at c. 287m.

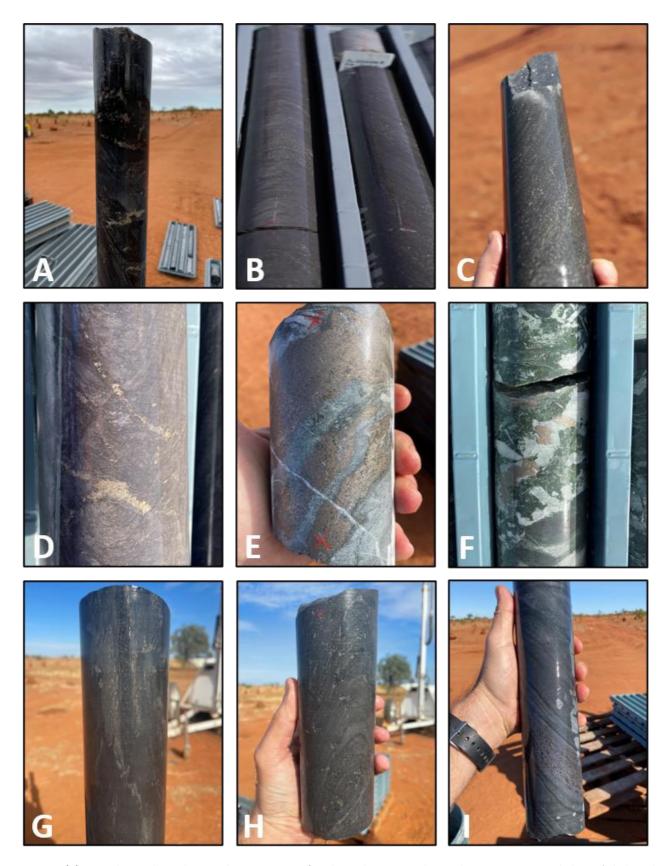


Figure Ap1(B): Core photo collage showing the progression of geology, alteration and veins down FW220008, including: A) shale with abundant pyrrhotite-pyrite-(chalcopyrite), with occasional haematite veinlets and sphalerite-pyrite-chalcopyrite veinlets at 311m, B) siltstone with pyritic laminations, minor pyrrhotite and cross-cutting sulphide veinlets at 525m, C) shale-siltstone with abundant pyrite-pyrrhotite with trace chalcopyrite at 549m, D) shale-siltstone with abundant pyrite-pyrrhotite with trace chalcopyrite at 575m, E) dolomitic siltstone with quartz veins and semi-massive pyrrhotite @ 594m, F) dolomitic siltstone with quartz-carbonate veins with pyrrhotite at 595m, G) pyrite-pyrrhotite rich shale with trace chalcopyrite and disseminated ex-garnet pseudomorphs overprinted by quartz-(pyrite) at 407m, H) magnetite layers commence within shale-siltstone with abundant pyrrhotite and lesser pyrite at 432.5m, and I) siltstone with pyrrhotite-pyrite-magnetite at 634.5m.

Appendix 2: Selected Element Assay Results

	F	T-	1-41	Au	Ag	As	Bi	Cu	Fe	Mo	Pb	5	Zn
Sample	From	То	Interval	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(pct)	(ppm)	(ppm)	(pct)	(ppm)
FW00000883	166.9	169	2	<0.005	0.08	0.6	0.02	56	7.28	0.67	8.3	0.01	64
FW00000884	169	171	2	<0.005	0.55	0.5	0.02	63.7	7.3	0.54	8.1	0.01	67
FW00000886 FW00000887	171 173	173 175	2	<0.005 <0.005	0.02	0.7	0.01	65 65.4	7.54 7.44	0.58	6.8	0.01	75 82
FW00000888	175	177	2	<0.005	0.01	0.6	0.02	51.6	7.47	0.59	6.6	0.01	88
FW00000889	177	179	2	<0.005	0.02	0.8	0.02	59.7	7.76	0.74	6.8	0.01	97
FW00000890	179	181	2	<0.005	0.01	0.6	0.02	65.6	7.37	0.72	7	0.01	107
FW00000891	181	183	2	<0.005	0.04	0.6	0.04	66.9	7.36	0.56	5.9	0.01	113
FW00000892	183	185	2	<0.005	0.59	0.4	0.03	63.3	7.6	1.1	6.6	0.01	99
FW00000893	185	187	2	<0.005	0.28	0.7	0.03	40.2	7.7	0.65	6.3	0.01	93
FW00000894	187	189	2	<0.005	0.04	2	0.04	37.6	7.81	0.82	5.8	0.02	83
FW00000896	189	191	2	<0.005	0.03	0.8	0.03	26.7	7.55	0.71	5.9	0.01	81
FW00000897	191	193	2	<0.005	0.95	1.2	0.03	24.3	7.57	1.16	6.5	0.02	93
FW00000898 FW00000899	193 195	195 197	2	<0.005 <0.005	0.01	0.9 1.5	0.02	12.2 17	7.87 7.84	0.61 1.07	6.4	0.03	88 84
FW00000901	197	199	2	<0.005	0.40	1.1	0.02	14	7.62	0.68	5.9	0.06	95
FW00000902	199	201	2	<0.005	0.01	1.2	0.03	15.9	7.97	0.69	5.8	0.05	88
FW00000903	201	203	2	<0.005	0.01	2.8	0.03	15.4	7.93	0.73	5.6	0.07	90
FW00000904	203	205	2	<0.005	0.01	4.7	0.03	19	8.02	0.59	5.5	0.16	87
FW00000906	205	207	2	<0.005	0.01	7.5	0.03	15.1	7.97	0.68	5.6	0.04	82
FW00000907	207	209	2	<0.005	0.01	6.4	0.03	21.6	7.99	0.6	5.8	0.05	79
FW00000908	209	211	2	<0.005	0.01	4.6	0.03	31.4	7.98	0.77	5.7	0.04	85
FW00000909	211	213	2	<0.005	0.02	5.3	0.04	16.3	7.74	0.68	5.2	0.04	83
FW00000910	213	215	2	<0.005	0.06	4.9	0.03	106.5	7.49	0.75	4.3	0.06	131
FW00000911 FW00000912	215	217	2	<0.005 <0.005	0.02	8.5 8.9	0.05	21.4 19.8	8.58 4.74	0.94 2.98	11.8 7.2	0.13 1.39	158 62
FW00000913	217	221	2	<0.005	0.05	16.9	0.99	96.6	3.94	4.07	10.4	0.77	124
FW00000914	221	223	2	0.008	0.22	22.6	1.3	62.6	4.54	8.36	12.6	0.77	116
FW00000916	223	225	2	<0.005	0.17	44.1	1.4	284	5.59	8.56	16.8	0.39	186
FW00000917	225	227	2	<0.005	0.18	13.6	0.59	39.6	3.47	11.95	11	0.35	28
FW00000918	227	229	2	<0.005	0.19	12.4	0.77	31	3.2	5.85	13.2	0.72	17
FW00000919	229	231	2	0.006	0.2	7.3	0.85	21	3.2	3.6	15.4	0.38	13
FW00000921	231	233	2	<0.005	0.24	6.2	0.56	37.6	4.63	3.44	16.6	0.92	17
FW00000922	233	235	2	<0.005	0.27	12.4	0.67	18.2	10.1	19.45	29.1	1.82	20
FW00000923	235	237	2	<0.005	0.31	8.5	1.06	15.8	6.69	9.88	16.5	0.75	15
FW00000924 FW00000926	237	239 241	2	0.014	0.45	6.3 32.6	0.92	19.8 79 7	0.92 1.7	1.52 483	35.2 165.5	1.26 3.8	<2 <2
FW00000927	241	243	2	0.02	1.23	26.8	2.47	126.5	1.44	71	27.2	2.55	<2
FW00000928	243	245	2	<0.005	0.37	2.1	0.69	56.1	0.55	1.88	9.7	0.85	<2
FW00000929	245	247	2	0.03	1.26	222	1.56	502	1.72	28.4	24.3	1.09	16
FW00000930	247	249	2	0.021	2.87	80.1	0.77	3 90	3.11	63.6	155	2.74	431
FW00000931	249	251	2	0.012	2.97	57.2	1.14	201	5.14	38.6	102	4.98	54
FW00000932	251	253	2	0.045	2.03	40.8	1.32	220	8.94	27.9	83.7	7.57	83
FW00000933	253	255	2	0.032	1.53	38.5	1.2	159	8.38	16.25	86.7	6	41
FW00000934	255	257	2	0.006	0.46	29.5	0.6	91.7	3.77	3.41	43.8	2.83	17
FW00000936 FW00000937	257 259	259 261	2	0.009	0.29	75.2 6.2	0.68	57.8 77.9	5.93 7.42	2.04	32.9 36.4	1.97 2.29	219 995
FW00000938	261	263	2	0.006	0.33	13.8	0.65	64.7	6.85	1.92	35.3	1.48	273
FW00000939	263	265	2	0.009	0.26	2.1	0.97	87.9	4.23	2.83	42.8	1.55	434
FW00000941	265	267	2	0.01	0.39	3.6	0.82	99.3	5.84	2.71	44.8	2.29	183
FW00000942	267	269	2	0.295	0.28	2.5	0.99	93.2	5.38	2.53	33.2	1.91	200
FW00000943	269	271	2	0.008	0.36	6.2	0.71	96.8	6.3	2.31	36.1	2.07	80
FW00000944	271	273	2	0.015	0.64	47.9	0.7	98.9	7.24	2.89	39.7	3.51	161
FW00000946	273	275	2	0.016	0.83	6.1	0.74	135.5	6.05	4.28	39.8	3.12	265
FW00000947	275	277	2	0.019	0.93	7.2	0.82	211	5.51	12.4	58.9	3.18	314
FW00000948 FW00000949	277	279 281	2	0.021	0.76	3.3 2.7	0.91	244 145	5.23 4.95	11.6 8.22	61.9 34.8	3.07 2.39	417 195
FW00000949	281	283	2	0.02	0.76	48.4	0.57	127.5	5.03	4.23	24.3	1.8	180
FW00000951	283	285	2	0.011	0.43	9	0.59	84.8	5.73	1.93	22.3	1.6	124
FW00000952	285	287	2	0.008	0.18	91.5	0.25	50.2	9.12	1.95	19.8	1.07	92
FW00000953	287	289	2	0.02	0.32	26.6	0.77	65.7	20.1	2.48	40.7	>10.0	118
FW00000954	289	291	2	0.005	0.03	28.2	0.28	56.5	10.55	0.34	17.2	1.22	81
FW00000956	291	293	2	<0.005	0.02	17.8	0.38	32.2	18.7	0.65	13.2	0.24	42
FW00000957	293	295	2	<0.005	0.01	15.8	0.2	23.8	22.9	0.51	12.8	0.97	42
FW00000958	295	297	2	<0.005	0.01	22.8	0.11	19.8	13.2	1.38	11	0.88	35
FW00000959	297	299	2	<0.005	0.01	124	0.07	23.9	6.67	6.08	6.9	0.36	24
FW00000961	299	301	2	<0.005	0.01	68	0.08	16.4	9.82	1.54	7.8	0.56	29
FW00000962	301	303	2	<0.005	0.01	81.6	0.04	11.6	9.99 4.54	2 32	5.2	0.17	30 17
FW00000963	303	305	2	<0.005	0.03	102.5	0.09	13.6	4.54	2.32	12.4	1.03	17

Sample	From	To	Interval	Au	Ag	As	Bi	Cu	Fe	Mo	Pb	S	Zn
				(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(pct)	(ppm)	(ppm)	(pct)	(ppm)
FW00000964	305	307	2	<0.005	0.02	49.3	0.51	20.2	4.32	1.02	14.4	0.26	34
FW00000966	307	309	2	<0.005	0.01	1.4	0.24	21.6	5.09	0.52	6.6	0.21	40
FW00000967 FW00000968	309 311	311 313	2	0.011	0.24	36.7 14	0.33 1.09	47.8 86.1	5.46 8 .43	0.99 3.79	21 28.6	1.86 4.58	52 153
FW00000969	313	315	2	0.022	0.33	12.4	1.22	106.5	7.94	15	62.3	5.57	815
FW00000970	315	317	2	0.011	0.95	11.6	0.93	206	6.67	28.5	65.2	3.84	2100
FW00000971	317	319	2	0.01	1.51	13.6	0.99	220	8.28	28.9	133	5.36	1675
FW00000972	319	321	2	0.018	1.6 5	16.6	1.11	198	12.35	25.2	332	7.46	1700
FW00000973	321	323	2	0.022	1 .27	38.1	1.36	147.5	10 .6	18.9	261	7.97	2230
FW00000974	323	325	2	0.012	0.44	3.9	1.05	89.4	6.73	12.45	99	3.21	384
FW00000976	325	327	2	0.012	0.57	2.5 120	0.55	65.2	4.1 5.03	1.07	125 3130	1.95	405 8630
FW00000977 FW00000978	327 329	329 331	2	0.014	0.43	314	0.59	73.4 56.2	5.55	1.2	459	2.57 1.58	1365
FW00000979	331	333	2	0.039	0.43	35	0.27	60.5	6.12	1.86	30.5	0.78	123
FW00000981	333	335	2	0.014	0.14	13.4	0.39	75.1	6.7	1.72	30.2	0.99	121
FW00000982	335	337	2	0.011	0.1	22.8	0.43	58.1	5.4	1.46	32.5	0.72	124
FW00000983	337	339	2	0.007	0.14	11	0.44	76.3	6.08	1.6	39.8	0.98	180
FW00000984	339	341	2	<0.005	0.16	8	0.5	76.4	6.86	1.82	31.6	1.07	134
FW00000986	341	343	2	0.012	0.14	42.3	0.73	69.8	6.78	1.79	35.3	0.92	144
FW00000987	343	345	2	0.007	0.22	5.6	0.75	84.7	7.86	2.65	34.9	1.46	176
FW00000988 FW00000989	345 347	347 349	2	0.005	0.25	4.7 3.5	0.67	100.5 112	9.08 7.75	2.38	35.2 35.6	1.75	159 181
FW00000989	349	351	2	0.000	0.26	3.9	0.79	99.8	7.73	2.20	38.7	1.43	173
FW00000991	351	353	2	0.011	0.25	17.4	0.77	90	8 .53	2.31	36.2	1.51	139
FW00000992	353	355	2	0.057	0.15	231	0.94	58.6	4.97	1.19	41.1	1.03	104
FW00000993	355	357	2	0.098	0.23	326	1.04	62.6	4.06	1.26	28.6	1.69	130
FW00000994	357	359	2	0.014	0.21	15 1.5	0.61	54	3.69	2.34	23	1.58	121
FW00000996	359	361	2	0.033	0.51	6.9	2.03	101.5	6.37	15.15	24.5	3.25	358
FW00000997	361	363	2	0.026	0.32	6.5	1.7	85.6	5.13	10	25.4	2.73	285
FW00000998 FW00000999	363 365	365 367	2	0.031	1.03	10.6 13.8	2.86 1.86	136 159.5	8.51 11.55	15.95 21	49.5 52.2	4.56 7.01	491 836
FW00001001	367	369	2	0.012	0.8	13.2	1.66	140.5	10.3	17.75	40.4	5.4	742
FW00001002	369	371	2	0.009	0.19	5.8	0.49	60.9	4.05	0.9	15.6	1.88	117
FW00001003	371	373	2	0.009	0.23	7	0.51	65	4.22	0.86	18.1	2.09	127
FW00001004	373	375	2	0.007	0.25	7.4	0.5	62	4.35	1.38	16.8	2.2	124
FW00001006	375	377	2	0.01	0.66	9.9	1.19	121.5	8.29	15.2	34.1	4.52	551
FW00001007	377	379	2	0.01	1.07	15	1.64	171	11.9	24.1	43.8	6.22	1080
FW00001008 FW00001009	379 381	381 383	2	0.011	0.89	14.6 8.1	1.4 0.37	153.5 63.6	10.45 4.74	20.6	38.6 15.8	5.63 2.45	768 127
FW00001003	383	385	2	0.003	1.04	15.2	1.49	158	11.9	18.9	50	7.17	804
FW00001011	385	387	2	0.014	0.89	14	1.26	143	10.15	20.1	46.3	5.95	755
FW00001012	387	389	2	0.014	0.53	54.2	0.5	79.7	6.39	2.43	22	3.04	125
FW00001013	389	391	2	0.006	0.34	29	0.32	75.1	6.81	2.4	33.7	1.9	164
FW00001014	391	393	2	0.01	0.38	8.1	0.59	97.3	7.01	3.21	35.4	2.05	200
FW00001016	393	395	2	0.01	0.51	30.4	0.59	94.9	7.86	3.73	39.1	2.24	228
FW00001017 FW00001018	395 397	397 399	2	0.022	0.74	50.6 23.6	0.71	120 125.5	9.7 9.08	3.74 4.27	272 50.8	3.02 2.86	501 255
FW00001018	399	401	2	0.014	0.65	9.1	0.74	125.5	10.05	5.06	49.3	3.12	268
FW00001013	401	403	2	0.013	0.63	14	0.68	131.5	10.7	3.43	38.5	2.91	258
FW00001022	403	405	2	0.016	0.49	40.1	0.74	134	9.18	2.73	41.7	2.68	218
FW00001023	405	407	2	0.022	0.61	63.8	0.75	162.5	11.5	2.26	32.1	3.1	219
FW00001024	407	409	2	0.018	0.61	7.5	0.84	156	10 .45	3.04	45.9	2.86	254
FW00001026	409	411	2	0.016	0.59	4.8	0.8	141	9.21	3.41	49.6	2.78	214
FW00001027	411	413	2	0.013	0.43	3.4	0.7	99.6	7.28	2.84	119	2.02	232
FW00001028 FW00001029	413 415	415 417	2	0.01 0.012	0.34	3.9 3.7	0.57	86 126	6.67 8 .93	1.78	129 33.6	1.7 2.18	264 179
FW00001029	417	417	2	0.012	0.39	6.7	0.65	81.1	7.16	2.09	39.7	1.37	179
FW00001030	419	421	2	0.014	0.38	21.3	0.79	130	10.45	3.12	30.9	2.47	176
FW00001032	421	423	2	0.01	0.23	15.2	0.41	92.1	9.63	3.13	40.4	1.92	192
FW00001033	423	425	2	0.012	0.26	244	0.27	55.1	7.12	3.28	35	2.68	159
FW00001034	425	427	2	0.019	0.5	12.5	0.7	115	7.22	2.13	24.6	3.44	149
FW00001036	427	429	2	0.018	0.39	10.4	0.76	91.1	5.43	1.3	19.4	2.49	137
FW00001037	429	431	2	0.014	0.36	11.2	0.74	82.5	4.68	7.47	23.5	2.38	242
FW00001038 FW00001039	431 433	433 435	2	0.026 0.018	1.22 0.95	21.4 18.4	1,33 0.89	199 157	13.3 10.1	22.4	46.3 41.2	7.22 5.54	1035 871
FW00001039	435	437	2	0.018	0.95	19.8	0.89	179.5	9.03	23.8	39.1	5.09	1275
FW00001041	437	439	2	0.018	0.87	16.6	0.93	165.5	7.04	27.6	35.1	4.02	1415

Sample	From	То	Interval	Au	Ag	As	Bi	Cu	Fe	Мо	Pb	5	Zn
				(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(pct)	(ppm)	(ppm)	(pct)	(ppm)
FW00001043	439	441	2	0.013	0.58	24.9	0.44	130.5	7.39	12.45	36.5	4,51	192
FW00001044 FW00001046	441	443 445	2	0.008	0.35	8.5 14.5	0.25	69.2 118	4.04 7.44	2.78 14.7	24 32.3	2.35 4.05	139 413
FW00001047	445	447	2	0.027	128	28.1	1.22	203	13	20.8	49	7.03	1020
FW00001048	447	449	2	0.038	134	40	1.46	227	15.55	22.1	55	8.89	1020
FW00001049	449	451	2	0.039	1.23	44.4	1.36	204	14.35	21	56.5	9.31	955
FW00001050	451	453	2	0.024	1.05	22.8	0.71	158	10.2	17.15	31.9	5.84	744
FW00001051	453	455	2	0.014	0.59	13	0.36	98.3	5.65	9.38	33.9	3.21	303
FW00001052	455	457	2	0.01	0.56	10.2	0.3	106	5.2	4.76	19.7	2.77	226
FW00001053	457	459	2	0.011	0.67	11.4	0.39	131.5	5.87	7.98	24	3.47	455
FW00001054	459	461	2	0.008	0.45	9.8	0.17	63	4.02	1.13	15.2	2.26	107
FW00001056	461	463	2	0.014	0.77	16.8	0.5	153	7.1	13.25	25.6	4.16	639
FW00001057	463	465	2	0.011	0.69	10.6	0.48	206	4.86	20.3	29.7	3.03	730
FW00001058	465	467	2	0.014	0.74	12.2	0.44	223	5.2	16.45	28.1	3.23	587
FW00001059	467	469	2	0.011	0.82	16.3	0.42	206	4.86	15	50.9	3.31	547
FW00001061	469	471	2	0.008	0.89	13.4	0.47	204	5.71	27.3	48.7	3.55	1300
FW00001062 FW00001063	471 473	473 475	2	0.006	0.96 1.13	12.6	0.45	201 171	4.92 9.88	25.1	38.9 35.3	3.12 7.59	1020 892
FW00001065	475	477	2	0.019	0.98	20.2	0.68	119.5	7.2	17.6	34	4.72	536
FW00001066	477	479	2	0.03	1.63	20.2	0.9	174.5	7.35	25.3	36.8	4.72	1155
FW00001067	479	481	2	0.009	0.76	9.8	0.26	83.9	4.8	3.88	18.4	2.47	169
FW00001068	481	483	2	0.013	0.84	8.9	0.29	75.8	4.41	7.35	20.6	2.38	178
FW00001069	483	485	2	0.034	2.13	25.5	0.98	220	10.8	18.8	40.1	6.47	817
FW00001070	485	487	2	0.033	1.79	22.4	0.94	185.5	8.96	25.5	42.3	5.11	1280
FW00001071	487	489	2	0.019	1.11	13.6	0.54	186.5	4.78	20.5	27.1	2.91	797
FW00001072	489	491	2	0.013	0.85	9.9	0.45	136.5	3.85	15	20.2	2.2	411
FW00001073	491	493	2	0.014	0.94	9.2	0.55	149.5	4.29	16.95	20.6	2.46	566
FW00001074	493	495	2	0.017	1.09	11.2	0.58	156.5	4.67	17.4	24	2.75	600
FW00001076	495	497	2	0.016	1.11	14.8	0.57	166.5	5.22	13.6	64.9	2.88	585
FW00001077	497	499	2	0.009	0.78	8	0.35	123.5	3.68	14.25	50.1	2.04	537
FW00001078	499	501	2	0.015	1.18	10	0.49	215	4.99	19.45	37	2.86	773
FW00001079	501	503	2	0.021	1 32	12.4	0.64	242	5.58	24.6	43.7	3.37	1095
FW00001081	503	505	2	0.031	1.82	18.1	0.94	227	9.72	25.1	48.4	5.68	1285
FW00001082	505	507 509	2	0.02	1 45	13.8	0.7	229	6.54	19.7	35.2	3.94	840 1010
FW00001083 FW00001084	507 509	511	2	0.015	1.11	11.6	0.51	232 199	4.5	22.9 24.4	34.5 32.2	2.83	809
FW00001084	511	513	2	0.014	113	10.5	0.58	281	4.77	24.4	29.9	3.04	851
FW00001087	513	515	2	0.014	0.99	10.4	0.56	275	4.21	30.1	27.8	2.76	1230
FW00001088	515	517	2	0.018	1.16	11.9	0.68	281	5.03	31.1	32.9	3.19	1480
FW00001089	517	519	2	0.024	1.72	16.6	0.97	226	9.49	26.6	44.3	5.63	1470
FW00001090	519	521	2	0.023	1.73	45.9	1.2	186.5	13.05	23.4	53.8	9.67	897
FW00001091	521	523	2	0.033	1.71	65.1	1.81	139.5	12.4	21.5	70.4	>10.0	1095
FW00001092	523	525	2	0.03	2.11	25.4	1.73	194	12.3	20.9	57.4	7.4	1020
FW00001093	525	527	2	0.029	1.09	9	1.33	106.5	7.68	13.95	36.5	3.93	471
FW00001094	527	529	2	0.022	0.37	11.8	0.84	73.5	4.22	11.45	23.8	2.03	189
FW00001096	529	531	2	0.015	0.27	3.7	0.56	54	3.48	8.66	21.6	1.62	178
FW00001097	531	533	2	0.018	0.32	14.2	0.54	62.4	4.11	1.74	18	1.86	104
FW00001098	533	535	2	0.044	0.27	153	0.55	82.9	5.59	1.84	24.4	2.16	124
FW00001099 FW00001101	535 537	537 539	2	<0.005 0.011	0.06	2.4	0.24	74.3 32.7	4.44	1.23	23.3	0.64	128 141
FW00001101	539	541	2	0.022	0.07	22.8	0.32	42.2	5.16	1.4	22.3	0.47	102
FW00001103	541	543	2	0.022	0.07	179.5	0.48	72.5	7.37	1.95	21.6	2.21	131
FW00001104	543	545	2	0.014	0.22	4.6	0.59	60.7	3.9	0.8	17.8	1.86	120
FW00001106	545	547	2	0.024	0.95	34	1.2	159	11.25	18.15	40.6	7.76	810
FW00001107	547	549	2	0.024	0.92	60.8	0.92	170	11.3	22.8	43	9.55	1045
FW00001108	549	551	2	0.019	0.84	47.5	1.19	137	10.55	18.5	33.8	7.94	752
FW00001109	551	553	2	0.011	0.24	22.6	0.46	55.5	4.3	2.17	19	1.86	112
FW00001110	553	555	2	0.006	0.37	20.6	0.36	73.3	7.24	2.29	33.3	1.54	144
FW00001111	555	557	2	0.019	118	20.9	0.83	175	9.22	6.15	38.8	3.67	430
FW00001112	557	559	2	0.017	0.97	3.3	0.77	236	5.65	11.15	34	2.29	640
FW00001113	559	561	2	0.019	1.01	15.7	0.97	185.5	6.18	9.37	41.9	2.41	357
FW00001114	561	563	2	0.011	0.64	3.6	0.74	166.5	4.82	8.18	28.4	1.82	206
FW00001116	563	565	2	0.016	0.66	2.1	0.92	183.5	4.87	7.82	28.7	1.84	190
FW00001117	565	567	2	0.022	0.74	2.4	1.12	153	5.64	9.35	30.4	2.17	218
FW00001118 FW00001119	567 569	569	2	0.014	0.6	6.4	0.89	133.5	5.49 4.95	8.18	38.6 26.7	1.85	226
FW00001119	571	571 573	2	0.013	0.57	6.9 8.1	0.63	148.5 95.2	4.72	7.48	22.6	1./1	175 129
FW00001121	5/1	3/3		0.011	0.5	0.1	0.03	93.2	4.72	2.75	220	1.55	123

Sample	From	То	Interval	Au	Ag	As	Bi	Cu	Fe	Мо	Pb	5	Zn
				(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(pct)	(ppm)	(ppm)	(pct)	(ppm)
FW00001122	573	575	2	0.009	0.38	106.5	0.5	88.1	4.1	3.76	19.4	1.13	128
FW00001123 FW00001124	575 577	577 579	2	0.012	0.44	98 17.2	0.6	112.5	4.71 4.82	4.74 8.52	23 24.8	1.32	130 197
FW00001124	579	581	2	0.014	0.49	9.3	0.94	202	4.87	9.55	23.2	1.59	205
FW00001127	581	583	2	0.013	0.47	10.5	0.76	142.5	4.43	7.35	25.3	1.33	173
FW00001128	583	585	2	0.014	0.43	3	0.87	130	4.99	8.15	28.2	1.64	156
FW00001129	585	587	2	0.014	0.46	1.2	0.74	157	5.68	6.49	23.7	1.93	222
FW00001130	587	589	2	0.014	0.28	17.6	0.63	104	4.91	3.49	21.8	1.29	154
FW00001131	589	591	2	0.007	0.16	3.8	0.6	76.4	6.63	2.26	15.8	1.51	58
FW00001132	591	593	2	0.006	0.11	13.6	0.28	34	12.2	1.46	18	1.7	55
FW00001133	593	595	2	0.014	0.2	17.8	0.37	121.5	16.05	1.25	4.6	3.85	34
FW00001134	595	597	2	0.007	0.12	9.7	0.08	66.9	9.2	1.56	5.8	1.41	32
FW00001136	597	599	2	0.009	0.18	4.4	0.19	70.6	11.65	3.14	15.1	1.31	58
FW00001137	599	601	2	0.006	0.11	18.7	0.15	33.2	16.05	1.23	3.5	0.25	50
FW00001138	601	603	2	0.014	0.2	8.7	0.18	97.9	20.7	4.14	3.7	0.61	74
FW00001139	603	605	2	<0.005	0.07	4.8	0.1	72	19.95	2.57	4.4	0.51	69
FW00001141	605	607	2	0.008	0.06	6.1	0.1	68.9	20.2	2.16	7.7	0.27	75
FW00001142	607	609	2	0.011	0.09	9	0.12	79.8	21.1	1.24	13.2	0.51	81
FW00001143	609	611	2	0.012	0.06	27.2	0.12	50.5	17.65	2.36	8.9	0.29	71
FW00001144	611	613	2	0.011	0.07	14.4	0.17	68.5	19.5	1.4	11.1	0.33	75
FW00001145	613	615	2	0.012	0.1	13.4	0.19	106	20	1.98	11.1	0.38	117
FW00001147	615	617	2	0.013	0.15	27	0.27	117.5	21.1	1.36	15.6	0.82	140
FW00001148	617	619	2	0.005	0.1	13	0.09	30.7	13.35	2.67	10.4	0.71	49
FW00001149	619	621	2	<0.005	0.09	4.8	0.06	8.8	1.23	2.98	54	0.39	62
FW00001150 FW00001151	621 623	623 625	2	<0.005 <0.005	0.05	4.6 16.7	0.05	9.5 18.3	1.39 2.92	4.07 3.88	8.3 4.5	0.54 2.34	10 6
FW00001151	625	627	2	0.003	0.16	34.4	0.03	9.1	5.6	7.22	7.6	5.14	6
FW00001153	627	629	2	0.015	0.06	18	0.36	104	17.3	3.23	14.8	0.49	83
FW00001154	629	631	2	0.015	0.04	6.6	0.12	69.9	20.1	2.62	8.1	0.22	55
FW00001156	631	633	2	0.007	0.05	20.6	0.08	73.7	19.45	2.43	8.3	0.2	54
FW00001157	633	635	2	0.015	0.14	19.7	0.26	204	20.4	2.74	20.5	0.88	157
FW00001158	635	637	2	0.008	0.14	9.2	0.28	147.5	23	2.6	25.8	0.58	180
FW00001159	637	639	2	0.013	0.1	10.5	0.27	81.1	21.8	1.34	9	0.52	81
FW00001161	639	641	2	0.01	0.23	16.6	0.18	105.5	22.6	1.46	8.5	0.33	77
FW00001162	641	643	2	0.006	0.32	27.4	0.11	59.3	21.4	1.07	9.6	0.4	96
FW00001163	643	645	2	0.007	0.12	15.8	0.12	91.8	23.1	1.89	5.5	0.25	74
FW00001164	645	647	2	0.008	0.11	7	0.12	49.5	14.85	2.33	6.2	0.1	55
FW00001166	647	649	2	0.015	0.18	19.4	0.26	108.5	22	2.28	11.2	0.55	77
FW00001167	649	651	2	0.007	0.15	11.4	0.16	66	14.3	3.23	25.3	0.52	109
FW00001168	651	653	2	0.01	0.13	11	0.14	62.7	17.2	2.11	13.5	0.44	67
FW00001169	653	655	2	0.011	0.13	14.6	0.24	81.8	14.7	2	9.1	0.42	45
FW00001170	655	657	2	0.015	0.43	55.4	0.34	112.5	11.9	5.73	27.1	2.25	133
FW00001171	657	659	2	0.021	0.74	6.1	0.53	126	14.4	5.79	32.2	3.06	215
FW00001172	659	661	2	0.005	0.17	5.3	0.13	56	18.25	2.05	8.7	0.9	80
FW00001173	661	663	2	<0.005	0.11	5.7	0.09	35.2	11.8	2.41	9.3	0.38	43
FW00001174	663	665	2	0.012	0.46	9.3	0.37	148.5	14.4	6.35	24	2.53	139
FW00001176 FW00001177	665 667	667 669	2	0.014	0.42	41.4 16.3	0.41	100.5 58.9	10.75 17.6	5.34 1.51	23.8 13.3	2.4	135 56
FW00001177	669	671	2	0.007 <0.005	0.24	16.6	0.19	41.6	12.05	2.34	9.3	1.03	28
FW00001179	671	673	2	<0.005	0.12	7.9	0.53	144	7.97	1.74	88	0.45	155
FW00001175	673	675	2	0.005	0.17	17.8	0.36	126.5	13.9	3.91	22.9	0.86	54
FW00001182	675	677	2	<0.005	0.08	49.8	0.18	49.9	16.85	1.43	14.9	0.39	35
FW00001183	677	679	2	<0.005	0.08	9	0.14	45.5	13.2	2.88	10.5	0.4	28
FW00001184	679	681	2	0.011	0.08	26.8	0.25	70.3	17.1	1.29	12	0.27	39
FW00001186	681	683	2	0.013	0.1	22.8	0.29	93.6	18.65	2.53	11.5	0.43	67
FW00001187	683	685	2	<0.005	0.11	16.4	0.25	80.4	17.35	1.92	12.2	0.55	61
FW00001188	685	687	2	0.011	0.13	28.6	0.61	61.3	16.95	4.82	10.4	0.99	33
FW00001189	687	689	2	0.009	0.06	67.1	0.27	64.2	13.8	1.72	8.9	0.37	28
FW00001190	689	691	2	0.015	0.09	16	0.18	66	16.4	2.09	8.8	0.25	37
FW00001191	691	693	2	0.022	0.04	23	0.18	32.1	19.65	1.18	7.2	0.27	37
FW00001192	693	695	2	0.039	0.14	65.5	0.17	55	17.95	1.63	7.1	0.87	34
FW00001193	695	697	2	0.022	0.52	34.8	0.43	190	12.05	8.56	13.4	3.17	103
FW00001194	697	699	2	0.007	0.08	16.2	0.51	29	4.48	0.74	31	0.25	84
FW00001196	699	701	2	<0.005	0.14	17.1	0.52	33.9	5.09	0.57	15.4	0.04	49
FW00001197	701	703	2	<0.005	0.1	11.7	0.51	37.4	4.25	1.82	103.5	0.13	181
FW00001198	703	705	2	0.005	0.08	13.6	0.55	37.5	4.74	0.94	42.1	0.06	224
FW00001199	705	707	2	0.006	0.11	13.3	0.69	46.1	4.78	2.81	64	0.08	129

Sample	From	То	Interval	Au	Ag	As	Bi	Cu	Fe	Мо	Pb	5	Zn
				(ppm)	(ppm)	(ppm)	(pp m)	(pp m)	(pct)	(ppm)	(ppm)	(pct)	(ppm)
FW00001201	707	709	2	0.007	0.13	8.2	0.5	37.3	4.79	1.18	128.5	0.19	234
FW00001202	709	711	2	<0.005	0.04	3.9	0.2	4.9	3.4	0.79	13	0.03	31
FW00001203 FW00001204	711 713	713 715	2	0.006	0.07	6.9 26.4	0.35	23.1 43.2	3.02 5.24	2.83	72.7 253	0.06	135 696
FW00001206	715	717	2	<0.005	0.27	13.4	0.77	53.1	5.72	0.52	24.3	0.04	116
FW00001207	717	719	2	0.005	0.08	9.6	0.77	50.8	5.75	0.89	44.9	0.05	151
FW00001208	719	721	2	<0.005	0.06	10	0.61	38.6	5.26	0.81	30.3	0.04	136
FW00001209	721	723	2	0.006	0.05	6.6	0.43	16.8	3.65	0.66	21.1	0.01	82
FW00001210	723	725	2	0.005	0.05	18.2	0.8	42.2	6.37	0.68	43.6	0.07	141
FW00001211	725	727	2	0.008	0.05	16.2	1.05	62.7	6.32	1.3	34.9	0.12	138
FW00001212	727	729	2	<0.005	0.04	9.7	0.47	15.2	3.88	0.7	32.8	0.01	91
FW00001213	729	731	2	0.006	0.07	11	0.76	54.5	6.03	0.66	30.7	0.01	137
FW00001214	731	733	2	<0.005	0.05	13	0.69	43.9	5.58	0.62	29.9	0.01	126
FW00001216	733	735	2	0.006	0.04	19.5	0.69	28.1	5.44	0.75	33.8	0.01	119
FW00001217	735	737	2	0.005	0.03	17.3	0.72	53	6.43	0.82	40	0.08	134
FW00001218	737	739	2	<0.005	0.04	12.4	0.51	25.6	4.9	0.7	24.4	0.02	105
FW00001219	739	741	2	0.009	0.08	30.6	1.06	85.3	5.78	1.18	46	0.14	112
FW00001221 FW00001222	741	743 745	2	0.006	0.05	6.3 12	0.27	21.3 20	4.09	1 116	24.2 19.8	0.13	62 73
FW00001223	745	747	2	0.005 <0.005	0.38	2.6	0.19	48.3	3.69 4.76	8.99	35.8	2.14	177
FW00001224	747	749	2	0.003	0.74	2.7	0.43	95.7	7.37	19.35	38.8	3.49	352
FW00001226	749	751	2	<0.005	0.56	10.6	0.65	87.5	6.29	16.4	36	3.01	309
FW00001227	751	753	2	0.009	0.63	2.2	0.73	102	6.58	17.75	38.7	3.31	312
FW00001228	753	755	2	0.008	0.46	3.8	0.56	75.4	5.45	14.45	34.2	2.52	215
FW00001229	755	757	2	<0.005	0.48	5.4	0.55	82.3	5.59	15.25	30.4	2.48	267
FW00001230	757	759	2	<0.005	0.47	7.3	0.56	71.8	5.38	12.9	98.1	2.46	304
FW00001231	759	761	2	0.005	0.44	2.8	0.43	53	4.97	9.06	29.3	2.14	152
FW00001232	761	763	2	0.005	0.45	8.5	0.45	67.9	5.37	13.75	30.1	2.29	312
FW00001233	763	765	2	0.006	0.36	5.2	0.33	44.4	4.8	5.46	24	1.97	102
FW00001234	765	767	2	0.007	0.43	4.4	0.57	50.1	5.48	8.76	27.6	2.45	130
FW00001236	767	769	2	0.006	0.4	12	0.49	66.2	5.25	11.4	31.7	2.18	225
FW00001237	769	771	2	0.006	0.4	7.7	0.54	67.8	5.02	11.05	28	2.07	240
FW00001238	771	773	2	0.005	0.41	8.7	0.47	63.1	5.02	9.89	29.5	2.08	159
FW00001239 FW00001241	773 775	775 777	2	0.01	0.48	27.8 26.8	0.33	57.8 65.9	4.78 5.07	8.13 14.25	32.1 32.9	1.96	139 253
FW00001241	777	779	2	0.005	0.42	4.6	0.22	36.5	3.47	5.56	27.7	1.14	132
FW00001242	779	781	2	0.008	0.24	6.9	0.22	72.6	4.95	7.52	36.2	1.88	498
FW00001244	781	783	2	0.007	0.42	2.8	0.71	78.8	6.73	9.77	23.9	2.66	145
FW00001246	783	785	2	<0.005	0.13	3	0.09	14.5	3.09	1.42	28.5	0.66	61
FW00001247	785	787	2	<0.005	0.08	20.5	0.07	10.5	3.22	1.46	23.3	0.29	65
FW00001248	787	789	2	0.005	0.12	9.1	0.07	11.6	3.07	1.58	22.2	0.44	64
FW00001249	789	791	2	0.005	0.16	48.6	0.19	41.2	4.11	5.12	25.8	0.66	114
FW00001250	791	793	2	0.01	0.44	45.8	0.73	105.5	6.72	10.9	32.4	1.75	185
FW00001251	793	795	2	0.008	0.38	10.2	0.72	102.5	5.46	9.42	28.5	1.47	183
FW00001252	795	797	2	<0.005	0.18	4.5	0.18	31.3	3.72	2.25	22.6	0.62	88
PW00001253	797	799	2	0.005	0.33	3.5	0.45	57.3	4.92	9.11	29	1.66	194
FW00001254 FW00001256	799 801	801 803	2	0.005 <0.005	0.3	4.5 12.2	0.37	61.2 31.7	4.28	10.15 5.36	26.3 22	1.64	179
FW00001257	803	805	2	<0.005	0.28	27.4	0.24	33.8	4.88	9.13	25.2	1.75	157
FW00001257	805	807	2	<0.005	0.28	11.4	0.32	35.7	4.25	6.79	23.2	1.75	168
FW00001259	807	809	2	<0.005	0.35	8.9	0.59	78.9	5.54	12.4	32.7	2.13	217
FW00001261	809	811	2	<0.005	0.34	20.4	0.64	85.2	5.66	13.4	34.5	2.14	245
FW00001262	811	813	2	<0.005	0.4	12.7	0.55	85.1	5.46	11.45	27.4	2.2	214
FW00001263	813	815	2	<0.005	0.43	5	0.75	87.2	5.71	14.85	29.2	2.48	252
FW00001264	815	817	2	<0.005	0.37	11.5	0.66	80.5	5.36	12.3	29.2	1.9	198
PW00001266	817	819	2	<0.005	0.23	9.5	0.3	56.5	5.21	1.33	23.3	0.82	113
PW00001267	819	821	2	<0.005	0.15	3.7	0.4	40.9	4.62	3.56	29.7	0.92	294
FW00001268	821	823	2	<0.005	0.07	6.1	0.23	13.2	3.56	1.72	26.8	0.31	35
FW00001269	823	825	2	<0.005	0.07	6.9	0.23	6.8	3.7	1.16	72.7	0.24	49
FW00001270	825	827	2	<0.005	0.08	6.2	0.13	11	3.84	1.4	96.9	0.21	226
FW00001271	827	829	2	<0.005	0.08	3.7	0.17	12.8	3.33	1.43	94.6	0.44	132
FW00001272	829	831	2	<0.005	0.14	2.7	0.24	40.6	4.24 5.74	1.28	33.2	0.97	218
FW00001273 FW00001274	831 833	833 835	2	<0.005 <0.005	0.33	2.6	0.65	105.5 51.4	4.14	14.4 5.37	31.7 16.5	0.75	218 182
FW00001274	835	837	2	0.005	0.18	7	0.56	119	5.96	3.23	281	1.54	743
FW00001277	837	839	2	<0.005	0.36	4.7	0.56	82.2	5.66	8.51	69.7	2.67	1415
FW00001278	839	841	2	<0.005	0.31	2.7	0.39	59.2	4.16	6.12	469	1.46	547
	033	541	-	~.003	~.JI	L 4/	0.33	22.5	7.10	W.15	-03	1.40	247

Sample	From	То	Interval	Au	Ag	As	Bi	Cu	Fe	Мо	Pb	5	Zn
				(ppm)	(ppm)	(ppm)	(pp m)	(ppm)	(pct)	(ppm)	(ppm)	(pct)	(pp m)
FW00001279	841	843	2	<0.005	0.36	1.2	0.75	84.3	5.63	11.35	40.2	2.16	274
FW00001281	843	845	2	<0.005	0.47	7.4	0.77	87.2	5.53	14.9	30.6	2.31	234
FW00001282 FW00001283	845 847	847 849	2	0.005 <0.005	0.45	2.2	0.72	79.9 73.9	5.67 4.65	14.2 8.86	27.8 31.9	2.43 1.96	218 208
FW00001283	849	851	2	<0.005	0.41	2.3	0.59	78.8	4.05	11.8	29.6	1.79	237
FW00001286	851	853	2	<0.005	0.41	4.7	0.58	78.6	4.95	9.85	29.7	1.95	215
FW00001287	853	855	2	<0.005	0.44	3.1	0.8	83.8	5.35	13.05	32.8	2.19	246
FW00001288	855	857	2	0.005	0.4	1.4	0.91	84.9	5.18	15.3	32.2	2.03	167
FW00001289	857	859	2	<0.005	0.35	6.1	0.87	96.9	5.65	14.55	21.7	2.38	225
FW00001290	859	861	2	<0.005	0.34	7.8	0.92	94.9	5.43	13.5	27.8	2.07	355
FW00001291	861	863	2	<0.005	0.23	1.7	0.8	142.5	5.67	15.3	19.6	2.4	121
FW00001292	863	865	2	0.005	0.2	2.2	0.96	135.5	5.94	14.25	18.6	2.31	263
FW00001293	865	867	2	<0.005	0.21	3.8	0.3	101.5	8.6	5.53	14.5	0.85	108
FW00001294	867	869	2	<0.005	0.21	2	0.08	103.5	9.82	0.88	8.2	0.21	107
FW00001296	869	871	2	<0.005	0.15	1.5	0.1	88.8	9.61	0.81	6.7	0.21	105
FW00001297	871	873	2	<0.005	0.19	2.3	0.18	103	9.56	0.74	7.6	0.24	98
FW00001298	873	875	2	0.009	0.25	2.3	0.37	138.5	9.65	0.83	7.7	0.2	110
FW00001299	875	877	2	<0.005	0.57	1.9	0.12	212	9.56	1.03	10.4	0.43	116
FW00001301	877	879	2	<0.005	0.22	4.8	0.26	127	6.12	1.33	12.9	0.66	391
FW00001302	879	881	2	<0.005	0.3	1.9	0.33	125.5	4.87	0.35	17.8	1.18	290
FW00001303	881	883	2	<0.005	0.17	2.8	0.51	72.8	4.04	7.34	18.4	1 0.76	216
FW00001304	883	885	2	<0.005	0.15	6.8	0.37	54	3.49	5.66	13.4	0.76	129
FW00001306	885	887	2	<0.005	0.1	5.3	0.42	80.3	4.4	5.59	9.4	0.95	223
FW00001307 FW00001308	887 889	889 891	2	<0.005 <0.005	0.41	1.2	0.68	83.8 94.9	4.91 5.08	13.35 3.06	162 58.4	1.24 2.1	256 44
FW00001309	891	893	2	<0.005	0.07	5.4	0.39	37.9	2.9	3.01	17.2	0.27	34
FW00001309	893	895	2	<0.005	0.07	9.4	0.24	13.2	2.84	1.36	15.8	0.02	36
FW00001311	895	897	2	<0.005	0.11	7	0.23	13.4	2.84	0.95	16.6	0.01	36
FW00001312	897	899	2	<0.005	0.29	6.8	0.39	20	3.09	1.17	20.4	0.01	48
FW00001313	899	901	2	<0.005	0.04	5.1	0.29	25.7	2.94	1.18	18	0.01	51
FW00001314	901	903	2	<0.005	0.06	4.6	0.3	11.4	3.1	1.4	22.2	0.01	54
FW00001316	903	905	2	<0.005	0.05	3.7	0.27	21.5	3.27	1.39	27	0.01	59
FW00001317	905	907	2	<0.005	0.03	3	0.26	11.2	3.33	1.21	22.9	0.01	58
FW00001318	907	909	2	<0.005	0.07	2.1	0.66	12.2	3.08	1.9	24.4	0.01	57
FW00001319	909	911	2	<0.005	0.05	1.5	0.35	13.4	3.44	1.21	22.4	0.01	48
FW00001321	911	913	2	<0.005	0.11	2.6	0.28	12.7	3.06	1.34	19.1	<0.01	48
FW00001322	913	915	2	<0.005	0.06	2.3	0.3	15.6	2.9	1.12	16.6	<0.01	35
FW00001323	915	917	2	<0.005	0.03	1.8	0.28	7.9	3	1.47	10.9	<0.01	33
FW00001324	917	919	2	<0.005	0.04	1.6	0.28	8.4	3.01	1	9.8	<0.01	35
FW00001326	919	921	2	<0.005	0.03	1.4	0.34	5.9	3.29	0.73	18.6	0.02	43
FW00001327	921	923	2	<0.005	0.04	3.7	0.18	9	2.54	0.46	25.8	0.02	54
FW00001328	923	925	2	<0.005	0.02	1.1	0.17	32.5	3.17	0.87	7.7	<0.01	28
FW00001329	925	927	2	<0.005	0.03	1.1	0.25	13.6	3.32	1.02	14.8	<0.01	39
FW00001330	927	929	2	<0.005	0.04	0.9	0.29	7.5	3.09	1.49	16.9	<0.01	37
FW00001331	929	931	2	0.008	0.02	0.9	0.29	8.1	3.17	1.19	14.4	0.04	33
FW00001332 FW00001333	931 933	933 935	2	<0.005 <0.005	0.04	0.8	0.22	7.1 8.7	3.32	0.93	10.8 6.2	0.01 <0.01	34 29
FW00001333	935	937	2	<0.005	0.02	0.5	0.23	6.7	3.27	1.12	11	0.01	33
FW00001336	937	939	2	<0.005	0.02	0.7	0.27	9.9	3.39	1.06	15.2	<0.01	38
FW00001337	939	941	2	<0.005	0.04	0.8	0.27	8.5	3.79	1.1	22	<0.01	39
FW00001338	941	943	2	<0.005	0.04	1.6	0.34	3.4	3.92	0.49	37.2	0.01	63
FW00001339	943	945	2	<0.005	0.04	1.3	0.24	8.6	3.03	0.76	30.9	0.01	135
FW00001341	945	947	2	<0.005	0.02	1	0.23	9.5	3.23	1.32	10	<0.01	32
FW00001342	947	949	2	<0.005	0.02	1.6	0.28	9.6	3.64	1.26	17	0.01	33
FW00001343	949	951	2	<0.005	0.02	1.3	0.34	7.4	3.31	1.33	14.2	<0.01	33
FW00001344	951	953	2	<0.005	0.03	2.8	0.21	46.4	3.23	0.92	13	0.01	35
FW00001346	953	955	2	<0.005	0.02	1.5	0.22	6.8	3.31	1.29	12.6	0.01	35
FW00001347	955	957	2	<0.005	0.03	1.4	0.28	7.6	3.29	1.1	12.2	<0.01	35
FW00001348	957	959	2	<0.005	0.03	1.9	0.27	6.1	3.31	1.36	11.6	0.01	36
FW00001349	959	961	2	<0.005	0.03	4	0.28	7.3	3.23	2.27	15.8	<0.01	38
FW00001350	961	963	2	<0.005	0.04	4.3	0.29	8	3.47	2.11	13.6	0.01	29
FW00001351	963	965	2	<0.005	0.03	2.2	0.2	5.2	4.61	0.85	13.9	<0.01	46
FW00001352	965	967	2	<0.005	0.05	4.9	0.35	7.8	3.72	1.92	26	0.01	179
FW00001353	967	969	2	0.032	0.03	6.3	0.32	3.9	4.33	1.44	15.5	<0.01	60
FW00001354	969	971	2	<0.005	0.04	4.4	0.66	5.1	4.07	1.61	40.1	<0.01	37
FW00001356	971	973	2	<0.005	0.1	20.3	0.71	26.3	4.75	6.12	16.6	0.01	68
FW00001357	973	975	2	<0.005	0.11	56.6	1.46	93.3	5.08	9.79	15.9	0.03	63

l.				Au	Ag	As	Bi	Cu	Fe	Мо	Pb	S	Zn
Sample	From	То	Interval	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(pct)	(ppm)	(ppm)	(pct)	(ppm)
FW00001358	975	977	2	<0.005	0.04	3.9	0.28	11.9	3.62	5.8	13	0.02	93
FW00001359	977	979	2	<0.005	0.03	8.9	0.09	2.1	3.24	0.64	31.5	0.01	35
FW00001361	979	981	2	<0.005	0.05	12.1	0.15	3.8	2.39	0.64	15.8	0.01	58
FW00001362	981	983	2	0.006	0.06	24.1	0.22	6.4	2.22	1.92	43.5	0.02	210
FW00001363	983	985	2	0.007	0.04	6.9	0.16	4.5	2.77	2.46	10.1	0.03	373
FW00001364	985	987	2	<0.005	0.04	3.2	0.22	13.3	3.15	1.22	12.3	0.01	34
FW00001366	987	989	2	<0.005	0.03	2.3	0.23	15	3.28	1.32	14.9	0.01	36
FW00001367	989	991	2	<0.005	0.02	2.9	0.3	15.2	3.04	1.02	12.7	0.01	31
FW00001368	991	993	2	0.005	0.02	3.9	0.9	9.1	3.17	1.28	17.4	0.01	27
FW00001369	993	995	2	0.006	0.02	3.8	0.26	16.2	3.35	0.92	16.4	0.01	32
FW00001370	995	997	2	0.006	0.02	4.4	0.24	9.8	3.21	1.28	14.9	0.01	29
FW00001371	997	999	2	0.005	0.02	3.7	0.19	9.2	2.91	1.06	17.4	0.01	29
FW00001372	999	1001	2	0.005	0.02	3.6	0.25	9.7	3.04	1.26	17.6	0.01	34
FW00001373	1001	1003	2	<0.005	0.02	5.6	0.2	11.6	2.98	1.11	17.4	0.01	34
FW00001374	1003	1005	2	<0.005	0.03	5.1	0.25	23.9	3.35	1.04	16.2	0.01	38
FW00001376	1005	1007	2	<0.005	0.03	6.5	0.38	17.2	3.29	1.14	15.1	0.01	36
FW00001377	1007	1009	2	<0.005	0.02	8.8	0.25	9.5	3.01	1.28	15.4	0.01	24
FW00001378	1009	1011	2	0.005	0.02	5.1	0.31	12.8	3.23	0.86	16.8	0.01	26
FW00001379	1011	1013	2	0.006	0.03	4.2	0.23	11.2	3.38	0.91	14.4	0.01	29
FW00001381	1013	1015	2	<0.005	0.02	3.9	0.23	20.2	3.22	0.89	11.8	0.01	26
FW00001382	1015	1017	2	< 0.005	0.02	2.3	0.19	11.4	3.05	0.89	13	0.01	28
FW00001383	1017	1019	2	<0.005	0.02	2.7	0.27	7.8	3.39	1.18	12.4	0.01	44
FW00001384	1019	1021	2	0.006	0.02	3.8	0.24	8.8	4.17	0.54	7.1	0.02	32
FW00001386	1021	1023	2	< 0.005	0.04	3	0.38	15.8	4.78	0.78	7.3	0.01	44
FW00001387	1023	1025	2	0.006	0.03	3.8	0.43	19	4.23	0.63	11	0.01	38
FW00001388	1025	1027	2	0.007	0.03	4.5	0.49	21.9	4.36	0.66	9.1	0.01	32
FW00001389	1027	1029	2	0.007	0.03	3.2	0.5	23.5	4.36	0.85	9.3	0.01	48
FW00001390	1029	1031	2	<0.005	0.03	4.7	0.44	22.9	3.96	1.42	10.2	0.02	33
FW00001391	1031	1033	2	<0.005	0.03	3.3	0.45	22.6	3.58	0.81	12	0.01	34
FW00001392	1033	1035	2	<0.005	0.03	3.9	0.35	16.9	3.81	1.26	11.6	0.01	37
FW00001393	1035	1037	2	<0.005	0.03	4.3	0.37	11.2	3.69	1.01	13.8	0.01	37
FW00001394	1037	1038.3	2	<0.005	0.03	6.4	0.37	22.3	4.74	0.95	9.7	0.01	40

Appendix 3: JORC Compliancy Table

JORC 2012 Compliancy Table

The following information is provided to comply with the JORC Code (2012) exploration reporting requirements.

Section 1 Sampling Techniques and Data

Criteria: Sampling techniques

JORC CODE Explanation

Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or hand-held XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.

Company Commentary

The exploration results contained in this announcement relate to diamond core from the Company's drillhole FW220008, which makes up part of its recently completed Frewena Reconnaissance Drill Program. The reported results were obtained from diamond core, drilled by HQ and NQ sized diamond methods.

JORC CODE Explanation

Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.

Company Commentary

Hole locations were recorded with the aid of handheld GPS devices and orientation surveys executed using a Reflex gyro system. Half core samples were cut by diamond saw and sampled as 2m composites for laboratory analysis. Individual samples weighed about 5kg with the minimum not less than 2kg. All sample sizes were deemed sufficient for grain size representativity and to allow for effective preparation at the laboratory crushing and pulverization stages. Sampling, which was under the direct supervision of a geologist was done following standard QAQC sampling protocols and guidelines including the insertion of blanks, duplicates, and standards at regular intervals.

JORC CODE Explanation

Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is a coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.

Company Commentary

All samples were ticketed prior to laboratory dispatch and were then crushed and pulverised to produce pulps, which were subsequently analysed for multi-elements. Gold was analysed using ALS Fire Assay method with AAS finish. All other elements were analysed using 4 acid digest with ICP-MS finish.

Criteria: Drilling techniques

Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit, or other type, whether core is oriented and if so, by what method, etc).

Company Commentary

The reported hole was drilled using Reverse Circulation (RC) method through sedimentary cover to about 166.9m, switching to HQ diamond drilling and reducing to NQ2 in fresh competent rock. Hole diameter started at 5 ¾ inch, progressively reducing to HQ and NQ core sizes with progress.

Criteria: Drill sample recovery

JORC CODE Explanation

Method of recording and assessing core and chip sample recoveries and results assessed.

Company Commentary

This announcement refers to drill hole FW220008. No method is deployed to measure the recovery of RC chips relative to the total amount that might be anticipated from an interval of RC drilling. Suffice to mention that RC recoveries are representative of the drilled interval. Diamond core recoveries are measured (using measuring tape) each time a section of core is recovered from the drill stem.

JORC CODE Explanation

Measures taken to maximise sample recovery and ensure representative nature of the samples.

Company Commentary

Core recovery was generally 100% with occasional core losses, which reduced sample sizes to about 70%. Recovery and core losses were measured for all diamond core. On average, more than 97% core recovery was recorded for this hole.

JORC CODE Explanation

Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

Company Commentary

No sample bias was observed, and there was no established relationship between grade and core recovery.

Criteria: Logging

JORC CODE Explanation

Whether core and chip samples have been geologically and geo-technically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.

Company Commentary

All reported core was logged by Company geologists to the standard level of geological detail to support mineral resource estimation, metallurgical and mining studies as required. Rock Quality Designation (RQD) was also measured and recorded, providing sufficient information for geotechnical investigations when needed. All core was also digitally photographed.

JORC CODE Explanation

Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography

Company Commentary

Logging was both qualitative and quantitative. Qualitative data collection included recoding of lithology, texture, grain size, structure, weathering levels, alteration, veining and any identified mineralisation. Quantitative measurements included recording of Magnetic Susceptibility readings using a KT-10 Meter.

JORC CODE Explanation

The total length and percentage of the relevant intersections logged.

Company Commentary

The reported hole was geologically logged in full including the reported intersections.

Criteria: Sub-sampling techniques and sample preparation

JORC CODE Explanation

If core, whether cut or sawn and whether quarter, half or all core taken.

Company Commentary

Core was cut in half and put into pre-numbered calico bags as 2m composites for laboratory analysis. The remaining half core was returned to core trays and stored in the core processing facilities.

JORC CODE Explanation

If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.

Company Commentary

The announcement refers to diamond core only. No other sample types are reported in this announcement.

JORC CODE Explanation

For all sample types, the nature, quality, and appropriateness of the sample preparation technique.

Company Commentary

The announcement refers to diamond core only. All submitted samples were crushed and pulverised to produce pulps, which were subsequently analysed for multi-elements. Gold was analysed using ALS Fire Assay method with AAS finish. All other elements were analysed using 4 acid digest with ICP-MS finish.

JORC CODE Explanation

Quality control procedures adopted for all sub-sampling stages to maximise "representivity" of samples.

Company Commentary

Certified Reference Material (CRM) sourced from Ore Research and Exploration Pty Ltd (OREAS) were inserted at the rate of 1:20. Blanks and duplicates were also inserted at regular intervals. In addition to these, ALS also runs internal QAQC blanks, standard, duplicates, and pulp re-assays to evaluate contamination, data repeatability and accuracy. No external laboratory checks have been completed for this program.

JORC CODE Explanation

Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.

Company Commentary

Best-practise measures were deployed to ensure the samples taken were representative of the *in-situ* material. Samples were inspected for contamination and any possible bias removed.

JORC CODE Explanation

Whether sample sizes are appropriate to the grain size of the material being sampled.

Company Commentary

5kg sample sizes are considered appropriate for the style of mineralisation being considered.

Criteria: Quality of assay data and laboratory tests

JORC CODE Explanation

The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

Company Commentary

Certified Reference Material (CRM) sourced from Ore Research and Exploration Pty Ltd (OREAS) were inserted at the rate of 1:20. Blanks and duplicates were also inserted at regular intervals. In addition to these, ALS also runs internal QAQC blanks, standard, duplicates, and pulp re-assays to evaluate contamination, data repeatability and accuracy. No external laboratory checks have been completed for this program. All samples were prepared in ALS Mount Isa and analysed in ALS laboratories in Brisbane. The large sample weights submitted are sufficient to produce more accurate evaluation of the grade of mineralisation of the drill hole at the pre-resource stage.

JORC CODE Explanation

For geophysical tools, spectrometers, hand-held XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

Company Commentary

Magnetic Susceptibility readings were recorded for each metre of core using a KT-10 meter.

JORC CODE Explanation

Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

Company Commentary

Certified Reference Material (CRM) sourced from Ore Research and Exploration Pty Ltd (OREAS) were inserted at the rate of 1:20. Blanks and duplicates were also inserted at regular intervals. In addition to these, ALS also runs internal QAQC blanks, standard, duplicates, and pulp re-assays to evaluate contamination, data repeatability and accuracy. No external laboratory checks have been completed for this program.

Criteria: Verification of sampling and assaying

JORC CODE Explanation

The verification of significant intersections by either independent or alternative company personnel.

Company Commentary

Company personnel have verified assays and all procedures. No external laboratory checks have been completed for this program.

JORC CODE Explanation

The use of twinned holes.

Company Commentary

No twin holes are involved in this announcement.

JORC CODE Explanation

Documentation of primary data, data entry procedures, date verification, data storage (physical and electronic) protocols.

Company Commentary

All assay datafiles are received electronically from the laboratory and QAQC-validated to ensure data are fit for purpose. Logging and sampling are recorded on digital logging templates with built-in validation protocols. Logged geology and received assays are routinely updated, reviewed and backed up by Company geologists prior to being archived in an online SharePoint platform.

JORC CODE Explanation

Discuss any adjustment to assay data.

Company Commentary

No assays or received results were adjusted.

Criteria: Location of data points

JORC CODE Explanation

Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.

Company Commentary

The hole was located using GIS software and a handheld GPS. Surveys, which involved the measurement of Azimuth and Dip were completed using a True North seeking Reflex Gyro Tool.

JORC CODE Explanation

Specification of the grid system used.

Company Commentary

GDA94 / MGA zone 53

JORC CODE Explanation

Quality and adequacy of topographic control.

Company Commentary

The hole was located using GIS software and handheld GPS's that provide adequate topographical control.

Criteria: Data spacing and distribution

JORC CODE Explanation

Data spacing for reporting of Exploration Results.

Company Commentary

This is a first pass exploration program with no systematic hole spacing. Holes are drilled at irregular spacings, targeting specific geophysical and geophysical features as a part of a regional reconnaissance program.

JORC CODE Explanation

Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.

Company Commentary

This a first pass regional program targeting specific geological and geophysical anomalies to provide knowledge of regional geology. Hole spacing for future mineral resource estimation is not applicable here.

JORC CODE Explanation

Whether sample compositing has been applied.

Company Commentary

Sampling is done at 2m composites.

Criteria: Orientation of data in relation to geological structure

JORC CODE Explanation

Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.

Company Commentary

The core was oriented where possible and structures measured to provide unbiased knowledge of structural control on possible large scale IOCG and/or SEDEX mineralisation. Holes in the reconnaissance program were designed to drill across geophysical (magnetic, gravity) anomalies as best as practically possible to provide an initial assessment of what the geophysical anomalies represent with assaying of the entire hole undertaken (note reverse circulation pre-collar sample assays remain pending at the time of writing).

JORC CODE Explanation

If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

Company Commentary

The hole was designed to generate diamond core samples that reflect no bias relative to possible large scale IOCG and/or SEDEX mineralisation. Holes in the reconnaissance program were designed to drill across geophysical (magnetic, gravity) anomalies as best as practically possible to provide an initial assessment of what the geophysical anomalies represent with assaying of the entire hole undertaken (note reverse circulation pre-collar sample assays remain pending at the time of writing).

Criteria: Sample security

JORC CODE Explanation

The measures taken to ensure sample security.

Company Commentary

Core samples were collected in pre-numbered calico bags, secured on palettes, and delivered to ALS laboratory in Mount Isa by Company geologists. 200 samples were submitted per batch to ensure easy tracking and all sample dispatch information/paperwork safely archived for future verification as needed.

Criteria: Audits and reviews

JORC CODE Explanation

The results of any audits or reviews of sampling techniques and data.

Company Commentary

The dataset associated with this report has been subjected to stringent QAQC review and evaluation to ensure assays quality. So far, no batch of samples has returned standards with assays greater than 2 standard deviations from certified values. As all QAQC checks have passed, there has been no need for re-assays.

Section 2 Reporting of Exploration Results

Criteria: Mineral tenement and land tenure status

JORC CODE Explanation

Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.

Company Commentary

Tenement Type: EL 33282 (granted).

Ownership: Inca has the right to earn 90% via a JVA Agreement and Royalty Deed (1.5% NSR payable) with MRG and West.

JORC CODE Explanation

The security of the land tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Company Commentary

The exploration licences are in good standing at the time of writing.

Criteria: Exploration done by other parties

JORC CODE Explanation

Acknowledgement and appraisal of exploration by other parties.

Company Commentary

This announcement does not refer to results by other parties.

Criteria: Geology

JORC CODE Explanation

Deposit type, geological setting, and style of mineralisation.

Company Commentary

The geological setting of the area is that of Palaeozoic Georgina Basin that is regionally mapped as shales and limestones of varying thickness. Substantial geophysical surveying undertaken by Geoscience Australia, the Northern Territory Geological Survey, MinEx CRC, and by the Company, indicates that Proterozoic basement rocks occur at relatively shallow depths (~150m), with these lithologies considered prospective to host IOCG, SEDEX and orogenic style mineral systems.

Criteria: Drill hole information

JORC CODE Explanation

A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:

- · Easting and northing of the drill hole collar
- · Elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar.
- · Dip and azimuth of the hole.
- · Down hole length and interception depth.
- · Hole length.

Company Commentary

This announcement refers to drillhole FW220008. The hole parameters are provided in Table 1 in the text.

JORC CODE Explanation

If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

Company Commentary

N/A.

Criteria: Data aggregation methods

JORC CODE Explanation

In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations shown in detail.

Company Commentary

No results that involved data aggregation methods are referred to in this announcement.

JORC CODE Explanation

The assumptions used for any reporting of metal equivalent values should be clearly stated.

Company Commentary

No metal equivalent values are referred to in this announcement.

Criteria: Relationship between mineralisation widths and intercept lengths

JORC CODE Explanation

These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known.')

Company Commentary

The down hole intervals are mentioned and/or true width interval are mentioned. However, the relationship between true widths and actual intercepts cannot be determined with certainty.

Criteria: Diagrams

JORC CODE Explanation

Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not limited to a plan view of drill hole collar locations and appropriate sectional views

Company Commentary

A plan view showing the position of this hole and others is included in this announcement. Drill sections and lithogeochemical logs have also been included in the body of this announcement.

Criteria: Balanced reporting

JORC CODE Explanation

Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.

Company Commentary

The Company believes the ASX announcement provides a balanced report of its exploration results.

Criteria: Other substantive exploration data

JORC CODE Explanation

Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

Company Commentary

No other data are required to be presented other than what has been reported in this announcement.

Criteria: Further work

JORC CODE Explanation

The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).

Company Commentary

Additional drilling is required to better understand the potential of the Mount Lamb Northeast gravity and magnetic trend and other targets within the broader Frewena Project area.

JORC CODE Explanation

Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Company Commentary

A plan view is provided in Figure 1 in the body text showing the position of FW220008 relative to other Company drilling.
