

Lithium exploration highlights:

- Lithium focused drilling to commence at the Forrestania Project early in the December quarter
- POW approval received for Bannon, Bounty East and Gem Mine lithium prospects
- Noongar Standard Heritage Agreements executed for the relevant areas at the Forrestania Project
- . New untested target area identified at the Gem Mine
- Targeted flora survey completed
- Pegmatite outcrop located at newly identified Mousetraps prospect

Gold exploration highlights:

- Field work continues at the Forrestania and Eastern Goldfields project areas
- Multiple geochemical and mapping programmes completed at Goongarrie and Woolshed Well
- Geophysical and geological interpretation undertaken at Woolshed Well
- Strong pathfinder anomalism identified at Woolshed Well

Lithium Exploration

Drilling planned to commence at Forrestania

During the quarter a number of key POW approvals were received for priority lithium targets, these included Bounty East, Gem Mine and the Bannon prospect areas. Upon receipt of these approvals drilling is planned to be undertaken initially at Bounty East and the Gem Mine prospect.

Forrestania has secured the services of a high-quality drilling contractor to carry out the maiden lithium focused drilling programs at the Forrestania Project. The drilling contractor mobilised to site on 19 October. The initial drill program commenced on 22 October and is planned to include ~1,500m of RC drilling, at the Bounty East and Gem Mine prospects.

Bounty East and the Gem Mine prospects are high priority lithium targets for the Company. These targets show favourable pathfinder geochemistry and pegmatites which have either been logged in historical drill holes and or mapped at surface (see Figures 3 and 5)

The Bounty East and Gem Mine drill programs are the first phase of planned drilling for the Forrestania Project. An indicative exploration drilling and work plan is outlined within Figure 2. The program will continue to be reviewed and updated as results are received, and targets become available for drilling. The Company's first lithium focussed drilling campaign at the Forrestania Project commenced in October, after the end of the quarter.

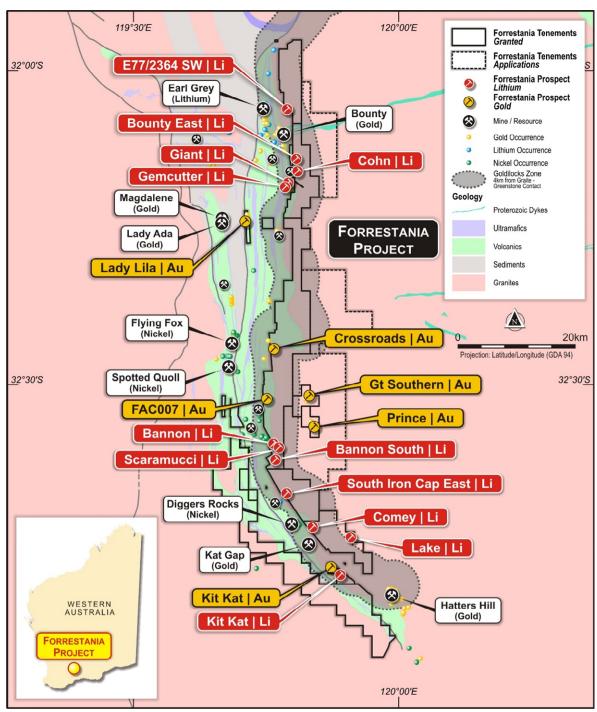


Figure 1: Forrestania Project showing location of Bounty East and the Gemcutter prospects. The Gem Mine target is located at the Gemcutter prospect.

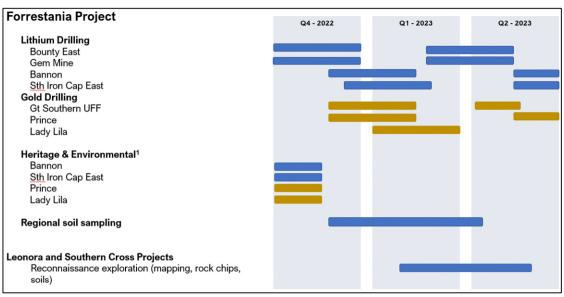


Figure 2: Forrestania indicative drilling and exploration work program.

Approvals workstreams were progressed through the September Quarter for lithium and gold targets with heritage and environmental surveys being undertaken as required. As these work streams were progressed, additional targets became available for drilling. A heritage survey was carried out in early in Q4 at South Iron Cap East (Li), Bannon (Li), Prince (Au) and Lady Lila (Au) prospects. A targeted flora survey has recently been undertaken at Bounty East, and Gemcutter to support POW applications and at South Iron Cap East to potentially modify the POW, the final flora report is currently pending.

Bounty East POW approval

During the quarter, a POW was approved for the Bounty East prospect. Bounty East is located in the northern portion of the Forrestania Project and is situated within the favourable "Goldilocks" exploration corridor – a key focus area for lithium – caesium - tantalum pegmatite exploration. The Bounty East prospect is located ~6km to the east of the world class Earl Grey lithium deposit currently being developed by Covalent Lithium (Figure 3).

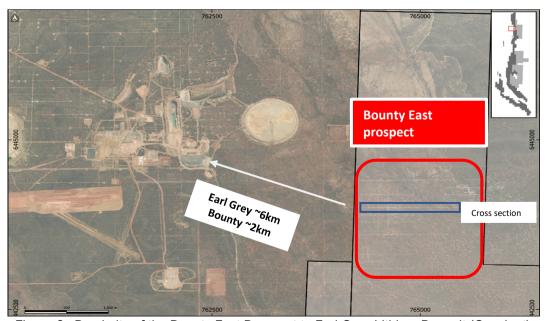


Figure 3: Proximity of the Bounty East Prospect to Earl Grey Lithium Deposit (Covalent).

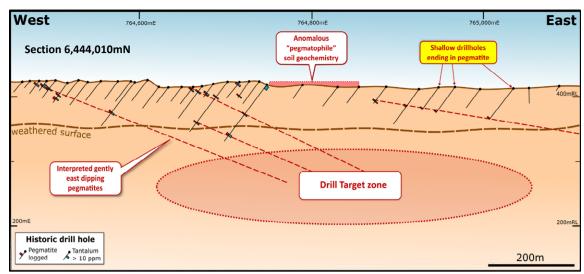


Figure 4: Bounty East area (Figure 3) showing location of the cross section (blue outline) and target area shown in the lower image. Note proximity to Earl Grey lithium deposit and historic Bounty gold mine. (See ASX:FRS release 2 December 2021 & 12 January 2022)

Gemcutter Prospect – new target identified

Results were received for a previously unassayed diamond hole drilled near the historic Gem Pegmatite mine. The results from GCDD0001 are anomalous for lithium and pathfinder elements which suggests a possible relationship with pegmatite intersections from historical RAB drilling at the nearby Gem Pegmatite mine.

Previous drilling at the Giant Pegmatite which is located ~1km north of the Gem Pegmatite mine, returned **34m @ 3.1% Li₂O** from the Giant Pegmatite prospect (see ASX:MZN release 20 December 2016), See Figure 5. (Both the Giant Pegmatite and Gem Mine are part of the broader Gemcutter prospect)

Figure 5: Gemcutter prospect, showing location of Gem Pegmatite mine in the south and Giant Pegmatite in the north, noting results from GPRC006 and high-grade rock chips

The results from GCDD0001 have returned anomalous values for lithium and pathfinder elements. Results from GCDD0001 include:

- 2m @ 0.4% Li₂O and 277ppm Ta from 86.5m
- 1.1m @ 10,082ppm Cs from 98m

Mineralisation intersected within GCDD0001 is logged as occurring within a sheared fault zone and the mineralisation is interpreted to be associated with metasomatic alteration and/or pegmatite fragments caught up within the fault. The lithium anomalism within GCDD0001 is viewed as significant as the hole is located ~110m from the Gem Pegmatite mine where anomalous lithium values have been reported from historic pegmatite intersections (see Figure 6).

The promising results support previously announced pegmatite rock chip results (see ASX:FRS release 14 January 2022) collected by Forrestania Resources from the Gem Pegmatite mine area (see Figure 5) including:

FR001063: 3.21% Li₂O
 FR000016: 2.84% Li₂O

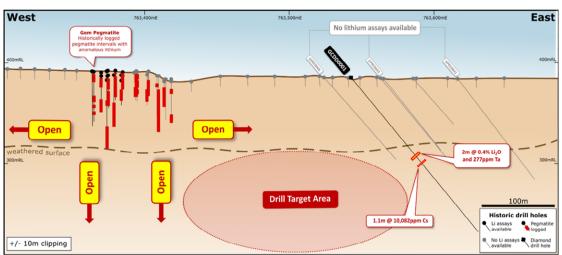


Figure 6: Gem Mine target area (part of the broader Gemcutter prospect) (see ASX:FRS release 5 September 2022)

RAB drilling carried out at the Gem Pegmatite mine in the 1980's intersected intervals of mineralised pegmatite containing low level anomalous lithium (see ASX:MZN release dated 10 November 2016). The historic intercepts are located within the weathered profile and due to the depth limitations of RAB drilling the pegmatites were not effectively tested at depth.

Several of the historic pegmatite intercepts have not been closed out, so the Gem Pegmatite remains open laterally and at depth (see Figure 6). The Gem Pegmatite was mined in the 1980's for tantalum and gem grade tourmaline and beryl, mining was carried out to a depth of approximately 18m.

Bannon POW approval received

A POW approval was received for the Bannon lithium prospect during the quarter and planning is now underway for an initial drill program. The Bannon prospect is in the southern portion of the Forrestania Project. The Bannon prospect was initially drilled by Marindi in 2018. The drilling program was successful, in that it intersected large bodies of pegmatite (up to 64m in true thickness) and despite not being ore grade, demonstrated zones of anomalous lithium and provided some indication of the pegmatites becoming specialised (see ASX: MZN release 27 August 2018). Forrestania plans to drill along strike and down dip of the known pegmatite body to test whether the pegmatite becomes increasingly specialised and therefore potentially more mineralised for lithium at depth. Subsequent to the end of the quarter the heritage survey at Bannon was successfully completed.

Mousetraps Prospect

The Mousetraps prospect was identified during the quarter. Mousetraps is located on the western side of the southern portion of the Forrestania Project and was identified by reconnaissance, mapping and soil sampling carried out within tenement E77/591. These field trips were designed to follow up a priority area highlighted by aeromagnetic survey.

Historical soil sampling data from the area (completed by previous explorers) is inconsistently spaced and coverage at the prospect and surrounding areas is not sufficient to consider the area effectively tested. The closest historical soil sample line is located approximately 160m to the north and samples are spaced approximately 100m apart. Spacing between the existing soil sample lines ranges from 200m to 1,600m. An infill soil sampling program based on a 200m x 100m grid has been completed. Results have indicated a low level of pegmatite specialisation and pathfinder element anomalism. The prospect continues to be reviewed due to its location being approximately 300m from an interpreted granite-greenstone contact that is situated to the northeast (see Figure 7).



Figure 7: Location of Mousetraps prospect in relation to pegmatites at Bannon and South Iron Cap East (and South Ironcap held by IGO) – located in the southern portion of Forrestania project.

Heritage

Forrestania has executed several Noongar Standard Heritage Agreements with the South West Land & Sea Council (for and on behalf of the Ballardong People Agreement Group). The heritage agreements largely relate to the southern area of the Forrestania Project. The Company has subsequently lodged a number of Activity Notices with the South West Land & Sea Council, which will help to determine the heritage requirements at the various prospects, prior to drilling. Subsequent to the end of the quarter a heritage survey was undertaken.

Environmental

During the quarter a targeted flora survey was undertaken at the Forrestania project. The survey was undertaken at the Bounty East, Gemcutter and South Iron Cap East prospects. The final flora report is currently pending.

Gold Exploration

Forrestania Project

During the quarter, gold focused exploration continued at the Forrestania Project with a number of geochemical and field reconnaissance trips undertaken.

At the FAC007 prospect area (located on E77/2348), field trips were undertaken to try and locate the collars of significant, historic Au drilling to help define possible anomalies from re-assaying the drill spoils.

Mapping was also undertaken across the Great Southern prospect (E77/2313) to increase the geological understanding of the project area. The mapping has identified an area of previously unknown greenstone, located amongst the granitic outcrops in the north of the tenement in close proximity to an area previously identified by Southern Geoscience Consultants.

Eastern Goldfields Project

The Company's Eastern Goldfields project area is located in the Leonora and Menzies area of the greater Goldfields region. The project consists of nine tenements of which four are granted (see Figure 8). During the quarter, a number mapping and geochemical campaigns were carried out at Goongarrie (E29/1103) and Woolshed Well (E37/1416).

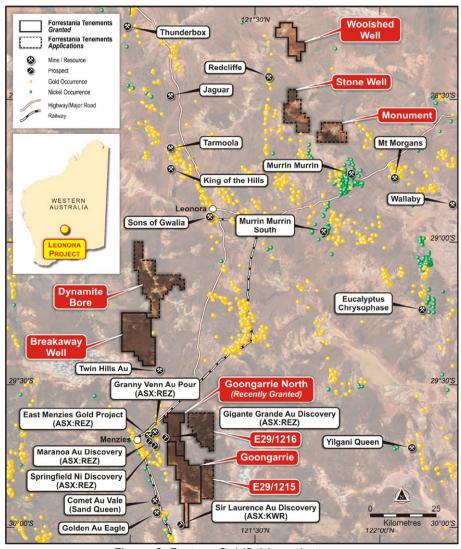


Figure 8: Eastern Goldfields project area

Woolshed Well (E37/1416)

The Company completed a number of field trips to the Woolshed Well prospect during the quarter. Results from the geochemical programmes (from both rock chips and soil samples) at Woolshed Well have returned anomalous values for pathfinder elements, favourable for gold and other metals. Encouraging pathfinders, including arsenic, bismuth, tellurium, molybdenum and silver were returned from rock chips, along with anomalous copper and cobalt from soil samples. While still being in the early stages of exploration these results have helped to confirm the prospectivity of the area and will be used to guide further field work.

Southern Geoscience Consultants have undertaken a geological interpretation of the geophysical data, from the Company's aeromagnetic survey, over Woolshed Well. The interpretation has identified 12 target areas with 5 priority areas for follow up work. Encouragingly, one of the priority target areas - M04 (see Figure 9) coincides with a prominent, un-named geophysical structure which appears to link the Mertondale Shear Zone (MSZ) and the Ninnis Fault. This north-north-east trending structure is one of a number of priority target areas over which the Company has completed geochemical programmes with encouraging results.

The MSZ and the Ninnis Fault are major, regional structures that are significant controls on mineralisation for major gold and metal occurrences in the region. The MSZ is a deep seated, gold bearing structure that hosts Dacian Golds (ASX:DCN) Redcliffe Au project ~8km to the south-west of the Woolshed Well project (see Figure 8); the Redcliffe project has a total mineral resource of 12.7 Mt @ 1.7 g/t for 681,000 oz (see ASX:DCN, 2022 mineral resources and ore reserves update, July 2022). Additionally, the Ninnis Fault is thought to control gold mineralisation at Dacian Golds Mt Morgans operation, which has a total mineral resource of 26.2 Mt @ 1.8g/t for 1,523,000 oz (see ASX:DCN, 2022 mineral resources and ore reserves update, July 2022).

Selective soil and rock chip samples from Woolshed Well:

Soil samples	Rock chips
• SS00812 – 478ppm Cu	• FR000047 – 24.4ppm Bi
 SS00938 – 123ppm Co 	• FR000046 – 1.8ppm Te
• SS00951 – 14ppm As	• FR000426 – 0.4ppm Ag
• SS01142 – 10.4ppb Au	• FR000052 – 32ppb Au

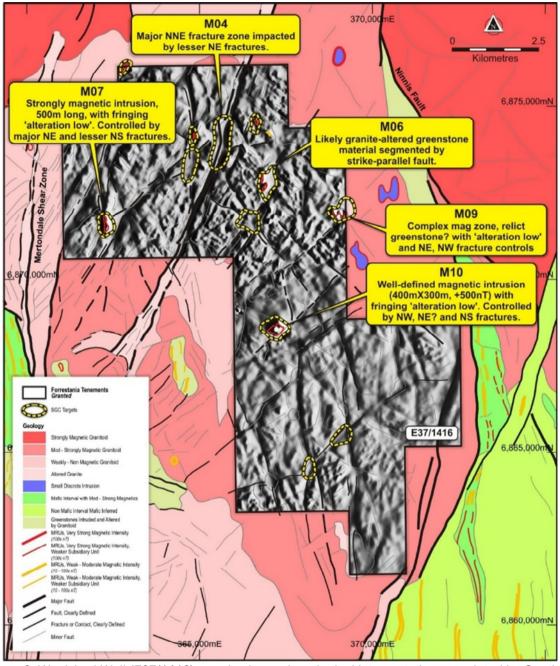


Figure 9: Woolshed Well (E37/1416) geophysics and geological interpretation completed by Southern Geoscience Consultants with recommended target areas.

These results have identified the presence of a broad polymetallic (Ag, Au, Co, Cu) geochemical trend over ~3.8km (see Figure 10). This geochemical trend coincides with the prominent, north-north-east structure linking the MSZ and the Ninnis Fault. Initial soil samples over the area were taken at broad 400m line spacings, with further infill geochemical testing planned.

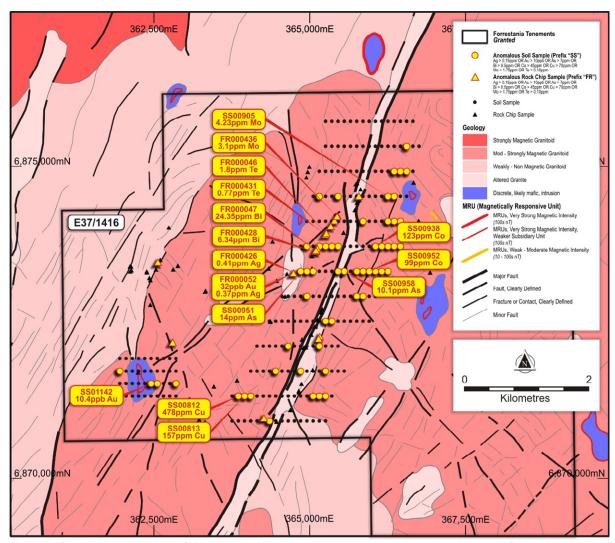


Figure 10: Northern section of Woolshed Well with interpreted geology showing significant Ag, As, Au, Co, Cu, Mo & Te geochemical results (for rock chips and soils) trending on the unnamed NNE structure. Reporting criteria is provided within the map legend.

Goongarrie (E29/1103)

During the quarter, several mapping and geochemical programmes were undertaken at the Goongarrie Project area. A number of the results from these programmes are still pending.

Additionally, Southern Geoscience Consultants have progressed a geological interpretation of the geophysical data, from the Company's aeromagnetic survey over Goongarrie. This interpretation is being completed to improve the geological understanding of the project area and identify key geological structures and generate further targets. As of the end of the quarter, the results of the geological interpretation were still pending.

The Menzies area is becoming a significant area of multi-commodity exploration success. Both Resources and Energy Group Limited (ASX:REZ) and Kingwest Resources Limited (ASX:KWR) have tenements directly adjacent to FRS' Goongarrie tenements, with both REZ and KWR having had success in the area.

During the previous quarter, REZ announced further results from their Maranoa project, including hole MR24 – 5m @ 7.95g/t Au along with nickel mineralisation at their Springfield project, with hole SFRC13 intersecting 4m @ 0.3% Ni, 434ppm Co, 259ppm Cu, 65ppb (Pt+Pd) (see ASX: Quarterly Activities Report June 30, 2022).

KWR recently submitted a proposal for mining (ASX: Mining Operations Proposal Submitted for Selkirk, 27th September 2022) at their Menzies Gold Project and their Sir Laurence discovery (2.5km west of Goongarrie) continues to increase with 5m @ 4.8 g/t Au from 113.3m in KGD004 recently reported (ASX: Quarterly Report for the period ending 30 June 2022); additionally, the Highway Ultramafic Nickel Sulphide target (~1.8km west of Goongarrie) recently intersected 24m @ 0.42% Ni (ASX: Quarterly Report for the period ending 30 June 2022).

Goongarrie North (E29/1158)

During the quarter, the exploration licence application for E29/1158 - Goongarrie North, was granted. Goongarrie North is located directly to the north of the Goongarrie prospect (E29/1103) and adds further exploration potential to the Company's Eastern Goldfields project (see Figure 8).

Corporate

Forrestania lodged its Full Year Statutory Accounts with the ASX on 30 September 2022.

During the quarter 13,525,000 shares were released from escrow.

Financial Commentary

The Quarterly Cashflow Report (Appendix 5B - attached) for the current period provides an overview of the Company's financial activities.

Exploration expenditure and staff costs for the current period was \$532k. Admin and Corporate expenditure amounted to \$180k. The total amount paid to directors and their associates in the period (item 6.1 of the Appendix 5B) was \$92k and includes directors' fees, directors' consulting and superannuation, office rent and administration services.

Quarterly Expenditure Review Compared with IPO Use of Funds

In accordance with ASX LR 5.3.4, Forrestania Resources Ltd provides a summary of its expenditure for the quarter ending September 2022 compared with its "Use of Funds" statement in section 2.7 of the IPO Prospectus dated 19 August 2021.

	Use of Funds (Section 1.3 of Prospectus) (A\$'000)	Q5 Funds Used (A\$'000)	Funds Used Total to Date (A\$'000)
Exploration Expenditure	3,219	460	2,008
Vendor Payments	310	-	336
Repayment of Loans	164	-	197
Directors Fees	244	39	254
Expenses of the Offer	582	-	406
Unallocated Working Capital	889	212	1503
TOTAL	5,408	711	4,704

Capital Raising

Subsequent to the end of the quarter the Company announced a share placement to raise an additional A\$2.7m (before costs).

The Placement is to occur in the following tranches:

• **Tranche 1 Shares**: 7,608,516 Placement Shares issued on 18 October 2022 under the Company's 15% placement capacity under listing rule 7.1 to raise \$1,141,277; and

• Tranche 2 Shares: subject to receiving shareholder approval at the Company's 2022 Annual General Meeting ("AGM") in November 2022, 10,391,483 Placement Shares are to be issued to raise \$1,558,722.

Each Placement Share will have the right to subscribe for one (1) Placement Option for every two (2) Placement Share at a cost of A\$0.005 per option ("Placement Option"). Each Placement Option will have an exercise price of A\$0.25 with an expiry date of 30 November 2024. The issuance of the Placement Options is subject to receiving shareholder approval at the Annual General Meeting.

The Company has also announced a pro-rata non-renounceable entitlement offer of one (1) New Option for every two (2) Shares held by those Shareholders registered at the Record Date of 17 October 2022 at a price of A\$0.005 per New Option which will raise approximately \$127,622 (before costs). Each Placement Option will have an exercise price of A\$0.25 with an expiry date of 30 November 2024.

The Company intends to apply to have the Placement Options and New Options quoted and tradeable on the ASX.

End

This announcement is authorised for release by the Board.

For further information, please contact:

Angus Thomson CEO

T: +61 (0) 434 325 624

E: Angus@forrestaniaresources.com.au

Cecilia Tyndall Company Secretary T: +61 (0) 400 596 734

E: Cecilia@forrestaniaresources.com.au

About Forrestania Resources Limited

Forrestania Resources Limited is an exploration company searching for lithium, gold and nickel in the Forrestania, Southern Cross and Leonora regions of Western Australia. The Forrestania **Project** prospective for lithium, gold and nickel and is currently the only project, within the tenement portfolio that holds a gold Mineral Resource. The Southern Cross Project is prospective for gold and lithium and the Leonora Project is prospective for gold.

The Forrestania Project is situated in the well-endowed southern Forrestania Greenstone Belt, with a tenement footprint spanning approximately 100km, north-to-south of variously metamorphosed mafic/ultramafic/volcano-sedimentary rocks host to the historic 1Moz Bounty gold deposit, emerging Kat Gap gold deposit, the operating Flying Fox, and Spotted Quoll nickel mines, and the more recently discovered Earl Grey

lithium deposit.

The Southern Cross Project tenements are scattered within proximity to the town of Southern Cross and located in and around the Southern Cross Greenstone Belt, which extends along strike for approximately 300km from Mt Jackson to Hatters Hill in the south. It is the Company's opinion that the potential for economic gold mineralisation at the Southern Cross Project has not been fully evaluated. In addition to greenstone shear-hosted gold deposits, Forrestania is targeting granite-hosted deposits. New geological models for late Archean granite-controlled shear zone/fault hosted mineralisation theorise that gold forming fluids, formed at deep crustal levels do not discriminate between lithologies when emplaced in the upper crust. Applying this theory, Forrestania has defined seven new targets.

The Leonora Project tenements are located within the Norseman-Wiluna Greenstone Belt of the Yilgarn Craton. The Project includes four Exploration Licences and five Exploration Licence Applications, covering a total of ~920km². The tenements are predominately non-contiguous and scattered over ~200km length of the greenstone belt. The southernmost tenement is approximately 15 km southeast of the town of Menzies, and the northernmost tenement is located approximately 70 km northeast of Leonora. Prior exploration over the project area has focussed on gold, diamonds, and uranium. Tenements in the Project have been variably subjected to soil sampling, stream sampling, drilling, mapping, rock chip sampling and geophysical surveys.

Priority drilling targets have been identified in both project areas and the Company is well funded to undertake effective exploration programs.

The Company has an experienced Board and management team which is focused on discovery to increase value for Shareholders.

Competent Person's Statement

The information in this report that relates to gold exploration results is based on and fairly represents information compiled by Mr Ashley Bennett. Mr Bennett is the Gold Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Mr Bennett has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bennett consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

The information in this report that relates to lithium exploration results is based on and fairly represents information compiled by Ms Melissa McClelland. Ms McClelland is the Lithium Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Ms McClelland has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms McClelland consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

Disclosure

The information in this announcement is based on the following publicly available ASX announcements and Forrestania Resources IPO, which is available from https://www2.asx.com.au/

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

APPENDIX A - TENEMENT SCHEDULE

Project	Location	Tenement	Status	Equity at 30 June 2022	Changes During Quarter
Forrestania	Kondinin/Lake Grace	E 74/586	Live	100%	-
Forrestania	Kondinin/Lake Grace	E 74/591	Live	100%	-
Forrestania	Lake Grace	E 74/627	Live	100%	-
Forrestania	Kondinin	E 77/2313	Live	100%	-
Forrestania	Yilgarn	E 77/2364	Live	100%	-
Forrestania	Kondinin	E 77/2348	Live	100%	-
Forrestania	Kondinin /Yilgarn	E 77/2345	Live	100%	-
Forrestania	Kondinin	E 77/2346	Live	100%	-
Forrestania	Yilgarn	M 77/549	Live	100%	-
Forrestania	Kondinin	E 77/2575	Live	80%	-
Forrestania	Kondinin	E 77/2576	Live	80%	-
Forrestania	Kondinin	E 77/2701	Live	80%	-
Forrestania	Kondinin	P 77/4326	Live	100%	-
Forrestania	Kondinin	P 77/4325	Live	100%	-
Forrestania	Kondinin	E 77/2764	Live	0%	-
Forrestania	Kondinin	E 77/2637	Live	100%	-
Forrestania	Yilgarn	E 77/2819	Live	100%	-
Forrestania	Yilgarn	E 77/2872	Pending	0%	-
Forrestania	Yilgarn	E 77/2873	Pending	0%	-
Forrestania	Yilgarn	E 77/2905	Pending	0%	-
Forrestania	Kondinin	P 77/4600	Live	100%	-
Forrestania	Kondinin	E 77/2888	Pending	0%	-
Forrestania	Yilgarn	E 77/2926	Pending	0%	-
Southern Cross	Yilgarn	M 77/1266	Live	100%	-
Southern Cross	Yilgarn	P 77/4544	Live	100%	-
Southern Cross	Yilgarn	P 77/4546	Live	100%	-
Southern Cross	Yilgarn	E 77/2656	Live	100%	-
Southern Cross	Yilgarn	E 77/2676	Pending	0%	-
Southern Cross	Yilgarn	E 77/2830	Pending	0%	-
Southern Cross	Yilgarn	E 77/2832	Pending	0%	-
Leonora	Menzies	E 29/1158	Live	100%	Granted
Leonora	Leonora	E 37/1416	Live	100%	-
Leonora	Menzies	E 29/1103	Live	100%	-
Leonora	Menzies	E 29/1118	Live	100%	-
Leonora	Menzies	E 29/1119	Pending	0%	-
Leonora	Leonora /Laverton	E 39/2222	Pending	0%	-
Leonora	Leonora /Laverton	E 37/1438	Pending	0%	-
Leonora	Leonora	E 29/1215	Pending	0%	Applied for
Leonora	Leonora	E 29/1216	Pending	0%	Applied for

Appendix B – JORC table, table of soil sample and rock chip locations with selective results

Sample ID	Sample	North	East	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cu_ppm	Mo_ppm	Te_ppm
SS01193	SOIL	6868204	367630	2.1	0.04	8.7	0.45	18	52	1.68	0.07
SS01192	SOIL	6868204	367530	1.4	0.05	5.0	0.43	14	50	1.84	0.06
SS01191	SOIL	6868204	367430	1.5	0.04	4.8	0.46	14	42	1.74	0.07
SS01190	SOIL	6868204	367330	1.2	0.04	8.5	0.45	12	48	1.86	0.07
SS01189	SOIL	6868204	367230	1.5	0.05	8.3	0.46	12	49	1.80	0.07
SS01188	SOIL	6868204	367130	1.9	0.09	7.9	0.44	19	52	1.63	0.07
SS01187	SOIL	6868204	367030	1.1	0.06	4.1	0.44	24	45	1.67	0.06
SS01186	SOIL	6868204	366930	1.5	0.09	7.9	0.43	23	53	1.91	0.06
SS01185	SOIL	6868204	366830	1.0	0.11	7.4	0.46	28	64	1.89	0.08
SS01184	SOIL	6868404	366830	0.7	0.08	4.9	0.36	10	40	1.73	0.05
SS01183	SOIL	6868404	366930	0.8	0.03	4.2	0.47	18	46	1.49	0.06
SS01182	SOIL	6868404	367030	0.8	0.03	5.7	0.37	25	48	1.54	0.05
SS01181	SOIL	6868404	367130	1.5	0.04	5.9	0.42	21	58	1.77	0.06
SS01180	SOIL	6868404	367230	1.4	0.04	6.2	0.41	15	56	1.66	0.06
SS01179	SOIL	6868404	367330	0.7	0.04	4.4	0.41	12	47	1.75	0.06
SS01178	SOIL	6868404	367430	1.5	0.04	5.9	0.40	22	54	1.58	0.06
SS01177	SOIL	6868404	367530	1.3	0.05	6.7	0.40	17	56	1.59	0.07
SS01176	SOIL	6868404	367630	1.5	0.04	4.3	0.39	12	52	1.38	0.05
SS01175	SOIL	6868604	367630	1.5	0.03	4.1	0.36	22	45	1.48	0.06
SS01174	SOIL	6868604	367530	1.3	0.04	5.3	0.35	16	49	1.35	0.06
SS01173	SOIL	6868604	367430	2.0	0.04	5.8	0.41	19	67	1.34	0.06
SS01172	SOIL	6868604	367330	1.2	0.03	5.9	0.41	12	55	1.69	0.06
SS01171	SOIL	6868604	367230	1.5	0.04	5.9	0.40	23	53	1.59	0.06
SS01170	SOIL	6868604	367130	1.0	0.03	5.6	0.43	11	56	1.78	0.06
SS01169	SOIL	6868604	367030	1.1	0.03	5.6	0.42	13	53	1.72	0.06
SS01168	SOIL	6868604	366930	1.1	0.04	6.5	0.43	12	55	1.88	0.06
SS01167	SOIL	6868604	366830	1.0	0.03	5.0	0.40	12	54	1.60	0.06
SS01166	SOIL	6868804	366830	0.8	0.07	3.9	0.40	9	42	1.70	0.06
SS01165	SOIL	6868804	366930	0.9	0.03	6.0	0.42	18	54	1.73	0.06
SS01164	SOIL	6868804	367030	1.3	0.05	6.2	0.42	24	52	1.71	0.06
SS01163	SOIL	6868804	367130	1.1	0.02	5.6	0.39	15	54	1.41	0.06
SS01162	SOIL	6868804	367230	1.0	0.04	6.5	0.41	16	55	1.67	0.06
SS01161	SOIL	6868804	367330	1.0	0.06	6.2	0.41	15	59	1.65	0.06
SS01160	SOIL	6868804	367430	1.6	0.02	6.2	0.37	12	49	1.45	0.06
SS01159	SOIL	6868804	367530	1.7	0.03	7.3	0.38	22	41	1.50	0.05
SS01158	SOIL	6868804	367630	2.0	0.03	6.5	0.39	18	53	1.46	0.05
SS01157	SOIL	6871323	362858	4.1	0.02	3.7	0.19	3	18	0.73	0.03
SS01156	SOIL	6871323	362758	2.3	0.02	3.6	0.24	4	23	1.02	0.03
SS01155	SOIL	6871323	362658	1.8	0.02	4.6	0.35	5	26	1.42	0.04
SS01154	SOIL	6871323	362558	2.7	0.01	4.3	0.23	4	22	0.98	0.04
SS01153	SOIL	6871323	362458	2.1	0.02	1.8	0.24	7	18	1.15	0.03

Sample ID	Sample	North	East	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cu_ppm	Mo_ppm	Te_ppm
SS01152	SOIL	6871323	362358	1.8	0.02	4.3	0.19	5	20	0.88	0.04
SS01151	SOIL	6871323	362258	2.4	0.01		0.19	2	19	0.83	0.03
SS01150	SOIL	6871323	362158	4.2	0.02	0.6	0.12	5	17	0.55	0.02
SS01149	SOIL	6871323	362058	3.7	0.02	0.6	0.09	3	11	0.28	0.02
SS01148	SOIL	6871323	361958	2.9	0.01	1.1	0.10	2	11	0.34	0.02
SS01147	SOIL	6871523	361958	0.7	0.02	2.4	0.22	10	25	0.65	0.04
SS01146	SOIL	6871523	362058	4.3	0.02	4.8	0.19	7	38	0.79	0.04
SS01145	SOIL	6871523	362158	4.7	0.03	3.6	0.24	21	37	0.90	0.04
SS01144	SOIL	6871523	362258	4.1	0.02	4.1	0.20	8	21	0.61	0.04
SS01143	SOIL	6871523	362358	1.7	0.02	5.5	0.29	11	24	1.17	0.06
SS01142	SOIL	6871523	362458	10.4	0.02	4.4	0.23	5	20	0.90	0.04
SS01141	SOIL	6871523	362558	2.8	0.02	6.0	0.29	56	27	1.03	0.05
SS01140	SOIL	6871523	362658	2.4	0.02	2.5	0.29	12	26	0.90	0.05
SS01139	SOIL	6871523	362758	2.7	0.02	6.3	0.35	10	34	1.37	0.06
SS01138	SOIL	6871523	362858	1.9	0.02	7.1	0.34	11	29	1.21	0.06
SS01137	SOIL	6871723	362858	1.9	0.02	3.5	0.19	4	21	0.80	0.04
SS01136	SOIL	6871723	362758	4.2	0.03	2.0	0.32	6	32	1.28	0.05
SS01135	SOIL	6871723	362658	2.1	0.03	4.5	0.35	8	33	1.33	0.05
SS01134	SOIL	6871723	362558	2.4	0.03	6.9	0.32	7	32	1.40	0.05
SS01133	SOIL	6871723	362458	1.9	0.02	4.3	0.31	6	25	1.03	0.04
SS01132	SOIL	6871723	362358	1.6	0.03	6.3	0.33	8	26	1.43	0.05
SS01131	SOIL	6871723	362258	1.3	0.02	5.6	0.21	10	22	0.60	0.04
SS01130	SOIL	6871723	362158	2.2	0.01	4.9	0.23	9	18	0.65	0.04
SS01129	SOIL	6871723	362058	1.1	0.02	3.6	0.12	5	19	0.56	0.03
SS01128	SOIL	6871723	361958	0.8	0.08	7.3	0.30	29	35	1.18	0.05
SS01127	SOIL	6871923	361958	2.5	0.02		0.18	5	14	0.72	0.03
SS01126	SOIL	6871923	362058	3.1	0.01		0.21	6	21	0.69	0.03
SS01125	SOIL	6871923	362158	1.3	0.01	5.6	0.20	5	21	0.70	0.03
SS01124	SOIL	6871923	362258	0.9	0.01	5.8	0.23	8	22	0.57	0.04
SS01123	SOIL	6871923	362358	1.3	0.02	3.1	0.24	5	20	0.95	0.04
SS01122	SOIL	6871923	362458	1.9	0.02	5.3	0.27	5	24	1.10	0.04
SS01121	SOIL	6871923	362558	3.4	0.02	3.1	0.31	8	30	1.17	0.04
SS01120	SOIL	6871923	362658	2.3	0.01	6.2	0.33	14	28	1.24	0.05
SS01119	SOIL	6871923	362758	2.2	0.02	3.0	0.24	4	17	0.95	0.05
SS01118	SOIL	6871923	362858	1.5	0.03	3.4	0.21	4	19	0.85	0.04
SS01000	SOIL	6872123	364158	2.7	0.01	1.8	0.07	6	8	0.32	0.01
SS00999	SOIL	6872123	364258	2.0	0.02		0.21	6	18	0.76	0.02
SS00998	SOIL	6872523	364358	0.5	0.02	0.8	0.20	10	17	0.40	0.03
SS00997	SOIL	6872523	364458	0.7	0.02	3.1	0.21	8	18	0.62	0.03
SS00996	SOIL	6872523	364558	1.9	0.03	3.6	0.15	10	13	0.45	0.02
SS00995	SOIL	6872523	364658	1.1	0.06	3.9	0.23	12	24	0.99	0.03
SS00994	SOIL	6872523	364758	1.0	0.01		0.13	4	14	0.45	0.02
SS00993	SOIL	6872523	364858	0.6	0.05	4.5	0.19	8	19	0.57	0.02

Sample ID	Sample	North	East	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cu_ppm	Mo_ppm	Te_ppm
SS00992	SOIL	6872523	364958	1.1	0.03	3.5	0.38	25	33	1.08	0.04
SS00991	SOIL	6872523	365058	0.7	0.02	2.3	0.28	10	17	0.82	0.04
SS00990	SOIL	6872523	365158	1.7	0.04	2.8	0.38	10	24	0.81	0.03
SS00989	SOIL	6872523	365258	2.3	0.06	2.1	0.34	46	24	1.01	0.04
SS00988	SOIL	6872523	365358	1.8	0.06	2.9	0.41	54	23	1.09	0.05
SS00987	SOIL	6872523	365458		0.11	6.9	0.42	32	39	0.88	0.05
SS00986	SOIL	6872523	365558	2.2	0.13	6.1	0.36	25	38	0.68	0.03
SS00985	SOIL	6872523	365658	1.8	0.10	6.1	0.34	22	22	0.96	0.04
SS00984	SOIL	6872523	365758	1.5	0.04	3.2	0.44	32	25	1.21	0.04
SS00983	SOIL	6872523	365858	1.5	0.13	4.1	0.20	12	27	0.48	0.02
SS00982	SOIL	6872523	365958	1.9	0.08	6.9	0.37	28	33	1.22	0.06
SS00981	SOIL	6872923	364558	1.6	0.01	2.3	0.07	2	6	0.16	0.01
SS00980	SOIL	6872923	364658		0.02	5.2	0.18	5	17	0.42	0.03
SS00979	SOIL	6872923	364758	1.1	0.01		0.24	11	37	0.78	0.03
SS00978	SOIL	6872923	364858	1.3	0.04	0.5	0.18	10	14	0.47	0.02
SS00977	SOIL	6872923	364958	2.3	0.03	7.8	0.23	6	20	1.15	0.03
SS00976	SOIL	6872923	365058	0.5	0.02	5.6	0.23	6	17	0.71	0.03
SS00975	SOIL	6872923	365158		0.02	5.9	0.24	4	18	0.84	0.03
SS00974	SOIL	6872923	365258		0.03	5.3	0.31	8	21	0.81	0.04
SS00973	SOIL	6872923	365358	1.3	0.09	3.6	0.33	16	23	0.63	0.04
SS00972	SOIL	6872923	365458	1.5	0.03	4.9	0.37	6	24	1.50	0.05
SS00971	SOIL	6872923	365558	0.7	0.07	4.6	0.23	6	18	0.94	0.03
SS00970	SOIL	6872923	365658	1.2	0.09	6.1	0.34	23	24	1.32	0.04
SS00969	SOIL	6872923	365758	1.4	0.08	6.1	0.37	54	48	1.36	0.05
SS00968	SOIL	6872923	365858	1.0	0.13	7.1	0.39	29	34	1.14	0.04
SS00967	SOIL	6872923	365958	1.0	0.07	6.8	0.34	21	22	1.02	0.04
SS00966	SOIL	6872923	366058	2.2	0.09	6.9	0.40	26	37	1.31	0.06
SS00965	SOIL	6873323	366258		0.10	6.5	0.40	98	46	0.99	0.06
SS00964	SOIL	6873323	366158	0.6	0.06	6.8	0.40	48	30	1.33	0.05
SS00963	SOIL	6873323	366058	1.3	0.12	6.5	0.57	45	54	1.02	0.09
SS00962	SOIL	6873323	365958	1.2	0.06	7.8	0.40	99	51	1.17	0.06
SS00961	SOIL	6873323	365858	1.9	0.07	7.9	0.32	49	35	1.04	0.03
SS00960	SOIL	6873323	365758	2.3	0.12	3.1	0.44	46	32	1.01	0.04
SS00959	SOIL	6873323	365658	1.9	0.08	6.8	0.38	44	37	1.11	0.05
SS00958	SOIL	6873323	365558	1.1	0.07	10.1	0.41	45	30	1.38	0.05
SS00957	SOIL	6873323	365458	2.7	0.04	7.1	0.31	47	30	1.22	0.04
SS00956	SOIL	6873323	365358	2.9	0.03	6.6	0.24	9	21	0.54	0.03
SS00955	SOIL	6873323	365258	1.8	0.01		0.08	3	9	0.44	0.01
SS00954	SOIL	6873323	365158		0.01	6.4	0.16	7	16	0.58	0.03
SS00953	SOIL	6873323	365058	0.6	0.01	7.0	0.22	5	18	0.79	0.03
SS00952	SOIL	6873323	364958	0.8	0.02	7.4	0.20	11	19	0.60	0.03
SS00951	SOIL	6873323	364858	3.4	0.06	14.0	0.09	4	13	0.28	0.02
SS00950	SOIL	6873723	364858	2.0	0.02	2.1	0.14	8	16	0.44	0.02

Sample ID	Sample	North	East	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cu_ppm	Mo_ppm	Te_ppm
SS00949	SOIL	6873723	364958	2.5	0.02	7.5	0.25	6	23	1.33	0.03
SS00948	SOIL	6873723	365058	1.4	0.02	6.1	0.29	9	23	0.76	0.04
SS00947	SOIL	6873723	365158	1.1	0.01	7.7	0.36	8	25	1.19	0.05
SS00946	SOIL	6873723	365258	2.9	0.02	7.5	0.54	20	21	0.90	0.03
SS00945	SOIL	6873723	365358	2.3	0.08	9.0	0.32	50	50	0.96	0.04
SS00944	SOIL	6873723	365458		0.01	7.5	0.27	9	23	0.67	0.03
SS00943	SOIL	6873723	365558	1.1	0.04	6.9	0.31	11	23	1.07	0.04
SS00942	SOIL	6873723	365658	1.0	0.02	4.5	0.16	3	14	0.55	0.02
SS00941	SOIL	6873723	365758	2.4	0.04	5.7	0.36	5	21	1.15	0.02
SS00940	SOIL	6873723	365858	1.4	0.03	2.9	0.21	5	19	0.93	0.02
SS00939	SOIL	6873723	365958	1.3	0.03	4.6	0.19	5	15	0.75	0.02
SS00938	SOIL	6873723	366058	2.8	0.10	7.5	0.33	123	40	1.09	0.04
SS00937	SOIL	6873723	366158	1.5	0.09	4.4	0.39	49	27	0.79	0.03
SS00936	SOIL	6873723	366258	0.8	0.08	7.0	0.47	52	35	1.17	0.06
SS00935	SOIL	6873723	366358	1.4	0.05	5.3	0.40	55	30	0.94	0.05
SS00934	SOIL	6873723	366458	0.9	0.11	2.6	0.37	63	20	0.61	0.02
SS00933	SOIL	6874123	366458	1.3	0.07	1.9	0.38	48	97	0.77	0.05
SS00932	SOIL	6874123	366358	1.7	0.08	8.3	0.49	31	28	1.10	0.04
SS00931	SOIL	6874123	366258	1.9	0.04	7.8	0.16	9	17	0.32	0.02
SS00930	SOIL	6874123	366158	1.7	0.03	5.1	0.23	9	26	0.93	0.03
SS00929	SOIL	6874123	366058	2.3	0.03	6.8	0.30	12	27	0.91	0.04
SS00928	SOIL	6874123	365958	2.1	0.03	3.6	0.20	8	22	0.80	0.02
SS00927	SOIL	6874123	365858	1.2	0.03	3.1	0.58	9	24	1.03	0.04
SS00926	SOIL	6874123	365758	0.8	0.02	3.9	0.21	4	19	0.93	0.02
SS00925	SOIL	6874123	365658	1.9	0.06	4.0	0.19	18	19	0.58	0.04
SS00924	SOIL	6874123	365558	0.7	0.03	4.1	0.23	6	21	0.90	0.03
SS00923	SOIL	6874123	365458	1.6	0.08	4.0	0.20	13	22	0.75	0.03
SS00922	SOIL	6874123	365358	2.0	0.03	1.4	0.21	8	26	1.06	0.03
SS00921	SOIL	6874123	365258	1.2	0.05	2.1	0.31	29	27	0.98	0.04
SS00920	SOIL	6874123	365158	1.7	0.03	5.3	0.29	29	24	0.94	0.03
SS00919	SOIL	6874123	365058	1.5	0.04	5.6	0.32	28	31	1.18	0.05
SS00918	SOIL	6874123	364958	1.3	0.02	3.0	0.36	14	27	1.04	0.05
SS00917	SOIL	6874523	365058	1.6	0.02	6.0	0.34	8	29	1.62	0.07
SS00916	SOIL	6874523	365158	1.3	0.01	6.6	0.27	9	23	2.68	0.04
SS00915	SOIL	6874523	365258	1.8	0.04	4.9	0.29	9	24	1.17	0.04
SS00914	SOIL	6874523	365358	1.2	0.05	6.5	0.30	35	31	1.07	0.05
SS00913	SOIL	6874523	365458		0.06	5.9	0.33	53	37	1.54	0.05
SS00912	SOIL	6874523	365558	1.4	0.04	3.5	0.23	12	24	0.55	0.04
SS00911	SOIL	6874523	365658	1.8	0.06	5.6	0.28	16	31	0.58	0.03
SS00910	SOIL	6874523	365758	1.0	0.03	3.6	0.17	12	19	0.45	0.02
SS00909	SOIL	6874523	365858	1.4	0.02	2.9	0.25	7	18	0.65	0.04
SS00908	SOIL	6874523	365958	1.4	0.02	4.9	0.30	10	23	1.16	0.04
SS00907	SOIL	6874523	366058	1.2	0.03	4.3	0.23	10	22	0.61	0.04

Sample ID	Sample	North	East	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cu_ppm	Mo_ppm	Te_ppm
SS00906	SOIL	6874523	366158	1.7	0.02	5.2	0.30	9	25	1.10	0.04
SS00905	SOIL	6874523	366258	2.1	0.06		0.27	24	30	4.23	0.03
SS00904	SOIL	6874523	366358	0.9	0.04	3.6	0.31	53	28	0.91	0.04
SS00903	SOIL	6874523	366458	1.3	0.04	6.4	0.35	39	30	1.28	0.04
SS00902	SOIL	6874523	366558	1.4	0.04	4.4	0.35	10	35	0.98	0.03
SS00901	SOIL	6874923	366658	2.8	0.03	5.6	0.31	22	36	1.10	0.05
SS00900	SOIL	6874923	366558	1.5	0.11	7.1	0.43	31	52	1.27	0.05
SS00899	SOIL	6874923	366458	1.1	0.04	7.0	0.35	31	47	1.30	0.05
SS00898	SOIL	6874923	366358	2.3	0.02	7.8	0.30	11	30	0.94	0.04
SS00897	SOIL	6874923	366258	3.2	0.03	6.0	0.32	5	24	0.61	0.02
SS00896	SOIL	6874923	366158	1.1	0.04	5.0	0.28	20	29	1.07	0.03
SS00895	SOIL	6874923	366058	2.5	0.01	5.4	0.25	9	28	0.76	0.04
SS00894	SOIL	6874923	365958	1.6	0.03	5.1	0.27	9	29	1.03	0.03
SS00893	SOIL	6874923	365858	3.5	0.03	5.8	0.32	8	24	1.30	0.05
SS00892	SOIL	6874923	365758	1.6	0.02	5.9	0.27	13	28	0.97	0.05
SS00891	SOIL	6874923	365658	0.7	0.03	6.2	0.31	10	29	1.52	0.04
SS00890	SOIL	6874923	365558		0.02	4.4	0.25	15	24	1.07	0.04
SS00889	SOIL	6874923	365458	0.8	0.03	3.7	0.24	11	17	1.06	0.04
SS00888	SOIL	6874923	365358		0.02	6.8	0.32	9	24	1.17	0.05
SS00887	SOIL	6874923	365258	0.9	0.04	5.0	0.28	11	25	0.72	0.04
SS00886	SOIL	6874923	365158	0.7	0.02	4.8	0.23	10	19	0.64	0.04
SS00885	SOIL	6875323	365258	4.7	0.03	3.9	0.29	16	40	0.91	0.03
SS00884	SOIL	6875323	365358	2.7	0.04	5.3	0.35	13	39	1.18	0.05
SS00883	SOIL	6875323	365458	3.9	0.03	6.7	0.30	17	24	0.75	0.05
SS00882	SOIL	6875323	365558	1.8	0.04	6.3	0.30	21	36	1.28	0.04
SS00881	SOIL	6875323	365658	1.6	0.04	4.6	0.21	10	21	0.92	0.03
SS00880	SOIL	6875323	365758	3.3	0.06	5.4	0.29	20	35	0.98	0.05
SS00879	SOIL	6875323	365858	2.3	0.03	3.3	0.16	5	15	0.61	0.04
SS00878	SOIL	6875323	365958	1.8	0.03	5.7	0.32	13	31	1.15	0.04
SS00877	SOIL	6875323	366058	3.1	0.02	6.2	0.34	15	34	1.17	0.05
SS00876	SOIL	6875323	366158	2.9	0.02	4.7	0.30	9	37	0.78	0.04
SS00875	SOIL	6875323	366258	2.6	0.02	3.0	0.27	8	29	0.71	0.05
SS00874	SOIL	6875323	366358	1.8	0.06	5.9	0.28	18	34	0.76	0.04
SS00873	SOIL	6875323	366458	0.9	0.05	6.3	0.40	28	38	1.28	0.07
SS00872	SOIL	6875323	366558		0.09	7.0	0.32	30	45	1.22	0.05
SS00871	SOIL	6875323	366658	1.9	0.04	6.4	0.38	21	37	1.52	0.06
SS00870A	SOIL	6875323	366758	1.9	0.03	3.7	0.31	13	31	0.92	0.05
SS00870	SOIL	6875723	366658	6.3	0.12	6.7	0.28	9	27	0.78	0.04
SS00869	SOIL	6875723	366558	4.7	0.02	5.7	0.28	9	32	0.87	0.05
SS00868	SOIL	6875723	366458	3.2	0.03	6.8	0.38	13	33	1.30	0.05
SS00867	SOIL	6875723	366358	1.5	0.03	5.5	0.30	11	35	1.15	0.05
SS00866	SOIL	6875723	366258	2.1	0.02	5.0	0.29	20	35	1.06	0.05
SS00865	SOIL	6875723	366158	2.1	0.04	5.6	0.34	14	37	1.38	0.05

Sample ID	Sample	North	East	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cu_ppm	Mo_ppm	Te_ppm
SS00864	SOIL	6875723	366058	2.5	0.03	5.4	0.31	18	40	1.24	0.04
SS00863	SOIL	6875723	365958	1.9	0.04	5.1	0.37	12	35	1.52	0.06
SS00862	SOIL	6875723	365858	2.7	0.02	3.8	0.26	9	27	0.84	0.03
SS00861	SOIL	6875723	365758	2.6	0.01	5.2	0.29	11	34	1.27	0.04
SS00860	SOIL	6875723	365658	2.2	0.02	5.4	0.26	13	32	1.30	0.04
SS00859	SOIL	6875723	365558	2.5	0.02	4.4	0.27	5	29	1.21	0.03
SS00858	SOIL	6875723	365458	2.7	0.02	3.7	0.23	7	27	1.09	0.03
SS00857	SOIL	6875723	365358	1.6	0.01	3.2	0.18	2	20	0.81	0.02
SS00856	SOIL	6875723	365258	6.3	0.06	5.3	0.25	13	23	1.14	0.03
SS00855	SOIL	6871723	364058	1.5	0.05	4.5	0.25	28	23	1.09	0.03
SS00854	SOIL	6871723	364158	0.8	0.02	2.2	0.16	5	13	0.72	0.03
SS00853	SOIL	6871723	364258		0.03	0.6	0.06	3	9	0.19	0.01
SS00852	SOIL	6871723	364358		0.07		0.24	42	14	0.81	0.02
SS00851	SOIL	6871723	364458	1.0	0.05	5.0	0.33	51	20	1.22	0.04
SS00850	SOIL	6871723	364558	0.8	0.04	3.5	0.19	15	20	0.62	0.03
SS00849	SOIL	6871723	364658	1.7	0.03	3.0	0.21	11	24	0.82	0.02
SS00848	SOIL	6871723	364758	1.6	0.05	5.2	0.36	17	26	1.38	0.04
SS00847	SOIL	6872123	364358	0.6	0.02	3.1	0.23	10	19	0.71	0.03
SS00846	SOIL	6872123	364458	0.9	0.03	3.4	0.21	9	19	0.78	0.03
SS00845	SOIL	6872123	364558	1.7	0.05	6.4	0.35	43	28	1.23	0.05
SS00844	SOIL	6872123	364658	0.6	0.06	2.8	0.45	68	23	1.26	0.04
SS00843	SOIL	6872123	364758	1.2	0.05	5.0	0.40	32	37	1.27	0.05
SS00842	SOIL	6872123	364858	1.1	0.06	5.8	0.32	35	20	1.25	0.04
SS00841	SOIL	6872123	364958	1.0	0.08	4.2	0.35	45	21	1.13	0.05
SS00840	SOIL	6872123	365058	1.1	0.11	3.9	0.40	24	33	1.24	0.06
SS00839	SOIL	6872123	365158	2.6	0.05		0.51	23	12	0.57	0.02
SS00838	SOIL	6872123	365258	2.5	0.12	3.5	0.34	27	36	1.14	0.04
SS00837	SOIL	6872123	365358	3.2	0.10	6.9	0.34	27	27	1.52	0.05
SS00836	SOIL	6872123	365458	1.0	0.09	6.4	0.37	27	25	1.20	0.04
SS00835	SOIL	6871723	365558	2.4	0.05	4.7	0.33	21	25	1.49	0.05
SS00834	SOIL	6871723	365458	2.2	0.09	5.5	0.36	22	25	1.36	0.05
SS00833	SOIL	6871723	365358	0.5	0.12	5.7	0.40	24	27	1.25	0.06
SS00832	SOIL	6871723	365258	2.2	0.07	6.5	0.41	26	37	1.79	0.07
SS00831	SOIL	6871723	365158	0.9	0.13	6.4	0.40	28	36	1.23	0.07
SS00830	SOIL	6871723	365058	1.4	0.07	5.1	0.31	41	25	1.11	0.04
SS00829	SOIL	6871723	364958	1.8	0.05	5.1	0.43	26	22	0.91	0.04
SS00828	SOIL	6871723	364858	2.8	0.09	4.7	0.33	67	29	0.96	0.05
SS00827	SOIL	6871323	365358	1.7	0.06	5.2	0.40	18	33	1.26	0.06
SS00826	SOIL	6871323	365258		0.11	7.7	0.35	21	23	0.98	0.04
SS00825	SOIL	6871323	365158	4.4	0.14	8.2	0.42	22	29	1.04	0.07
SS00824	SOIL	6871323	365058	1.2	0.05	7.3	0.44	27	32	1.57	0.07
SS00823	SOIL	6871323	364958	1.8	0.06	5.7	0.38	14	35	1.43	0.05
SS00822	SOIL	6871323	364858	-	0.08	6.6	0.41	15	34	1.19	0.06

Sample ID	Sample	North	East	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cu_ppm	Mo_ppm	Te_ppm
SS00821	SOIL	6871323	364758	1.2	0.03	5.0	0.32	15	30	0.93	0.05
SS00820	SOIL	6871323	364658		0.04	5.9	0.32	16	32	1.00	0.04
SS00819	SOIL	6871323	364558	0.5	0.07	1.1	0.33	13	28	0.99	0.03
SS00818	SOIL	6871323	364458	0.8	0.03	2.3	0.30	10	24	0.94	0.03
SS00817	SOIL	6871323	364358	1.7	0.05	6.6	0.32	11	33	1.04	0.04
SS00816	SOIL	6871323	364258	3.0	0.08	6.9	0.44	26	31	1.27	0.05
SS00815	SOIL	6871323	364158	0.8	0.07	4.4	0.33	12	32	1.12	0.03
SS00814	SOIL	6871323	364058	4.5	0.11	7.4	0.71	25	80	1.70	0.06
SS00813	SOIL	6871323	363958	1.4	0.13	5.8	0.50	12	157	2.03	0.04
SS00812	SOIL	6871323	363858	3.0	0.16	5.6	0.70	12	478	3.05	0.05
SS00811	SOIL	6871323	363758	2.3	0.05	1.7	0.38	21	49	1.22	0.04
SS00810	SOIL	6870923	363758	1.7	0.05	5.1	0.24	11	37	0.59	0.03
SS00809	SOIL	6870923	363858	3.1	0.12	5.0	0.27	7	50	1.21	0.04
SS00808	SOIL	6870923	363958		0.04	1.4	0.24	7	34	0.80	0.03
SS00807	SOIL	6870923	364058	1.1	0.04	6.9	0.30	22	59	1.06	0.04
SS00806	SOIL	6870923	364158	2.1	0.10	5.5	0.47	9	63	1.53	0.04
SS00805	SOIL	6870923	364258		0.07	5.7	0.39	24	33	1.44	0.05
SS00804	SOIL	6870923	364358	2.4	0.06	7.5	0.40	30	39	1.24	0.06
SS00803	SOIL	6870923	364458	2.6	0.13	6.2	0.48	32	67	1.23	0.06
SS00802	SOIL	6870923	364558	1.2	0.05	3.1	0.36	12	30	1.13	0.05
SS00801	SOIL	6870923	364658		0.05	5.9	0.40	21	38	1.18	0.05
SS00800	SOIL	6870923	364758	2.9	0.08	6.9	0.50	31	36	1.08	0.05
SS00799	SOIL	6870923	364858	1.2	0.03	5.5	0.40	25	41	1.16	0.05
SS00798	SOIL	6870923	364958	0.8	0.10	4.6	0.41	25	41	1.39	0.04
SS00797	SOIL	6870923	365058	3.5	0.05	3.3	0.39	21	44	1.00	0.04
SS00796	SOIL	6870923	365158	6.4	0.08	2.1	0.39	41	30	1.03	0.04
SS00795	SOIL	6870923	365258	2.0	0.07	4.7	0.39	34	36	1.30	0.05
FR000446	ROCK	6873187	362447				0.01		2	0.38	
FR000445	ROCK	6873224	362432		0.01	0.6	0.01		2	0.50	
FR000444	ROCK	6873331	362389	2.0			0.01		1	0.31	-
FR000443	ROCK	6872726	365205	-	0.01		0.02	1	2	0.35	-
FR000442	ROCK	6872669	365185				0.27	1	1	0.39	-
FR000441	ROCK	6872554	365131				0.01		1	0.49	
FR000440	ROCK	6872441	365082		0.01		0.03		2	0.94	
FR000439	ROCK	6872312	365028		0.01		0.04		2	0.75	
FR000438	ROCK	6872237	364878				0.08	1	3	0.43	
FR000437	ROCK	6872931	364608		0.02		0.06		1	0.62	
FR000436	ROCK	6874211	365439		0.06		4.05		2	3.10	0.05
FR000435	ROCK	6874221	365444		0.04		0.93	1	3	0.42	
FR000434	ROCK	6874145	365396		0.10		0.10	1	7	0.57	0.29
FR000433	ROCK	6874067	365330		0.03		0.08	3	11	0.96	
FR000432	ROCK	6874054	365337	1.0	0.03	1.6	0.45	6	70	3.00	
FR000431	ROCK	6873922	365253				2.61	2	8	0.97	0.77

Sample ID	Sample	North	East	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cu_ppm	Mo_ppm	Te_ppm
FR000430	ROCK	6873698	365120				0.59	1	2	0.33	
FR000429	ROCK	6873653	365096		0.05		5.02	1	3	0.29	
FR000428	ROCK	6873650	365089		0.04		6.34	1	2	0.37	
FR000427	ROCK	6873575	365038		0.02		0.24		1	0.53	
FR000426	ROCK	6873304	364743	3.0	0.41		0.77	1	5	0.80	0.11
FR000400	ROCK	6873737	366339		0.01	0.6	0.04	1	3	0.14	
FR000399	ROCK	6873731	366341		0.10	0.7	0.13	10	17	0.17	
FR000398	ROCK	6873731	366341		0.03	0.6	0.17	14	34	0.16	
FR000397	ROCK	6872529	364374		0.02	0.6	0.01		1	0.22	
FR000394	ROCK	6874751	366669		0.01	0.5	0.01		1	0.16	
FR000383	ROCK	6872676	365188	1.0		0.5	0.11	1	3	0.14	
FR000382	ROCK	6872517	364370		0.01	0.7	0.10		1	0.20	
FR000381	ROCK	6873658	365096		0.10	0.6	5.68	1	2	0.17	
FR000380	ROCK	6870919	364470		0.02	0.7	0.01	1	4	0.13	
FR000080	ROCK	6871110	364693				0.07	1	5	1.30	
FR000079	ROCK	6870972	364271					1	2	1.40	
FR000078	ROCK	6870974	364264					1	3	1.90	
FR000077	ROCK	6870915	363323					1	4	1.30	
FR000076	ROCK	6870953	363230						2	1.10	
FR000075	ROCK	6871487	363465				0.01	1	3	0.50	
FR000074	ROCK	6871585	363838					1	13	1.20	
FR000073	ROCK	6871752	365051						2	1.20	
FR000072	ROCK	6872282	365160				0.08	1	3	1.20	
FR000071	ROCK	6872261	365151				0.20	1	2	2.00	0.20
FR000070	ROCK	6872246	365142	3.0	0.11		0.32	1	2	1.70	0.30
FR000069	ROCK	6872234	365136				0.13	1	2	1.00	
FR000068	ROCK	6872110	364942				0.02	1	2	1.10	
FR000067	ROCK	6872115	364910				0.01	1	2	1.10	
FR000066	ROCK	6872104	364908				0.02	1	2	1.00	
FR000065	ROCK	6874138	366750				0.01	1	2	1.40	
FR000064	ROCK	6873948	366659	1.0				1	2	1.20	
FR000063	ROCK	6873540	366714				0.01		2	0.50	
FR000062	ROCK	6873539	366721				0.02	1	2	1.40	
FR000061	ROCK	6873522	366740						1	1.60	
FR000060	ROCK	6873426	367165				0.02	1	2	0.60	
FR000059	ROCK	6873316	366934					1	2	1.10	
FR000058	ROCK	6873310	366939					1	2	1.40	
FR000057	ROCK	6873396	364159						2	1.40	
FR000056	ROCK	6873176	364475						2	1.10	
FR000055	ROCK	6873300	365447						2	1.30	
FR000054	ROCK	6873396	365571					1	3	1.20	
FR000053	ROCK	6873381	365040				0.02		2	1.10	
FR000052	ROCK	6873301	364739	32.0	0.37		0.42	1	3	1.20	0.20

Sample ID	Sample	North	East	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cu_ppm	Mo_ppm	Te_ppm
FR000051	ROCK	6873290	364638			1.0	0.05	3	18	1.30	
FR000050	ROCK	6873378	364344		0.10	1	0.16	1	2	0.90	
FR000049	ROCK	6873808	364406				0.03	1	3	0.40	
FR000048	ROCK	6873620	365067		-	1	0.06	1	2	1.10	
FR000047	ROCK	6873665	365102	1.0	0.20	-	24.35	1	3	0.90	
FR000046	ROCK	6873941	365266	4.0	-	1	6.33	12	6	1.40	1.80
FR000045	ROCK	6873951	365545		-	1	0.02	1	3	0.80	
FR000044	ROCK	6874315	365727		0.14	-	0.04	1	2	1.60	
FR000043	ROCK	6874428	365761		0.14		0.01	1	3	1.50	
FR000042	ROCK	6874536	365789		0.25		0.01		2	1.30	
FR000041	ROCK	6874645	365818	2.0	-	1	0.06	-	2	1.00	
FR000040	ROCK	6874726	365742				0.16		2	0.70	
FR000039	ROCK	6874746	365761		-	1	0.09	-	2	0.90	
FR000038	ROCK	6875006	364997				0.03		2	1.50	
FR000037	ROCK	6874923	364972				0.09	1	3	1.30	
FR000036	ROCK	6874835	364950				0.08		1	1.20	
FR000035	ROCK	6874031	362742				0.02		2	1.20	
FR000033	ROCK	6871708	362247		0.07		0.05		8	1.40	
FR000032	ROCK	6872193	362801				0.15	1	2	2.30	
FR000031	ROCK	6872791	362445		-	1	0.01	-	2	1.00	
FR000030	ROCK	6873408	362120			-			2	1.20	
FR000029	ROCK	6873407	362137						2	1.20	
FR000028	ROCK	6873350	362142					1	3	0.90	
FR000027	ROCK	6873332	362123						2	1.00	
FR000026	ROCK	6873317	362393	3.0			0.01		2	0.90	
FR000025	ROCK	6873362	362536				0.02	2	10	0.80	
FR000024	ROCK	6873477	362565			2.0	0.10	5	71	0.30	
FR000023	ROCK	6873516	362606	5.0			0.01	1	3	0.50	
FR000022	ROCK	6873419	362888			2.0	0.04	2	6	0.50	
FR000021	ROCK	6873361	362813					4	3	0.10	
FR000020	ROCK	6873005	363325				0.04	1	2	1.20	
FR000019	ROCK	6873016	363332				0.03	1	3	1.10	
FR000018	ROCK	6873061	363683						2	0.80	

Table 1: All geochemical results of the elements referred to in this announcement ("-" represents Au<0.5ppb, Ag<0.01ppm, As<0.5ppm, Bi<0.01ppm, Co<1ppm Te<0.01ppm). (Coordinates are in grid MGA94 $_{-}$ 51)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensuresample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisationthat are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusualcommodities or mineralisation types (e.g. submarine nodules) may warrant disclosure ofdetailed information. 	 Rock and grab samples were taken during mapping campaigns to the FRS Eastern Goldfields project. Samples (~2-3kg) were taken by a field geologist from prospective lithologies from in situ structures and "float" material. All sample information, including lithological descriptions and GPS coordinates were recorded during the sample collection. Individual samples were bagged in calico bags and sent to Genalysis for analysis, using aqua regia AR25/MS53 analysis. Samples were also sent to Minanalytical for analysis, using their aqua regia AR2520 suite. Soil samples were sieved to ~2mm in the field and submitted to Labwest Minerals Analysis Pty Ltd. laboratory in Perth. The ultrafine soil samples from Forrestania Resources utilises the latest advanced technologies for geochemical mapping and targeting. As a commercial partner and sponsor of the CSIRO/MRIWA Project M462 "Multiscaled near surface exploration using ultrafine soils", Labwest assisted in the development of the Ultrafine process The Ultrafine technique is designed to analyse the clay sized fraction (<2µm) for gold exploration, and multi-element analysis for major and trace elements, salinity (EC) and pH, and clay mineralogy. Soil samples were collected by a two-man team of Forrestania Resources contractors, led by a Geologist and submitted to Labwest utilizing their UFF-PE analysis method.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	FRS did not conduct any drilling activities and no drilling by FRS drilling results are reported in this announcement.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement.

Criteria	JORC Code Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Rock and grab samples were taken during mapping campaigns to the FRS Eastern Goldfields project. Samples (~2-3kg) were taken by a field geologist from prospective lithologies from in situ structures and "float" material. All sample information, including lithological descriptions and GPS coordinates were recorded during the sample collection. Individual rock chip samples were bagged in calico bags and sent to Genalysis for analysis, using aqua regia AR25/MS53 analysis. Samples were also sent to Minanalytical for analysis, using their aqua regia AR2520 suite, utilizing Genalysis' and Minanalytical's industry standard QAQC procedures. Soil samples were sieved to ~2mm in the field, placed in paper sample bags and submitted to Labwest Minerals Analysis Pty Ltd. laboratory in Perth. The Ultrafine technique is designed to analyse the clay sized fraction (<2µm) for gold exploration, and multi-element analysis for major and trace elements, salinity (EC) and pH, and clay mineralogy. Samples were collected by a two-man team of Forrestania Resources contractors, led by a Geologist and submitted to Labwest utilizing their UFF-PE analysis method and Labwest's indutrsy standard QAQC procedures. Samplers were trained in best practice techniques including: avoiding contamination by cleaning sampling equipment between samples, avoid cross contamination by removing jewellery during sampling and ensuring a representative sample is taken by taking several shovel scoops from the base of the hole and sieving out large soil fragments.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 Individual samples were bagged in calico bags and sent to Genalysis for analysis, using aqua regia AR25/MS53 analysis. Samples were also sent to Minalytical for analysis, using their aquq regia AR2520 suite, utilizing Genalysis' and Minanalytical's industry standard QAQC procedures. Individual soil samples were bagged in paper sample bags and analysed using Labwest's UFF-PE suite.

Criteria	JORC Code Explanation	Commentary
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, grind checks and repeat analyses are standard procedure. Geophysical survey information: Survey completed by Magspec in January/February 2022. Aircraft Type - Cessna 210, registration: VH-HHJ Traverse line spacing: 50m (090-270) Sensor height: 30m Acquisition System: Sample rates up to 20 Hz Integrated Novatel OEM GPS receiver providing positional information that is used to tag incoming data streams in addition to providing pilot navigation guidance High precision caesium vapour magnetometer Visual real time on-screen system monitoring / error messages to limit refights due to equipment failure Magnetometers: Geometrics G-823A tail sensor, mounted in a stinger housing. Sensor Type - Cesium vapour Resolution - 0.001 nT Sensitivity - 0.01 nT Sample Rate - 20 Hz (≈3.5 metre sample interval) Compensation - 3-axis fluxgate magnetometer Gamma-Ray Spectrometer: RSI RS-500 gamma-ray spectrometer, incorporating 2x RSX-4 detector packs. Total Crystal Volume - 32 L Channels - 1024 Sample Rate - 2 Hz (≈35 metre sample interval) Multi-peak automatic gain stabilisation Altimeters: Bendix/King KRA 405 radar altimeter. Resolution - 0.3 m Sample Rate - 20 Hz Range - 0-760 m Renishaw ILM-500-R laser altimeter: Resolution - 0.00 m Renishaw ILM-500 R laser altimeter: Range - 0-760 m Renishaw ILM-500 M laser altimeter: Renge - 0-500 m

Criteria	JORC Code Explanation	Commentary
		 Base Station Magnetometers: GEM GSM-19 Overhauser / Scintrex ENVIMAG proton precession. Resolution - 0.01 / 0.1 nT Accuracy - 0.1 / 0.5 hT Sample Rate - 1.0 / 0.5 Hz The GEM GSM-19 sampling at 1 second was used for all corrections. Global Positioning System: NovAtel OEM 719 DGPS Receiver. Channels - 555 Signal Tracking - L1/L2 + GLONASS Multi Frequency Positional Accuracy - 0.4 m RMS (NovAtel CORRECT) Sample Rate - 2 Hz Navigation information supplied to the pilot via an LCD steering indicator. All data were synchronised to a one pulse per second triggered by the GPS time. A compensation box was flown prior to survey. The compensation consisted of a series of pitch, roll and yaw manoeuvres in reciprocal survey headings at high altitude. The measured output from the 3-axis fluxgate magnetometer was recorded and used to resolve a compensation solution. This solution was applied when post-compensating all survey magnetometer data to remove manoeuvre effects and heading error. GPS accuracy tests were performed by accumulating GPS readings for approximately 5 minutes whilst the aircraft was static. All readings (X, Y, Z) were within 2 meters. Prior to commencement of survey production, the radar altimeter was checked for linearity by way of a swoop test over flat terrain. During survey, the pilot monitored system health from prompts on the navigation screen. The diurnal base stations were monitored by ground crew. Geophysical data processed and interpreted by Southern Geoscience Consultants.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Data results have been verified by FRS geologists. Follow up work around anomalies is planned for the near future to confirm further anomalous samples. All individual data points were recorded on a Garmin GPS in the field, this data has now been transferred to the FRS database.

Criteria	JORC Code Explanation	Commentary
	Discuss any adjustment to assay data.	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	A hand-held Garmin GPS was used to confirm the coordinates for all samples. Sample coordinates are recorded in GDA94, MGA zone 51.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Rock chip samples were taken of surface outcrops, The samples were irregularly spaced and distributed - the sampling is inherently irregular, due to the irregular nature of the outcropping structures. No sampling compositing has taken place of any samples. Soil samples were taken on a grid pattern with 400m spaced lines (occasionally 200m spaced lines) and samples taken every 100m along those lines.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The rock chip sampling is inherently irregular, due to the irregular nature of the outcropping structures. No orientation based sampling bias is known to have occurred. Soil samples were taken on a grid pattern with 400m spaced lines (occasionally 200m spaced lines) and samples taken every 100m along those lines; this grid was designed to run approximately perpendicular to the known greenstone belt orientation in the region.
Sample security	The measures taken to ensure sample security.	The FRS rock chip and soil sampling was undertaken by field staff contracted to FRS – both of whom delivered the samples to the labs with no third party having access to the samples.
Audits or reviews	The sampling methods being used are industry standard practice.	 All sampling data reported in this announcement was assayed by Genalysis, Minanalytical and Labwest using industry best practice. Forrestania Resources have not completed any external audits or reviews of the sampling techniques and data of the historical drilling or the FRS rock chips. Southern Geoscience Consultants were contracted by FRS to complete a geological interpretation of the geophysical data. Magspec completed the aeromagnetic geophysical survey using industry standard practice.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Mineral tenementand land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or nationalpark and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	E37/1416, is owned and operated 100% by Forrestania Resources or subsidiaries of Forrestania Resources.
Exploration by other parties	Acknowledgment and appraisal of explorationby other parties.	 Very little historic work would appear to have taken place on E37/1416. Meteoric Resources completed a geochemical programme on adjoining tenements which included a small number of samples on E37/1416 in 2010. Voyager Gold NL also completed 6 AC holes on the tenement with no significant results (WAMEX A51714).
Geology	Deposit type, geological setting and style of mineralisation.	The FRS eastern goldfields project sits across the Kurnalpi and Kalgoorlie Terranes of the Yilgarn Craton.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole, down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material andthis exclusion does not 	FRS did not conduct any drilling activities reported in this announcement.

Criteria	JORC Code Explanation	Commentary	
	detract from the understanding of the report, the Competent Person should clearly explain why this is the case.		
Data aggregation	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No composite values or weighted averages were used with the rock chip or soil sampling.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	FRS did not conduct any drilling activities reported in this announcement.	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view ofdrill hole collar locations and appropriate sectional views. 	Appropriate maps with scale are included within the body of the accompanying document.	
Balanced reporting	Where comprehensive reporting of allExploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent a balanced report.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Other exploration data collected is not considered as material to this document at this stage. Further data collection will be reviewed and reported when considered material.	

Criteria	JORC Code Explanation	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depthextensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Geochemical assessment and investigative geological mapping of the tenements is ongoing Further field exploration is planned. AC drilling may be considered for further geological testing.

Appendix 5B

Mining exploration entity or oil and gas exploration entity quarterly cash flow report

Name of entity

FORRESTANIA RESOURCES LIMITED		
ABN	Quarter ended ("current quarter")	
41 647 899 698	30 September 2022	

Consolidated statement of cash flows		Current quarter \$A'000	Year to date (12 months) \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers	-	-
1.2	Payments for		
	(a) exploration & evaluation	(321)	(321)
	(b) development	-	-
	(c) production	-	-
	(d) staff costs	(211)	(211)
	(e) administration and corporate costs	(180)	(180)
1.3	Dividends received (see note 3)	-	-
1.4	Interest received	-	-
1.5	Interest and other costs of finance paid	-	-
1.6	Income taxes paid	-	-
1.7	Government grants and tax incentives	-	-
1.8	Other (provide details if material)	-	-
1.9	Net cash from / (used in) operating activities	(711)	(711)

2.	Cash flows from investing activities		
2.1	Payments to acquire or for:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment	-	-
	(d) exploration & evaluation	-	-
	(e) investments	-	-
	(f) other non-current assets	-	-

ASX Listing Rules Appendix 5B (17/07/20)

Cons	solidated statement of cash flows	Current quarter \$A'000	Year to date (12 months) \$A'000
2.2	Proceeds from the disposal of:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment	-	-
	(d) investments	-	-
	(e) other non-current assets	-	-
2.3	Cash flows from loans to other entities	-	-
2.4	Dividends received (see note 3)	-	-
2.5	Other (provide details if material)	-	-
2.6	Net cash from / (used in) investing activities	-	-

3.	Cash flows from financing activities		-
3.1	Proceeds from issues of equity securities (excluding convertible debt securities)	-	
3.2	Proceeds from issue of convertible debt securities	-	-
3.3	Proceeds from exercise of options	-	-
3.4	Transaction costs related to issues of equity securities or convertible debt securities	-	-
3.5	Proceeds from borrowings	-	-
3.6	Repayment of borrowings	-	-
3.7	Transaction costs related to loans and borrowings	-	-
3.8	Dividends paid	-	-
3.9	Other (provide details if material)	-	-
3.10	Net cash from / (used in) financing activities	-	-

4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	1,586	1,586
4.2	Net cash from / (used in) operating activities (item 1.9 above)	(711)	(711)
4.3	Net cash from / (used in) investing activities (item 2.6 above)	-	-
4.4	Net cash from / (used in) financing activities (item 3.10 above)	-	-
4.5	Effect of movement in exchange rates on cash held	-	-
4.6	Cash and cash equivalents at end of period	875	875

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	875	1,586
5.2	Call deposits	-	-
5.3	Bank overdrafts	-	-
5.4	Other (provide details)	-	-
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	875	1,586

6.	Payments to related parties of the entity and their associates	Current quarter \$A'000
6.1	Aggregate amount of payments to related parties and their associates included in item 1	92
	Payments to related parties include director fees (\$34,000), Consulting Fees (\$6,000) and rent, admin and bookkeeping services (\$53,000)	
6.2	Aggregate amount of payments to related parties and their associates included in item 2	-
	ingiany amounts are shown in items 6.1 or 6.2, your quarterly activity report must include a descripti Ination for, such payments.	on of, and an

-	-				
-	-				
_					
-	-				
-	-				
Unused financing facilities available at quarter end -					
Include in the box below a description of each facility above, including the lender, interest rate, maturity date and whether it is secured or unsecured. If any additional financing facilities have been entered into or are proposed to be entered into after quarter end, include a note providing details of those facilities as well.					
n c sec re	of each facility above, including cured or unsecured. If any add proposed to be entered into at				

8.	Estimated cash available for future operating activities	\$A'000
8.1	Net cash from / (used in) operating activities (item 1.9)	(711)
8.2	(Payments for exploration & evaluation classified as investing activities) (item 2.1(d))	-
8.3	Total relevant outgoings (item 8.1 + item 8.2)	(711)
8.4	Cash and cash equivalents at quarter end (item 4.6)	875
8.5	Unused finance facilities available at quarter end (item 7.5)	-
8.6	Total available funding (item 8.4 + item 8.5)	875
8.7	Estimated quarters of funding available (item 8.6 divided by item 8.3)	1.23
	Note: if the entity has reported positive relevant outgoings (ie a net cash inflow) in item 8.3	R answer item 8 7 as "N/A"

Note: if the entity has reported positive relevant outgoings (ie a net cash inflow) in item 8.3, answer item 8.7 as "N/A" Otherwise, a figure for the estimated quarters of funding available must be included in item 8.7.

- 8.8 If item 8.7 is less than 2 quarters, please provide answers to the following questions:
 - 8.8.1 Does the entity expect that it will continue to have the current level of net operating cash flows for the time being and, if not, why not?

	_		•		
Answer: Yes					
7 (10 WO). 100					

8.8.2 Has the entity taken any steps, or does it propose to take any steps, to raise further cash to fund its operations and, if so, what are those steps and how likely does it believe that they will be successful?

Answer: Yes, on 7 October the Company announced a placement of \$2,700,000 to meet ongoing working capital commitments

8.8.3 Does the entity expect to be able to continue its operations and to meet its business objectives and, if so, on what basis?

Answer: Yes, tranche 1 of the placement has been received and tranche 2 commitments are in place to raise the balance of funds subject to shareholder approval. Capital that is available is sufficient to meet drilling and operating capital requirements for activities that are planned by Forrestania.

Note: where item 8.7 is less than 2 quarters, all of questions 8.8.1, 8.8.2 and 8.8.3 above must be answered.

Compliance statement

- This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Date: 27 October 2022

Authorised by:

Cecilia Tyndall, Company Secretary

Certify dell

Notes

 This quarterly cash flow report and the accompanying activity report provide a basis for informing the market about the entity's activities for the past quarter, how they have been financed and the effect this has had on its cash position. An entity that wishes to disclose additional information over and above the minimum required under the Listing Rules is encouraged to do so.

- 2. If this quarterly cash flow report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly cash flow report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.
- 4. If this report has been authorised for release to the market by your board of directors, you can insert here: "By the board". If it has been authorised for release to the market by a committee of your board of directors, you can insert here: "By the [name of board committee eg Audit and Risk Committee]". If it has been authorised for release to the market by a disclosure committee, you can insert here: "By the Disclosure Committee".
- 5. If this report has been authorised for release to the market by your board of directors and you wish to hold yourself out as complying with recommendation 4.2 of the ASX Corporate Governance Council's *Corporate Governance Principles and Recommendations*, the board should have received a declaration from its CEO and CFO that, in their opinion, the financial records of the entity have been properly maintained, that this report complies with the appropriate accounting standards and gives a true and fair view of the cash flows of the entity, and that their opinion has been formed on the basis of a sound system of risk management and internal control which is operating effectively.