ASX ANNOUNCEMENT #### GLANDORE EAST ASSAYS CONFIRM MORE HIGH-GRADE GOLD - Assays confirm high-grade gold in second Glandore East diamond hole - GDDD002 0.8m @ 5.91g/t Au within wider 6.6m mineralised interval - High-grade gold intersected over 90m of strike drilling continuing - Detailed UAV magnetic survey highlights multiple NE-trending target structures **Miramar Resources Limited (ASX:M2R**, "Miramar" or "the Company") is pleased to advise that assays have confirmed the high-grade gold intersected in the second diamond drill hole at "Glandore East". **GDDD002**, drilled 40m south of the historical high-grade diamond drill intersections, intersected **0.8m @ 5.91g/t Au** within a wider interval of 6.6m **@** 1.54g/t Au (Figures 1 and 2). As previously reported, **GDDD002** intersected coarse visible gold within a quartz vein in altered granodiorite (see ASX Release dated 4 October 2022). As a result of the coarse gold, repeat assays from the above interval returned individual results as high as **0.4m** @ **11.28g/t Au**. Miramar's drilling has now confirmed the presence of high-grade gold mineralisation over a strike length of approximately 90m, with the mineralisation remaining open along strike and at depth. Miramar advises that it has also recently completed a detailed UAV magnetic survey over the Glandore Project, including the Glandore East target (Figure 3). The survey was flown with east-west flight lines spaced at 25m intervals, and a sensor height of 25m. The new survey, completed by Pegasus Airborne Systems, has provided a significantly improved level of detail, highlighted multiple NE-trending structures crosscutting the granodiorite intrusion and provided much greater resolution of the eastern contact of the granodiorite with the mafic rocks. Miramar's Executive Chairman, Mr Allan Kelly, said the Company continued to be excited about the potential of the Glandore East target. "With each new diamond hole, we see substantial alteration and/or sulphide mineralisation and eagerly look forward to receiving the gold results," he said. "In addition, the newly acquired detailed UAV magnetic survey data shows there is potential for multiple NNE-trending structures which could potentially host high-grade gold mineralisation," he added. Diamond drilling is continuing with **GDDD003** and **GDDD004** drilled 40m north and 160m north, respectively, of the "discovery section", which includes the historic high-grade diamond drilling results and Miramar's first hole, **GDDD001** (0.8 @ 13.9g/t Au). **GDDD005** will test below the historic diamond holes. Table 1 lists significant results from GDDD002 and Table 2 gives a summary of drilling completed to date. For more information on Miramar Resources Limited, visit the Company's website at www.miramarresources.com.au, follow the Company on social media (Twitter @MiramarRes and LinkedIn @Miramar Resources Ltd) or contact: Allan Kelly Executive Chairman info@miramarresources.com.au Margie Livingston Ignite Communications margie@ignitecommunications.com.au This announcement has been authorised for release by Mr Allan Kelly, Executive Chairman, on behalf of the Board of Miramar Resources Limited. Figure 1. Glandore East target showing diamond drilling over UAV magnetic image Figure 2. Glandore East cross section 6590280mN. Table 1. GDDD002 - Significant results >0.25g/t Au. | From | То | Interval | Au g/t | Comments | |-------|-------|----------|--------|---------------------| | 25.5 | 25.8 | 0.3 | 0.88 | supergene | | 28.7 | 35.0 | 6.3 | 0.30 | supergene | | | | | | | | 152.4 | 159.0 | 6.6 | 1.54 | | | | Incl. | 0.8 | 5.91 | Coarse visible gold | | | and | 1 | 2.52 | | Table 2. Glandore East diamond drilling information. | Hole ID | Easting | Northing | RL | Dip/Azimuth | EOH Depth | Comments | |---------|---------|----------|-----|-------------|-------------|----------------| | GDDD001 | 394500 | 6590320 | 321 | -60/090 | 78.66* | | | GDDD002 | 394440 | 6590280 | 324 | -60/090 | 169.06 | | | GDDD003 | 394475 | 6590360 | 320 | -60/090 | 166.00 | Assays pending | | GDDD004 | 394475 | 6590475 | 322 | -60/090 | 176.00 | Assays pending | | GDDD005 | 394400 | 6590320 | 322 | -60/090 | In progress | | ^{*}Note: hole was terminated at 78.66m due to drilling difficulties Figure 3. Glandore Project showing new UAV magnetic data (TMI-RTP over 1VD). #### **About the Glandore Project** The 100% owned Glandore Project is located within the Eastern Goldfields, approximately 40km east of Kalgoorlie, Western Australia. The southwestern part of the Project is underlain by a layered mafic sill intruded by a later granodiorite. The most prospective geology is overlain by lake sediments which thin towards the west. Exploration has been mostly limited to the southwestern part of the Project, where drilling by previous explorers identified gold mineralisation at the eastern contact of the granodiorite #### **About Miramar Resources Limited** Miramar Resources Limited is an active mineral exploration company exploring for gold, IOCG and Ni-Cu-PGE deposits in the Eastern Goldfields, Murchison and Gascoyne regions of Western Australia. Miramar's Board has a track record of discovery, development and production and aims to create shareholder value through discovery of high-quality mineral deposits. #### **COMPETENT PERSON STATEMENT** The information in this report that relates to Exploration Targets or Exploration Results is based on information compiled by Allan Kelly, a "Competent Person" who is a Member of The Australian Institute of Geoscientists. Mr Kelly is the Executive Chairman of Miramar Resources Ltd. He is a full-time employee of Miramar Resources Ltd and holds shares and options in the company. Mr Kelly has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to Qualify as a "Competent Person" as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Kelly consents to the inclusion in this Announcement of the matters based on his information and in the form and context in which it appears. Historical exploration results for the Glandore Project, including JORC Table 1 and 2 information, is included in the Miramar Prospectus dated 4 September 2020. JORC Table 1 and 2 information for recent exploration results at the Glandore Project, including hole collar information, is contained in the following ASX Announcements: - 4 Oct 2022 Visible Gold Intersected in Second Glandore East Diamond Hole Amended - 19 Sept 2022 Diamond Drilling Recommences at Glandore - 12 Sept 2022 High-Grade & Visible Gold Intersected at Glandore - 30 May 2022 Miramar Expands Glandore Project - 1 Dec 2021 Large Gold Footprint Outlined at Glandore - 8 Sep 2021 High-Grade Gold Result from Glandore Drilling # **JORC 2012 Table 1 – Glandore diamond drilling** # **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |-----------------------------|---|--| | Sampling
techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Core sampling conducted with sample lengths no smaller than 0.2m and no greater than 1.2m. Core samples are cut using an automated saw and half core is submitted for analysis. Individual samples weigh no more than 5kg. Sample intervals are split at geologically defined locations. Samples are submitted to Intertek Genalysis Kalgoorlie where they are pulverized to 85% passing -75um and analyzed using 25g Fire Assay with ICP-OES finish for 0.005ppm detection limit. | | Drilling
techniques | Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | The diamond drilling completed in this
report was undertaken by Total Depth
Drilling Pty Ltd with an XDL-5C rig, HQ –
triple tube core has been obtained. | | Drill
sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Diamond core sample recovery is recorded
in both logging and sampling records. Core
loss is recorded, and sampling intervals are
adjusted to avoid biases in sub-optimal
recovery. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the | Samples were logged for colour,
weathering, grain size, geology, alteration,
veining, structure, and mineralization on
intervals based on geological
characteristics. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Sub-
sampling
techniques
and sample
preparation | relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Half core samples are collected via the cut core from an automated core saw. Sample intervals are split at geologically defined locations | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Samples are submitted for gold analysis to Intertek Genalysis Kalgoorlie where they are pulverized to 85% passing -75um and analyzed using 25g Fire Assay with ICP-OES finish for 0.005ppm Au detection limit. Internal QAQC processes of Standard, Coarse Blank and Quarter Core Duplicates are used. QAQC is selectively inserted at a minimum rate of >2% of all samples. Analytical technique is suitable for this style of exploration with the caveat that the sample size is relatively small if coarse gold is encountered | | Verification
of
sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | No verification undertaken at this stage | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | All Hole Collar locations are in UTM grid (GDA94 Z51) and are surveyed using a handheld GPS accurate to +/- 2m. RL was also recorded with handheld GPS but accuracy is variable, DTM's are used for RL verification. | | Data
spacing
and
distribution | Data spacing for reporting of Exploration
Results. Whether the data spacing and distribution is
sufficient to establish the degree of
geological and grade continuity appropriate
for the Mineral Resource and Ore Reserve
estimation procedure(s) and classifications
applied. Whether sample compositing has been | Drilling is limited and not suitable for resource estimation | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Drill holes were designed at right angles to
the prevailing strike of the local geology The dip of prospective geology and/or
mineralisation is unknown at this stage | | Sample
security | The measures taken to ensure sample security. | Samples were transported from site directly
to the laboratory by Miramar staff. From
there they are tracked through the
preparation and analysis processes by
Genalysis-Intertek. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audits have been undertaken | # **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|---|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The exploration was conducted on
P25/2385 which are owned 100% by
Miramar Goldfields Pty Ltd Miramar Goldfields Pty Ltd is a wholly
owned subsidiary of Miramar Resources
Limited | | Exploration done by other parties | Acknowledgment and appraisal of
exploration by other parties. | Exploration has been previously
completed by other companies including
Harmony and AngloGold Ashanti, and
included aircore and limited diamond | | Geology | Deposit type, geological setting and style
of mineralisation. | The target is Archaean greenstone-hosted mesothermal gold mineralisation. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the | See Table 1 for all hole locations and
Table 2 for all significant results >0.25g/t
Au | | Criteria | JORC Code explanation | Commentary | |---|---|---| | | report, the Competent Person should clearly explain why this is the case. | | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Intervals reported over 0.25g/t Au with maximum of 2 sample of internal dilution. | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | No assumptions about true width or
orientation of mineralisation can be made
from the current programme | | Diagrams | Appropriate maps and sections (with
scales) and tabulations of intercepts
should be included for any significant
discovery being reported These should
include, but not be limited to a plan view of
drill hole collar locations and appropriate
sectional views. | See attached Tables and Figures | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and
high grades and/or widths should be
practiced to avoid misleading reporting of
Exploration Results. | Table 1 lists significant results | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | No other relevant data | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Further Diamond drilling planned | # **JORC 2012 Table 1 – Glandore UAV magnetic survey** # **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |-----------------------------|---|----------------------| | Sampling
techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | No drilling reported | | Drilling
techniques | Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | No drilling reported | | Drill
sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | No drilling reported | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the | No drilling reported | | Criteria | JORC Code | explanation | С | ommentary | |---|---|--|---------|--| | | relevant ii | ntersections logged. | | | | Sub-
sampling | quarter, h | hether cut or sawn and whether
alf or all core taken. | • | No drilling reported | | techniques
and sample
preparation | | e, whether riffled, tube sampled,
it, etc and whether sampled wet o | r | | | | appropria | mple types, the nature, quality and teness of the sample preparation | d | | | | sub-samp | ontrol procedures adopted for all
bling stages to maximise
ivity of samples. | | | | | Measures
is represe | s taken to ensure that the sampling
entative of the in situ material
including for instance results for | g | | | | field dupli | cate/second-half sampling. sample sizes are appropriate to | | | | | the grain | size of the material being sample | | | | Quality of
assay data
and
laboratory | the assay
used and | e, quality and appropriateness of
ing and laboratory procedures
whether the technique is
d partial or total. | • | No drilling reported | | tests | For geoph
handheld
paramete | nysical tools, spectrometers,
XRF instruments, etc, the
rs used in determining the analys | is | | | | reading til
and their | instrument make and model,
mes, calibrations factors applied
derivation, etc.
quality control procedures | | | | | adopted (
external la
acceptabl | eg standards, blanks, duplicates,
aboratory checks) and whether
le levels of accuracy (ie lack of | | | | Varification | | precision have been established. | | No deilling reported | | Verification
of
sampling | by either i | cation of significant intersections independent or alternative personnel. | • | No drilling reported | | and | | of twinned holes. | | | | assaying | procedure | tation of primary data, data entry
es, data verification, data storage
and electronic) protocols. | | | | | Discuss a | ny adjustment to assay data. | | | | Location of data points | locate dril
surveys), | and quality of surveys used to
I holes (collar and down-hole
trenches, mine workings and othe
used in Mineral Resource
n. | •
er | No drilling reported | | | • Specificat | tion of the grid system used. | | | | | Quality ar control. | nd adequacy of topographic | | | | Data
spacing | | cing for reporting of Exploration | • | Flight lines were oriented east-west at 25m spacing at flown with a sensor height of | | and
distribution | sufficient
geologica | the data spacing and distribution in
to establish the degree of
I and grade continuity appropriate
neral Resource and Ore Reserve | | 25m above the ground. | | | estimatior
applied. | n procedure(s) and classifications
sample compositing has been | | | | | - vviiciiici 3 | sample compositing has been | | | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Flight lines oriented perpendicular to
regional geology, but orientation of
potentially mineralised structures is
uncertain at this stage | | Sample
security | The measures taken to ensure sample security. | No samples | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audits have been undertaken | # **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|---|---| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The exploration was conducted on
P25/2381, 2382, 2383, 2384, 2385 and
2387, and P25/2430 and 2431, and
P25/2465, all which are owned 100% by
Miramar Goldfields Pty Ltd Miramar Goldfields Pty Ltd is a wholly
owned subsidiary of Miramar Resources
Limited | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by other parties. | Exploration has been previously
completed by other companies including
Harmony and AngloGold Ashanti, and
included auger RAB, aircore and limited
diamond | | Geology | Deposit type, geological setting and style
of mineralisation. | The target is Archaean greenstone-hosted
mesothermal gold mineralisation. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Not applicable for UAV magnetic survey | | Criteria | JORC Code explanation | Commentary | |---|---|----------------------------------| | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | No drilling reported | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | No drilling reported | | Diagrams | Appropriate maps and sections (with
scales) and tabulations of intercepts
should be included for any significant
discovery being reported These should
include, but not be limited to a plan view of
drill hole collar locations and appropriate
sectional views. | See Figure 3 | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and
high grades and/or widths should be
practiced to avoid misleading reporting of
Exploration Results. | No drilling reported | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | No other relevant data | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Further Diamond drilling planned |