

Goongarrie exploration update: Exceptional geophysics identifies additional greenstone belts; New tenement applications

Highlights:

- Geophysical results define highly prospective greenstone belts, within the Goongarrie tenement (E29/1103)
- New tenement applications made to consolidate the Company's strong position in the Eastern Goldfields
- Excellent geochemical soil results at Goongarrie, including:
 - o SS01078 543ppm Ni
 - SS01032 1230ppm Cr
 - SS01388 39.5ppb Au
- Excellent geochemical results from rock chips at Goongarrie, including:
 - FR000108 181.9ppm Bi
 - FR000116 255.2ppm Mo
 FR000411 1.6ppm Ag

Forrestania Resources (ASX:FRS) or the Company, is pleased to provide an update on exploration activities from its Eastern Goldfields Project area. The Company's Eastern Goldfields Project is located north of Kalgoorlie around the gold mining districts at Leonora and Menzies (see Figure 1). The project area comprises nine tenements that are strategically located over areas that the Company believes are highly prospective for large scale, multi commodity discoveries.

Chairman, John Hannaford, commented:

"The results from the geophysical survey and interpretation completed at the Goongarrie tenement have identified several previously unrecognised structural features and greenstone units. Significantly, there are also multiple polymetallic geochemical anomalies that coincide with these structural features. Early exploration at Goongarrie continues to demonstrate this province's substantial prospectivity and potential."

After completing an aeromagnetic geophysical survey over the Goongarrie tenement earlier in the year, the Company is pleased to confirm exceptional results, with several new greenstone areas confirmed.

Exceptional nickel and gold pathfinder results have also confirmed the strong exploration potential at Goongarrie (E29/1103).

Additionally, the Company has applied for two exploration licences in the region (E29/1215 and E29/1216), immediately adjacent to the east of the Goongarrie project (E29/1103) and in close proximity to the recently granted Goongarrie North (E29/1158).

Figure 1: The Eastern Goldfields project area

Discussion:

Goongarrie (E29/1103)

An interpretation of the geophysical, aeromagnetic data has been undertaken by Southern Geoscience Consultants (SGC), with the interpretation (figure 2) helping to increase the understanding of the local geology and delineating significant areas of greenstone within the Goongarrie project area.

Additionally, the geophysical survey and geological interpretation by SGC has helped to identify a number of target areas for follow up exploration, with several highly magnetic units and zones of interpreted mafic/greenstone units.

Exceptional results have also been received from geochemical samples collected at Goongarrie. These results coincide with key structural features that have been defined by the Company's aeromagnetic survey. The geochemical and geophysical survey results underpin a number of exciting and highly prospective areas for further work at Goongarrie.

As a result of the Company's field reconnaissance trips, a significant number of rock chips with anomalously high levels of bismuth, silver and molybdenum have been sampled, as well as significant nickel, chromium, cobalt and gold from the soil programmes. These new results also complement anomalous gold geochemical assays from historic auger programmes, undertaken at the prospect in 2007 and 2011 (see WAMEX A95065 & A86890).

Furthermore, an anomalous trend of nickel mineralisation (~1.2km) from the soil samples, with associated chromium has been confirmed from the Company's field programmes, completed in the south-west corner of Goongarrie (figure 3). This anomalous trend also coincides with an interpreted zone of very strong magnetic intensity. An area that SGC have interpreted to be a high priority target.

The Goongarrie region is a newly emerging nickel province, with the announcement by Resources & Energy Group (ASX:REZ) (Magmatic nickel sulphides confirmed at East Menzies Springfield project – 11th January 2022) and the proximity to Ardea Resources' (ASX:ARL) Kalgoorlie Nickel Project (KNP) with a resource of 5.9Mt contained nickel and 384kt contained cobalt (ASX:ARL Mineral Resource Estimate, 16th June 2021) which includes the high-grade "Goongarrie Hub" ~15km away (figure 2). Furthermore, the KNP has been awarded Major Project Status by the WA Government and is ranked #1 by the Geological Survey of Western Australia in terms of resource size at ~830Mt (ASX:ARL Confirmation of high grade nickel-cobalt from Highway drilling, 11th February 2022). As such, the anomalous nickel trend, recently defined by the Company, further increases the strong exploration potential at the Goongarrie project.

Figure 2: Geological interpretation by Southern Geoscience Consultants (SGC) of E29/1103 (Goongarrie) showing a number of the SGC target areas. Historic drilling results are taken from WAMEX reports A71322 and A73987.

Figure 3: Strong geochemical results from E29/1103 (Goongarrie), including a 1.2km trend of anomalous nickel soils, image also contains historic auger results from 2007 and 2011, taken from WAMEX A95065 & A86890. Image overlain with a geological interpretation by SGC.

Additional tenement applications

The excellent geophysical survey results and the geological interpretation by SGC which has interpreted greenstone within Goongarrie and the adjacent ground, have given the Company the opportunity to identify other target areas. As a result, FRS has applied for two additional exploration licences (E29/1215 and E29/1216) to consolidate further, its position in the Eastern Goldfields (figure 4).

Figure 4: Goongarrie and Goongarrie North, with a geological interpretation by SGC; also showing the Company's two new tenement applications

Next Steps

The Company has completed further reconnaissance trips to map and undertake additional rock chip and soil sampling at Goongarrie, with additional assays pending.

End

This announcement is authorised for release by the Board.

For further information, please contact: John Hannaford Chairman T: +61 (0) 419 042 769 E: John@forrestaniaresources.com.au

Cecilia Tyndall Company Secretary T: +61 (0) 400 596 734 E: <u>Cecilia@forrestaniaresources.com.au</u>

About Forrestania Resources Limited

Forrestania Resources Limited is an exploration Company searching for lithium, gold and nickel in the Forrestania, Southern Cross and the Menzies/Leonora regions of Western Australia.

The Forrestania Project is prospective for lithium, gold and nickel and is currently the only project, within the tenement portfolio that holds a gold Mineral Resource. The Southern Cross Project is prospective for gold and lithium and the Leonora Project is prospective for gold.

The Forrestania Project is situated in the wellendowed southern Forrestania Greenstone Belt, with a tenement footprint spanning approximately 100km, north to south of variously metamorphosed mafic, ultramafic / volcano-sedimentary rocks, host to the historic 1Moz Bounty gold deposit, the emerging Kat Gap gold deposit, the operating

Flying Fox, and Spotted Quoll nickel mines, and the more recently discovered Earl Grey lithium deposit.

The Southern Cross Project tenements are scattered, within proximity to the town of Southern Cross and located in and around the Southern Cross Greenstone Belt, which extends along strike for approximately 300km from Mt Jackson to Hatters Hill in the south. It is the Company's opinion that the potential for economic gold mineralisation at the Southern Cross Project has not been fully evaluated. In addition to greenstone shear-hosted gold deposits, Forrestania is targeting granite-hosted deposits. New geological models for late Archean granite-controlled shear zone/fault hosted mineralisation theorise that gold forming fluids, formed at deep crustal levels do not discriminate between lithologies when emplaced in the upper crust. Applying this theory, Forrestania has defined seven new targets.

The Leonora Project tenements are located within the Norseman-Wiluna Greenstone Belt of the Yilgarn Craton. The Project includes four Exploration Licences and five Exploration Licence Applications, covering a total of ~920km². The tenements are predominately non-contiguous and scattered over 200km length of the greenstone belt. The southernmost tenement is approximately 15 km southeast of the town of Menzies, and the northernmost tenement is located approximately 70 km northeast of Leonora. Prior exploration over the project area has focussed on gold, diamonds, and uranium. Tenements in the Project have been variably subjected to soil sampling, stream sampling, drilling, mapping, rock chip sampling and geophysical surveys.

Priority drilling targets have been identified in both project areas and the Company is well funded to undertake effective exploration programs.

The Company has an experienced Board and management team which is focused on discovery to increase value for Shareholders.

Competent Person's Statement

The information in this report that relates to exploration results is based on and fairly represents information compiled by Mr Ashley Bennett. Mr Bennett is the Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Mr Bennett has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bennett consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

Disclosure

The information in this announcement is based on the following publicly available ASX announcements and Forrestania Resources IPO, which is available from https://www2.asx.com.au/

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

Sample ID	Sample	North	East	Ag ppm	As ppm	Au ppb	Bi ppm	Co ppm	Cr ppm	Mo ppm	Ni ppm
\$\$01530	SOIL	6692755	327831	0.07	13 5	7	0.36	19.0	201	0.69	95
SS01529	SOIL	6692755	327931	0.06	6.9	6	0.51	16.1	201	1 11	79
SS01528	SOIL	6692755	328031	0.03	8.7	4	0.51	26.0	201	1 50	88
\$\$01527	SOIL	6692755	320031	0.05	7.5	3	0.50	20.0	217	1 25	77
\$\$01526	SOIL	6602755	220131	0.05	0.0	5	0.55	17.4	217	1.25	02
5501520	SOIL	6602755	220231	0.00	0.0	5	0.52	17.4	200	1.24	92
3301525	SUIL	0092755	328331	0.05	8.1	5	0.48	10.9	243	1.11	97
SS01524	SOIL	6692755	328431	0.10	9.0	9	0.40	12.6	207	0.71	98
SS01523	SOIL	6692755	328531	0.05	10.2	7	0.55	20.4	265	1.61	100
SS01522	SOIL	6692755	328631	0.04	9.4	9	0.51	12.2	244	1.49	83
SS01521	SOIL	6692755	328731	0.04	10.1	10	0.51	18.8	275	1.43	120
SS01520	SOIL	6692755	328831	0.06	10.1	21	0.53	11.4	277	1.50	86
SS01519	SOIL	6692755	328931	0.04	9.5	14	0.56	10.9	231	1.58	84
SS01518	SOIL	6692755	329031	0.06	9.1	16	0.61	17.0	243	1.49	78
SS01517	SOIL	6692755	329131	0.08	9.7	10	0.62	21.7	220	1.74	100
SS01516	SOIL	6692755	329231	0.08	9.0	4	0.55	19.8	239	1.17	103
SS01515	SOIL	6693155	329231	0.05	9.1	12	0.59	12.3	221	1.52	70
SS01514	SOIL	6693155	329131	0.06	11.4	4	0.57	26.0	259	1.62	97
SS01513	SOIL	6693155	329031	0.04	10.0	10	0.56	20.1	252	1.66	84
SS01512	SOIL	6693155	328931	0.06	10.2	6	0.52	31.4	287	1.40	169

<u>Table 1: All geochemical results of the elements referred to in this announcement ("Goongarrie exploration update: Exceptional geophysics identifies additional greenstone belts; New tenement applications"</u>) represents Au<1ppb, Ag<0.01ppm, As<0.5ppm (Grid MGA94_51))

Sample ID	Sample	North	East	Ag ppm	As ppm	Au ppb	Bi ppm	Co ppm	Cr ppm	Mo ppm	Ni ppm
SS01511	SOIL	6693155	328831	0.05	10.0	3	0.54	36.2	258	1.58	118
SS01510	SOIL	6693155	328731	0.04	9.5	6	0.55	22.1	261	1.66	111
SS01509	SOIL	6693155	328631	0.09	11.6	8	0.39	20.8	246	0.78	128
SS01508	SOIL	6693155	328531	0.06	12.9	6	0.35	15.9	211	0.57	111
SS01507	SOIL	6693155	328431	0.06	13.5	4	0.34	16.2	199	0.57	106
SS01506	SOIL	6693155	328331	0.05	12.3	6	0.34	14.5	195	0.54	101
SS01505	SOIL	6693155	328231	0.04	14.4	8	0.36	17.3	222	0.58	106
SS01504	SOIL	6693155	328131	0.04	10.1	7	0.51	33.6	294	1.00	135
SS01503	SOIL	6693155	328031	0.10	10.2	9	0.28	16.7	199	0.64	95
SS01502	SOIL	6693155	327931	0.05	9.2	8	0.29	18.5	174	0.49	90
SS01501	SOIL	6693155	327831	0.03	12.8	10	0.30	18.7	225	0.58	99
SS01500	SOIL	6692355	327831	0.03	8.5	5	0.53	23.8	213	1.72	89
SS01499	SOIL	6692355	327931	0.04	6.0	4	0.40	18.3	212	0.75	103
SS01498	SOIL	6692355	328031	0.10	6.6	9	0.36	17.0	186	0.71	92
SS01497	SOIL	6692355	328131	0.03	8.5	3	0.39	17.5	211	0.75	102
SS01496	SOIL	6692355	328231	0.10	7.1	5	0.44	17.2	243	0.97	108
SS01495	SOIL	6692355	328331	0.04	8.0	4	0.54	28.4	250	1.92	100
SS01494	SOIL	6692355	328431	0.03	8.7	7	0.57	27.0	251	1.62	97
SS01493	SOIL	6692355	328531	0.04	8.3	9	0.57	20.7	239	1.81	92
SS01492	SOIL	6692355	328631	0.03	7.4	8	0.58	73.1	238	1.83	108
SS01491	SOIL	6692355	328731	0.04	8.5	9	0.51	18.2	280	1.76	110
SS01490	SOIL	6692355	328831	0.05	8.4	11	0.56	15.2	271	1.79	71
SS01489	SOIL	6692355	328931	0.04	8.8	18	0.53	10.9	250	1.70	80
SS01488	SOIL	6692355	329031	0.04	9.0	16	0.51	12.8	238	1.72	91
SS01487	SOIL	6692355	329131	0.04	6.0	13	0.38	16.4	178	1.23	107
SS01486	SOIL	6692355	329231	0.03	6.5	8	0.43	12.9	170	1.21	76
SS01485	SOIL	6692355	329331	0.09	6.3	4	0.42	18.0	166	0.86	98
SS01484	SOIL	6691955	329331	0.03	5.6	2	0.44	17.3	127	0.99	57
SS01483	SOIL	6691955	329231	0.06	5.5	5	0.47	14.1	136	1.05	73
SS01482	SOIL	6691955	329131	0.10	6.8	4	0.59	14.8	156	0.92	77
SS01481	SOIL	6691955	329031	0.05	8.2	6	0.59	16.8	174	1.45	84
SS01480	SOIL	6691955	328931	0.04	5.2	6	0.56	21.1	173	1.61	67
SS01479	SOIL	6691955	328831	0.04	6.0	16	0.49	12.6	172	1.60	53
SS01478	SOIL	6691955	328731	0.04	5.7	20	0.50	12.4	169	1.58	52
SS01477	SOIL	6691955	328631	0.05	6.3	19	0.50	12.9	170	1.47	59
SS01476	SOIL	6691955	328531	0.02	4.8	6	0.50	35.2	116	1.40	61

Sample ID	Sample	North	East	Ag ppm	As ppm	Au ppb	Bi ppm	Co ppm	Cr ppm	Mo ppm	Ni ppm
	SOIL	6691955	328431	0.15	4.2	29	0.35	12.8	135	0.76	54
SS01474	SOIL	6691955	328331	0.05	5.4	13	0.24	8.8	110	0.62	45
SS01473	SOIL	6691955	328231	0.09	4.5	6	0.28	9.9	118	0.66	53
SS01472	SOIL	6691955	328131	0.07	5.7	2	0.49	13.2	113	1.15	30
SS01471	SOIL	6691955	328031	0.04	7.8	1	0.57	7.3	130	1.15	34
SS01470	SOIL	6691955	327931	0.03	5.4		0.37	8.7	123	0.82	38
SS01469	SOIL	6691955	327831	0.07	5.9	1	0.57	10.6	174	0.95	34
SS01468	SOIL	6692355	329431	0.09	8.8	- 5	0.53	24.3	203	1 10	90
SS01467	SOIL	6692355	329531	0.03	9.0	9	0.33	15.3	179	0.69	73
SS01466	SOIL	6692355	329631	0.12	9.7	7	0.52	13.9	153	0.64	75
SS01465	SOIL	6692355	329731	0.06	6.3	6	0.69	14.6	154	1.46	49
SS01464	SOIL	6692355	329831	0.06	6.8	6	0.60	15.6	170	1.39	38
SS01463	SOIL	6692355	329931	0.08	8.8	4	1.01	32.2	204	1.53	71
SS01462	SOIL	6692355	330031	0.04	7.7	2	0.59	16.0	170	1.86	59
SS01461	SOIL	6692355	330131	0.12	6.0	7	0.48	17.1	166	0.99	77
SS01460	SOIL	6692355	330231	0.05	8.6	8	0.61	9.8	230	1.47	48
SS01459	SOIL	6692355	330331	0.04	7.6	6	0.53	31.3	216	1.43	72
SS01458	SOIL	6692355	330431	0.05	7.7	5	0.55	26.6	223	1.26	78
SS01457	SOIL	6692355	330531	0.05	8.6	16	0.50	15.9	241	1.45	91
SS01456	SOIL	6692355	330631	0.04	9.1	11	0.52	9.3	252	1.62	66
SS01455	SOIL	6692355	330731	0.06	9.9	11	0.53	11.1	247	1.60	75
SS01454	SOIL	6692355	330831	0.06	9.4	16	0.53	16.2	265	1.53	85
SS01453	SOIL	6691955	330831	0.05	7.6	9	0.47	15.8	154	1.32	76
SS01452	SOIL	6691955	330731	0.05	7.1	11	0.45	41.5	142	1.35	59
SS01451	SOIL	6691955	330631	0.05	8.4	10	0.48	34.0	200	1.43	92
SS01450	SOIL	6691955	330531	0.05	8.6	20	0.52	13.7	203	1.87	61
SS01449	SOIL	6691955	330431	0.03	6.4	10	0.48	20.8	142	1.35	39
SS01448	SOIL	6691955	330331	0.05	8.6	5	0.49	22.2	194	1.44	66
SS01447	SOIL	6691955	330231	0.10	6.4	3	0.46	13.0	179	0.92	78
SS01446	SOIL	6691955	330131	0.09	8.1	5	0.50	22.3	175	1.25	70
SS01445	SOIL	6691955	330031	0.09	7.3	7	0.49	17.2	211	1.00	104
SS01444	SOIL	6691955	329931	0.11	6.3	6	0.46	19.2	191	0.87	98
SS01443	SOIL	6691955	329831	0.12	7.5	7	0.47	14.8	206	0.83	96
SS01442	SOIL	6691955	329731	0.08	6.3	9	0.43	12.9	179	0.70	88
SS01441	SOIL	6691955	329631	0.11	7.0	6	0.45	11.3	201	0.77	85
SS01440	SOIL	6691955	329531	0.06	9.2	17	0.42	11.6	152	0.69	70

Sample	Sample	North	Fast	Ag nnm	As nnm	Au nnh	Bi ppm	Co nnm	Cr nnm	Mo nnm	Ni nnm
5501439	SOIL	6691955	329431	0.06	6.6	2	0.52	15.6	147	0.96	70
\$\$01/38	SOIL	6692755	220221	0.00	7 1	6	0.52	17.0	228	1.00	108
SS01437	SOIL	6692755	329331	0.05	8.2	8	0.08	17.0	253	1.00	103
\$\$01426	SOIL	6602755	220521	0.05	0.2	0	0.61	12.4	255	1.40	201
SS01430	SOIL	6602755	220621	0.00	8.0	7	0.01	22.4	200	1.50	01
5501455	SOIL	6692755	329031	0.07	0.9	7	0.59	22.0	302	1.00	91
5501434	SOIL	6692755	329731	0.08	8.8	6	0.58	14.0	2/3	1.56	88
5501433	SOIL	6692755	329831	0.05	10.8	2	0.53	38.9	290	1.56	122
\$\$01432	SOIL	6692755	329931	0.06	10.7	2	0.56	27.8	298	4.78	123
SS01431	SOIL	6692755	330031	0.05	10.8	4	0.73	28.0	277	1.85	119
SS01430	SOIL	6692755	330131	0.05	10.1	4	0.53	23.3	271	1.88	115
SS01429	SOIL	6692755	330231	0.06	9.7	4	0.54	23.2	254	1.24	129
SS01428	SOIL	6692755	330331	0.04	9.0	3	0.55	24.5	251	1.61	116
SS01427	SOIL	6692755	330431	0.05	8.8	5	0.53	38.2	255	1.50	117
SS01426	SOIL	6692755	330531	0.05	8.6	12	0.48	42.2	271	1.31	122
SS01425	SOIL	6692755	330631	0.04	9.5	10	0.53	21.1	271	1.59	112
SS01424	SOIL	6692755	330731	0.06	10.3	11	0.55	16.6	298	1.61	118
SS01423	SOIL	6692755	330831	0.06	10.6	12	0.55	24.6	320	1.56	128
SS01422	SOIL	6693155	330831	0.04	10.1	5	0.53	25.7	307	1.71	139
SS01421	SOIL	6693155	330731	0.05	10.3	7	0.57	35.8	303	1.64	143
SS01420	SOIL	6693155	330631	0.05	9.4	7	0.51	16.0	298	1.57	113
SS01419	SOIL	6693155	330531	0.04	10.5	6	0.55	34.2	308	1.52	138
SS01418	SOIL	6693155	330431	0.05	10.1	10	0.58	20.4	276	1.59	114
SS01417	SOIL	6693155	330331	0.07	9.7	10	0.56	16.4	298	1.58	93
SS01416	SOIL	6693155	330231	0.05	9.4	10	0.62	17.2	274	1.61	88
SS01415	SOIL	6693155	330131	0.06	8.3	4	0.65	25.2	239	1.16	96
SS01414	SOIL	6693155	330031	0.08	8.1	4	0.39	12.9	166	0.58	72
SS01413	SOIL	6693155	329931	0.07	8.4	4	0.53	20.0	203	0.92	86
SS01412	SOIL	6693155	329831	0.08	8.7	5	0.54	17.3	216	0.97	92
SS01411	SOIL	6693155	329731	0.04	10.1	5	0.54	24.5	197	2.01	77
SS01410	SOIL	6693155	329631	0.04	10.8	4	0.55	30.9	222	1.86	90
SS01409	SOIL	6693155	329531	0.05	9.8	10	0.56	10.6	235	1.67	64
SS01408	SOIL	6693155	329431	0.06	9.4	12	0.56	13.4	259	1.71	73
SS01407	SOIL	6693155	329331	0.06	8.9	14	0.51	20.8	210	1.58	75
SS01406	SOIL	6693555	329431	0.05	11.0	4	0.52	27.5	218	1.33	102
SS01405	SOIL	6693555	329531	0.06	9.6	9	0.45	24.0	191	0.82	86
SS01404	SOIL	6693555	329631	0.03	9.1	4	0.47	19.7	186	1.18	77

Sample ID	Sample	North	East	Ag ppm	As ppm	Au ppb	Bi ppm	Co ppm	Cr ppm	Mo ppm	Ni ppm
SS01403	SOIL	6693555	329731	0.09	8.0	6	0.40	16.9	174	0.78	89
SS01402	SOIL	6693555	329831	0.05	7.2	3	0.36	14.1	149	0.69	71
SS01401	SOIL	6693555	329931	0.06	8.4	5	0.46	13.8	164	0.85	69
SS01400	SOIL	6693555	330031	0.05	9.4	4	0.57	29.2	194	1.19	88
SS01399	SOIL	6693555	330131	0.04	10.9	5	0.47	17.9	190	0.97	77
SS01398	SOIL	6693555	330231	0.07	12.9	7	0.39	16.6	174	0.68	89
SS01397	SOIL	6693555	330331	0.04	11.0	6	0.57	32.9	236	1.47	117
SS01396	SOIL	6693555	330431	0.04	10.8	7	0.54	21.1	257	1.65	108
SS01395	SOIL	6693555	330531	0.04	11.0	9	0.50	27.3	264	1.31	168
SS01394	SOIL	6693555	330631	0.04	10.3	5	0.55	25.1	239	1.69	117
SS01393	SOIL	6693555	330731	0.04	7.8	6	0.50	21.7	208	1.44	99
SS01392	SOIL	6693555	330831	0.06	12.5	12	0.28	19.7	182	0.67	96
SS01391	SOIL	6693955	330831	0.06	7.7	6	0.42	28.8	207	0.97	113
SS01390	SOIL	6693955	330731	0.11	10.2	9	0.37	17.2	199	0.77	108
SS01389	SOIL	6693955	330631	0.07	12.1	7	0.40	18.4	229	0.85	117
SS01388	SOIL	6693955	330531	0.11	12.4	40	0.35	19.8	214	0.95	112
SS01387	SOIL	6693955	330431	0.07	12.5	6	0.55	32.1	284	1.15	139
SS01386	SOIL	6693955	330331	0.04	11.9	9	0.47	23.4	256	1.03	120
SS01385	SOIL	6693955	330231	0.03	12.4	10	0.55	13.5	262	1.75	88
SS01384	SOIL	6693955	330131	0.05	12.3	5	0.55	27.3	237	1.52	120
SS01383	SOIL	6693955	330031	0.05	10.5	8	0.53	21.0	207	1.21	106
SS01382	SOIL	6693955	329931	0.04	10.9	10	0.56	22.6	237	1.68	71
SS01381	SOIL	6693955	329831	0.04	11.6	4	0.52	21.4	219	1.13	108
SS01380	SOIL	6693955	329731	0.04	11.9	5	0.52	25.9	205	1.31	110
SS01379	SOIL	6693955	329631	0.04	10.0	5	0.33	16.9	164	0.73	89
SS01378	SOIL	6693955	329531	0.08	10.1	14	0.35	21.7	155	0.63	75
SS01377	SOIL	6693955	329431	0.05	9.5	8	0.51	28.6	222	1.23	92
SS01376	SOIL	6693555	327831	0.08	13.3	6	0.34	18.7	222	0.50	111
SS01375	SOIL	6693555	327931	0.05	10.1	2	0.41	17.7	234	0.59	118
SS01374	SOIL	6693555	328031	0.06	14.2	7	0.29	23.2	183	0.50	103
SS01373	SOIL	6693555	328131	0.06	14.8	9	0.37	19.3	213	0.55	112
SS01372	SOIL	6693555	328231	0.06	7.3	4	0.43	14.6	237	0.66	112
SS01371	SOIL	6693555	328331	0.08	15.1	12	0.30	17.6	200	0.49	96
SS01370	SOIL	6693555	328431	0.09	11.3	8	0.37	19.0	200	0.59	106
SS01369	SOIL	6693555	328531	0.07	13.0	7	0.31	18.4	187	0.51	94
SS01368	SOIL	6693555	328631	0.05	9.5	5	0.50	18.0	277	0.87	128

Sample ID	Sample	North	Fast	Ag ppm	As ppm	Au ppb	Bi ppm	Co ppm	Cr ppm	Mo ppm	Ni ppm
5501367	SOIL	6693555	328731	0.07	10 1	11	0.40	17.6	223	0.62	120
\$\$01366	SOIL	6693555	328831	0.07	10.1	5	0.40	10 /	2/8	0.62	119
SS01365	SOIL	6693555	328931	0.07	13.4	6	0.42	17.4	240	0.03	107
\$\$01264	SOIL	6602555	220021	0.07	11 1	7	0.55	26.2	223	0.03	147
5501363	SOIL	6603555	220121	0.07	11.7	,	0.40	20.2	272	1.06	150
5501505	SOIL	0095555	229131	0.00	11.7	0	0.55	29.0	272	1.00	152
5501362	SOIL	6693555	329231	0.07	8.7		0.52	18.8	253	1.34	102
5501361	SOIL	6693555	329331	0.06	11.7	5	0.55	24.0	251	1.21	135
\$\$01360	SOIL	6693955	329331	0.05	12.3	10	0.57	25.2	266	1.43	121
SS01359	SOIL	6693955	329231	0.08	15.5	18	0.34	18.5	195	0.54	99
SS01358	SOIL	6693955	329131	0.06	16.4	10	0.35	20.8	213	0.52	108
SS01357	SOIL	6693955	329031	0.05	13.3	10	0.33	20.5	220	0.64	115
SS01356	SOIL	6693955	328931	0.05	10.2	7	0.41	17.7	267	0.65	125
SS01355	SOIL	6693955	328831	0.04	9.4	6	0.43	20.1	250	0.61	117
SS01354	SOIL	6693955	328731	0.07	10.4	14	0.35	23.6	230	0.57	126
SS01353	SOIL	6693955	328631	0.06	13.3	12	0.33	18.0	229	0.53	111
SS01352	SOIL	6693955	328531	0.05	10.1	5	0.40	23.9	259	0.60	118
SS01351	SOIL	6693955	328431	0.05	12.0	10	0.29	17.4	204	0.47	99
SS01350	SOIL	6693955	328331	0.04	9.9	6	0.48	26.2	257	0.84	124
SS01349	SOIL	6693955	328231	0.05	13.5	5	0.34	19.4	224	0.57	114
SS01348	SOIL	6693955	328131	0.04	6.5	6	0.38	22.3	224	0.58	107
SS01347	SOIL	6693955	328031	0.05	12.4	12	0.26	18.4	178	0.43	90
SS01346	SOIL	6693955	327931	0.07	12.2	7	0.30	23.7	196	0.69	108
SS01345	SOIL	6693955	327831	0.06	15.3	10	0.28	17.3	193	0.51	97
SS01117	SOIL	6693355	327731	0.04	4.6	2	0.41	16.0	281	0.63	111
SS01116	SOIL	6693355	327631	0.06	9.8	4	0.31	15.5	206	0.47	85
SS01115	SOIL	6693355	327531	0.07	8.1	11	0.24	16.0	194	0.40	77
SS01114	SOIL	6693355	327431	0.05	7.5	6	0.24	12.2	130	0.48	56
SS01113	SOIL	6693355	327331	0.05	4.0	6	0.24	15.7	146	0.44	69
SS01112	SOIL	6693355	327231	0.04	12.4	5	0.26	11.3	160	0.46	67
SS01111	SOIL	6693355	327131	0.05	5.3	2	0.43	20.3	201	0.83	80
SS01110	SOIL	6693355	327031	0.08	5.6	3	0.43	37.4	169	1.07	88
SS01109	SOIL	6693355	326931	0.03	3.3	3	0.39	15.5	190	2.76	83
SS01108	SOIL	6693355	326831	0.02	3.4	3	0.40	14.4	202	0.62	75
SS01107	SOIL	6693355	326731	0.04	5.3	3	0.37	17.4	170	0.72	70
SS01106	SOIL	6693355	326631	0.09	6.7	4	0.37	30.6	185	0.73	85
SS01105	SOIL	6693355	326531	0.05	4.0	3	0.43	19.0	214	0.55	88

Sample ID	Sample	North	East	Ag ppm	As ppm	Au ppb	Bi ppm	Co ppm	Cr ppm	Mo ppm	Ni ppm
SS01104	SOIL	6693355	326431	0.04	2.1	6	0.28	21.1	241	0.33	126
SS01103	SOIL	6693355	326331	0.06	5.6	4	0.40	12.2	183	0.76	56
SS01102	SOIL	6693355	326231	0.07	6.6	6	0.34	11.1	170	1.00	59
SS01101	SOIL	6692955	326231	0.06	7.4	4	0.40	13.6	178	0.80	73
SS01100	SOIL	6692955	326331	0.05	9.0	3	0.51	20.8	201	1.07	74
SS01099	SOIL	6692955	326431	0.06	8.1	5	0.24	11.9	137	0.42	57
SS01098	SOIL	6692955	326531	0.08	8.3	4	0.31	11.7	155	0.44	63
SS01097	SOIL	6692955	326631	0.06	5.3	5	0.24	14.0	166	0.40	75
SS01096	SOIL	6692955	326731	0.03	5.7	12	0.21	29.7	451	0.35	269
SS01095	SOIL	6692955	326831	0.04	7.2	5	0.26	18.2	209	0.43	120
SS01094	SOIL	6692955	326931	0.05	7.9	5	0.32	24.4	216	0.58	113
SS01093	SOIL	6692955	327031	0.02	6.6	2	0.34	21.9	218	0.61	121
SS01092	SOIL	6692955	327131	0.03	9.1	4	0.37	19.2	204	0.74	96
SS01091	SOIL	6692955	327231	0.04	8.6	6	0.39	19.1	189	0.90	83
SS01090	SOIL	6692955	327331	0.06	7.9	7	0.23	17.8	129	0.50	75
SS01089	SOIL	6692955	327431	0.05	7.0	5	0.28	15.0	124	0.53	75
SS01088	SOIL	6692955	327531	0.06	4.6	11	0.26	14.6	159	0.42	68
SS01087	SOIL	6692955	327631	0.05	4.4	7	0.34	14.7	193	0.51	78
SS01086	SOIL	6692955	327731	0.04	12.5	23	0.18	15.1	140	0.51	61
SS01085	SOIL	6690555	327231	0.14	5.2	5	0.60	28.3	255	1.21	102
SS01084	SOIL	6690555	327131	0.07	6.3	2	1.01	23.3	378	1.57	81
SS01083	SOIL	6690555	327031	0.10	9.1	4	0.67	21.3	315	1.48	78
SS01082	SOIL	6690555	326931	0.08	7.0	2	0.55	22.3	238	1.20	99
SS01081	SOIL	6690555	326831	0.10	7.1	3	0.68	32.2	198	1.57	104
SS01080	SOIL	6690555	326731	0.09	5.7	4	0.96	36.1	1080	1.82	441
SS01079	SOIL	6690555	326631	0.10	2.7	3	2.41	46.2	1210	2.81	470
SS01078	SOIL	6690555	326531	0.07	5.2	5	0.92	46.6	1080	0.74	543
SS01077	SOIL	6690555	326431	0.06	3.9	3	0.42	14.4	189	0.69	85
SS01076	SOIL	6690955	326431	0.06	7.0	4	0.68	24.7	587	0.66	299
SS01075	SOIL	6690955	326531	0.07	8.7	5	2.05	27.3	528	2.69	233
SS01074	SOIL	6690955	326631	0.09	9.5	5	1.79	32.4	973	2.10	330
SS01073	SOIL	6690955	326731	0.06	5.8	3	0.45	16.2	218	0.78	98
SS01072	SOIL	6690955	326831	0.14	7.3	5	0.74	38.5	199	1.30	110
SS01071	SOIL	6690955	326931	0.06	6.6	3	0.44	30.6	122	1.06	67
SS01070	SOIL	6690955	327031	0.10	5.6	4	0.43	41.1	245	0.91	129
SS01069	SOIL	6690955	327131	0.28	7.0	18	0.72	39.2	189	1.42	102

Sample ID	Sample	North	East	Ag ppm	As ppm	Au ppb	Bi ppm	Co ppm	Cr ppm	Mo ppm	Ni ppm
SS01068	SOIL	6690955	327231	0.10	6.7	2	0.73	45.3	256	1.18	104
SS01067	SOIL	6690955	327331	0.07	3.7	6	0.22	21.9	217	0.53	107
SS01066	SOIL	6690955	327431	0.09	7.8	3	0.45	19.7	394	0.98	125
SS01065	SOIL	6690955	327531	0.06	4.1	5	1.06	33.6	372	1.26	69
SS01064	SOIL	6690955	327631	0.02	5.7	1	0.40	8.7	203	1.00	55
SS01063	SOIL	6691355	326231	0.04	5.8	6	0.79	18.3	320	1.15	116
SS01062	SOIL	6691355	326331	0.06	8.1	4	1.82	14.0	262	1.33	89
SS01061	SOIL	6691355	326431	0.04	8.5	2	2.24	20.3	1040	1.85	245
SS01060	SOIL	6691355	326531	0.08	7.7	5	0.73	28.2	974	0.88	301
SS01059	SOIL	6691355	326631	0.08	7.4	5	1.03	16.1	258	1.51	109
SS01058	SOIL	6691355	326731	0.05	2.3	2	0.50	19.5	329	1.64	118
SS01057	SOIL	6691355	326831	0.08	5.0	1	0.46	24.9	301	0.95	117
SS01056	SOIL	6691355	326931	0.04	4.6	2	0.47	20.3	300	0.77	129
SS01055	SOIL	6691355	327031	0.05	3.4	3	0.67	37.0	413	1.06	117
SS01054	SOIL	6691355	327131	0.07	3.0	4	0.51	15.3	302	0.94	83
SS01053	SOIL	6691355	327231	0.09	4.7	2	0.53	33.1	304	0.98	128
SS01052	SOIL	6691355	327331	0.12	6.6	2	0.71	37.2	334	1.55	102
SS01051	SOIL	6691355	327431	0.06	7.4	2	0.79	19.9	315	1.43	79
SS01050	SOIL	6691355	327531	0.08	6.4	2	0.74	29.3	344	1.47	90
SS01049	SOIL	6691355	327631	0.09	6.6	4	0.78	42.7	353	1.53	95
SS01048	SOIL	6691355	327731	0.10	4.3	4	0.54	14.6	177	0.77	37
SS01047	SOIL	6691755	327731	0.05	1.5	3	0.46	19.5	121	0.63	37
SS01046	SOIL	6691755	327631	0.08	7.4	2	0.59	9.3	224	1.36	45
SS01045	SOIL	6691755	327531	0.07	5.9	4	0.44	23.4	150	0.90	63
SS01044	SOIL	6691755	327431	0.02	4.5	3	0.34	11.8	186	0.84	58
SS01043	SOIL	6691755	327331	0.04	1.7	3	0.35	26.2	149	1.03	40
SS01042	SOIL	6691755	327231	0.02	2.5	1	0.15	15.2	149	0.30	56
SS01041	SOIL	6691755	327131	0.02	6.5	2	0.41	13.3	239	1.06	67
SS01040	SOIL	6691755	327031	0.02	3.5	1	0.37	7.4	179	0.88	37
SS01039	SOIL	6691755	326931	0.03	3.8	2	0.34	11.7	137	0.76	50
SS01038	SOIL	6691755	326831	0.05	2.5	7	0.21	9.5	96	0.52	38
SS01037	SOIL	6691755	326731	0.06	2.7	25	0.18	8.7	106	0.52	52
SS01036	SOIL	6691755	326631	0.08	4.5	4	0.40	17.7	255	0.76	103
SS01035	SOIL	6691755	326531	0.05	4.4	4	0.51	18.0	202	1.20	76
SS01034	SOIL	6691755	326431	0.06	5.2	2	0.87	26.2	236	1.24	85
SS01033	SOIL	6691755	326331	0.06	2.5	3	0.66	7.9	127	0.66	61

Sample ID	Sample	North	East	Ag ppm	As ppm	Au ppb	Bi ppm	Co ppm	Cr ppm	Mo ppm	Ni ppm
SS01032	SOIL	6691755	326231	0.05	6.9	3	1.10	19.0	1230	0.72	339
SS01031	SOIL	6692155	327731	0.07	3.6	2	0.25	8.2	84	0.47	30
SS01030	SOIL	6692155	327631	0.05	3.1	10	0.24	6.8	123	0.55	37
SS01029	SOIL	6692155	327431	0.05	4.0	12	0.25	13.1	125	0.52	46
SS01028	SOIL	6692155	327331	0.09	2.9	11	0.15	13.0	139	0.37	47
SS01027	SOIL	6692155	327231	0.07	6.6	7	0.22	17.8	184	0.44	100
SS01026	SOIL	6692155	327131	0.02	2.1	3	0.28	10.9	166	0.42	80
SS01025	SOIL	6692155	327031	0.02	5.8	2	0.41	16.7	214	0.85	88
SS01024	SOIL	6692155	326931	0.03	6.0	2	0.45	13.9	206	0.90	83
SS01023	SOIL	6692155	326831	0.05	5.3	2	0.49	19.9	204	1.05	95
SS01022	SOIL	6692155	326731	0.07	3.7	2	0.47	15.7	160	0.72	58
SS01021	SOIL	6692155	326631	0.08	6.7	5	0.20	9.3	124	0.54	53
SS01020	SOIL	6692155	326531	0.08	2.2	4	0.51	14.2	245	0.72	81
SS01019	SOIL	6692155	326431	0.03	2.8	3	0.31	10.4	141	0.74	48
SS01018	SOIL	6692155	326331	0.03	5.2	2	0.53	12.8	164	1.90	53
SS01017	SOIL	6692155	326231	0.10	5.0	6	0.48	9.2	151	0.72	56
SS01016	SOIL	6692555	326231	0.04	7.6	5	0.56	15.3	225	1.39	75
SS01015	SOIL	6692555	326331	0.04	7.0	2	0.50	15.2	201	1.49	56
SS01014	SOIL	6692555	326431	0.06	3.3	5	0.37	13.4	163	0.54	72
SS01013	SOIL	6692555	326531	0.04	5.1	2	0.30	10.9	148	0.67	64
SS01012	SOIL	6692555	326631	0.09	4.4	4	0.32	10.1	163	0.58	57
SS01011	SOIL	6692555	326731	0.06	3.3	5	0.28	14.0	237	0.38	112
SS01010	SOIL	6692555	326831	0.05	7.3	4	0.29	37.8	425	0.58	395
SS01009	SOIL	6692555	326931	0.04	3.6	3	0.32	15.2	282	0.58	152
SS01008	SOIL	6692555	327031	0.05	1.8	12	0.20	14.5	375	0.36	96
SS01007	SOIL	6692555	327131	0.06	5.1	5	0.24	14.4	229	0.45	95
SS01006	SOIL	6692555	327231	0.06	1.8	6	0.33	15.2	196	0.56	88
SS01005	SOIL	6692555	327331	0.05	2.7	10	0.34	17.2	179	0.61	98
SS01004	SOIL	6692555	327431	0.04	2.0	7	0.35	19.5	211	0.76	95
SS01003	SOIL	6692555	327531	0.04	5.8	5	0.27	19.0	215	0.62	83
SS01002	SOIL	6692555	327631	0.04	6.4	5	0.30	17.5	163	0.59	82
SS01001	SOIL	6692555	327731	0.05	6.1	7	0.29	15.6	190	0.45	73
FR000425	ROCK	6689699	332465	0.03			0.08	0.4	5	0.20	1
FR000424	ROCK	6689661	332973	0.01			0.22	0.2	4	0.67	1
FR000423	ROCK	6689661	333049	0.02			1.53	0.2	4	0.52	1
FR000422	ROCK	6689650	333215		0.7		0.04	0.2	3	0.26	1

Sample ID	Sample	North	East	Ag ppm	As ppm	Au ppb	Bi ppm	Co ppm	Cr ppm	Mo ppm	Ni ppm
FR000421	воск	6689660	333298		0.6		0.07	0.5	<u> </u>	0.26	pp 1
FR000420	ROCK	6689748	333243		0.6		0.05	0.2	5	0.36	1
FR000419	ROCK	6689935	333311	0.04	0.6		1.63	0.3	5	0.93	1
FR000418	ROCK	6689941	333073	0.01	0.6		0.13	0.3	4	0.43	1
FR000417	ROCK	6690412	331689	0.04	0.6		0.51	0.5	5	2.82	1
FR000416	ROCK	6690419	331480	0.04	0.8		1.23	0.3	5	42.63	1
FR000415	ROCK	6690411	331426	0.04	0.7		2.80	0.2	5	2.10	1
FR000414	ROCK	6690404	331420	0.02			0.04	0.2	6	2.09	1
FR000413	ROCK	6690271	331127	0.06			0.27	0.4	3	0.25	1
FR000412	ROCK	6691403	332841	0.08			0.69	0.2	4	0.27	1
FR000411	ROCK	6691411	332853	1.59	0.8		15.61	0.2	6	10.07	1
FR000410	ROCK	6693287	326636		0.6		0.01	0.5	5	0.20	2
FR000409	ROCK	6693234	326221		0.6		0.04	0.3	6	0.23	1
FR000408	ROCK	6689542	326505		0.6		0.02	0.5	7	0.17	1
FR000407	ROCK	6689705	326486		0.7		0.02	1.4	12	0.16	6
FR000406	ROCK	6689828	326557	0.01	1.0		0.03	2.2	68	0.18	16
FR000405	ROCK	6690303	326620	0.02	0.6		0.15	0.3	7	0.22	1
FR000404	ROCK	6690314	326671	0.01	0.6		0.02	0.3	5	0.20	1
FR000403	ROCK	6690323	326778	0.01	0.6		0.09	0.3	9	0.28	1
FR000402	ROCK	6690167	326914	0.02	0.8		0.07	0.3	8	0.23	6
FR000401	ROCK	6690165	326999	0.16	0.6		1.20	0.5	13	0.61	2
FR000396	ROCK	6690227	327047	0.01	0.5	5	0.06	0.4	8	0.19	2
FR000395	ROCK	6690331	327106		0.6		0.01	0.3	7	0.24	1
FR000393	ROCK	6690547	326574	0.02	0.6		0.37	0.5	37	0.77	3
FR000392	ROCK	6690552	326450	0.01			0.01	0.3	12	0.15	2
FR000391	ROCK	6690990	326520	0.02	0.6		0.13	0.4	9	0.25	3
FR000390	ROCK	6690942	327652	0.01	0.7		0.13	0.4	17	0.19	1
FR000389	ROCK	6691335	326699	0.02			0.12	0.3	11	0.42	1
FR000388	ROCK	6691764	326758		0.6		0.01	0.2	5	0.15	1
FR000387	ROCK	6691950	326299		0.7		0.02	0.2	4	0.21	1
FR000386	ROCK	6692156	326496	0.02	0.5		0.13	0.6	12	0.13	3
FR000385	ROCK	6692171	326260		0.6		0.02	0.3	6	0.19	1
FR000384	ROCK	6692552	326863		0.6		0.02	0.4	9	0.16	2
FR000116	ROCK	6691414	332855	1.38		3	23.51	0.3	12	255.20	1
FR000115	ROCK	6690988	332761				9.51	0.3	16	1.70	2
FR000114	ROCK	6690987	332740	0.22			12.57	0.6	13	1.90	2

Sample											
ID	Sample	North	East	Ag_ppm	As_ppm	Au_ppb	Bi_ppm	Co_ppm	Cr_ppm	Mo_ppm	Ni_ppm
FR000113	ROCK	6690964	332802				0.30	0.3	14	1.10	1
FR000112	ROCK	6690657	333220				0.16	0.6	11	0.90	2
FR000111	ROCK	6690569	333257				0.27	0.3	10	1.10	1
FR000110	ROCK	6690530	333215				0.83	0.3	10	0.80	1
FR000109	ROCK	6690499	332149				0.74	0.5	12	1.00	2
FR000108	ROCK	6690498	332151	0.20			181.86	0.5	15	1.10	2
FR000107	ROCK	6690765	331787	0.08			0.50	0.3	5	0.40	1
FR000106	ROCK	6691240	332526				1.32	0.3	15	2.20	2
FR000105	ROCK	6691269	332474	0.45			33.49	0.3	14	4.70	1
FR000104	ROCK	6691449	332603	0.06			0.33	0.3	9	0.70	1
FR000103	ROCK	6691452	332710	0.06			0.42	0.3	12	0.90	1
FR000102	ROCK	6691452	332710	0.06			1.32	0.4	9	0.90	2
FR000101	ROCK	6691434	332818	0.12			5.12	0.5	11	1.60	2

Appendix 1 – JORC TABLE 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensuresample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusualcommodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Rock and grab samples were taken during mapping campaigns to the FRS Eastern Goldfields project. Samples (~2-3kg) were taken by a field geologist from prospective lithologies from in situ structures and "float" material. All sample information, including lithological descriptions and GPS coordinates were recorded during the sample collection. Individual samples were bagged in calico bags and sent to Genalysis for analysis, using aqua regia AR25/MS53 analysis. Samples were also sent to ALS/Minanalytical for analysis, using their aqua regia AR250 suite. Historic drilling results and details are taken from WAMEX reports A71322 (2005) and A73987 (2006) by Scotia Nickel Ltd. The drilling results reported in this announcement are from historic drilling from AC holes. Aircore drilling was used to obtain 4m composite samples which were subsequently assayed for Al, As, Au, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pd, Pt, S, Zn by AT/OES. Historic auger results in this report are taken from WAMEX report A95065 - Samples were dispatched to Ultra Trace, Perth for aqua regia ICP analysis for uranium, gold, nickel, copper, lead and zinc. Historic auger results in this report are taken from WAMEX report A86890 - samples taken by Scotia Nickel, no details of sampling are given but samples were assayed for Au, As, Ca, Co, Cr, Cu, Fe, Mn, Ni, Pb, Pd, Pt, U, W, Zn. Soil samples were sieved to ~2mm in the field and submitted to Labwest Minerals Analysis Pty Ltd. Laboratory in Perth. The ultrafine soil samples from Forrestania Resources utilises the latest advanced technologies for geochemical mapping and targeting. As a commercial partner and sponsor of the CSIRO/MRIWA Project M462 "Multi-scaled near surface exploration using ultrafine soils", LabWest assisted in the development of the Ultrafine process The Ultrafine technique is designed to analyse the clay sized fraction (<2µm) for gold exploration, and multi-elem

Criteria	JORC Code Explanation	Commentary
Drilling techniques	• Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 FRS did not conduct any drilling activities and no drilling by FRS drilling results are reported in this announcement. Historic drilling results and details are taken from WAMEX reports A71322 (2005) and A73987 (2006) by Scotia Nickel Ltd. The results reported in this announcement from historic drilling are from AC holes, designed to test the Highway Ultramafic. Samples were taken at 1m intervals and submitted to Ultratrace or Genalysis Laboratories Pty Ltd, Perth, Western Australia, for sample preparation and analysis. All samples were analysed for Al, As, Au, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pd, Pt, S, Zn by AT/OES.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. Historic drilling results and details are taken from WAMEX reports A71322 (2005) and A73987 (2006) by Scotia Nickel Ltd. The results reported in this announcement are from AC holes to test the Highway Ultramafic. No details of drill sample recovery are given. Samples were taken at 4m intervals and submitted to Ultratrace or Genalysis Laboratories Pty Ltd, Perth, Western Australia, for sample preparation and analysis. All samples were analysed for Al, As, Au, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pd, Pt, S, Zn by AT/OES. Samples <4m were taken when a 4m composite was unavailable.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. Historic drilling results and details are taken from WAMEX reports A71322 (2005) and A73987 (2006) by Scotia Nickel Ltd. The results reported in this announcement are from AC holes to test the Highway Ultramafic. No details of drill sample recovery are given. Holes were geologically logged by Scotia Nickel Ltd.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Rock and grab samples were taken during mapping campaigns to the FRS Eastern Goldfields project. Samples (~2-3kg) were taken by a field geologist from prospective lithologies from in situ structures and "float" material. All sample information, including lithological descriptions and GPS coordinates were recorded during the sample collection.

Criteria	JORC Code Explanation	Commentary
	 Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Individual samples were bagged in calico bags and sent to Genalysis for analysis, using aqua regia AR25/MS53 analysis. Samples were also sent to Minanalytical for analysis, using their aqua regia AR2520 suite, utilizing Genalysis' and ALS/Minanalytical's industry standard QAQC procedures. Soil samples were sieved to ~2mm in the field and submitted to Labwest Minerals Analysis Pty Ltd. Laboratory in Perth. The Ultrafine technique is designed to analyse the clay sized fraction (<2µm) for gold exploration, and multi-element analysis for major and trace elements, salinity (EC) and pH, and clay mineralogy. Samples were collected by a two-man team of Forrestania Resources contractors, led by a Geologist and submitted to Labwest utilizing their UFF-PE analysis method and Labwest's industry standard QAQC procedures. Samplers were trained in best practice techniques including: avoiding contamination by cleaning sampling equipment between samples, avoid cross contamination by removing jewellery during sampling and ensuring a representative sample is taken by taking several shovel scoops from the base of the hole and sieving out large soil fragments. Historic drilling results and details are taken from WAMEX reports A71322 (2005) and A73987 (2006) by Scotia Nickel Ltd. The results reported in this announcement are from AC holes to test the Highway Ultramafic. No details of drill sample recovery are given.
		 Samples were taken at 4m intervals and submitted to Ultratrace or Genalysis Laboratories Pty Ltd, Perth, Western Australia, for sample preparation and analysis. All samples were analysed for Al, As, Au, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pd, Pt, S, Zn by AT/OES. Samples <4m were taken when a 4m composite was unavailable.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether 	 Individual samples were bagged in calico bags and sent to Genalysis for analysis, using aqua regia AR25/MS53 analysis. Samples were also sent to ALS/Minalytical for analysis, using their aquq regia AR2520 suite, utilizing Genalysis' and ALS/Minanalytical's industry standard QAQC procedures. Individual soil samples were bagged in paper sample bags and analysed using Labwest' s UFF-PE suite. In-Lab QA/QC procedures include insertion of standards, blanks and duplicates, grind checks and repeat analyses are standard procedure.

Criteria	JORC Code Explanation	Commentary
	acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Historic auger and drilling is presumed to have used industry standard QA/QC procedures. Geophysical survey information: Aircraft Type - Cessna 210, registration: VH-HHJ Traverse line spacing: 50m (090-270) Sensor height: 30m Acquisition System: Sample rates up to 20 Hz Integrated Novatel OEM GPS receiver providing positional information that is used to tag incoming data streams in addition to providing pilot navigation guidance High precision caesium vapour magnetometer Visual real time on-screen system monitoring / error messages to limit refights due to equipment failure Magnetometers: Geometrics G-823A tail sensor, mounted in a stinger housing. Sensor Type - Cesium vapour Resolution - 0.001 nT Sample Rate - 20 Hz (≈3.5 metre sample interval) Compensation - 3-axis fluxgate magnetometer Gamma-Ray Spectrometer: RSI RS-500 gamma-ray spectrometer, incorporating 2x RSX-4 detector packs. Total Crystal Volume - 32 L Channels - 1024 Sample Rate - 2 Hz (≈35 metre sample interval) Multi-peak automatic gain stabilisation Altimeters: Bendix/King KRA 405 radar altimeter. Resolution - 0.3 m Sample Rate - 20 Hz Range - 0.760 m Renishaw ILM-500-R laser altimeter: Resolution - 0.01 m Sample Rate - up to 20 Hz Penerg 0, 600 m

Criteria	JORC Code Explanation	Commentary
		 Base Station Magnetometers: GEM GSM-19 Overhauser / Scintrex ENVIMAG proton precession. Resolution - 0.01 / 0.1 nT Accuracy - 0.1 / 0.5 nT Sample Rate - 1.0 / 0.5 Hz The GEM GSM-19 sampling at 1 second was used for all corrections. Global Positioning System: NovAtel OEM 719 DGPS Receiver. Channels - 555 Signal Tracking - L1/L2 + GLONASS Multi Frequency Positional Accuracy - 0.4 m RMS (NovAtel CORRECT) Sample Rate - 2 Hz Navigation information supplied to the pilot via an LCD steering indicator. All data were synchronised to a one pulse per second triggered by the GPS time. A compensation box was flown prior to survey. The compensation consisted of a series of pitch, roll and yaw manoeuvres in reciprocal survey headings at high altitude. The measured output from the 3-axis fluxgate magnetometer was recorded and used to resolve a compensation solution. This solution was applied when post-compensating all survey magnetometer data to remove manoeuvre effects and heading error. GPS accuracy tests were performed by accumulating GPS readings for approximately 5 minutes whilst the aircraft was static. All readings (X, Y, Z) were within 2 meters. Prior to commencement of survey production, the radar altimeter was checked for linearity by way of a swoop test over flat terrain. During survey, the pilot monitored system health from prompts on the navigation screen. The diurnal base stations were monitored by ground crew. Geophysical data processed and interpreted by Southern Geoscience Consultants.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative Company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Data results have been verified by FRS geologists. Follow up work around anomalies is planned for the near future to confirm further anomalous samples. All data was recorded on a Garmin GPS in the field, this data has now been transferred to the FRS database.

Criteria	JORC Code Explanation	Commentary
	Discuss any adjustment to assay data.	 The historic drilling intercept has been taken from WAMEX reports A71322 (2005) and A73987 (2006) by Scotia Nickel Ltd and no verification of the result has been made by FRS, but it is presumed to be taken using industry standard practices. Historic auger results in this report are taken from WAMEX report A95065 and A86890.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• A hand-held Garmin GPS was used to confirm the coordinates for all samples. Sample coordinates are recorded in GDA94, MGA zone 51.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Rock chip samples were taken of surface outcrops, The samples were irregularly spaced and distributed - the sampling is inherently irregular, due to the irregular nature of the outcropping structures. No sampling compositing has taken place of any samples. Soil samples were taken on a grid pattern with 400m spaced lines and samples taken every 100m along those lines. No sampling compositing has taken place. The historic drill intercept was not a composite sample, it was sampled as a 1m interval. Other historic holes have been drilled but assays are not reported here for these holes; details of theses holes can be found in WAMEX reports A71322 and A73987. Historic auger samples were taken on a grid pattern with one line having samples taken at 50m spacing.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The rock chip sampling is inherently irregular, due to the irregular nature of the outcropping structures. No orientation based sampling bias is known to have occurred. FRS soil samples were taken on a grid pattern with 400m spaced lines and samples taken every 100m along those lines; this grid was designed to run approximately perpendicular to the known greenstone belt orientation. No known relationship between the historic drilling orientation and the orientation of mineralised structures is considered to have introduced a sampling bias. Historic auger samples were taken on a grid pattern with 400m spaced lines and samples taken every 100m along those lines with one line having samples taken at 50m spacing.

Criteria	JORC Code Explanation	Commentary
Sample security	• The measures taken to ensure sample security.	• The FRS rock chip sampling was undertaken by field staff contracted to FRS – both of whom delivered the samples to the labs with no third party having access to the samples.
Audits or reviews	 The sampling methods being used are industry standard practice. 	 All sampling data reported in this announcement was assayed by Genalysis, ALS/Minanalytical and Labwest, using industry best practice. Forrestania Resources have not completed any external audits or reviews of the sampling techniques and data of the historical drilling, historic auger results or the FRS rock chips. Southern Geoscience Consultants were contracted by FRS to complete a geological interpretation of the geophysical data. Magspec completed the geophysical survey using industry standard practice.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Mineral tenementand land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or nationalpark and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	E29/1103 is owned and operated 100% by Forrestania Resources or subsidiaries of Forrestania Resources.
Exploration by other parties	 Acknowledgment and appraisal of explorationby other parties. 	 Multiple parties have historically explored around the tenements reported in this announcement. Scotia Nickel explored primarily for Gold in the mid 2000s on the southern portion of E29/1103 and Normandy Exploration completed a large geochemistry and small drilling programme at E29/1103 in the mid 90s;

Criteria	JORC Code Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The FRS eastern goldfields project sits across the Kurnalpi and Kalgoorlie Terranes of the Yilgarn Craton.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole, down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material andthis exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 FRS did not conduct any drilling activities reported in this announcement. Historic drill hole reported in this announcement is taken from WAMEX reports A71322 (2005) and A73987 (2006) by Scotia Nickel Ltd, the holes are air core (AC): Hole ID: LSGA0040, 329137E, 6682158N, 350RL, hole depth = 93m, dip = -90, Azi = 250. MGA zone 51.
Data aggregation	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No composite values or weighted averages were used with the rock chip or soil sampling. The historic drilling results reported in this announcement were taken as 1m sample intervals.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported. If it is not known andonly the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 FRS did not conduct any drilling activities reported in this announcement. The geometry of the mineralisation in the historic drilling, reported in this announcement is unknown. Down hole length of the reported, historic drilling is known, true width is not known.

Criteria	JORC Code Explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view ofdrill hole collar locations and appropriate sectional views. 	Appropriate maps with scale are included within the body of the accompanying document.
Balanced reporting	 Where comprehensive reporting of allExploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• The accompanying document is considered to represent a balanced report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Other exploration data collected is not considered as material to this document at this stage. Further data collection will be reviewed and reported when considered material.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depthextensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Geochemical assessment and investigative geological mapping of the tenements is ongoing Further field exploration is planned. AC drilling may be considered for further geological testing.