

17 November 2022

RC drilling results extend gold mineralisation at Kokoseb to 2.6km strike

Highlights

- Results received from a further twelve reverse circulation drill holes at Kokoseb continue to extend significant gold mineralisation along strike, including:
 - KRC024: 9m at 4.71 g/t Au from 146m (includes 1 sample yet to be finalised at laboratory)

o KRC023: 28m at 1.56 g/t Au from 191m

KRC022: 29m at 1.96 g/t Au from 80m

o KRC021: 8m at 1.99 g/t Au from 198m

o KRC018: 14m at 1.68 g/t Au from 5m

KRC017: 6m at 3.96 g/t Au from 98m

KRC014: 19m at 1.33 g/t Au from 49m

- All holes drilled to date at Kokoseb have intersected gold mineralisation at wide spacing
- 32 holes for 6,595 metres have been completed to date

Wia Gold Limited (ASX: WIA) (**Wia** or the **Company**) is pleased to report the final results from twelve reverse circulation (**RC**) drill holes – KRC013 to KRC024 – completed at the Kokoseb Gold Project (**Kokoseb**), situated on the Company's Damaran Gold Project located in Namibia. These drill holes are located on the western flank of the anomaly (the western trend), with the best results including:

- 9m at 4.71 g/t Au in hole KRC024;
- 28m at 1.56 g/t Au in hole KRC023; and
- 29m at 1.96 g/t Au in hole KRC022.

At the end of October, 32 RC holes for 6,595 metres have been completed at Kokoseb, with drilling currently progressing at the southern trend of the anomaly.

Wia's Chairman, Andrew Pardey, commented:

"We are pleased to again report these latest RC drilling results from Kokoseb that include significant gold intercepts and define several high-grade mineralised zones on the western trend of the gold anomaly. Every drill hole completed to date along the anomaly has intersected gold mineralisation, which remains open at depth and along strike."

"The total proven mineralised strike has now reached 2.6km with the addition of these latest results. Drilling is continuing to progress the strike extension towards the south, with further results expected in December."

"With such a continuous and significant (in terms of grade and width) mineralised trend, Kokoseb is a special discovery that has the scale to be a major gold project in Namibia."

RC drilling continues to extend the mineralised trends at Kokoseb

These latest results are from drilling located on the western trend of Kokoseb, under and between previous diamond holes KDD001 to KDD006 and Trenches OT001 to OT003 and OT009 (Figure 1). Every drill hole intersected gold mineralisation, from surface to 150m vertical depth, along a total continuous strike of 1.2km (the western trend), with the total length of mineralised strike now standing at 2.6km. The drill rig is currently progressing towards the south, testing the southern trend between KDD001 and KDD009.

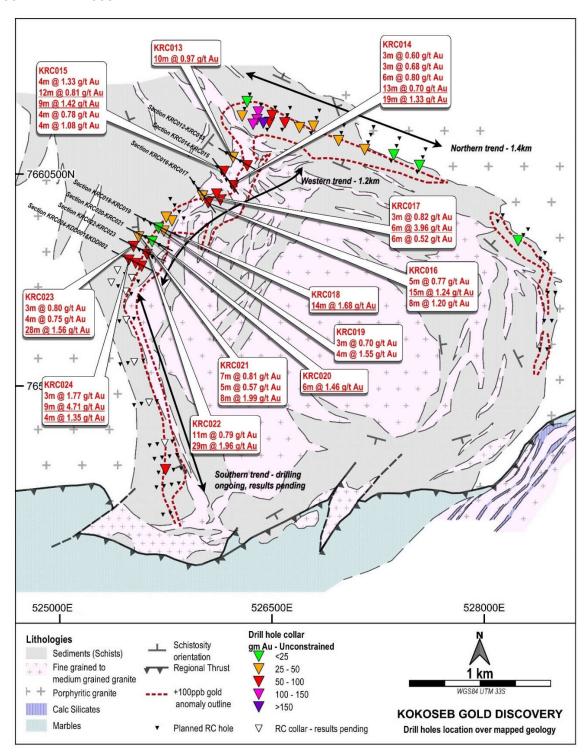


Figure 1 – Drilled and planned holes located on Kokoseb geology; significant intercepts on drillholes (in red are reported in this announcement); all intercepts >0.5 g/t Au¹

_

¹ Intercept calculated using 0.5 g/t cut-off grade and 2m max consecutive internal low grade.

KRC024 is drilled on section with diamond holes KDD001 and KDD002 and Trenches OT001 and OT002 (Figure 2). The drill hole trace has deviated from expectations while drilling, finally intersecting the mineralised zone some 15m under the mineralised intercepts of KDD002 (instead of the targeted 50m spacing). This downhole deviation has however confirmed good continuity in the high-grade mineralised zone on the section, correlating both the intercepts returned by KDD002, of 4.8m at 4.38 g/t Au and 2.7m at 2.37 g/t Au with the current intercept of 9m at 4.71 g/t Au – this intercept includes a sample which is not yet finalised at laboratory. KRC024 includes the following intercepts:

3m at 1.77 g/t Au from 131m 9m at 4.71 g/t Au from 146m. 4m at 1.35 g/t Au from 159m

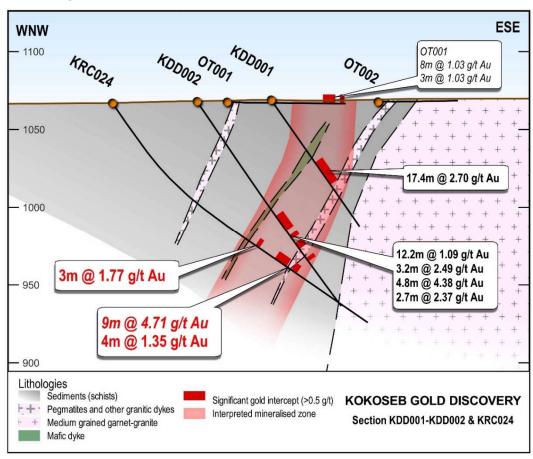


Figure 2 – Drill section KRC024-KDD001&KDD002 (intercepts in red are reported in this announcement and in black, previously reported; trenches intercepts in italic)²

The next section north, KRC022-KRC023, is located 100m from the section that includes KRC024 (Figure 3). The mineralised zone is very regular on the section; both the holes have intersected a thick high grade gold zone at 50m interval between the holes, including 29m at 1.96 g/t Au in KRC022 and 28m at 1.56 g/t Au in KRC023. The mineralisation is located between the granitic body, on the east and a mafic dyke on the west. The section includes all the following significant intercepts:

11m at 0.79 g/t Au from 66m (KRC022)

29m at 1.96 g/t Au from 80m (KRC022)

3m at 0.80 g/t Au from 157m (KRC023)

² See ASX announcements 10 February 2022 and 7 June 2022 for further information on previously reported results of diamond drilling and Trenches.

4m at 0.75 g/t Au from 174m (KRC023) **28m at 1.56 g/t Au from 191m** (KRC023)

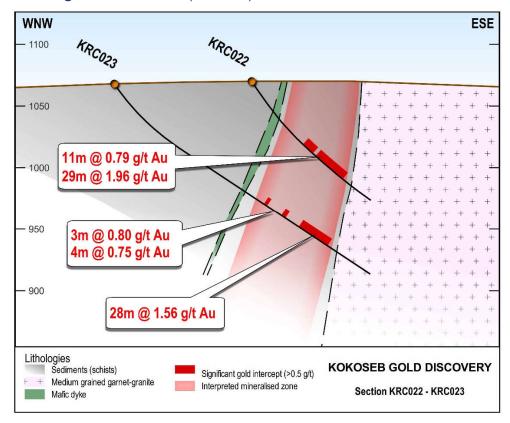


Figure 3 – Drill section KRC022-KRC023 (intercepts in red are reported in this announcement)

Drill section **KRC020-KRC021** is drilled under trench OT003 and 100m north of section **KRC022-KRC023** (Figure 4). The mineralised zone intersected on the section is thinning but still includes some significant gold grades, including:

6m at 1.46 g/t Au from 83m (KRC020)

7m at 0.81 g/t Au from 179m (KRC021)

5m at 0.57 g/t Au from 190m (KRC021)

8m at 1.99 g/t Au from 198m (KRC021)

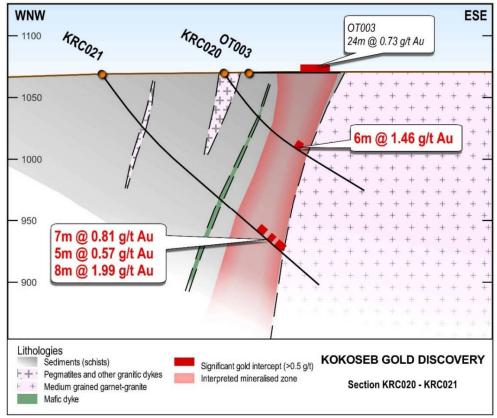


Figure 4 – Drill section KRC020-KRC021 (intercepts in red are reported in this announcement; trench intercepts in italics)³

The next drill section – **KRC018-KRC019** – was drilled 100m north of drill section **KRC020-KRC021** (Figure 5), and confirmed thinning of the same mineralised zone, however still continuous, including **14m at 1.68** g/t Au in **KRC018** and a low-grade gold zone in drill hole **KRC019**. A second mineralised zone starts to the west of the section, at depth – this can be observed in the next section north, previously reported that includes diamond holes KDD003 and KDD004. The actual section includes the following intercepts:

14m at 1.68 g/t Au from 5m (KRC018)

3m at 0.70 g/t Au from 121m (KRC019)

4m at 1.55 g/t Au from 128m (KRC019)

³ See ASX announcements 10 February 2022 for further information on previously reported results of trench OT003.

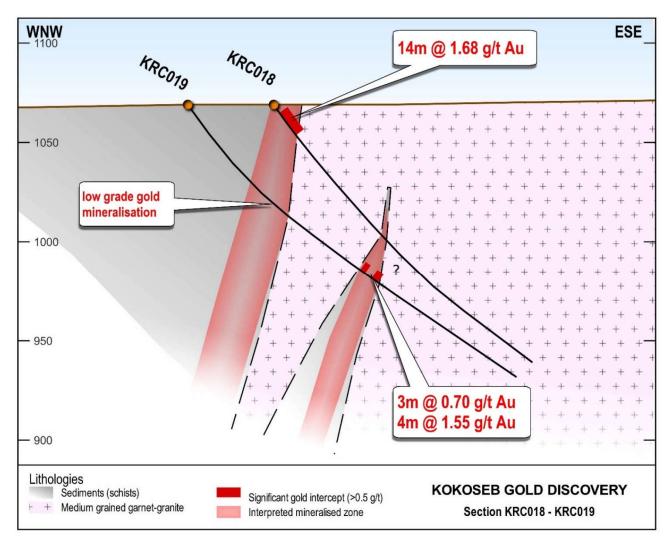


Figure 5 – Drill section KRC018-KRC019 (intercepts in red intercepts in red are reported in this announcement)

Drill section **KRC016-KRC017** is drilled beneath trench OT009, located 250m north-east of section KDD003-KDD004 and 100m southwest of diamond holes KDD005 and KDD006 (Figure 6). The mineralised zone is intersected from surface, in trench OT009 and drill hole **KRC016**, to 80m vertical depth in drill hole **KRC017** as a regular 40m zone that includes the following significant intercepts:

5m at 0.77 g/t Au from 4m (KRC016)

15m at 1.24 g/t Au from 15m (KRC016)

8m at 1.20 g/t Au from 35m (KRC016)

3m at 0.82 g/t Au from 69m (KRC017)

6m at 3.96 g/t Au from 98m (KRC017)

6m at 0.52 g/t Au from 107m (KRC017)

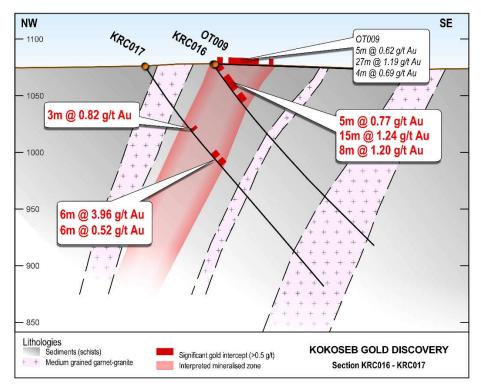


Figure 6 – Drill section KRC016-KRC017 (intercepts in red intercepts in red are reported in this announcement; trench intercepts are in italic)⁴

Drill section **KRC014-KRC015** is drilled 200m north-east of section **KRC016-KRC017** and 100m north east of section KDD005-KDD006 (Figure 7). The gold intercepts remain consistent, with the following significant results:

3m at 0.60 g/t Au from surface (KRC014)

3m at 0.68 g/t Au from 10m (KRC014)

6m at 0.80 g/t Au from 19m (KRC014)

13m at 0.70 g/t Au from 33m (KRC014)

19m at 1.33 g/t Au from 49m (KRC014)

4m at 1.33 g/t Au from 108m (KRC015)

12m at 0.81 g/t Au from 117m (KRC015)

9m at 1.42 g/t Au from 132m (KRC015)

4m at 0.78 g/t Au from 146m (KRC015)

4m at 1.08 g/t Au from 217m (KRC015)

⁴ See ASX announcements 7 June 2022 for further information on previously reported results of Trenches.

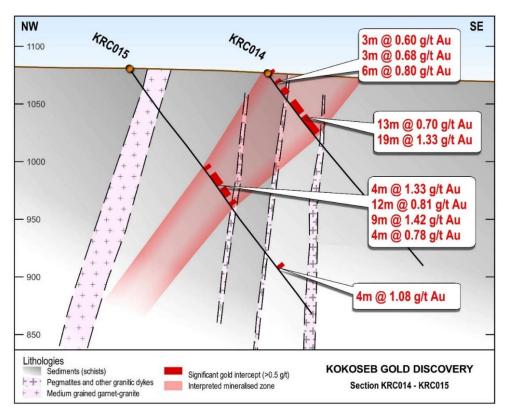


Figure 7 - Drill section KRC014-KRC015 (intercepts in red are reported in this announcement)

Drill section KRC012-KRC013 is the northernmost section of the western flank, 200m north of section KRC014-KRC015 (Figure 8). The mineralised zone was intersected in KRC012 as an unconstrained intercept of 58m at 1.52 g/t Au. It gets either pinched out or offset on the section by a granitic body – with infill drilling required to better understand this structure. A single significant intercept of 10m at 0.97 g/t Au from 137m was returned from drill hole KRC013.

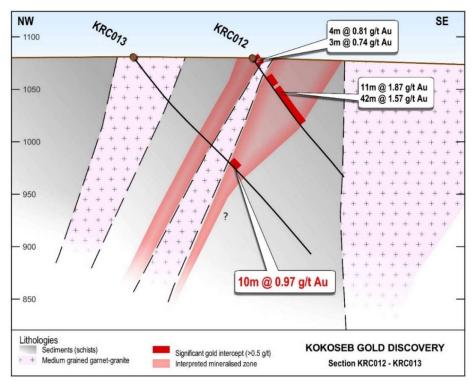


Figure 8 – Drill section KRC012-KRC013 (intercepts in red are reported in this announcement, those in black have been previously reported)⁵

_

⁵ See ASX announcements 17 October 2022 for further information on previously reported results of RC drilling.

This announcement has been authorised for release by the board of directors of Wia Gold Limited.

Contact details

Andrew Pardey Chairman +61 8 9381 5686

Competent Person's Statement

The information in this announcement that relates to exploration results at the Kokoseb Gold Project located on the Company's Damaran Gold Project is based on information compiled by Company geologists and reviewed by Mr Pierrick Couderc, in his capacity as Exploration Manager of WiaGold Limited. Mr. Couderc is a member of both the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Couderc consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

Reference to previous ASX Announcements

In relation to previously reported exploration results included in this announcement, the dates of which are referenced, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements.

About Wia's Namibia Projects

Since 2018 the Company has successfully consolidated a very large land position on the Damaran belt in central Namibia (the **Damaran Project**), which is strategically located along key regional structures. The Damaran Project consists of 12 tenements with a total area of over 2,700km² held under joint venture with the state-owned mining company, Epangelo and a local Namibian group.

The location of the Company's Namibian Projects is shown in Figure 9.

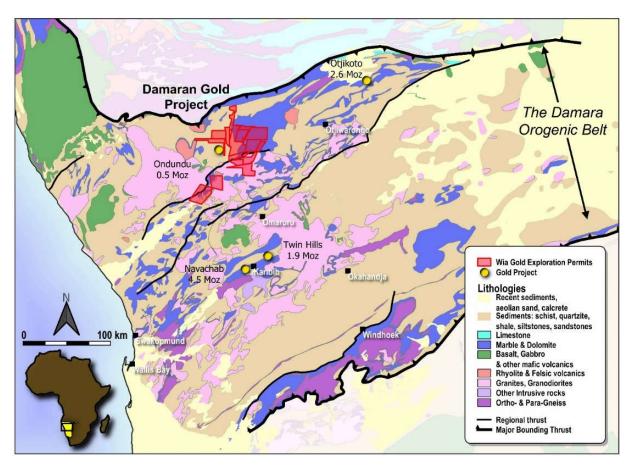


Figure 9 – Location of Wia's Namibia Projects

Appendix 1. Kokoseb – Location of RC drillholes

Hole ID	Easting	Northing	RL	Length (m)	Dip (°)	Azi (°)
KRC013	526225	7660618	1081	255	-54	123
KRC014	526229	7660418	1077	216	-55	144
KRC015	526160	7660518	1081	270	-55	145
KRC016	526049	7660297	1078	216	-55	146
KRC017	526009	7660345	1076	260	-56	146
KRC018	525736	7660097	1069	185	-55	119
KRC019	525698	7660117	1069	216	-55	119
KRC020	525652	7660023	1070	150	-55	120
KRC021	525558	7660055	1069	246	-54	120
KRC022	525617	7659931	1070	200	-56	123
KRC023	525521	7659989	1068	285	-56	119
KRC024	525488	7659892	1067	218	-56	120

Appendix 2. RC drill holes gold assays, using a cut-off grade of $0.2~\mathrm{g/t}$ gold and max $2\mathrm{m}$ consecutive internal waste material

Hole ID	From (m)	To (m)	Gold g/t
KRC013	94	95	0.396
KRC013	95	96	0.059
KRC013	96	97	0.265
KRC013	97	98	0.5
KRC013	98	99	0.137
KRC013	99	100	0.155
KRC013	100	101	0.237
KRC013	101	102	0.198
KRC013	102	103	0.472
KRC013	103	104	0.429
KRC013	104	105	0.119
KRC013	105	106	1.21
KRC013	106	107	0.219
KRC013	107	108	0.124
KRC013	108	109	0.139
KRC013	109	110	0.211
KRC013	110	111	1.95
KRC013	111	112	0.056
KRC013	112	113	0.263
KRC013	137	138	0.958
KRC013	138	139	1.25
KRC013	139	140	1.17
KRC013	140	141	0.804
KRC013	141	142	0.537
KRC013	142	143	2.19
KRC013	143	144	0.745
KRC013	144	145	0.758
KRC013	145	146	0.758
KRC013	146	147	0.556
KRC013	147	148	0.466
KRC013	148	149	0.407
KRC013	168	169	0.877
KRC013	169	170	0.213
KRC013	170	171	0.121
KRC013	171	172	0.201
KRC013	175	176	0.225
KRC013	176	177	0.372
KRC013	177	178	0.132
KRC013	178	179	0.22
KRC014	0	1	0.661
KRC014	1	2	0.21
KRC014	2	3	0.931
KRC014	6	7	0.61
KRC014	7	8	0.423
KRC014	8	9	0.356
KRC014	9	10	0.101
KRC014	10	11	0.59
KRC014	11	12	0.923
KRC014	12	13	0.523
KRC014	13	14	0.168
KRC014	14	15	0.201
KRC014	15	16	0.206
KRC014	19	20	0.846
KRC014	20	21	0.609
KRC014	21	22	0.444
KRC014	22	23	0.687
KRC014	23	24	1.735
KRC014	24	25	0.508

Hole ID	From (m)	To (m)	Gold g/t
KRC014	25	26	0.31
KRC014	30	31	0.496
KRC014	31	32	0.245
KRC014	32	33	0.197
KRC014	33	34	1.79
KRC014	34	35	0.335
KRC014	35	36	0.498
KRC014	36	37	0.888
KRC014	37	38	0.652
KRC014	38	39	0.737
KRC014	39	40	0.554
KRC014	40	41	0.231
KRC014	41	42	0.36
KRC014	42	43	0.776
KRC014	43	44	0.747
KRC014	44	45	1
KRC014	45	46	0.501
KRC014	46	47	0.105
KRC014	47	48	0.112
KRC014	48	49	0.31
KRC014	49	50	0.94
KRC014	50	51	0.879
KRC014	51	52	1.465
KRC014	52	53	1.53
KRC014	53	54	2.35
KRC014	54	55	0.854
KRC014	55	56	0.567
KRC014	56	57	2.69
KRC014	57	58	2.23
KRC014	58	59	1.095
KRC014	59	60	0.814
KRC014	60	61	0.939
KRC014	61	62	1.445
KRC014	62	63	0.366
KRC014	63	64	0.429
KRC014	64	65	1.83
KRC014	65	66	0.993
KRC014	66	67	2.48
KRC014	67	68	1.34
KRC014	88	89	0.228
KRC014	89	90	0.109
KRC014	90	91	0.234
KRC015	105	106	0.221
KRC015	106	107	0.056
KRC015	107	108	0.16
KRC015	108	109	1.19
KRC015	109	110	0.414
KRC015	110	111	2.87
KRC015	111	112	0.827
KRC015	112	113	0.194
KRC015	113	114	0.452
KRC015	117	118	0.537
KRC015	118	119	0.788
KRC015	119	120	0.121
KRC015	120	121	1.395
KRC015	121	122	0.75
KRC015	122	123	1.92
KRC015	123	124	0.173

Hole ID	From (m)	To (m)	Gold g/t
KRC015	124	125	0.242
KRC015	125	126	1.085
KRC015	126	127	0.181
KRC015	127	128	0.764
KRC015	128	129	1.765
KRC015	129	130	0.349
KRC015	130	131	0.353
KRC015	131	132	0.017
KRC015	132	133	1.13
KRC015	133	134	0.424
KRC015	134	135	3.19
KRC015	135	136	4.59
KRC015	136	137	1.245
KRC015	137	138	0.337
KRC015	138	139	0.492
KRC015	139	140	0.727
KRC015	140	141	0.6
KRC015	145	146	0.427
KRC015	146	147	0.973
KRC015	147	148	0.37
KRC015	148	149	0.802
KRC015	149	150	0.976
KRC015	184	185	0.804
KRC015	185	186	0.019
KRC015	186	187	0.007
KRC015	187	188	0.424
KRC015	188	189	3.99
KRC015	189	190	0.074
KRC015 KRC015	190	191	0.278
KRC015	191 192	192 193	0.129 0.904
KRC015	193	194	0.006
KRC015	194	195	0.083
KRC015	195	196	0.459
KRC015	196	197	0.22
KRC015	213	214	0.529
KRC015	214	215	0.075
KRC015	215	216	0.147
KRC015	216	217	0.405
KRC015	217	218	1.995
KRC015	218	219	0.254
KRC015	219	220	1.055
KRC015	220	221	1.005
KRC015	221	222	0.241
KRC015	222	223	0.457
KRC015	223	224	0.127
KRC015	224	225	0.528
KRC015	225	226	0.094
KRC015	226	227	0.251
KRC015	248	249	25.9
KRC015	249	250	0.843
KRC015	250	251	0.335
KRC015	254	255	0.264
KRC015	255	256	0.068
KRC015	256	257	0.225
KRC016	3	4	0.323
KRC016	4	5	0.933
KRC016	5	6	0.425
KRC016	6	7	1.05
KRC016	7	8	0.519

Hole ID	From (m)	To (m)	Gold g/t
KRC016	8	9	0.946
KRC016	9	10	0.141
KRC016	10	11	0.489
KRC016	11	12	0.186
KRC016	12	13	0.131
KRC016	13	14	0.323
KRC016	14	15	0.22
KRC016	15	16	0.688
KRC016	16	17	1.38
KRC016	17	18	2.4
KRC016	18	19	0.13
KRC016	19	20	0.151
KRC016	20	21	0.79
KRC016	21	22	0.54
KRC016	22	23	1.3
KRC016	23	24	2.58
KRC016	24	25	1.92
KRC016	25	26	1.265
KRC016	26	27	1.07
KRC016	27	28	0.798
KRC016 KRC016	28	29	1.69 1.965
KRC016	29 35	30 36	0.934
KRC016	36	37	0.743
KRC016	37	38	2.09
KRC016	38	39	0.887
KRC016	39	40	0.506
KRC016	40	41	1.715
KRC016	41	42	1.335
KRC016	42	43	1.395
KRC016	43	44	0.233
KRC016	89	90	0.316
KRC016	90	91	0.271
KRC016	91	92	0.307
KRC016	92	93	0.304
KRC016	93	94	0.294
KRC016	94	95	2
KRC016	95	96	2.55
KRC016	120	121	0.532
KRC016	121	122	0.048
KRC016	122	123	0.426
KRC016	123	124	0.438
KRC016	141	142	0.306
KRC016	142	143	0.056
KRC016	143	144	0.222
KRC016	144	145	0.341
KRC017	61	62	0.716
KRC017	62	63	0.544
KRC017	63	64	0.381
KRC017	64	65 66	0.455
KRC017	65 66	66 67	0.096
KRC017 KRC017	66 67	68	0.385 0.069
KRC017	68	69	0.009
KRC017 KRC017	69	70	0.014
KRC017	70	70	0.573
KRC017	70	72	1.3
KRC017	72	73	0.181
KRC017	73	74	0.282
KRC017	74	75	0.428
			JJ

Hole ID	From (m)	To (m)	Gold g/t
KRC017	75	76	0.046
KRC017	76	77	0.355
KRC017	82	83	0.232
KRC017	83	84	0.186
KRC017	84	85	0.209
KRC017	85	86	0.259
KRC017	90	91	0.259
KRC017	91	92	0.349
KRC017	92	93	1.25
KRC017	93	94	0.138
KRC017	94	95	0.229
KRC017	95	96	0.156
KRC017	96	97	0.347
KRC017	97	98	0.498
KRC017	98	99	3.44
KRC017	99	100	15
KRC017	100	101	1.975
KRC017	101	102	0.872
KRC017	102	103	0.58
KRC017	103	104	1.915
KRC017	104	105	0.053
KRC017	105	106	0.024
KRC017	106	107	0.485
KRC017	107	108	1.045
KRC017	108	109	0.308
KRC017	109	110	0.195
KRC017	110	111	0.511
KRC017	111	112	0.228
KRC017	112	113	0.806
KRC017	157	158	0.451
KRC017	158	159	0.311
KRC017	159	160	0.223
KRC017	160	161	2.36
KRC017	161	162	0.782
KRC017	162	163	0.211
KRC017	163	164	0.052
KRC017 KRC017	164 165	165 166	0.011 0.352
KRC017			
KRC018	3	3 4	0.296 0.458
KRC018	4	5	0.438
KRC018	5	6	1.43
KRC018	6	7	0.057
KRC018	7	8	0.518
KRC018	8	9	0.135
KRC018	9	10	0.4
KRC018	10	11	1.22
KRC018	11	12	9.08
KRC018	12	13	3.83
KRC018	13	14	0.169
KRC018	14	15	0.414
KRC018	15	16	2.38
KRC018	16	17	1.885
KRC018	17	18	1.12
KRC018	18	19	0.932
KRC018	19	20	0.2
KRC019	60	61	0.221
KRC019	61	62	0.401
KRC019	62	63	0.353
KRC019	63	64	0.117
		Ţ.	5/

Hole ID	From (m)	To (m)	Gold g/t
KRC019	64	65	0.141
KRC019	65	66	0.618
KRC019	66	67	0.35
KRC019	67	68	0.484
KRC019	68	69	0.324
KRC019	69	70	1.065
KRC019	70	71	0.327
KRC019	121	122	0.544
KRC019	122	123	1.06
KRC019	123 128	124	0.508
KRC019 KRC019	129	129 130	1.575 1.445
KRC019	130	131	0.918
KRC019	131	132	2.28
KRC020	61	62	0.532
KRC020	62	63	0.116
KRC020	63	64	0.423
KRC020	64	65	0.257
KRC020	65	66	0.244
KRC020	69	70	0.427
KRC020	70	71	1.785
KRC020	71	72	0.14
KRC020	72	73	0.281
KRC020	73	74	0.421
KRC020	74	75	0.448
KRC020	75	76	0.167
KRC020	76	77	0.428
KRC020	77	78	0.187
KRC020	78	79	0.29
KRC020	79	80	0.28
KRC020	80	81	0.454
KRC020	81	82	0.229
KRC020	82	83	0.352 0.541
KRC020 KRC020	83 84	84 85	1.05
KRC020	85	86	1.39
KRC020	86	87	1.66
KRC020	87	88	2.76
KRC020	88	89	1.38
KRC020	89	90	0.276
KRC020	94	95	1.725
KRC020	95	96	0.515
KRC021	165	166	0.47
KRC021	166	167	0.057
KRC021	167	168	0.207
KRC021	168	169	0.169
KRC021	169	170	0.741
KRC021	170	171	0.271
KRC021	171	172	0.3
KRC021	172	173	0.302
KRC021	173	174	0.615
KRC021 KRC021	174 175	175 176	0.313 0.438
KRC021	179	180	0.438
KRC021	180	181	0.165
KRC021	181	182	1.72
KRC021	182	183	1.395
KRC021	183	184	0.314
KRC021	184	185	0.277
KRC021	185	186	0.864

Hole ID	From (m)	To (m)	Gold g/t
KRC021	186	187	0.299
KRC021	187	188	0.199
KRC021	188	189	0.158
KRC021	189	190	0.201
KRC021	190	191	0.533
KRC021	191	192	0.195
KRC021	192	193	0.705
KRC021	193	194	0.296
KRC021	194	195	1.125
KRC021	195	196	0.297
KRC021	196	197	0.271
KRC021	197	198	0.277
KRC021	198	199	1.235
KRC021	199	200	4.71
KRC021	200	201	1.565
KRC021	201	202	2.19
KRC021	202	203	0.496
KRC021	203	204	0.049
KRC021	204	205	2.24
KRC021	205	206	3.45
KRC021	206	207	0.22
KRC022	43	44	4.43
KRC022	44	45	0.447
KRC022	45	46	0.321
KRC022	46	47	0.179
KRC022	47	48	0.038
KRC022	48 49	49	0.211
KRC022 KRC022	50	50 51	0.535 0.276
KRC022	51	52	0.276
KRC022	52	53	0.196
KRC022	53	54	0.615
KRC022	54	55	0.287
KRC022	55	56	0.165
KRC022	56	57	0.302
KRC022	57	58	0.429
KRC022	58	59	0.259
KRC022	59	60	0.084
KRC022	60	61	0.371
KRC022	61	62	0.631
KRC022	62	63	0.598
KRC022	63	64	0.2
KRC022	64	65	0.186
KRC022	65	66	0.157
KRC022	66	67	0.57
KRC022	67	68	0.766
KRC022	68	69	0.232
KRC022	69	70	0.7
KRC022	70	71	0.879
KRC022	71	72	0.457
KRC022	72	73	0.435
KRC022	73	74	1.58
KRC022	74	75	0.327
KRC022	75	76 	0.999
KRC022	76	77	1.73
KRC022	80	81	0.607
KRC022	81	82	0.826
KRC022	82	83	0.415
KRC022	83	84	0.908
KRC022	84	85	5.19

Hole ID	From (m)	To (m)	Gold g/t
KRC022	85	86	6.71
KRC022	86	87	0.736
KRC022	87	88	1.595
KRC022	88	89	1.095
KRC022	89	90	0.17
KRC022	90	91	0.114
KRC022	91	92	1.02
KRC022	92	93	0.482
KRC022	93	94	0.649
KRC022	94	95	0.349
KRC022	95	96	0.46
KRC022	96	97	0.588
KRC022	97	98	1.78
KRC022	98	99	3.07
KRC022	99	100	11.8
KRC022	100	101	4.64
KRC022 KRC022	101 102	102 103	1.665 0.597
KRC022	102	103	1.115
KRC022	103	104	2.55
KRC022	105	106	2.21
KRC022	106	107	0.974
KRC022	107	108	1.695
KRC022	108	109	2.94
KRC022	109	110	0.451
KRC022	110	111	0.191
KRC022	111	112	0.1
KRC022	112	113	0.398
KRC023	151	152	0.207
KRC023	152	153	0.066
KRC023	153	154	0.2
KRC023	154	155	0.048
KRC023	155	156	0.067
KRC023	156	157	0.474
KRC023	157	158	0.955
KRC023	158	159	0.482
KRC023	159	160	0.955
KRC023	160	161	0.421
KRC023	169	170	0.34
KRC023	170	171	0.272
KRC023 KRC023	171	172	0.305 0.405
KRC023	172 173	173 174	0.403
KRC023	174	175	0.695
KRC023	175	176	0.734
KRC023	176	177	0.834
KRC023	177	178	0.746
KRC023	178	179	0.214
KRC023	179	180	0.23
KRC023	180	181	0.202
KRC023	181	182	0.17
KRC023	182	183	0.168
KRC023	183	184	0.226
KRC023	184	185	1.745
KRC023	185	186	0.071
KRC023	186	187	0.248
KRC023	187	188	0.292
KRC023	191	192	0.917
KRC023	192	193	0.294
KRC023	193	194	1.92

Hole ID	From (m)	To (m)	Gold g/t
KRC023	194	195	0.376
KRC023	195	196	0.809
KRC023	196	197	0.732
KRC023	197	198	0.786
KRC023	198	199	1.62
KRC023	199	200	3.22
KRC023	200	201	5.79
KRC023	201	202	0.637
KRC023	202	203	0.734
KRC023	203	204	0.738
KRC023	204	205	0.485
KRC023	205	206	1.925
KRC023	206	207	0.36
KRC023	207	208	0.649
KRC023	208	209	2
KRC023	209	210	1.93
KRC023	210	211	2
KRC023	211	212	2.61
KRC023	212	213	1.07
KRC023	213	214	5.18
KRC023	214	215	4.38
KRC023	215	216	0.183
KRC023	216	217	0.268
KRC023	217	218	1.075
KRC023	218	219	0.95
KRC024	127	128	0.307
KRC024	128	129	0.274
KRC024	129	130	0.285
KRC024	130	131	0.017
KRC024	131	132	3.32
KRC024	132	133	1.215
KRC024	133	134	0.772
KRC024	134	135	0.433
KRC024	135	136	0.462
KRC024	136	137	0.446

Hole ID	From (m)	To (m)	Gold g/t
KRC024	137	138	1.19
KRC024	138	139	0.123
KRC024	139	140	0.296
KRC024	140	141	0.485
KRC024	141	142	0.612
KRC024	142	143	0.295
KRC024	143	144	0.209
KRC024	144	145	0.072
KRC024	145	146	0.256
KRC024	146	147	1.285
KRC024	147	148	3.98
KRC024	148	149	0.674
KRC024	149	150	0.606
KRC024	150	151	3.84
KRC024	151	152	2.15
KRC024	152	153	>10
KRC024	153	154	1.47
KRC024	154	155	18.25
KRC024	158	159	0.36
KRC024	159	160	2.16
KRC024	160	161	0.44
KRC024	161	162	0.474
KRC024	162	163	2.32
KRC024	163	164	0.091
KRC024	164	165	0.369
KRC024	165	166	0.065
KRC024	166	167	0.162
KRC024	167	168	0.417
KRC024	168	169	1.09
KRC024	178	179	0.431
KRC024	179	180	0.218
KRC024	180	181	0.026
KRC024	181	182	0.164
KRC024	182	183	2.87

Appendix 3. JORC Table 1 Reporting

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) drilling was completed using a dedicated RC rig. Drillholes were angled -55° from surface. RC sampling was undertaken along the entire length of the drill holes. Samples were collected from the rig cyclone, split through a riffle splitter and then bagged in a plastic sample bag; samples are typically 1m length and a circa 2-4kg weight. A duplicate sample was retained on site for future reference.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	RC drilling was carried out using a 140mm face sampling hammer
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC recoveries were determined by weighting each drill metre bag. Samples are sieved and logged by supervising Geologist; sample weight, quality, moisture and any contamination are recorded. RC samples quality and recovery was excellent, with dry samples and consistent weight obtained.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	 All drill holes were logged in the field by Company Geologists. On the RC holes, lithologies, alteration, minerals were recorded. Samples chips are collected and sorted into chip trays for future geological references. Drill holes were logged in full. Logging was

Criteria	JORC Code explanation	Commentary
	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	qualitative and quantitative in nature.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The RC samples were collected from the rig cyclone and passed through a riffle splitter to reduce sample weight to a circa 2-4kg. The sampling technique is considered industry standard and effective for this style of drilling. Samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay. RC samples were assayed using method Au-AA24 for gold. The sample preparation procedures carried out are considered acceptable. Blanks, standards (CRM) and duplicates are used to monitor Quality Control and representativeness of samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 RC samples were assayed by 50g Lead collection fire assay in new pots and analysed by Atomic Absorption Spectroscopy (AAS) for gold. Industry best practice procedures were followed and included submitting blanks, field duplicates and Certified Reference Material. Acceptable levels of accuracy and precision have been confirmed.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 At this stage, the intersections have been verified by the Company Geologists. All field data is manually collected, entered into excel spreadsheets, validated and loaded into a database. Electronic data is stored on a cloud server and routinely backed up. Data is exported from the database for processing in a number of software packages.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes collar locations were recorded at the completion of each hole by hand-held GPS. Coordinates collected are in the WGS84 Zone 33S grid system

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	RC drill holes reported here were planned on a set grid with spacing varying between 100m and 200m, depending on the sections. They should be considered as early-stage exploration holes and will require further infill.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill holes were positioned using geological information collected from the trenches and from the detailed mapping completed over the prospect. They are positioned perpendicular to the main schistosity and so to the inferred mineralisation main controls.
Sample security	 The measures taken to ensure sample security. 	Sampling is supervised by a Company Geologist and all samples are delivered to the laboratory in Okahandja by company staff.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No reviews or audits have been conducted.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

•		,
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Damaran Project comprises 12 exclusive prospecting licenses (EPLs 6226, 4833, 8039, 7246, 4818, 4953, 6534, 6535, 6536, 8249,7327,7980) and located in central Namibia. EPL6226 is 100% held by WiaGold in the name of Aloe Investments One Hundred and Ninety Two (Pty) Ltd. EPL4833, 4818, 7246, 8039 and 8249 are held under an 80% earn-in and join venture agreement with Epangelo Mining Limited, a private mining investment company with the Government of the Republic of Namibia as the sole shareholder. EPL6534, 6535, 6536, and 4953 are held under a company called Gazina Investments which is owned 90% by Wia and 10% by the vendor. EPL7980 is 100% held by WiaGold in the name of Damaran Exploration Namibia (PTY) Ltd. EPL7327 is under an agreement with an exclusive option to acquire the permit under a NewCo at Wia election. All granted tenements are in good standing and there are no material issues affecting the

Criteria	JORC Code explanation	Commentary
		tenements.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Work completed prior to WiaGold includes stream sediment sampling, mapping, soil and rock chip sampling by Teck Cominco Namibia but data is unavailable. This work did not cover the Okombahe permit, host of the Kokoseb gold discovery.
Geology	Deposit type, geological setting and style of mineralisation.	Kokoseb mineralisation is hosted by sediments (biotite-schists) which have been intruded by several granitic phases. The gold anomaly appears as a contact like aureole of the central granitic pluton, with a diameter of approximately 3km in each direction
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	see tables in the appendix.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Reported intercepts are calculated using weighted average at a cut-off grade of 0.5 g/t Au and allowing internal dilution of maximum 2m consecutive low-grade material.
Relationshi p between mineralisati on widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole 	 Results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known so intercepts are reported as they appear from the sampling.

Criteria	JORC Code explanation	Commentary
intercept lengths	lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Plan view maps of all drillhole are included.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All samples with assays have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data is being reported at this time.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Refer to the text in the announcement for information on follow-up and/or next work programs.