

ASX Announcement

ASX:MTM 17 November 2022

ASSAYS CONFIRM RARE EARTH ELEMENT MINERALISATION AND DISTRICT-SCALE POTENTIAL AT EAST LAVERTON

Highlights:

- Results confirm that the broad rare earth element (REE) mineralisation at the Pt Kidman prospect near Laverton, WA contains a significant proportion of valuable heavy, magnet and critical rare earth oxides at clay thickness intervals up to 12m, including:
 - o High value Nd+Pr oxides represent an average of 19% of TREO grade
 - High value magnet rare earth oxides represent an average 24% of TREO grade
 - Critical rare earth oxides (CREO) average 23% of TREO
 - Heavy rare earth oxides represent an average of 12% of TREO grade
- Higher grade drilling intersections include:
 - 22ELAC048 8m @ 1,467ppm TREO, from 22m & 5m @ 1,427ppm TREO, from 31m
 - 22ELAC043 6m @ 1,880ppm TREO, from 12m
 - 22ELAC023 3m @ 1,577ppm TREO, from 23m & 2m @ 1,191ppm TREO from 33m
 - o 22ELAC003 2m @ 1,806ppm TREO, from 27m
 - 22ELAC046 1m @ 2,107ppm TREO, from 16m
- Confirms REE grades and continuity of clay-hosted mineralisation
- Large areas which remain untested are interpreted to be prospective for similar mineralisation occurrences
- New aircore drilling program to test additional REE targets at Pt Kidman provisionally approved by the Traditional Owners of the area, pending site clearance process.

Mt Monger Resources Limited (ASX:MTM) (Mt Monger or the Company) has received detailed 1 metre assay results from a recent program of aircore drilling completed to test rare earth element (REE) anomalies at the Pt Kidman prospect, part of the East Laverton Project in the north Eastern Goldfields of Western Australia (Figure 1). Results confirm the REE mineralisation contains a significant proportion of valuable heavy, magnet and critical rare earth oxides.

The Company has previously reported composite sample assay results for this drilling (see Mt Monger ASX announcement dated 19 August 2022) which highlighted broad zones of shallow, flat-laying clay-hosted REE mineralisation. Assay of primary one metre RC drilling samples has confirmed and refined the intersections from the drill holes. A total of 280 new samples were assayed for a multi-element suite.

Regarding the latest results from the Pt Kidman prospect, Managing Director Lachlan Reynolds commented:

"These more detailed assays from the aircore drilling program confirm the presence of shallow, rare earth element mineralisation on our East Laverton project tenements. We are excited by the scale of this opportunity - the mineralisation potentially extends over a very large area, most of which is still untested by drilling.

We are also very pleased to see that the mineralisation 'basket' of elements contains a significant proportion of the higher-value heavy and critical rare earth elements. This is important for the potential viability of any new discovery and we are keen to do more work to home-in on the best parts of the system."

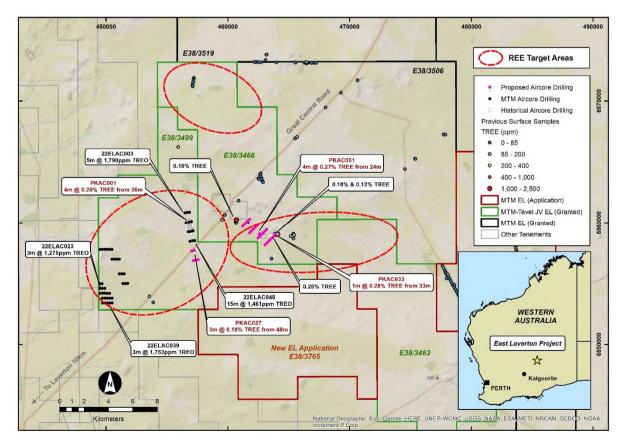


Figure 1: Summary of REE exploration results from the Pt Kidman Prospect showing areas of potential REE mineralisation based on available geochemical, geophysical and drilling data.

The Pt Kidman area represents a potentially large-scale, rare earth element project at East Laverton. The current drilling program has only tested a small part of the prospective terrane but has shown significant continuity and grade within the mineralised zone within the regolith. Further aircore drilling is currently being planned to test these areas for additional zones of REE mineralisation.

Aircore Drilling Program

A total of 48 aircore drill holes were completed (see hole details in Appendix I and diagram of collar locations in Figure 1). The drilling was designed to test REE mineralisation which was known only from limited surface sampling and historical drill holes in the Pt Kidman area, approximately 30km northeast of Laverton.

Drilling successfully identified broad zones of shallow REE mineralisation hosted by saprolitic clays above interpreted fertile basement granitoids and gneissic rocks. On the basis of limited available historical exploration and similarities in the geological setting it is anticipated that additional zones of REE mineralisation will be intersected (*refer to Mt Monger ASX announcement dated 1 September 2022*).

New Assay Results

Assay of the primary 1m drill samples has confirmed and provided better definition of the REE mineralisation intersections in the aircore drill holes. As anticipated, the new downhole intersections compare favourably with the original composite samples, though the intervals are typically slightly narrower and higher grade (see Appendix III).

Assays received have returned significant TREO grades and thickness using a 1,000ppm TREO cut-off grade with clay thickness intervals up to 12m. Overall, Magnet Rare Earth Oxides (MREO) make up an average of 24% of TREO, with Critical Rare Earth Oxides (CREO) averaging 23% and Heavy Rare Earth Oxides (HREO) averaging 12%.

Table 1: Selected significant REE intersections from the East Laverton AC drilling program.

Hole ID	From (m)	To (m)	Interval (m)	TREO (ppm)	HREO (%)	MREO (%)	CREO (%)
22ELAC003	27	29	2	1,806	13	31	28
22ELAC023	23	26	3	1,577	9	30	24
ZZLLAGUZS	33	35	2	1,191	23	28	25
22ELAC026	18	20	2	1,136	13	27	25
22ELAC027	20	21	1	1,721	4	22	17
	22	23	1	1,590	6	28	22
22ELAC031	16	17	1	1,021	12	25	23
22ELAC039	26	27	1	1,982	9	26	22
22ELAC039	28	29	1	1,914	13	26	24
22ELAC040	25	27	2	1,726	29	35	38
22ELAC043	12	18	6	1,493	7	29	23
22ELAC046	16	17	1	2,107	3	22	16
22ELAC048	22	30	8	1,467	5	20	16
22LLAC040	31	36	5	1,427	7	23	20

Downhole intervals shown, interpreted to be approximately true widths. Appropriate rounding of grade values has been applied. Significant intersections are based on a 1,000ppm TREO cut-off grade with no internal dilution.

TREO (Total Rare Earth Oxide) grade includes CeO_2 , Dy_2O_3 , Er_2O_3 , Eu_2O_3 , Gd_2O_3 , Ho_2O_3 , La_2O_3 , Lu_2O_3 , Nd_2O_3 , Pr_6O_{11} , Sm_2O_3 , Tb_4O_7 , Tm_2O_3 , Yb_2O_3 and Y_2O_3 and is calculated using standard oxide conversion factors for each element (see Appendix V).

HREO (Heavy Rare Earth Oxide) grade includes Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃ and Y₂O₃. Shown as percentage of TREO.

MREO (Magnet Rare Earth Oxide) grade includes Nd_2O_3 , Pr_6O_{11} , Sm_2O_3 , Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , and Ho_2O_3 . Shown as percentage of TREO.

CREO (Critical Rare Earth Oxide) grade includes Nd₂O₃, Eu₂O₃, Tb₄O₇, Dy₂O₃ and Y₂O₃. Shown as % percentage of TREO

Further Work

The Company's proposed drilling east of the Great Central Road at the Pt Kidman prospect (Figure 1) has been granted provisional approval by the Traditional Owners of the area, subject to an on-site clearance process. The approval allows the Company to progress its aircore drilling program to assess the distribution, grade and continuity of clay-hosted REE mineralisation within the weathering profile across the area. Planning for the drilling program is in progress.

End

This announcement has been authorised for release by the Board of Directors.

For further information, please contact:

Lachlan Reynolds
Managing Director
Mt Monger Resources Limited
Tel: +61 (0)8 6391 0112

Email: lachlan@mtmongerresources.com.au

Simon Adams
Company Secretary
Mt Monger Resources Limited
Tel: +61 (0)8 6391 0112

Email: simon@mtmongerresources.com.au

About Mt Monger Resources Limited

Mt Monger Resources Limited is an exploration company searching for rare earth elements (REE), lithium, gold, nickel, and base metals in the Goldfields and Ravensthorpe districts of Western Australia. The Company holds over 4,500km² of tenements in three prolific and highly prospective mineral regions. The Mt Monger Gold Project comprises a contiguous area of ~120km² area containing known gold deposits occurrences in the Mt Monger area, located ~70km SE of Kalgoorlie and immediately adjacent to the Randalls gold mill operated by Silver Lake Resources Limited. The East Laverton Gold Project is a regionally extensive package of underexplored tenements prospective for gold, base metals and REE. The Ravensthorpe Project contains a package of tenements in the southern part of Western Australia between Esperance and Bremer Bay which are prospective for a range of minerals including lithium, REE, nickel and graphite. Priority drilling targets have been identified in all project areas and the Company is well funded to undertake effective exploration programs. The Company has an experienced Board and management team which is focused on discovery to increase value for Shareholders.

Competent Person's Statement

The information in this announcement that relates to Exploration Results is based on and fairly represents information compiled by Mr Lachlan Reynolds. Mr Reynolds is the Managing Director of Mt Monger Resources Limited and is a member of both the Australasian Institute of Mining and Metallurgy and the Australasian Institute of Geoscientists. Mr Reynolds has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Reynolds consents to the inclusion in this announcement of the matters based on information in the form and context in which they appear.

Previous Disclosure

The information in this announcement is based on the following Mt Monger Resources Limited ASX announcements, which are available from the Mt Monger Resources website www.mtmongerresources.com.au and the ASX website www.asx.com.au.

- 19 August 2022, "Aircore Drilling Confirms Widespread REE Mineralisation at East Laverton"
- 1 September 2022, "Growing Potential for District-Scale REE Mineralisation System at East Laverton"

The Company confirms that it is not aware of any new information or data that materially affects the information included in the Prospectus or the original ASX announcements and that all material assumptions and technical parameters underpinning the Prospectus and relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

Cautionary Statement Regarding Values & Forward-Looking Information

The figures, valuations, forecasts, estimates, opinions and projections contained herein involve elements of subjective judgment and analysis and assumption. Mt Monger Resources does not accept any liability in relation to any such matters, or to inform the Recipient of any matter arising or coming to the company's notice after the date of this document which may affect any matter referred to herein. Any opinions expressed in this material are subject to change without notice, including as a result of using different assumptions and criteria. This document may contain forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "expect", and "intend" and statements than an event or result "may", "will", "should", "could", or "might" occur or be achieved and other similar expressions. Forward-looking information is subject to business, legal and economic risks and uncertainties and other factors that could cause actual results to differ materially from those contained in forward-looking statements. Such factors include, among other things, risks relating to property interests, the global economic climate, commodity prices, sovereign and legal risks, and environmental risks. Forward-looking statements are based upon estimates and opinions at the date the statements are made. Mt Monger Resources undertakes no obligation to update these forward-looking statements for events or circumstances that occur subsequent to such dates or to update or keep current any of the information contained herein. The Recipient should not place undue reliance upon forward-looking statements. Any estimates or projections as to events that may occur in the future (including projections of revenue, expense, net income and performance) are based upon the best judgment of Mt Monger Resources from information available as of the date of this document. There is no guarantee that any of these estimates or projections will be achieved. Actual results will vary from the projections and such variations may be material. Nothing contained herein is, or shall be relied upon as, a promise or representation as to the past or future. Mt Monger Resources, its affiliates, directors, employees and/or agents expressly disclaim any and all liability relating or resulting from the use of all or any part of this document or any of the information contained herein.

APPENDIX I – East Laverton Aircore Drilling Summary

Hole ID	Туре	North	East	RL	Depth	Dip	Azimuth
	, , ,	MGA	MGA	(m)	(m)	(°)	(°)
22ELAC001	AC	6860879	456865	518	39	-90	0
22ELAC001 22ELAC002	AC	6860864	456671	510	39 41	-90 -90	0
22ELAC002 22ELAC003	AC			513	32	-90 -90	0
		6860832	456492				
22ELAC004	AC	6860007	456578	510	16	-90	0
22ELAC005	AC	6857802	449504	544	2	-90	0
22ELAC006	AC	6857804	449692	547	2	-90	0
22ELAC007	AC	6857804	449902	545	15	-90	0
22ELAC008	AC	6857805	450098	545	17	-90	0
22ELAC009	AC	6857802	450303	543	2	-90	0
22ELAC010	AC	6857799	450499	539	2	-90	0
22ELAC011	AC	6856995	450496	526	13	-90	0
22ELAC012	AC	6856999	450699	531	23	-90	0
22ELAC013	AC	6856990	450903	528	24	-90	0
22ELAC014	AC	6856997	451102	522	7	-90	0
22ELAC015	AC	6855801	451102	516	28	-90	0
22ELAC016	AC	6855800	451309	515	31	-90	0
22ELAC017	AC	6855797	451498	512	25	-90	0
22ELAC018	AC	6854998	451394	512	59	-90	0
22ELAC019	AC	6854994	451597	511	28	-90	0
22ELAC020	AC	6855006	451795	511	47	-90	0
22ELAC021	AC	6854980	449692	518	8	-90	0
22ELAC022	AC	6854998	449494	518	8	-90	0
22ELAC023	AC	6854601	449501	518	37	-90	0
22ELAC024	AC	6854596	449695	518	21	-90	0
22ELAC025	AC	6854595	449901	516	11	-90	0
22ELAC026	AC	6854198	449503	508	26	-90	0
22ELAC027	AC	6853803	449696	508	25	-90	0
22ELAC028	AC	6853399	449719	507	16	-90	0
22ELAC029	AC	6854200	449704	514	29	-90	0
22ELAC030	AC	6854201	449904	515	23	-90	0
22ELAC031	AC	6854195	450100	511	21	-90	0
22ELAC032	AC	6854197	450299	511	12	-90	0
22ELAC033	AC	6853798	449897	507	26	-90	0
22ELAC034	AC	6853795	450091	511	36	-90	0
22ELAC035	AC	6853802	450302	512	40	-90	0
22ELAC036	AC	6853801	450503	512	27	-90	0
22ELAC037	AC	6853400	449904	511	17	-90	0
22ELAC038	AC	6853396	450102	513	11	-90	0
22ELAC039	AC	6853401	450304	513	44	-90	0
22ELAC033	AC	6853402	450503	513	51	-90	0
22ELAC040	AC	6860066	456826	508	15	-90	0
22ELAC041	AC	6860110	457015	507	36	-90	0
22ELAC042 22ELAC043	AC	6859247	456760	505	29	-90	0
22ELAC043	AC	6859278	456956	502	5	-90	0
22ELAC044 22ELAC045	AC	6859322	450956 457158	502	9	-90 -90	0
22ELAC045 22ELAC046	AC AC			501	9 17	-90 -90	
		6858468	456902 457104				0
22ELAC047	AC	6858512	457104	503	12	-90	0
22ELAC048	AC	6858528	457293	500	36	-90	0

APPENDIX II – Significant Intersection Summary

Hole ID	From	To (m)	Interval	TREO	HREO	MREO	CREO	Nd+Pr	Sc ₂ O ₃
	(m)		(m)	(ppm)	(ppm)	(ppm)	(ppm)	REO (ppm)	(ppm)
22ELAC001	22	27	5	436	28	101	81	83	8
22ELAC002	37	40	3	707	115	184	190	135	15
22ELAC003	24	32	8	855	108	266	238	209	9
including	27	29	2	1,806	227	553	502	435	13
22ELAC006	0	2	2	349	64	79	91	55	21
22ELAC011	9	11	2	414	45	113	100	90	5
22ELAC013	19	22	3	402	28	96	77	78	4
22ELAC015	12	14	2	466	71	113	114	83	15
	20	25	5	396	36	81	74	64	13
22ELAC016	18	20	2	1,052	80	237	195	186	22
	28	30	2	508	98	167	162	121	41
22ELAC017	17	25	8	656	110	167	172	120	17
22ELAC018	16	20	4	422	66	109	109	79	18
22ELAC019	21	25	5	720	79	151	141	111	17
22ELAC020	18	24	6	406	60	111	106	82	16
22ELAC023	21	37	16	788	108	221	211	172	24
including	23	26	3	1,577	143	471	383	374	60
and	33	35	2	1,191	268	338	412	257	2
22ELAC026	16	23	7	828	147	223	230	158	73
including	18	20	2	1,136	150	309	280	228	82
22ELAC027	18	24	6	1,010	60	237	193	203	31
including	20	21	1	1,721	71	385	300	338	6
	22	23	1	1,590	88	445	348	385	31
22ELAC029	18	24	6	607	63	89	94	64	66
22ELAC031	15	18	3	711	80	163	151	123	26
including	16	17	1	1,021	124	253	235	191	40
22ELAC033	13	26	13	571	37	116	101	99	2
22ELAC034	30	36	6	551	26	115	91	98	4
22ELAC035	23	27	4	527	29	41	41	28	77
22ELAC036	23	27	4	575	51	108	103	87	22
22ELAC039	26	30	4	1,156	131	295	266	228	82
including	26	27	1	1,982	170	520	429	416	93
and	28	29	1	1,914	252	491	467	372	82
22ELAC040	24	28	4	1,102	353	374	435	227	112
including	25	27	2	1,726	504	607	657	375	114
	42	45	3	344	91	72	110	50	26
22ELAC042	27	32	5	480	43	149	123	121	9
22ELAC043	4	6	2	470	71	92	105	67	20
	8	20	12	1,058	96	300	255	243	6
including	12	16	4	1,880	137	539	435	443	5
	26	29	3	676	63	151	142	122	5
22ELAC045	4	9	5	424	32	102	86	83	6
22ELAC046	6	8	2	388	46	69	73	50	21
	15	17	2	1,289	54	283	217	244	6
including	16	17	1	2,107	64	456	335	400	5
22ELAC048	18	36	18	1,231	74	261	213	216	10
including	22	30	8	1,466	76	299	237	250	13
and	31	36	5	1,427	103	334	282	274	6

TREO (Total Rare Earth Oxide) grade includes CeO_2 , Dy_2O_3 , Er_2O_3 , Eu_2O_3 , Eu_2O_3 , Ho_2O_3 ,

HREO (Heavy Rare Earth Oxide) grade includes Eu_2O_3 , Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , Lu_2O_3 and Y_2O_3 . Shown as percentage of TREO.

MREO (Magnet Rare Earth Oxide) grade includes Nd_2O_3 , Pr_6O_{11} , Sm_2O_3 , Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , and Ho_2O_3 . Shown as percentage of TREO.

CREO (Critical Rare Earth Oxide) grade includes Nd_2O_3 , Eu_2O_3 , Tb_4O_7 , Dy_2O_3 and Y_2O_3 . Shown as percentage of TREO.

Nd+Pr REO (Neodymium-Praseodymium or NdPr) includes Nd₂O₃ and Pr₆O₁₁.

Significant intersections are based on a 300ppm TREO cut-off grade and include a maximum of 3m internal subgrade mineralisation (i.e. one 3m composite sample with grade less than 300ppm TREO).

Reported higher-grade intersections (in bold) are based on a 1,000ppm TREO cut-off grade and do not contain any internal subgrade mineralisation.

No maximum grade cut has been applied. Appropriate rounding of grade values has been applied.

Down hole interval widths are reported. Mineralisation is interpreted to be flat-laying and therefore down hole widths are considered to be close to true width.

APPENDIX III – Significant Intersection Comparison Summary

		Compo	site Sample	;		1m D	rill Sample	
Hole ID	From (m)	To (m)	Interval (m)	Grade TREO (ppm)	From (m)	To (m)	Interval (m)	Grade TREO (ppm)
22ELAC001	18	24	6	421	22	27	5	436
22ELAC002	36	41	5	517	37	40	3	707
22ELAC003	24	32	8	1,278	24	32	8	855
including	27	32	5	1,790	27	29	2	1,806
22ELAC006	0	2	2	482	0	2	2	349
22ELAC011	9	12	3	378	9	11	2	414
22ELAC013	18	24	6	345	19	22	3	402
22ELAC015	12	15	3	310	12	14	2	466
22227.0010	18	28	10	359	20	25	5	396
22ELAC016	18	21	3	882	18	20	2	1,052
	27	30	3	345	28	30	2	508
22ELAC017	15	25	10	637	17	25	8	656
22ELAC018	15	21	6	380	16	20	4	422
22ELAC019	21	24	3	790	21	25	5	720
22ELAC020	18	24	6	392	18	24	6	406
22ELAC021	0	3	3	301			t assayed	
22ELAC023	21	37	16	849	21	37	16	788
including	24	27	3	1,135	23	26	3	1,577
and	33	36	3	1,275	33	35	2	1,191
22ELAC026	15	24	9	709	16	23	7	828
including	18	21	3	1,034	18	20	2	1,136
22ELAC027	18	24	6	1,017	18	24	6	1,010
including	21	24	3	1,194	20	21	1	1,721
			_		22	23	1	1,590
22ELAC029	18	24	6	686	18	24	6	607
22ELAC031	15	18	3	519	15	18	3	711
including 22ELAC033	12	26	14	549	16	17 26	1 13	1,021 571
including	18	20 21	3	1, 016	13	20	13	5/ 1
22ELAC034	30	36	6	461	30	36	6	551
22ELAC034	21	30	9	415	23	27	4	527
22ELAC036	15	27	12	384	23	27	4	575
22ELAC039 including	24 27	30 30	6 3	1,089 1,753	26 26	30 27	4 1	1,156 1,982
including	21	30	3	1,755	28	27 29	1	1,902
22ELAC040	24	30	6	865	24	28	4	1,102
including	24	27	3	1,371	25	27	2	1,726
3				,-	42	45	3	344
22ELAC042	27	33	6	419	27	32	5	480
22ELAC043	3	21	18	852	4	6	2	470
					8	20	12	1,058
including	12	18	6	1,493	12	16	4	1,880
	27	29	2	698	26	29	3	676
22ELAC045	3	9	6	444	4	9	5	425
22ELAC046	6	9	3	390	6	8	2	388
نم ماییط: م	15	17	2	1,889	15 16	17 17	2	1,289
including 22ELAC048	18	36	18	1,297	16 18	17 36	1 18	2,107
including	21	36 36	15	1,297 1,461	18 22	36 30	18 8	1,231 1,466
morading		30	13	1,-101	31	36	5	1,400

TREO grade includes CeO_2 , Dy_2O_3 , Er_2O_3 , Eu_2O_3 , Gd_2O_3 , Ho_2O_3 , Lu_2O_3 , Lu_2O_3 , Nd_2O_3 , Pr_6O_{11} , Sm_2O_3 , Tb_4O_7 , Tm_2O_3 , Yb_2O_3 , and Y_2O_3 and is calculated using standard oxide conversion factors for each element (see Appendix V).

Significant intersections are based on a 200ppm TREO cut-off grade and include a maximum of 3m internal subgrade mineralisation (i.e. one 3m composite sample with grade less than 300ppm TREO).

Reported higher-grade intersections (in bold) are based on a 1,000ppm TREO cut-off grade and do not contain any internal subgrade mineralisation.

No maximum grade cut has been applied. Appropriate rounding of grade values has been applied.

Down hole interval widths are reported. Mineralisation is interpreted to be flat-laying and therefore down hole widths are considered to be close to true width.

APPENDIX IV – Rare Earth Element Assay Results

Hole ID	From (m)	To (m)	Interval (m)	La ₂ O ₃ (ppm)	CeO ₂ (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Sm ₂ O ₃ (ppm)	Eu ₂ O ₃ (ppm)	Gd ₂ O ₃ (ppm)	Tb ₄ O ₇ (ppm)	Dy ₂ O ₃ (ppm)	Ho ₂ O ₃ (ppm)	Er ₂ O ₃ (ppm)	Tm ₂ O ₃ (ppm)	Yb ₂ O ₃ (ppm)	Lu₂O₃ (ppm)	Y ₂ O ₃ (ppm)	TREO (ppm)	Sc ₂ O ₃ (ppm)
22ELAC001	18	19	1	24.2	32.1	4.5	13.4	2.0	0.4	1.4	0.2	1.0	0.2	0.5	0.1	0.5	0.1	5.3	85.8	8.3
22ELAC001	19	20	1	50.3	89.2	9.3	26.5	3.4	0.7	1.9	0.3	1.3	0.2	0.6	0.1	0.7	0.1	6.3	190.9	9.2
22ELAC001	20	21	1	65.7	120.1	11.9	33.7	4.2	0.9	2.3	0.3	1.5	0.3	0.6	0.1	0.6	0.1	6.8	249.2	7.7
22ELAC001	21	22	1	78.3	128.4	13.7	39.2	5.0	1.0	2.8	0.4	1.9	0.3	0.8	0.1	0.7	0.1	8.3	281.1	10.6
22ELAC001	22	23	1	104.5	171.4	19.6	54.9	7.3	1.3	4.3	0.5	2.5	0.4	1.0	0.1	0.8	0.1	10.3	379.3	7.8
22ELAC001	23	24	1	133.1	214.4	25.9	72.4	9.5	1.6	5.5	0.7	3.2	0.5	1.3	0.2	1.1	0.2	12.8	482.5	9.1
22ELAC001	24	25	1	121.4	210.7	22.7	63.0	8.1	1.7	4.6	0.6	3.0	0.5	1.3	0.2	1.2	0.2	13.1	452.0	7.1
22ELAC001	25	26	1	85.5	165.2	16.6	48.2	6.6	1.4	4.1	0.5	2.8	0.5	1.3	0.2	1.1	0.2	11.9	346.1	8.1
22ELAC001	26	27	1	112.0	265.3	23.1	68.5	10.3	2.3	7.0	1.0	5.0	8.0	2.1	0.3	1.8	0.2	19.3	518.9	8.3
22ELAC001	27	28	1	62.2	108.1	11.6	34.4	5.0	1.3	3.4	0.5	2.5	0.4	1.2	0.2	1.1	0.2	11.3	243.3	6.5
22ELAC001	28	29	1	73.8	104.0	13.4	40.0	5.6	1.3	3.9	0.5	2.7	0.4	1.2	0.2	1.0	0.1	12.3	260.4	6.8
22ELAC001	29	30	1	45.6	65.8	8.8	26.7	3.8	1.0	2.8	0.4	2.0	0.4	1.0	0.1	0.9	0.1	10.2	169.7	6.8
22ELAC002	33	34	1	19.5	41.0	4.7	16.2	2.7	0.6	2.3	0.3	1.6	0.3	8.0	0.1	0.6	0.1	6.5	97.2	50.0
22ELAC002	34	35	1	31.7	72.5	8.2	29.0	5.3	1.2	4.1	0.6	2.9	0.5	1.4	0.2	1.2	0.2	12.4	171.3	52.0
22ELAC002	35	36	1	60.5	114.7	13.2	45.4	7.9	1.8	6.1	8.0	4.1	0.7	1.8	0.2	1.5	0.2	17.7	276.5	35.9
22ELAC002	36	37	1	41.4	78.0	8.0	26.5	4.4	1.1	3.8	0.5	2.9	0.6	1.7	0.2	1.6	0.2	18.5	189.6	8.3
22ELAC002	37	38	1	151.3	286.2	30.2	103.5	17.4	3.8	15.0	2.0	10.9	1.9	5.4	0.7	4.1	0.6	63.2	696.2	13.9
22ELAC002	38	39	1	183.0	336.6	37.5	134.1	22.7	5.1	20.8	2.8	14.6	2.6	7.2	0.9	5.4	8.0	83.6	857.6	19.9
22ELAC002	39	40	1	129.0	230.9	23.4	77.3	12.2	2.4	10.5	1.5	8.5	1.6	5.2	0.7	4.9	8.0	56.9	565.8	11.1
22ELAC002	40	41	1	53.0	92.7	10.3	34.6	5.6	1.2	4.5	0.6	3.3	0.6	1.8	0.3	1.7	0.3	20.1	230.5	11.6
22ELAC003	24	25	1	72.6	197.2	16.9	54.1	8.4	1.5	5.0	0.7	3.1	0.5	1.4	0.2	1.3	0.2	13.1	376.2	6.1
22ELAC003	25	26	1	24.4	59.1	5.1	16.8	2.9	0.6	2.1	0.3	1.6	0.3	0.9	0.1	1.0	0.2	8.0	123.3	8.3
22ELAC003	26	27	1	269.7	242.0	60.4	190.7	28.2	5.3	17.5	2.0	8.6	1.3	3.0	0.3	2.0	0.3	31.1	862.3	13.4
22ELAC003	27	28	1	328.4	326.8	73.7	236.8	36.1	6.9	21.4	2.6	11.5	1.7	4.4	0.5	3.1	0.5	49.8	1104.1	13.3
22ELAC003	28	29	1	774.0	759.2	127.5	432.7	61.7	13.0	55.7	6.5	32.5	5.7	15.0	1.6	8.5	1.3	212.7	2507.5	12.1
22ELAC003	29	30	1	151.9	105.3	25.7	84.0	12.3	2.6	10.0	1.3	6.9	1.3	3.9	0.5	3.6	0.6	43.7	453.4	6.4
22ELAC003	30	31	1	247.5	181.2	42.3	140.0	20.6	4.3	18.7	2.3	11.4	2.0	5.5	0.7	4.1	0.6	67.8	748.9	10.9
22ELAC003	31	32	1	217.0	165.8	37.1	127.1	19.1	4.2	16.5	2.1	10.0	1.7	4.6	0.5	3.1	0.5	57.9	667.2	4.1
22ELAC006	0	1	1	46.3	130.2	10.8	38.8	7.1	1.5	6.2	0.9	5.5	1.0	3.3	0.5	3.1	0.5	35.4	291.1	18.9
22ELAC006	1	2	1	57.0	210.1	13.3	47.8	8.8	1.9	7.8	1.2	6.9	1.3	4.0	0.6	3.6	0.6	42.8	407.7	22.3
22ELAC011	9	10	1	71.1	137.0	16.2	48.5	6.7	1.4	4.5	0.5	2.7	0.5	1.3	0.2	1.2	0.2	12.8	304.7	6.2
22ELAC011	10	11	1	117.9	213.7	27.4	87.9	13.0	2.8	9.4	1.2	6.3	1.3	3.8	0.5	3.2	0.4	35.0	523.9	4.2
22ELAC011	11	12	1	53.5	104.7	12.9	41.5	6.4	1.5	4.6	0.6	3.2	0.7	2.0	0.3	1.8	0.3	19.4	253.1	3.9
22ELAC011	12	13	1	27.9	58.0	6.5	19.7	2.9	0.7	2.0	0.3	1.3	0.3	8.0	0.1	8.0	0.1	7.5	128.7	2.5
22ELAC013	18	19	1	47.7	82.2	8.0	22.8	3.5	0.8	2.5	0.3	1.7	0.3	1.0	0.1	1.0	0.1	8.9	181.2	4.1

																	Mil Molig			
Hole ID	From (m)	To (m)	Interval (m)	La₂O₃ (ppm)	CeO₂ (ppm)	Pr ₆ O₁₁ (ppm)	Nd₂O₃ (ppm)	Sm ₂ O ₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Tb₄O ₇ (ppm)	Dy₂O₃ (ppm)	Ho ₂ O ₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y ₂ O ₃ (ppm)	TREO (ppm)	Sc₂O₃ (ppm)
22ELAC013	19	20	1	95.7	184.3	19.3	54.2	7.5	1.6	5.0	0.6	3.0	0.5	1.6	0.2	1.4	0.2	13.9	389.1	4.6
22ELAC013	20	21	1	116.0	206.4	24.1	72.8	11.2	2.5	7.5	0.9	4.2	0.7	1.8	0.2	1.4	0.2	15.9	465.8	2.8
22ELAC013	21	22	1	100.2	160.9	17.2	46.9	5.9	1.2	3.8	0.5	2.2	0.4	1.2	0.2	1.1	0.2	10.7	352.3	3.4
22ELAC013	22	23	1	75.8	129.0	13.6	39.5	5.3	1.1	3.5	0.4	2.0	0.4	1.0	0.1	0.9	0.1	10.2	282.9	2.5
22ELAC013	23	24	1	46.6	91.3	9.7	28.3	4.2	0.9	3.0	0.4	2.2	0.4	1.3	0.2	1.2	0.2	11.7	201.7	5.3
22ELAC015	12	13	1	70.1	126.5	13.2	40.8	8.1	1.9	7.2	1.1	6.1	1.2	3.6	0.5	3.5	0.5	36.2	320.7	13.4
22ELAC015	13	14	1	142.5	262.9	28.5	83.0	13.9	3.0	10.8	1.5	8.2	1.6	4.6	0.6	3.9	0.6	46.0	611.6	16.4
22ELAC015	14	15	1	99.8	88.3	6.8	18.3	3.5	8.0	3.1	0.5	2.8	0.6	1.9	0.3	1.8	0.3	18.4	247.3	15.5
22ELAC015	15	16	1	6.5	12.9	1.4	4.6	0.9	0.3	1.1	0.2	1.3	0.3	1.0	0.1	1.0	0.1	9.5	41.5	26.8
22ELAC015	16	17	1	5.0	9.8	1.0	3.2	0.7	0.2	1.0	0.2	1.3	0.3	1.0	0.1	1.0	0.2	8.5	33.6	21.0
22ELAC015	17	18	1	4.6	8.3	0.9	2.6	0.6	0.2	0.7	0.1	1.1	0.3	0.9	0.1	1.0	0.2	7.1	28.6	17.4
22ELAC015	18	19	1	71.8	113.1	11.3	30.9	4.3	1.0	3.4	0.5	2.6	0.5	1.6	0.2	1.5	0.2	16.3	259.3	9.4
22ELAC015	19	20	1	52.3	89.3	8.4	23.9	3.7	0.9	3.0	0.4	2.4	0.5	1.7	0.2	1.6	0.2	18.1	206.7	3.8
22ELAC015	20	21	1	130.8	183.6	17.6	45.8	6.4	1.4	4.2	0.6	3.0	0.5	1.5	0.2	1.1	0.2	16.9	413.8	13.5
22ELAC015	21	22	1	133.7	199.6	19.5	53.0	7.7	1.7	4.8	0.7	3.5	0.6	1.7	0.2	1.3	0.2	18.0	445.8	17.3
22ELAC015	22	23	1	80.7	112.9	10.9	30.6	4.6	1.1	3.2	0.4	2.7	0.5	1.6	0.2	1.5	0.2	17.5	268.7	9.8
22ELAC015	23	24	1	139.0	199.0	19.9	56.7	9.1	2.1	6.3	0.9	4.7	8.0	2.3	0.3	1.9	0.2	26.0	469.2	9.2
22ELAC015	24	25	1	120.8	140.7	16.6	50.0	8.4	2.0	6.3	0.8	4.8	0.9	2.3	0.3	1.7	0.2	24.3	380.0	16.1
22ELAC015	25	26	1	40.8	74.1	6.8	20.8	3.7	0.9	2.8	0.4	2.4	0.5	1.3	0.2	1.1	0.2	12.8	168.8	16.6
22ELAC015	26	27	1	37.3	107.0	6.9	20.4	3.7	0.9	2.6	0.4	2.1	0.4	1.3	0.2	1.1	0.2	11.6	196.0	15.7
22ELAC015	27	28	1	104.8	124.1	17.3	51.4	7.9	1.9	5.5	0.7	3.8	0.7	1.7	0.2	1.3	0.2	18.9	340.4	15.2
22ELAC016	18	19	1	422.2	663.3	69.4	190.7	30.5	7.0	19.7	2.7	13.5	2.1	4.6	0.5	2.6	0.3	52.2	1481.1	22.3
22ELAC016	19	20	1	179.4	261.6	28.3	84.3	14.1	3.4	9.9	1.4	7.0	1.1	2.7	0.3	1.7	0.2	27.8	623.5	21.6
22ELAC016	20	21	1	61.5	111.9	9.6	30.4	5.6	1.5	4.6	0.7	3.7	0.6	1.6	0.2	1.4	0.2	16.2	249.8	19.3
22ELAC016	21	22	1	57.1	97.4	9.6	31.0	6.1	1.5	4.6	0.7	3.8	0.6	1.7	0.2	1.4	0.2	16.6	232.4	18.8
22ELAC016	22	23	1	69.5	105.5	12.6	40.7	7.9	2.0	6.7	1.0	5.4	1.0	2.4	0.3	1.9	0.2	23.9	281.0	17.9
22ELAC016	23	24	1	42.9	72.7	8.4	27.2	5.5	1.4	4.6	0.7	4.0	0.7	2.0	0.3	1.7	0.3	20.2	192.5	16.5
22ELAC016	24	25	1	33.4	70.5	7.1	21.9	4.2	1.1	3.3	0.5	3.0	0.6	1.7	0.2	1.6	0.2	16.3	165.5	15.0
22ELAC016	25	26	1	41.4	82.7	8.9	28.0	5.6	1.4	4.4	0.7	3.8	0.7	2.1	0.3	1.7	0.3	19.9	201.8	17.4
22ELAC016	26	27	1	47.3	117.1	10.0	31.4	6.2	1.6	5.0	8.0	4.4	8.0	2.5	0.3	2.1	0.3	22.6	252.3	17.9
22ELAC016	27	28	1	43.4	91.0	8.8	27.8	5.5	1.4	4.4	0.7	4.0	8.0	2.3	0.3	2.0	0.3	23.0	215.7	18.0
22ELAC016	28	29	1	202.9	90.5	38.4	119.0	20.2	5.4	15.2	2.0	10.5	1.7	4.3	0.5	3.4	0.4	38.2	552.7	63.0
22ELAC016	29	30	1	130.2	121.6	19.0	65.1	12.9	3.5	13.7	2.0	12.3	2.4	6.4	8.0	5.4	0.7	66.3	462.3	19.3
22ELAC017	17	18	1	166.5	260.4	36.0	111.9	20.9	4.7	15.2	2.1	10.9	1.9	5.0	0.6	4.0	0.5	47.9	688.5	19.9
22ELAC017	18	19	1	156.6	303.4	30.7	98.0	18.1	4.4	13.9	1.9	10.5	1.9	5.3	0.7	4.5	0.6	50.5	701.0	18.9
22ELAC017	19	20	1	258.0	485.2	48.3	156.3	29.0	7.1	24.7	3.3	17.6	3.0	7.4	0.9	5.3	0.7	73.1	1120.0	21.2
22ELAC017	20	21	1	167.1	342.7	31.2	100.2	18.8	4.7	15.7	2.2	12.1	2.2	5.7	0.7	4.5	0.6	54.6	763.0	17.3

Mt /	Monger	Resources	

	_	_									TI 0					\/I 0		jei kesooi		
Hole ID	From (m)	To (m)	Interval (m)	La ₂ O ₃ (ppm)	CeO ₂ (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Sm₂O₃ (ppm)	Eu ₂ O ₃ (ppm)	Gd₂O₃ (ppm)	Tb₄O ₇ (ppm)	Dy ₂ O ₃ (ppm)	Ho ₂ O ₃ (ppm)	Er ₂ O ₃ (ppm)	Tm ₂ O ₃ (ppm)	Yb ₂ O ₃ (ppm)	Lu ₂ O ₃ (ppm)	Y ₂ O ₃ (ppm)	TREO (ppm)	Sc₂O₃ (ppm)
22ELAC017	21	22	1	105.1	194.1	19.6	62.2	12.1	3.0	10.4	1.5	9.0	1.8	5.1	0.6	4.3	0.6	50.7	480.0	16.3
22ELAC017	22	23	1	101.0	178.7	19.7	62.3	11.8	2.9	9.9	1.4	8.6	1.7	5.2	0.7	4.5	0.6	51.3	460.3	16.0
22ELAC017	23	24	1	149.5	168.9	24.0	79.0	14.7	3.8	14.1	2.1	12.7	2.7	8.3	1.1	6.9	1.1	91.6	580.4	16.6
22ELAC017	24	25	1	111.8	127.1	18.2	58.8	11.0	2.8	10.4	1.6	10.8	2.3	7.4	0.9	6.7	1.0	84.8	455.7	13.3
22ELAC018	15	16	1	60.8	71.1	10.8	35.3	6.6	1.7	6.4	0.9	4.8	0.9	2.3	0.3	2.1	0.3	25.5	229.9	16.6
22ELAC018	16	17	1	105.1	243.8	21.9	69.9	13.2	3.1	9.6	1.4	7.8	1.4	3.8	0.5	3.1	0.4	38.0	522.8	18.3
22ELAC018	17	18	1	120.8	215.0	25.1	78.6	14.6	3.5	10.4	1.5	8.0	1.4	3.8	0.5	3.0	0.4	38.2	524.7	17.3
22ELAC018	18	19	1	65.1	125.3	12.9	42.2	8.2	2.0	6.5	1.0	5.4	1.0	3.0	0.4	2.6	0.3	29.5	305.3	17.2
22ELAC018	19	20	1	83.4	103.4	15.2	49.7	10.0	2.5	8.8	1.3	7.7	1.5	4.4	0.6	3.7	0.5	43.7	336.3	17.3
22ELAC018	20	21	1	37.1	62.3	7.1	22.9	4.8	1.2	4.3	0.6	4.1	0.9	2.5	0.3	2.3	0.3	27.2	177.9	13.7
22ELAC019	21	22	1	170.1	329.2	31.1	99.1	18.1	4.5	14.2	2.0	10.0	1.7	4.3	0.5	3.2	0.5	41.1	729.6	19.2
22ELAC019	22	23	1	140.7	531.9	25.6	81.2	15.7	4.0	12.9	1.9	10.4	1.9	5.5	0.7	4.7	0.6	54.1	891.9	18.1
22ELAC019	23	24	1	155.4	484.0	32.5	114.3	18.8	4.8	15.4	2.1	10.9	2.0	5.0	0.7	4.4	0.6	48.5	899.4	15.8
22ELAC019	24	25	1	64.5	183.6	13.8	48.4	7.9	2.0	6.2	0.9	4.7	0.9	2.3	0.4	2.4	0.4	21.0	359.3	14.4
22ELAC020	18	19	1	91.0	249.4	21.1	75.2	12.7	3.1	10.9	1.4	7.5	1.3	3.2	0.5	2.8	0.4	30.0	510.5	18.0
22ELAC020	19	20	1	115.3	339.0	27.5	95.3	15.9	3.6	11.9	1.5	7.9	1.3	3.2	0.5	3.0	0.4	31.1	657.6	18.2
22ELAC020	20	21	1	69.4	122.8	16.6	58.3	9.6	2.4	7.4	1.0	5.2	1.0	2.5	0.4	2.4	0.4	23.3	322.7	15.7
22ELAC020	21	22	1	63.0	97.4	14.3	50.7	8.4	2.1	7.0	0.9	5.1	1.0	2.6	0.4	2.6	0.4	24.3	280.3	15.2
22ELAC020	22	23	1	70.0	135.7	15.6	55.5	9.3	2.4	7.8	1.1	5.9	1.1	2.9	0.4	2.8	0.4	28.4	339.5	16.0
22ELAC020	23	24	1	68.0	97.7	12.9	48.4	8.5	2.2	8.6	1.3	7.8	1.7	4.7	0.7	4.1	0.7	55.6	323.0	13.4
22ELAC023	21	22	1	146.0	53.8	32.4	113.3	17.1	4.5	13.2	1.7	8.3	1.4	3.4	0.5	2.8	0.4	26.8	425.4	59.4
22ELAC023	22	23	1	74.9	98.1	13.5	48.2	8.0	2.1	7.6	1.1	6.2	1.2	3.1	0.5	2.8	0.4	31.9	299.7	17.9
22ELAC023	23	24	1	562.9	577.3	114.1	383.7	54.3	14.1	43.6	5.3	25.7	4.2	9.1	1.2	6.6	0.9	87.8	1890.7	62.9
22ELAC023	24	25	1	457.4	733.4	99.3	328.9	45.8	11.6	34.1	4.2	20.1	3.2	7.1	0.9	5.2	0.7	67.7	1819.7	60.9
22ELAC023	25	26	1	200.5	528.2	47.4	148.1	21.2	5.3	15.2	2.0	9.8	1.7	3.8	0.5	3.2	0.4	34.3	1021.7	57.2
22ELAC023	26	27	1	158.9	450.8	39.4	122.5	19.5	5.2	15.0	2.1	11.4	2.0	4.7	0.7	4.1	0.6	38.2	875.0	63.2
22ELAC023	27	28	1	131.9	93.2	24.4	82.0	11.9	3.3	11.4	1.5	8.4	1.7	4.4	0.7	4.5	0.7	45.8	426.0	39.0
22ELAC023	28	29	1	98.2	371.0	19.8	64.2	10.2	2.8	9.2	1.4	8.2	1.7	4.6	0.7	4.6	0.7	49.3	646.3	2.6
22ELAC023	29	30	1	86.1	202.1	17.0	55.6	8.3	2.2	7.2	1.0	6.1	1.2	3.3	0.5	3.2	0.5	35.7	430.0	1.1
22ELAC023	30	31	1	77.5	106.4	15.5	54.8	9.2	2.6	8.9	1.2	7.4	1.5	4.1	0.6	4.0	0.6	46.6	340.9	1.1
22ELAC023	31	32	1	115.5	76.4	19.6	67.7	10.4	2.9	10.2	1.4	8.5	1.8	5.1	8.0	5.0	0.8	58.5	384.6	1.2
22ELAC023	32	33	1	176.5	169.5	28.5	94.8	12.9	3.3	12.0	1.5	8.8	1.8	4.9	0.7	4.5	0.7	57.7	578.3	3.9
22ELAC023	33	34	1	375.3	335.4	71.0	243.8	32.5	8.7	31.5	4.0	23.3	5.0	13.3	1.8	9.7	1.6	175.9	1332.8	2.0
22ELAC023	34	35	1	304.9	261.6	46.0	154.0	19.7	5.3	22.8	2.8	16.5	4.1	11.2	1.5	7.5	1.3	189.2	1048.3	1.7
22ELAC023	35	36	1	80.1	122.2	12.0	38.4	4.5	1.0	3.1	0.3	1.7	0.3	0.9	0.1	8.0	0.1	13.5	279.2	1.7
22ELAC023	36	37	1	224.6	384.5	38.3	110.8	12.0	2.4	6.9	0.6	2.8	0.5	1.3	0.2	1.0	0.2	19.0	805.2	3.6
22ELAC026	14	15	1	9.6	22.0	3.0	10.4	1.8	0.5	1.6	0.2	1.5	0.3	8.0	0.1	0.9	0.1	5.3	58.1	108.9

																	Mil Molig			
Hole ID	From (m)	To (m)	Interval (m)	La₂O₃ (ppm)	CeO₂ (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Sm ₂ O ₃ (ppm)	Eu ₂ O ₃ (ppm)	Gd₂O₃ (ppm)	Tb₄O ₇ (ppm)	Dy ₂ O ₃ (ppm)	Ho ₂ O ₃ (ppm)	Er ₂ O ₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)	TREO (ppm)	Sc₂O₃ (ppm)
22ELAC026	15	16	1	39.9	78.0	9.7	34.2	5.8	1.4	4.7	0.7	3.4	0.6	1.3	0.2	1.2	0.2	10.6	191.7	114.4
22ELAC026	16	17	1	49.1	135.7	15.5	60.0	11.9	3.3	11.6	1.8	10.2	1.8	4.4	0.7	4.1	0.5	30.2	341.1	83.6
22ELAC026	17	18	1	69.7	191.6	20.1	75.5	14.1	3.8	12.9	1.9	10.8	1.9	4.5	0.7	4.1	0.5	33.5	445.7	82.4
22ELAC026	18	19	1	209.3	432.4	53.6	180.2	30.7	8.0	25.7	3.6	18.9	3.1	7.1	0.9	5.5	0.7	58.5	1038.4	75.6
22ELAC026	19	20	1	224.6	592.1	50.9	170.3	27.9	7.4	25.1	3.7	20.9	3.8	9.2	1.3	7.6	1.0	87.5	1233.3	89.1
22ELAC026	20	21	1	293.2	870.9	67.9	235.6	35.9	9.0	31.9	4.7	26.5	4.9	12.4	1.8	10.2	1.4	128.9	1735.4	66.1
22ELAC026	21	22	1	135.5	162.1	22.5	87.8	15.3	4.6	19.5	3.0	18.4	3.8	10.0	1.4	8.6	1.2	104.6	598.5	53.5
22ELAC026	22	23	1	91.1	55.4	13.4	55.5	10.0	3.3	15.7	2.5	16.6	3.7	10.2	1.5	8.7	1.3	117.0	405.8	62.7
22ELAC026	23	24	1	52.1	47.2	7.6	32.7	7.2	2.5	11.3	1.8	11.9	2.7	7.4	1.1	6.1	1.0	91.9	284.2	70.1
22ELAC027	17	18	1	32.0	114.5	6.4	21.5	3.8	1.0	3.3	0.5	2.9	0.6	1.6	0.3	1.7	0.2	16.1	206.4	4.8
22ELAC027	18	19	1	138.4	243.8	24.2	70.9	8.2	1.7	5.0	0.6	2.9	0.5	1.3	0.2	1.3	0.2	15.1	514.3	3.8
22ELAC027	19	20	1	217.0	425.0	38.5	100.3	11.7	2.5	6.4	0.7	3.7	0.7	1.9	0.3	1.7	0.3	21.8	832.6	4.8
22ELAC027	20	21	1	527.8	759.2	89.4	248.4	25.3	5.2	13.5	1.3	5.9	1.0	2.7	0.3	2.1	0.3	39.0	1721.4	6.1
22ELAC027	21	22	1	180.0	293.6	30.6	86.1	9.7	2.2	5.7	0.7	3.6	0.7	2.3	0.3	2.3	0.4	27.9	646.1	19.2
22ELAC027	22	23	1	527.8	560.2	99.1	285.8	29.6	6.7	17.6	1.9	9.0	1.6	3.8	0.4	2.4	0.3	44.1	1590.2	69.0
22ELAC027	23	24	1	269.7	246.9	34.3	108.2	13.2	3.5	12.4	1.5	8.1	1.6	4.4	0.5	2.9	0.4	48.3	755.9	80.1
22ELAC027	24	25	1	58.5	81.2	7.7	21.0	2.4	0.6	2.1	0.3	1.9	0.5	1.6	0.3	1.9	0.3	20.3	200.5	7.4
22ELAC029	18	19	1	52.8	567.5	9.7	30.8	5.6	1.6	6.0	1.0	6.4	1.3	4.0	0.6	4.1	0.5	35.4	727.5	73.0
22ELAC029	19	20	1	15.2	788.6	5.6	20.2	5.9	1.8	6.0	1.3	8.0	1.5	4.5	0.6	3.9	0.5	32.3	895.9	78.4
22ELAC029	20	21	1	102.5	486.4	19.3	59.4	10.3	2.9	9.2	1.6	9.5	1.8	5.0	0.6	4.1	0.5	39.2	752.3	69.5
22ELAC029	21	22	1	132.5	132.1	20.9	62.5	8.6	2.2	7.4	1.0	5.7	1.1	2.9	0.4	2.6	0.4	27.3	407.6	70.2
22ELAC029	22	23	1	99.0	115.8	15.3	45.5	6.6	1.8	6.0	0.9	5.4	1.1	3.0	0.4	2.6	0.4	29.0	332.6	69.6
22ELAC029	23	24	1	141.9	197.8	23.6	72.7	10.8	2.9	9.7	1.4	8.3	1.6	4.5	0.6	3.9	0.6	44.6	524.9	37.3
22ELAC031	13	14	1	2.2	17.4	0.5	1.7	0.4	0.1	0.5	0.1	0.6	0.1	0.5	0.1	0.6	0.1	3.8	28.6	37.3
22ELAC031	14	15	1	6.3	19.7	1.5	4.7	0.8	0.2	0.6	0.1	0.6	0.1	0.4	0.1	0.4	0.1	3.0	38.5	29.5
22ELAC031	15	16	1	113.8	464.3	27.1	89.5	15.1	3.6	11.2	1.6	8.8	1.5	4.2	0.5	3.5	0.5	38.5	783.7	13.2
22ELAC031	16	17	1	173.0	509.8	45.3	145.8	23.0	5.6	18.9	2.7	14.5	2.6	6.7	0.9	5.2	0.7	66.7	1021.2	39.9
22ELAC031	17	18	1	69.5	149.9	14.3	46.1	7.3	1.9	6.0	0.9	4.5	8.0	2.3	0.3	1.9	0.3	22.9	328.9	24.5
22ELAC031	18	19	1	53.2	73.8	8.1	24.1	3.4	0.9	3.0	0.4	2.4	0.5	1.3	0.2	1.2	0.2	14.2	187.0	9.7
22ELAC031	19	20	1	52.3	79.7	8.0	23.4	3.2	8.0	2.9	0.4	2.2	0.4	1.1	0.1	1.0	0.1	11.1	186.8	30.2
22ELAC033	11	12	1	90.4	104.8	13.2	38.7	5.2	1.2	3.6	0.5	2.3	0.4	1.3	0.2	1.1	0.1	15.1	278.1	3.1
22ELAC033	12	13	1	51.8	92.0	8.4	25.5	3.9	1.0	2.8	0.4	2.0	0.4	1.1	0.2	1.0	0.1	13.5	204.0	3.8
22ELAC033	13	14	1	121.4	163.4	18.1	52.8	7.0	1.6	5.1	0.6	2.9	0.6	1.5	0.2	1.1	0.2	20.9	397.3	2.1
22ELAC033	14	15	1	83.2	232.2	14.5	43.3	6.4	1.5	4.6	0.6	3.3	0.7	1.9	0.3	1.7	0.2	23.6	417.9	2.1
22ELAC033	15	16	1	236.9	374.7	40.6	112.3	12.9	2.9	8.6	1.0	5.0	0.9	2.5	0.3	2.0	0.3	29.6	830.5	2.0
22ELAC033	16	17	1	171.2	231.6	26.1	75.7	8.9	2.1	6.7	8.0	3.9	0.7	2.1	0.3	1.8	0.3	27.9	559.9	1.9
22ELAC033	17	18	1	177.7	275.2	26.9	80.1	8.8	2.1	7.0	0.8	4.7	1.0	2.8	0.4	2.4	0.4	40.3	630.6	1.7

																		ger Kesour		
Hole ID	From (m)	To (m)	Interval (m)	La₂O₃ (ppm)	CeO ₂ (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Sm₂O₃ (ppm)	Eu ₂ O ₃ (ppm)	Gd₂O₃ (ppm)	Tb₄O ₇ (ppm)	Dy ₂ O ₃ (ppm)	Ho ₂ O ₃ (ppm)	Er ₂ O ₃ (ppm)	Tm ₂ O ₃ (ppm)	Yb₂O₃ (ppm)	Lu ₂ O ₃ (ppm)	Y ₂ O ₃ (ppm)	TREO (ppm)	Sc₂O₃ (ppm)
22ELAC033	18	19	1	281.5	363.6	46.5	127.7	12.2	2.6	8.4	0.9	4.4	0.9	2.4	0.3	1.9	0.3	33.0	886.6	2.1
22ELAC033	19	20	1	226.9	273.9	38.1	102.3	10.1	2.1	5.8	0.6	2.9	0.5	1.5	0.2	1.2	0.2	21.1	687.5	1.7
22ELAC033	20	21	1	183.0	599.5	29.8	85.3	9.8	2.2	6.5	0.7	3.5	0.7	1.9	0.2	1.4	0.2	33.1	957.8	1.7
22ELAC033	21	22	1	102.5	199.0	16.6	46.4	5.3	1.2	3.2	0.4	1.7	0.3	0.9	0.1	0.7	0.1	13.3	391.6	1.5
22ELAC033	22	23	1	171.8	168.9	25.0	70.1	6.7	1.4	3.8	0.4	1.9	0.3	0.9	0.1	8.0	0.1	13.1	465.4	1.5
22ELAC033	23	24	1	124.3	140.0	17.3	49.1	5.2	1.2	3.3	0.3	1.6	0.3	8.0	0.1	0.7	0.1	12.0	356.4	2.1
22ELAC033	24	25	1	151.9	229.7	21.6	60.4	6.5	1.3	3.6	0.4	1.7	0.3	0.9	0.1	8.0	0.1	11.6	491.0	2.8
22ELAC033	25	26	1	102.7	166.4	15.6	42.9	5.0	1.1	3.0	0.4	1.7	0.3	0.9	0.1	8.0	0.1	11.0	352.1	2.7
22ELAC034	30	31	1	105.9	186.1	16.8	47.9	5.8	1.3	3.5	0.4	1.9	0.3	0.9	0.1	0.9	0.1	10.6	382.6	4.2
22ELAC034	31	32	1	194.1	331.7	33.1	92.3	10.1	2.1	5.6	0.6	2.8	0.5	1.3	0.2	1.1	0.2	14.7	690.2	3.7
22ELAC034	32	33	1	227.5	366.1	37.1	104.2	12.0	2.6	6.6	0.7	3.5	0.6	1.6	0.2	1.5	0.2	18.1	782.5	4.3
22ELAC034	33	34	1	128.4	225.4	21.4	62.2	7.3	1.5	4.2	0.5	2.3	0.4	1.1	0.2	1.0	0.2	13.7	469.7	6.1
22ELAC034	34	35	1	173.6	305.9	28.9	83.9	9.3	2.0	5.2	0.5	2.6	0.5	1.2	0.2	1.0	0.2	15.2	630.0	3.2
22ELAC034	35	36	1	94.3	168.3	15.9	46.4	5.5	1.2	3.2	0.4	1.7	0.3	0.8	0.1	0.7	0.1	10.1	349.0	4.1
22ELAC035	20	21	1	4.0	5.5	1.0	3.2	0.8	0.3	0.9	0.2	1.2	0.3	0.9	0.1	1.0	0.1	5.2	24.5	63.2
22ELAC035	21	22	1	42.1	54.9	8.6	26.0	3.9	1.0	3.2	0.5	3.1	0.7	1.9	0.3	2.0	0.3	14.7	163.2	74.1
22ELAC035	22	23	1	16.8	48.9	3.8	12.1	2.3	0.7	2.3	0.4	2.9	0.7	2.0	0.3	2.1	0.3	14.2	109.8	75.3
22ELAC035	23	24	1	12.6	524.5	3.0	9.4	1.8	0.6	1.8	0.4	2.4	0.5	1.6	0.3	1.7	0.2	10.2	571.2	80.7
22ELAC035	24	25	1	12.6	70.0	3.2	10.3	2.2	0.7	2.4	0.5	3.2	0.7	2.1	0.3	2.3	0.3	13.2	124.0	75.6
22ELAC035	25	26	1	15.9	831.6	4.1	12.9	2.6	8.0	2.6	0.5	3.3	0.7	2.1	0.3	2.2	0.3	12.4	892.4	74.1
22ELAC035	26	27	1	81.6	313.2	17.4	53.0	8.7	2.4	6.9	1.1	6.2	1.2	3.2	0.5	3.0	0.4	22.3	521.0	75.9
22ELAC035	27	28	1	55.9	19.4	11.4	37.4	6.9	2.0	6.4	1.0	6.2	1.3	3.6	0.6	3.7	0.6	25.1	181.5	71.8
22ELAC035	28	29	1	21.4	33.2	4.3	14.8	3.0	0.9	3.2	0.6	3.6	8.0	2.2	0.4	2.3	0.3	13.5	104.5	73.9
22ELAC035	29	30	1	55.9	68.7	11.4	38.1	7.4	2.2	7.0	1.1	6.8	1.3	3.6	0.6	3.4	0.5	27.2	235.2	75.2
22ELAC036	15	16	1	24.0	64.7	4.5	14.4	2.5	0.7	2.3	0.4	2.1	0.4	1.4	0.2	1.5	0.2	13.1	132.7	27.1
22ELAC036	16	17	1	136.0	297.3	29.1	93.9	14.6	3.5	12.0	1.7	8.7	1.7	4.2	0.7	3.3	0.5	42.2	649.3	34.7
22ELAC036	17	18	1	27.4	51.6	4.6	15.2	2.4	0.6	2.4	0.4	2.3	0.5	1.4	0.2	1.4	0.2	13.4	124.0	34.8
22ELAC036	18	19	1	17.1	28.9	2.8	9.1	1.4	0.4	1.5	0.3	1.7	0.4	1.3	0.2	1.3	0.2	12.0	78.7	60.6
22ELAC036	19	20	1	5.8	6.9	0.6	2.0	0.4	0.1	0.4	0.1	0.6	0.2	0.5	0.1	0.6	0.1	4.2	22.7	62.7
22ELAC036	20	21	1	6.1	8.8	0.9	2.8	0.6	0.2	0.6	0.1	0.8	0.2	0.5	0.1	8.0	0.1	4.8	27.2	69.9
22ELAC036	21	22	1	20.0	28.6	2.9	8.6	1.3	0.3	1.1	0.2	1.1	0.3	0.7	0.1	0.7	0.1	6.6	72.5	54.4
22ELAC036	22	23	1	34.4	49.5	4.4	11.8	1.5	0.4	1.3	0.2	1.1	0.2	0.7	0.1	0.6	0.1	7.3	113.7	55.8
22ELAC036	23	24	1	258.0	389.4	34.3	90.2	10.8	2.6	8.5	1.1	5.8	1.1	3.0	0.4	2.4	0.4	39.7	847.9	25.6
22ELAC036	24	25	1	140.1	214.4	18.5	51.0	6.7	1.7	5.3	0.7	3.8	8.0	2.4	0.4	2.2	0.3	30.1	478.5	18.3
22ELAC036	25	26	1	121.4	185.5	16.9	44.8	5.6	1.4	4.2	0.5	3.0	0.6	1.7	0.2	1.5	0.2	20.6	408.0	36.8
22ELAC036	26	27	1	148.9	256.7	23.6	70.3	9.3	2.4	7.0	0.9	4.7	1.0	2.8	0.4	2.4	0.4	34.8	565.7	8.5
22ELAC039	24	25	1	18.4	31.6	3.5	10.1	1.4	0.3	1.0	0.2	1.0	0.2	0.7	0.1	0.8	0.1	5.0	74.4	77.8

																	Mi Mong			
Hole ID	From (m)	To (m)	Interval (m)	La ₂ O ₃ (ppm)	CeO ₂ (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Sm ₂ O ₃ (ppm)	Eu ₂ O ₃ (ppm)	Gd₂O₃ (ppm)	Tb ₄ O ₇ (ppm)	Dy ₂ O ₃ (ppm)	Ho ₂ O ₃ (ppm)	Er ₂ O ₃ (ppm)	Tm ₂ O ₃ (ppm)	Yb ₂ O ₃ (ppm)	Lu₂O₃ (ppm)	Y ₂ O ₃ (ppm)	TREO (ppm)	Sc ₂ O ₃ (ppm)
22ELAC039	25	26	1	17.7	87.0	3.5	10.1	1.5	0.4	1.2	0.2	1.0	0.2	0.7	0.1	0.8	0.1	5.9	130.4	77.9
22ELAC039	26	27	1	516.0	836.5	104.8	311.4	43.0	10.6	31.1	4.2	21.7	3.9	9.4	1.2	6.1	8.0	81.4	1982.2	92.5
22ELAC039	27	28	1	70.5	115.3	13.2	39.7	5.6	1.5	4.2	0.6	3.1	0.6	1.5	0.2	1.3	0.2	13.5	271.0	82.4
22ELAC039	28	29	1	562.9	685.4	87.7	284.6	40.8	11.4	38.3	5.3	28.9	5.5	13.4	1.7	9.2	1.2	137.1	1913.7	82.4
22ELAC039	29	30	1	119.6	179.3	16.4	55.5	9.2	2.7	10.1	1.5	8.3	1.7	4.4	0.6	3.7	0.6	41.8	455.5	68.9
22ELAC040	23	24	1	1.7	3.8	0.4	1.4	0.4	0.1	0.6	0.1	1.1	0.3	1.0	0.2	1.2	0.2	6.6	19.1	104.5
22ELAC040	24	25	1	72.8	172.6	22.9	90.7	22.3	7.0	21.8	3.4	19.7	3.9	10.7	1.6	9.4	1.4	92.1	552.3	129.6
22ELAC040	25	26	1	281.5	800.9	105.7	424.6	99.8	32.3	103.8	15.6	88.6	16.1	41.9	5.9	35.2	4.8	369.5	2426.2	128.7
22ELAC040	26	27	1	146.0	321.8	43.4	176.7	42.2	14.3	46.2	7.0	37.9	6.9	17.2	2.4	13.7	1.8	147.3	1024.9	99.7
22ELAC040	27	28	1	37.1	78.9	8.7	37.1	9.8	3.5	14.8	2.7	18.9	4.8	16.4	2.2	15.7	2.3	152.4	405.3	91.4
22ELAC040	28	29	1	4.9	13.0	1.3	5.7	2.2	1.0	6.2	1.4	11.9	3.2	11.2	1.6	11.3	1.6	99.7	176.1	98.3
22ELAC040	29	30	1	7.4	13.7	1.6	7.3	2.4	1.0	5.1	1.1	8.6	2.3	8.0	1.1	7.5	1.1	75.2	143.3	72.4
22ELAC040	30	31	1	8.1	13.5	1.8	8.3	2.7	1.1	5.1	1.1	8.0	2.1	7.2	1.0	7.0	1.0	67.6	135.6	67.5
22ELAC040	31	32	1	9.1	14.9	2.2	9.5	2.8	1.1	4.5	0.9	6.8	1.7	5.9	0.8	5.7	8.0	55.1	121.8	77.9
22ELAC040	32	33	1	8.6	15.6	2.1	9.7	3.0	1.3	5.6	1.2	9.1	2.4	8.2	1.1	7.9	1.2	80.5	157.4	64.0
22ELAC040	33	34	1	7.7	13.4	1.9	8.8	3.0	1.2	6.2	1.3	10.1	2.6	9.0	1.2	8.4	1.2	91.4	167.4	60.9
22ELAC040	34	35	1	3.1	6.0	0.8	3.7	1.2	0.6	2.5	0.6	4.3	1.1	3.7	0.5	3.5	0.5	33.5	65.6	61.5
22ELAC040	35	36	1	3.9	7.8	1.1	5.2	1.9	0.8	3.3	0.7	5.0	1.2	4.0	0.6	3.9	0.6	36.1	76.0	58.6
22ELAC040	36	37	1	2.7	6.0	0.7	3.3	1.2	0.5	2.2	0.5	3.3	8.0	2.7	0.4	2.6	0.4	22.4	49.8	62.0
22ELAC040	37	38	1	13.4	27.1	3.6	15.5	4.1	1.4	5.0	0.8	5.1	1.1	3.2	0.4	3.0	0.4	29.1	113.2	71.5
22ELAC040	38	39	1	21.2	41.2	4.5	17.3	4.2	1.5	5.6	1.0	6.8	1.6	5.3	0.7	5.1	0.7	45.7	162.6	52.3
22ELAC040	39	40	1	2.9	8.2	0.7	3.3	1.1	0.4	2.2	0.4	3.2	8.0	2.7	0.4	2.5	0.3	23.6	52.7	66.9
22ELAC040	40	41	1	3.0	7.1	0.8	3.6	1.2	0.5	2.2	0.4	3.2	0.8	2.7	0.3	2.5	0.4	25.1	53.8	64.9
22ELAC040	41	42	1	5.3	14.3	1.3	5.6	2.0	0.8	3.6	0.8	6.2	1.6	5.7	0.7	5.1	0.7	60.7	114.4	71.8
22ELAC040	42	43	1	39.6	73.7	7.8	31.0	7.3	2.6	10.1	1.7	11.1	2.7	8.8	1.1	7.4	1.1	103.4	309.4	68.4
22ELAC040	43	44	1	66.7	111.9	10.8	33.6	5.5	1.5	5.8	0.9	5.8	1.4	4.6	0.6	4.2	0.6	55.7	309.6	4.8
22ELAC040	44	45	1	111.7	188.6	17.4	49.3	5.5	1.3	4.0	0.5	3.1	0.7	2.1	0.3	1.7	0.2	27.3	413.7	3.6
22ELAC040	45	46	1	32.4	65.1	6.1	19.1	3.2	0.8	2.6	0.4	2.4	0.5	1.7	0.2	1.5	0.2	20.5	156.8	4.2
22ELAC042	27	28	1	147.8	264.1	32.4	113.4	17.3	4.0	12.6	1.4	6.7	1.1	2.7	0.3	1.9	0.2	28.6	634.4	8.6
22ELAC042	28	29	1	77.1	163.4	21.6	74.4	11.3	2.1	6.5	0.8	3.5	0.6	1.6	0.2	1.3	0.2	17.1	381.6	7.3
22ELAC042	29	30	1	105.9	199.6	29.7	99.1	14.4	2.7	8.5	1.0	4.2	0.8	1.9	0.2	1.5	0.2	20.1	489.9	9.5
22ELAC042	30	31	1	130.8	171.4	37.5	126.6	18.0	3.4	10.2	1.1	4.8	0.8	2.1	0.3	1.6	0.2	24.2	532.9	11.4
22ELAC042	31	32	1	80.5	168.9	17.1	53.7	7.5	1.5	4.9	0.6	2.9	0.6	1.6	0.2	1.3	0.2	17.2	358.6	7.2
22ELAC042	32	33	1	52.2	97.5	11.1	36.0	5.4	1.2	3.4	0.4	2.1	0.4	1.1	0.1	1.0	0.1	12.8	224.8	6.5
22ELAC042	33	34	1	41.5	75.5	9.2	31.1	4.9	1.2	3.3	0.4	1.8	0.3	0.9	0.1	0.8	0.1	10.4	181.7	4.7
22ELAC042	34	35	1	51.4	101.0	10.9	37.1	6.0	1.2	4.3	0.5	2.5	0.5	1.3	0.2	1.2	0.2	14.3	232.5	7.4
22ELAC043	3	4	1	27.7	65.1	5.7	18.4	3.0	0.6	2.6	0.4	2.3	0.5	1.5	0.2	1.4	0.2	15.3	144.8	18.3

Mt /	Monger	Resources
------	--------	-----------

Hole ID	From	То	Interval	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	TREO	Sc ₂ O ₃
	(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
22ELAC043	4	5	1	82.6	267.8	15.6	51.1	8.3	1.8	7.9	1.2	6.6	1.3	4.0	0.5	3.3	0.5	43.7	496.2	19.6
22ELAC043	5	6	1	84.2	213.1	15.6	51.2	8.4	1.9	7.7	1.2	6.5	1.3	4.1	0.5	3.4	0.5	43.9	443.5	19.5
22ELAC043	6	7	1	68.0	84.5	9.3	28.8	4.0	8.0	3.5	0.5	2.8	0.6	1.9	0.3	1.8	0.3	19.5	226.6	7.6
22ELAC043	7	8	1	71.2	124.7	11.3	33.1	4.9	0.9	3.5	0.5	2.9	0.6	1.9	0.3	1.9	0.2	17.3	275.1	7.0
22ELAC043	8	9	1	90.7	191.6	22.7	69.3	9.8	1.5	6.0	8.0	4.4	0.9	2.6	0.3	2.3	0.3	22.9	426.1	7.8
22ELAC043	9	10	1	105.2	184.3	19.5	57.6	7.9	1.2	5.2	8.0	4.0	8.0	2.4	0.3	2.2	0.3	20.4	412.0	6.2
22ELAC043	10	11	1	184.7	398.0	36.5	108.1	14.1	2.0	8.3	1.1	5.4	1.0	2.8	0.4	2.5	0.3	26.3	791.6	6.4
22ELAC043	11	12	1	154.8	444.7	32.0	93.8	11.7	1.8	6.3	8.0	4.2	8.0	2.3	0.3	2.1	0.3	20.8	776.5	5.6
22ELAC043	12	13	1	293.2	1201.4	89.5	286.9	38.0	5.6	17.1	2.0	9.3	1.4	3.9	0.5	3.5	0.4	35.9	1988.8	6.2
22ELAC043	13	14	1	340.1	1289.8	84.3	269.4	36.4	5.7	21.2	2.6	12.3	2.1	5.9	8.0	5.0	0.6	58.5	2134.8	6.3
22ELAC043	14	15	1	245.1	523.3	62.7	204.7	28.1	4.9	17.1	2.0	9.3	1.5	4.0	0.5	3.1	0.4	41.0	1147.6	4.6
22ELAC043	15	16	1	551.2	567.5	168.5	605.4	87.8	16.3	56.4	6.5	30.4	4.8	12.3	1.6	9.0	1.1	131.4	2250.2	3.7
22ELAC043	16	17	1	213.4	211.9	59.1	217.0	32.4	6.5	26.9	3.4	18.0	3.5	11.0	1.5	9.6	1.4	129.5	944.9	5.8
22ELAC043	17	18	1	157.2	215.0	37.5	130.1	19.0	3.7	14.5	1.7	8.3	1.5	4.3	0.6	3.5	0.5	47.7	644.9	13.6
22ELAC043	18	19	1	178.9	277.6	40.7	134.1	20.0	4.0	15.8	1.8	8.7	1.5	4.2	0.5	3.1	0.4	47.4	738.8	6.0
22ELAC043	19	20	1	107.7	173.2	20.6	68.5	10.0	2.2	8.6	1.0	5.3	0.9	2.7	0.4	2.2	0.3	31.4	434.9	4.8
22ELAC043	20	21	1	44.8	95.3	10.6	34.8	5.4	1.1	4.2	0.5	2.9	0.5	1.7	0.2	1.7	0.2	18.4	222.4	11.5
22ELAC043	21	22	1	39.6	82.1	7.6	26.0	3.5	8.0	2.4	0.3	1.8	0.4	1.0	0.2	0.9	0.1	11.9	178.6	3.0
22ELAC043	22	23	1	26.3	55.0	5.8	18.8	2.6	0.7	1.5	0.2	1.1	0.2	0.6	0.1	0.6	0.1	6.7	120.2	2.0
22ELAC043	23	24	1	28.7	82.9	5.9	19.9	2.8	0.7	1.8	0.2	1.3	0.3	0.7	0.1	0.7	0.1	7.8	153.9	3.2
22ELAC043	24	25	1	NA																
22ELAC043	25	26	1	23.9	45.5	4.3	13.6	2.0	0.5	1.2	0.2	1.0	0.2	0.7	0.1	0.7	0.1	8.4	102.4	2.6
22ELAC043	26	27	1	111.8	237.7	19.1	62.8	8.6	1.8	5.2	8.0	4.0	0.9	2.3	0.4	1.9	0.3	28.8	486.3	6.6
22ELAC043	27	28	1	64.6	256.7	13.8	48.9	7.0	1.5	4.0	0.5	2.5	0.5	1.1	0.1	0.8	0.1	13.5	415.7	3.1
22ELAC043	28	29	1	247.5	515.9	48.9	171.5	24.0	4.4	14.9	2.0	11.0	2.2	5.6	0.8	4.0	0.6	73.5	1126.7	5.5
22ELAC045	3	4	1	24.5	45.5	4.9	16.0	2.9	0.6	2.4	0.3	2.0	0.4	1.2	0.2	1.3	0.2	11.2	113.6	16.0
22ELAC045	4	5	1	139.0	282.5	26.2	80.9	11.5	2.1	8.0	1.0	5.0	0.9	2.6	0.3	2.2	0.3	29.6	592.1	12.5
22ELAC045	5	6	1	144.3	234.0	27.2	83.3	10.6	1.8	5.7	0.6	2.9	0.5	1.3	0.2	1.1	0.1	15.6	529.0	4.6
22ELAC045	6	7	1	130.2	249.4	25.3	79.2	10.7	1.8	6.4	0.8	3.6	0.6	1.7	0.2	1.4	0.2	20.4	531.8	5.5
22ELAC045	7	8	1	88.9	162.8	17.2	54.1	8.2	1.3	5.2	0.6	3.3	0.5	1.5	0.2	1.2	0.2	15.7	361.2	4.8
22ELAC045	8	9	1	24.7	44.7	5.9	17.7	2.8	0.6	1.8	0.2	1.2	0.2	0.7	0.1	0.6	0.1	6.8	108.2	2.2
22ELAC046	6	7	1	54.5	146.2	12.0	41.1	7.5	1.6	6.7	0.9	5.2	1.0	2.9	0.4	2.5	0.4	29.7	312.4	21.4
22ELAC046	7	8	1	56.4	313.2	10.9	36.5	5.7	1.2	5.3	0.7	3.8	0.7	2.2	0.3	1.8	0.3	24.8	463.8	21.5
22ELAC046	8	9	1	27.2	154.8	6.7	23.4	5.0	1.1	4.9	0.7	4.3	0.8	2.4	0.3	2.0	0.3	26.5	260.6	17.3
22ELAC046	9	10	1	30.4	131.4	7.0	24.5	5.3	1.2	4.8	0.7	4.1	0.8	2.3	0.3	2.2	0.3	22.5	237.8	12.0
22ELAC046	10	11	1	58.4	55.0	8.8	27.3	4.2	0.8	3.6	0.5	2.7	0.5	1.5	0.2	1.3	0.2	17.3	182.3	8.4
22ELAC046	11	12	1	38.8	25.7	4.8	13.1	2.2	0.4	1.7	0.3	1.5	0.3	0.9	0.1	0.9	0.1	9.9	100.7	8.2

Mt A	Nonger	Resources
------	---------------	-----------

Hole ID	From (m)	To (m)	Interval (m)	La₂O₃ (ppm)	CeO ₂ (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Sm ₂ O ₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Tb ₄ O ₇ (ppm)	Dy ₂ O ₃ (ppm)	Ho ₂ O ₃ (ppm)	Er ₂ O ₃ (ppm)	Tm ₂ O ₃ (ppm)	Yb ₂ O ₃ (ppm)	Lu ₂ O ₃ (ppm)	Y ₂ O ₃ (ppm)	TREO (ppm)	Sc ₂ O ₃ (ppm)
22ELAC046	12	13	1	9.4	7.1	1.2	3.5	0.5	0.3	0.6	0.1	0.4	0.1	0.3	0.0	0.3	0.0	3.5	27.4	3.4
22ELAC046	13	14	1	19.8	17.6	2.9	8.7	1.3	0.2	1.1	0.1	8.0	0.2	0.5	0.1	0.5	0.1	6.5	60.5	9.2
22ELAC046	14	15	1	29.8	36.7	4.5	14.0	1.6	0.3	1.2	0.1	0.7	0.1	0.4	0.1	0.5	0.1	5.9	96.0	11.2
22ELAC046	15	16	1	120.2	208.8	21.7	66.1	9.5	1.3	6.3	0.8	4.4	8.0	2.4	0.4	2.5	0.3	25.7	471.3	7.5
22ELAC046	16	17	1	527.8	1083.4	108.3	291.6	32.4	3.8	14.1	1.6	6.7	1.0	2.6	0.3	2.1	0.3	31.4	2107.2	4.5
22ELAC048	18	19	1	79.6	176.9	13.0	37.1	5.3	0.7	3.4	0.5	2.3	0.4	1.2	0.2	1.2	0.2	11.8	333.7	10.3
22ELAC048	19	20	1	104.5	207.0	16.6	47.5	6.6	0.9	4.6	0.6	3.1	0.5	1.6	0.2	1.7	0.2	15.7	411.3	12.3
22ELAC048	20	21	1	171.8	325.5	28.8	82.2	11.3	1.5	7.0	0.9	4.3	0.7	2.1	0.3	1.8	0.2	22.1	660.6	11.7
22ELAC048	21	22	1	255.7	487.7	46.4	127.7	17.5	2.3	11.0	1.4	6.7	1.1	3.2	0.4	2.6	0.4	32.5	996.6	10.5
22ELAC048	22	23	1	328.4	574.9	56.7	152.2	20.6	2.9	12.8	1.6	7.8	1.3	3.9	0.5	3.2	0.4	42.0	1209.2	13.5
22ELAC048	23	24	1	328.4	598.2	58.5	155.7	20.5	2.5	12.0	1.5	7.0	1.2	3.3	0.4	2.9	0.4	36.1	1228.6	12.0
22ELAC048	24	25	1	269.7	500.0	51.1	139.4	19.1	2.6	11.2	1.4	6.6	1.1	3.1	0.4	2.8	0.4	32.1	1041.1	17.8
22ELAC048	25	26	1	281.5	506.1	49.4	129.5	17.4	2.4	9.8	1.3	6.2	1.1	3.0	0.4	2.9	0.4	32.3	1043.5	11.3
22ELAC048	26	27	1	387.0	713.7	71.6	195.4	25.3	3.1	14.0	1.7	7.9	1.3	3.5	0.5	3.1	0.4	37.1	1465.5	9.9
22ELAC048	27	28	1	445.7	1357.4	86.1	249.6	31.3	4.0	17.4	2.1	9.7	1.6	4.3	0.6	3.7	0.5	44.7	2258.7	11.9
22ELAC048	28	29	1	433.9	781.3	78.9	229.2	29.6	3.9	14.7	2.0	9.8	1.8	4.3	0.6	3.6	0.5	46.0	1640.0	11.8
22ELAC048	29	30	1	328.4	1095.7	73.3	223.4	31.0	4.4	15.8	2.2	10.7	1.9	4.8	0.7	3.9	0.5	49.0	1845.7	13.0
22ELAC048	30	31	1	175.3	534.4	29.8	94.6	12.3	2.0	7.0	1.0	5.4	1.0	2.7	0.4	2.3	0.3	27.2	895.7	6.7
22ELAC048	31	32	1	50.3	1332.8	9.7	31.6	5.0	0.8	3.3	0.5	2.9	0.6	1.7	0.3	1.9	0.3	16.7	1458.5	5.5
22ELAC048	32	33	1	387.0	421.3	66.6	188.4	24.6	3.7	11.3	1.6	8.3	1.5	3.8	0.5	3.1	0.4	41.1	1163.4	7.7
22ELAC048	33	34	1	445.7	652.3	92.3	278.8	37.5	5.5	18.2	2.5	12.0	2.2	5.3	0.7	4.2	0.6	52.7	1610.4	6.1
22ELAC048	34	35	1	293.2	554.0	71.8	239.1	34.9	5.5	20.5	2.9	15.2	2.9	7.4	1.0	5.7	8.0	79.4	1334.3	5.2
22ELAC048	35	36	1	363.6	606.8	88.4	300.9	43.4	7.1	26.5	3.5	18.2	3.3	8.0	1.1	6.2	0.9	89.5	1567.5	5.2

APPENDIX V - JORC Compliance Tables

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Conventional Aircore (AC) drilling was used to obtain representative 1 metre samples of approximately 1.5kg using a rig-mounted cyclone and cone splitter. The remaining material from each metre was collected from the cyclone as a bulk sample of approximately 15-20kg. In the laboratory, samples are riffle split if required, then pulverised to a nominal 85% passing 75 microns to obtain a homogenous sub-sample for assay. Sampling was carried out under MTM's standard protocols and QAQC procedures and is considered standard industry practice.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Aircore drilling was completed using standard industry methods. Drilling used a 3 inch drill bit to refusal, usually saprock to fresh rock. Aircore is considered to be an appropriate drilling technique for saprolitic clay.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC drill samples recoveries were assessed visually but not recorded. Samples are not considered to be materially biased, given the nature of the geology and sampling method. Recoveries remained relatively consistent throughout the program and are estimated to be 100% for 95% of drilling. Poor (low) recovery intervals were logged and entered into the drill logs. The cone splitter was routinely cleaned and inspected during drilling. Care was taken to ensure calico samples were of consistent volume.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 AC samples were logged geologically on a one metre interval basis, including but not limited to: recording colour, weathering, regolith, lithology, veining, structure, texture, alteration and mineralisation (type and abundance). Logging was at a qualitative standard appropriate for AC drilling and is not suitable to support future Mineral Resource estimation.

Criteria	JORC Code Explanation	Commentary
	The total length and percentage of the relevant intersections logged.	 Representative material was collected from each AC drill sample and stored in a chip tray. These chip trays were transferred to a secure Company storage facility located in Kalgoorlie. All holes and all relevant intersections were geologically logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 1m interval samples were submitted to the analytical laboratory for sample preparation. >95% of the samples were dry in nature. AC drilling samples were weighed, dried and pulverized to 85% passing 75 microns. This is considered industry standard and appropriate. MTM has its own internal QAQC procedure involving the use of certified reference materials (standards), blanks and field duplicates which account for approximately 5% of the total submitted samples. The sample sizes are considered appropriate for the style of precious metal mineralisation previously recorded for the area.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 1m drilling samples have been submitted for a multi-element assay technique (ME-MS61L) using multi-acid (4 acid) digestion with an ICP-MS and ICP-AES finish; and rare earth elements with a multi-element technique (MS61L-REE) using a multi-acid digestion (HF-HNO₃-HCIO₄), HCI leach followed by ICP-MS analysis. The assay techniques are considered appropriate and are industry best standard. The techniques are considered to be a near total digest, only the most resistive minerals are only partially dissolved. An internal QAQC procedure involving the use of certified reference materials (standards), blanks and duplicates accounts for approximately 5% of the total submitted samples. The certified reference materials used have a representative range of values typical of low, moderate and high grade gold mineralisation. Standard results for drilling demonstrated assay values are both accurate and precise. Blank results demonstrate there is negligible cross-contamination between samples. Duplicate results suggest there is reasonable repeatability between samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	Significant intersections have not been verified. No dedicated twin holes have yet been drilled for comparative purposes. Primary data was collected on paper log sheets and then transferred to digital logging hardware and software using in-house logging methodology and codes.

Criteria	JORC Code Explanation	Commentary
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Logging data was sent to the Perth based office where the data was validated and entered into an industry standard master database maintained by the MTM database administrator.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Hole collar locations are surveyed prior to rehabilitation with handheld GPS instruments with accuracy ±3m. Downhole surveys were not undertaken. The grid system used for location of all drill holes as shown in tables and on figures is MGA Zone 51, GDA94. Topographic control is based on handheld GPS, suitable for current stage of exploration.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole spacing is variable, as shown in diagrams in the body of the announcement. Drill hole spacing and distribution is not considered sufficient as to make geological and grade continuity assumptions appropriate for Mineral Resource estimation. Drill hole samples were collected at 1m intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of drilling and sampling is not anticipated to have any significant biasing effects. The drill holes reported in this announcement are vertical and are interpreted to have intersected the mineralised structures approximately perpendicular to their dip.
Sample security	The measures taken to ensure sample security.	 Sample chain of custody is managed by MTM. Sampling is carried out by MTM field staff. Samples are transported to a laboratory in Kalgoorlie by MTM employees.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audit or review has been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results relate to drilling completed on exploration licence E38/3499. The exploration licences are held 100% by Tevel Pty Ltd (Tevel). Mt Monger Resources Ltd has executed an earn-in and joint venture agreement with Tevel that entitles the Company to earn up to a 75% interest in the tenements. The tenement overlies the Laverton Downs pastoral lease. The tenements are held securely and no impediments to obtaining a licence to operate have been identified.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The tenement contains extensive sedimentary cover and there has been minimal exploration in the area either by exploration companies or government geological surveys. Earliest exploration within the region was for diamonds, gold, nickel and uranium, with only a limited number of drill holes. Reconnaissance exploration activities including geophysical data interpretation and surface geochemical sampling, have identified a number of rare earth element anomalies requiring further follow up work. A number of early stage exploration programs including shallow RAB and aircore drilling have been completed in the Pt Kidman prospect areas.
Geology	Deposit type, geological setting and style of mineralisation.	 The tenement area is located within the poorly understood Burtville Terrane on the eastern edge of the Eastern Goldfields Superterrane. Interpreted geology comprises predominantly Archaean granite gneiss with relatively narrow remnant greenstone units. The area contains limited outcrop, with the bedrock geology predominantly concealed by younger transported cover. The area is on the eastern fringe of the Yilgarn Craton, surrounded by existing and emerging world class gold camps. To the west, the +25 Moz Au Laverton Greenstone Belt is home to Sunrise Dam (10 Moz Au), Wallaby (8 Moz Au) and Granny Smith (2.5 Moz Au) and a suite of other nearby deposits. Gold production from the belt is estimated to be in excess of 28 Moz Au. Lying to the east of the area is the Yamarna Greenstone Belt, hosting the 6 Moz Au granitoid-host ed Gruyere deposit, whilst the 7.5 Moz Au granite gneiss-hosted Tropicana deposit is located in the Albany-Fraser Province to the southeast. Limited previous exploration within the Point Kidman project area has identified light rare earths (LREE) mineralisation hosted by laterite clays and strongly

0 14 1		Mi Moliger Resources
Criteria	JORC Code Explanation	Commentary
		weathered granites associated with Archaean granitoid terrane. Aircore drilling intersected anomalous LREE mineralisation (Ce, La, Nd, Pr and Sm) in reconnaissance aircore drill holes over a wide area that remain to be followed up with additional exploration. Very widely spaced Geological Survey of Western Australia (GSWA) rock chip samples in the area have returned anomalous REEs and indicates the size of the anomalous REE fingerprint in the region is much larger than the area drilled to date.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including Easting and northing of the drill hole collar, Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All material information is summarised in the Tables and Figures included in the body of the announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length-weighted average grades are reported. No maximum grade truncations have been applied. Significant intersections are reported based on 300ppm total rare earth oxide (TREO) cut-off grade, with allowance for internal dilution by a maximum of one sub-grade sample. Where appropriate higher-grade intersections are reported based on a 1,000ppm TREO cut-off with no internal dilution. No metal equivalent values have been reported. Multi-element results (REE) are converted to stoichiometric oxide (REO) using element-to-stoichiometric oxide conversion factors. These stoichiometric conversion factors are stated in the table below and can be referenced in appropriate publicly available technical data. Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: Total rare earth oxide (TREO) values were derived by the simple addition of grades for lanthanum (La₂O₃), cerium (CeO₂), praseodymium (Pr₆O₁₁), neodymium (Nd₂O₃), samarium (Sm₂O₃), europium (Eu₂O₃), gadolinium (Gd₂O₃), terbium (Tb₄O₇), dysprosium (Dy₂O₃), holmium (Ho₂O₃), erbium

Criteria	JORC Code Explanation		Commenta	ary				
Ornoma	CONTO GOGO EXPIGNACION	 (Er₂O₃), thulium (Tm₂O₃), ytterbium (Yb₂O₃), lutetium (Lu₂O₃) and yttrium (Y₂O₃). Heavy Rare Earth Oxide (HREO) grade includes Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃ and Y₂O₃. Reported as percentage of TREO. Magnet Rare Earth Oxide (MREO) grade includes Nd₂O₃, Pr₆O₁₁, Sm₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, and Ho₂O₃. Shown as percentage of TREO. Critical Rare Earth Oxide (CREO) grade includes Nd₂O₃, Eu₂O₃, Tb₄O₇, Dy₂O₃ and Y₂O₃. Shown as percentage of TREO. 						
			Pr) grade includes Nd₂O₃ a					
		Element	Conversion Factor	Oxide Form	1			
		Ce	1.2284	CeO ₂	-			
		Dy	1.1477	Dy ₂ O ₃	1			
		Er	1.1435	Er ₂ O ₃	1			
		Eu	1.1579	Eu ₂ O ₃				
		Gd	1.1526	Gd ₂ O ₃	1			
		Но	1.1455	Ho ₂ O ₃				
		La	1.1728	La ₂ O ₃				
		Lu	1.1372	Lu ₂ O ₃				
		Nd	1.1664	Nd ₂ O ₃				
		Pr	1.2082	Pr ₆ O ₁₁				
		Sc	1.5338	Sc ₂ O ₃				
		Sm	1.1596	Sm ₂ O ₃				
		Tb	1.1762	Tb ₄ O ₇				
		Tm	1.1421	Tm ₂ O ₃]			
		Y	1.2699	Y ₂ O ₃				
		Yb	1.1387	Yb ₂ O ₃]			
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Down hole lengths are reported. The mineralisation is assumed to be subhorizontal in orientation so true width and intercept length is approximately equal. Further drilling is required to determine the geometry of the mineralisation with respect to the drill hole angle. 						

Criteria	JORC Code Explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Comprehensive reporting of REO assay results is provided in Appendix IV. Representative reporting of significant intersections is included in the body of the announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• None.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling may be undertaken for infill and extension of the known exploration prospects. Soil sampling is being undertaken to evaluate the extension of the mineralised structure to the southeast and further drilling may be undertaken to test exploration targets.