

1st December 2022

Gold mineralisation within the highly prospective Dead Bullock Formation at the West Tanami Project

- Gold returned in assays within the Dead Bullock Formation, which is the host lithology to the Callie 8M oz Gold Mine, 120kms along strike.
- Anomalous gold in 2.8km wide corridor confirming potential orogenic sediment hosted gold mineralisation similar to existing deposits in the district.
- Anomalous surface gold results received from rock chip samples across the project.
- Future drill program planning underway to follow-up results.

Killi Resources Limited ('Killi' or the 'Company') (ASX: KLI) is pleased to advise the Company has received the first round of drilling results and established host lithologies from the aircore and diamond drill programs completed at the West Tanami Project, located in the Kimberley of Western Australia.

The results returned from the Fox prospect have identified a 2.8km wide corridor anomalous for gold, silver and arsenic, aligning with the Company's model for a sediment-hosted gold system, and similar to those already found in the Tanami.

Logging of the upper portion of the diamond drill hole has identified the highly prospective **Dead Bullock Formation** which is the formation host to the +8Moz Callie gold deposit, 120 kms along strike to the southeast, and is the style of gold mineralisation the Company is targeting. Additional to the favourable geology in the drill core, the regional aircore program has returned low-level gold anomalism in multiple locations, similar in geochemical fingerprint to Callie deposit which was found on a 50ppb Au anomaly.

The regional program was designed to cover structures that could potentially host hydrothermal mineralisation for both gold and/or rare earth elements. These first pass aircore lines completed at Trickster and Deva across the interpreted gold feature that extends from the Tanami (NT), previously referred to as the 'D5 Fault', have returned a gold result in bedrock, below alluvial cover of 4m @ 100ppb Au from 8m depth.

Killi CEO, Kathryn Cutler commented, 'These results are exactly what we are looking for, and in the right rocks, as these low-level gold and arsenic anomalies are indicative of orogenic sediment-hosted gold systems throughout the Tanami. Callie was found on a 50ppb gold and arsenic result, so we are thrilled to have +100ppb gold intervals and to have identified the Dead Bullock sediments on our ground. These are the first two pieces of the puzzle, so we can now narrow in on the structures to find those fold hinges we need as the gold traps.'

Gold within the Dead Bullock sediments at the West Tanami Project

Killi completed four first pass aircore drill lines at the northern end of the project, across the interpreted axial hinge within sediments, at the Fox, Deva, and Trickster prospects, covering 9km of combined stratigraphy, Figure 1. Gold deposits within the Tanami district are generally hosted within the fold-hinges of the Dead Bullock Formation, or in close proximity to the sequence margins and/or contacts, Figure 4. The observed lithologies from the diamond hole and aircore drilling results therefore provide significant encouragment for a major gold discovery on the project.

Multiple intercepts of anomalous gold, arsenic and silver were intersected at the **Fox** prospect, with all elements aligning with the geochemical fingerprint for a sediment hosted gold system. The highest result returned was **4m @ 135ppb Au from 72m**, located at the interpreted hinge zone. The total width of the anomalous gold corridor across the sequence is 2.8 km, with the more localised hinge zone 0.7 km in width. In conjunction with the downhole anomalism, surface rock chips samples at the prospect returned 0.42g/t Au at the northern end of the line, some 2.6km from any historical surface gold results, Figure 2.

The two regional aircore lines completed at Trickster and Deva consisted of 54 holes for 2,201 metres. These two drill lines represent the first drilling over this newly identified prospective gold structure that could represent the main mineralising feature from the Tanami district. A significant result was returned at the eastern end of the southern line of **4m @ 100ppb Au from 8m** depth, in bedrock below alluvial cover, Figure 3. Similarly at the eastern end of the northern line an anomalous result of **4m @ 30ppb Au from 8m** was returned. It is interpreted these results could be the first results for the D5 fault structure on the project.

Figure 1. Location of gold and silver results at the West Tanami Project, from the regional aircore drill program, including the gold anomaly at Deva interpreted as the D5 fault structure that extends from the northern territory and is associated with million-ounce gold systems of the Tanami district.

Figure 2. Mineralisation and geological cross-section of the Fox prospect regional aircore drill line including the Diamond drill hole, 2 x vertical exaggeration. Geological interpretation from aircore and diamond logging.

Figure 3. Mineralisation and geological cross-section at the Deva prospect, with significant zone of gold mineralisation at the eastern end in hole TMAC0082.

A EIS-funded diamond drill hole was completed to a total depth of 890.4m during the field season. Logging and geochemical evaluation of the upper sedimentary sequence by geological logging and portable X-ray fluorescence (pXRF) has confirmed the section of the stratigraphy in which the project resides. The top of the diamond hole begins within the Killi Killi Formation, which is host to the Coyote and Kookaburra gold mines within the region. The hole then passes through a transitional zone and then into the Dead Bullock Formation, Figure 4. The sequence is strongly folded and faulted relating to both extensional and compressional events.

Figure 4. Diamond core photographs of the iron-rich sediments of the Dead Bullock Formation (DBF). A) At approximately 139m, folded iron-rich sediments of the DBF. B) Folded siltstone and shale units of the DBF at ~173m, with multiple folding and shearing events overprinted, with k-feldspar alteration. C) Sediments of the DBF, with increased pyrite and quartz veining.

Further Exploration at West Tanami

Results remain pending for the remaining aircore drilling, at Tent Hill and Cheyenne prospects.

The Company awaits the diamond core results and looks forward to providing the market with an update in due course and plans to actively continue exploring the base metal potential of the project, from multiple fronts, based on visual observations of the diamond drill hole.

Upcoming Exploration results

West Tanami – additional aircore results remain pending for ~7,000m of the aircore program, ~890m of diamond core is currently being assayed, as well as surface soil and rock chip samples taken across the project, to be reported in coming months, Figure 5.

Ravenswood North – Results remain pending for soil and rock chips at West Branch, Hawkeye, & Success West prospects, at the Ravenswood North Project in north Queensland, to be reported in coming weeks. Anomalies determined from the airborne VTEM are also currently being evaluated and modelled.

Approvals should be received shortly for ground disturbance and drilling commencing at the 'Rocky' Au-Ag-Cu-Mo target before the end of the year.

Authorised for release by the Board of Killi Resources Limited.

Media Enquires

Kathryn Cutler Chief Executive Officer +61 8 9322 7600 kathryn@killi.com.au David Tasker Chapter One Advisors +61 433 112 936 dtasker@chapteroneadvisors.com.au

Compliance Statement

The information in this report that relates to prior Exploration Results for the West Tanami Project is extracted from the ASX Announcements listed below which are available on the Company website <u>www.killi.com.au</u> and the ASX website (ASX code: KLI):

Date	Announcement title
25 October 2022	Further Information – Magmatic Sulphide Zone at West Tanami
29 August 2022	Rare Earth Element Drilling Completed
20 July 2022	Drilling Commences at West Tanami

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirm that form and context in which the Competent Person's finding are presented have not been materially modified from the original market announcements.

Competent Person's Statement

The information in this report that relates to Exploration Results is based on information compiled by Ms Kathryn Cutler. Ms Cutler is a Member of The Australasian Institute of Mining and Metallurgy. Ms Cutler has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Cutler consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Figure 5. Results remain pending for aircore drilling completed at Tent Hill and Cheyenne, as well as surface rock chip results.

					,			-,		
								Downhole Significant gold	Bottom of hole	Bottom of hole
Hole ID	Prospect	Easting	Northing	RL	Depth	Dip	Azi	intervals	Significant silver	Significant arsenic
	-								intervals	intervals
TMAC0001	Fox	474545	7857411	414	105	-60	180	NSI	BDL	NSI
TMAC0002	Fox	474550	7858397	416	75	-60	180	NSI	NSI	NSI
TMAC0003	Fox	474555	7858508	415	68	-60	180	NSI	NSI	NSI
TMAC0004	Fox	474550	7858599	415	93	-60	180	2m @ 20ppb Au fr 72m	3m @ 0.1g/t Ag fr 90m	NSI
TMAC0005	Fox	474550	7858696	414	81	-60	180	NSI	BDL	NSI
TMAC0006	Fox	474550	7858801	414	105	-60	180	NSI	BDL	NSI
TMAC0007	Fox	474552	7858901	414	99	-60	180	2m @ 20ppb Au fr 22m	N/A	NSI
TMAC0008	Fox	474556	7858996	414	105	-60	180	2m @ 20ppb Au fr 92m	NSI	NSI
TMAC0009	Fox	474556	7859104	414	87	-60	180	4m @ 135ppb Au fr 72m	NSI	NSI
TMAC0010	Fox	474549	7859197	412	87	-60	180	NSI	NSI	NSI
								2m @ 20ppb Au fr 28m, 2m @		
TMAC0011	Fox	474556	7859307	412	105	-60	180	20ppb Au fr 60m & 2m @	NSI	NSI
	5							50ppb Au fr 80m		
TMAC0012	FOX	474551	7859398	411	105	-60	180	2m @ 60 ppb AU fr 28m & 8m @ 20ppb Au fr 38m	NSI	N51
	Fox							4m @ 40ppb Au fr 6m, 4m @		3m@10ppm As fr 90m
Th 4 A C 00 1 0	1 OX	174551	7050/00	410	00	(0	100	25ppb Au fr 24m, 8m @ 20ppb		
IMAC0013		4/4551	/859603	410	93	-60	180	Au fr 50m & 2m @ 20ppb Au fr	N5I	
								78m		
TMAC0014	Fox	474558	7859699	410	93	-60	180	2m @ 20ppb Au fr 16m	3m @ 0.1g/t Ag fr 90m	NSI
TMAC0015	Fox	474549	7859800	410	105	-60	180	NSI	NSI	3m @ 99ppm As fr 102m
TMAC0016	Fox	474552	7860003	411	75	-60	180	NSI	NSI	NSI
TMAC0017	Fox	474550	7860401	415	81	-60	180	2m @ 20ppb Au fr 68m	NSI	3m @ 12ppm As fr 78m
TMAC0018	Fox	474552	7860504	417	105	-60	180	NSI	BDL	5m @ 15ppm As fr 100m
TMAC0019	Fox	474558	7860605	417	64	-60	180	NSI	4m @ 0.12g/t Ag fr 60m	NSI
TMAC0020	Fox	474556	7860662	417	64	-60	180	4m @ 20ppb Au fr 4m	BDL	NSI
TMAC0021	Fox	474552	7860801	415	76	-60	180	NSI	4m @ 0.16g/t Ag fr 72m	4m @ 23ppm As fr 72m
TMAC0022	Fox	474549	7857595	415	100	-60	180	NSI	BDL	NSI
TMAC0023	Fox	474560	7857817	415	115	-60	180	8m @ 45ppb Au fr 80m, 4m @ 20ppb Au fr 104m	BDL	NSI
TMAC0024	Fox	474550	7857998	415	109	-60	180	4m @ 40ppb Au fr 88m	NSI	NSI
TMAC0025	Fox	474550	7858199	415	73	-60	180	NSI	NSI	NSI
TMAC0026	Fox	476138	7856400	414	133	-60	180	4m @ 30ppb Au fr 36m	BDL	NSI
TMAC0027	Fox	476132	7856599	414	133	-60	180	NSI	NSI	NSI
TMAC0028	Fox	476129	7856800	415	139	-60	180	4m @ 20ppb Au fr 12m, 12m @ 37ppb Au fr 20m	BDL	NSI
TMAC0029	Fox	476135	7856999	416	133	-60	180	4m @ 30ppb Au fr 28m, 4m @ 20ppb Au fr 68m	NSI	NSI
TMAC.0030	Fox	476138	7857190	416	85	-60	180	NSI	BDI	NSI
IMAC.0031	Fox	476145	7857401	416	109	-60	180	NSI	BDL	NSI
TMAC0032	Trickster	479649	7864402	427	78	-60	215	4m @ 20ppb Au fr 68m	NSI	NSI
	1			141		~~~	210			

Table1. Location of aircore drill holes at Fox, Trickster and Deva, and significant gold (Au), silver (Ag), and arsenic (As) intervals.

TMAC0033	Trickster	479871	7864736	424	43	-60	215	NSI	NSI	NSI
TMAC0034	Trickster	479937	7864825	423	43	-60	215	NSI	1m @ 0.22g/t Ag fr 42m	1m @ 72ppm As fr 42m
TMAC0035	Trickster	479988	7864899	422	43	-60	215	4m @ 20ppb Au fr 36m	1m @ 0.66g/t Ag fr 42m	NSI
TMAC0036	Trickster	480033	7864985	421	43	-60	215	NSI	NSI	1m @ 11ppm As fr 42m
TMAC0037	Trickster	480095	7865068	420	43	-60	215	NSI	NSI	NSI
TMAC0038	Trickster	480140	7865163	418	43	-60	215	NSI	NSI	NSI
TMAC0039	Trickster	480204	7865237	417	43	-60	215	NSI	NSI	NSI
TMAC0040	Trickster	480248	7865329	417	43	-60	215	NSI	NSI	NSI
TMAC0041	Trickster	480320	7865398	416	43	-60	215	NSI	NSI	NSI
TMAC0042	Trickster	480412	7865477	415	43	-60	215	NSI	NSI	NSI
TMAC0043	Trickster	480460	7865578	415	40	-60	215	NSI	NSI	1m @ 11ppm As fr 39m
TMAC0044	Trickster	480540	7865731	414	40	-60	215	NSI	1m @ 0.11g/t Ag fr 39m	NSI
TMAC0045	Trickster	480586	7865837	414	40	-60	215	NSI	NSI	NSI
TMAC0046	Trickster	480707	7865994	415	40	-60	215	NSI	NSI	1m @ 26ppm As fr 39m
TMAC0047	Trickster	480765	7866064	415	40	-60	215	NSI	NSI	NSI
TMAC0048	Trickster	480831	7866137	414	40	-60	215	NSI	NSI	NSI
TMAC0049	Trickster	480884	7866218	414	40	-60	215	NSI	NSI	4m @ 11ppm As fr 36m
TMAC0068	Deva	488051	7860897	444	40	-60	215	NSI	NSI	NSI
TMAC0069	Deva	488100	7860983	443	45	-60	215	NSI	NSI	NSI
TMAC0070	Deva	488160	7861057	442	41	-60	215	NSI	NSI	NSI
TMAC0071	Deva	488222	7861142	442	7	-60	215	NSI	NSI	NSI
TMAC0072	Deva	488267	7861234	441	40	-60	215	NSI	BDL	NSI
TMAC0073	Deva	488324	7861324	443	40	-60	215	NSI	BDL	NSI
TMAC0074	Deva	488371	7861392	444	40	-60	215	NSI	BDL	NSI
TMAC0075	Deva	488434	7861475	445	40	-60	215	NSI	BDL	1m @ 13ppm As fr 39m
TMAC0076	Deva	488489	7861572	447	40	-60	215	NSI	BDL	1m @ 10ppm As fr 39m
TMAC0077	Deva	488557	7861660	448	40	-60	215	NSI	BDL	NSI
TMAC0078	Deva	488605	7861746	450	40	-60	215	NSI	BDL	NSI
TMAC0079	Deva	488660	7861830	451	40	-60	215	NSI	BDL	NSI
TMAC0080	Deva	488716	7861914	452	40	-60	215	NSI	BDL	NSI
TMAC0081	Deva	488773	7862004	454	40	-60	215	NSI	BDL	NSI
TMAC0082	Deva	488820	7862079	454	40	-60	215	12m @ 43ppb Au fr 8m Incl. 4m @ 100ppb Au fr 8m	BDL	1m @ 11ppm As fr 39m
TMAC0083	Deva	488876	7862157	454	40	-60	215	NSI	BDL	NSI
TMAC0084	Deva	488941	7862248	455	40	-60	215	NSI	BDL	NSI
TMAC0085	Deva	489005	7862350	442	40	-60	215	NSI	NSI	NSI

* NSI – No Significant Intercepts.

* N/A – Sample not analysed for element

Au (g/t) analysed via fire assay 30g charge, as composites samples down the drill hole. Ag (g/t) analysed as bottom of hole multi-element sample, via ICP40Q.

Prospect	Sample ID	Easting	Northing	Logging	Αu	Ag	As	Bi	Cu	Sb	Analysis
					(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	Method
Fox	WTR0003	477560	7858980	Qtz Vein	-0.01						FA
Fox	WTR0004	477561	7858982	Qtz Vein	-0.01						FA
Fox	WTR0005	477395	7858928	Qtz Vein	-0.01						FA
Fox	WTR0006	476923	7859689	Qtz Vein	-0.01						FA
Fox	WTR0009	474417	7859322	Qtz float	-0.01						FA
Fox	WTR0010	474416	7859322	Qtz float	-0.01						FA
Fox	WTR0011	474186	7859310	Qtz float	-0.01						FA
Fox	WTR0016	479415	7858990	Qtz Vein	-0.01	0.05	15	0.6	93	1.1	FA, ME
Fox	WTR0018	474583	7860494	Qtz Vein	-0.01						FA
Fox	WTR0019	474589	7860494	Qtz Vein	0.08						FA
Fox	WTR0020	474602	7860484	Qtz Vein	-0.01						FA
Fox	WTR0021	474589	7860461	Qtz Vein	-0.01						FA
Fox	WTR0022	474599	7860447	Qtz Vein	-0.01						FA
Fox	WTR0023	474597	7860449	Qtz Vein	-0.01						FA
Fox	WTR0024	474648	7860488	Qtz Vein	0.03						FA
Fox	WTR0025	474651	7860486	Qtz Vein	0.42						FA
Fox	WTR0026	474673	7860512	Qtz Vein	-0.01						FA
Fox	WTR0027	474683	7860530	Qtz Vein	-0.01						FA
Fox	WTR0028	474696	7860526	Qtz Vein	-0.01						FA
Fox	WTR0029	474696	7860526	Qtz Vein	-0.01						FA
Fox	WTR0030	474696	7860526	Qtz Vein	-0.01						FA
Fox	WTR0031	474696	7860526	Qtz Vein	0.01						FA
Fox	WTR0032	474696	7860526	Qtz Vein	-0.01						FA
Fox	WTR0033	474696	7860526	Qtz Vein	-0.01						FA
Fox	WTR0034	474544	7860785	Qtz Vein	-0.01						FA
Fox	WTR0035	474555	7860921	Qtz Vein	-0.01						FA
Fox	WTR0036	474555	7860921	Qtz Vein	-0.01						FA
Fox	WTR0183	479341	7858986	Siltstone	-0.01	0.18	282	0.4	83	10	FA, ME
Fox	WTR0184	479363	7858968	Sandstone	-0.01	0.17	8	1.5	39	5	FA, ME
Fox	WTR0185	479418	7858994	Conglomerate	-0.01	0.1	23	0.2	149	4	FA, ME
Trickster	WTR0007	477199	7864832	Qtz Vein	-0.01						FA
Trickster	WTR0008	477188	7864835	Sandstone	-0.01	0.09	4	0.2	8	0.6	FA, ME
Trickster	WTR0076	484674	7866808	Sandstone	-0.01	1.05	12	-0.1	27	7	FA, ME
Trickster	WTR0077	484705	7866747	Sandstone	-0.01	0.62	39	0.6	36	7	FA, ME
Trickster	WTR0078	484717	7866701	Sandstone	-0.01	0.09	53	0.5	47	6	FA, ME
Trickster	WTR0079	484786	7866695	Qtz Vein	-0.01						FA

Table 2. Rock Chip details for samples at Fox, Trickster and Deva (MGA94_52S).

Trickster	WTR0080	484786	7866689	Qtz Vein	-0.01						FA
Trickster	WTR0081	484808	7866702	Qtz Vein	-0.01						FA
Trickster	WTR0082	484873	7866695	Chert	-0.01	-0.05	50	0.3	-5	8	FA, ME
Trickster	WTR0083	484884	7866703	Qtz Vein	-0.01						FA
Trickster	WTR0084	484925	7866694	Sandstone	-0.01	0.09	3	0.1	11	-2	FA, ME
Trickster	WTR0085	484952	7866698	Qtz Vein	-0.01						FA
Trickster	WTR0086	479946	7869013	Sandstone	-0.01	0.26	3	-0.1	-5	2	FA, ME
Trickster	WTR0087	479965	7869006	Sandstone	-0.01	0.07	-3	-0.1	8	-2	FA, ME
Trickster	WTR0088	480055	7869001	Sandstone	-0.01	0.15	-3	0.3	11	-2	FA, ME
Trickster	WTR0089	480083	7868992	Sandstone	-0.01	0.11	8	0.2	18	4	FA, ME
Trickster	WTR0090	480087	7868974	Sandstone	-0.01	0.1	21	0.4	141	8	FA, ME
Trickster	WTR0091	480089	7868948	Sandstone	-0.01	0.08	-3	0.4	42	7	FA, ME
Trickster	WTR0092	480078	7868934	Sandstone	0.02	0.15	7	1	41	6	FA, ME
Trickster	WTR0093	480134	7868905	Sandstone	-0.01	0.09	5	0.7	6	-2	FA, ME
Trickster	WTR0094	480114	7868851	Sandstone	-0.01	0.25	-3	-0.1	11	2	FA, ME
Trickster	WTR0095	480094	7868827	Qtz Vein	-0.01						FA
Trickster	WTR0096	480011	7868701	Qtz Vein	-0.01						FA
Trickster	WTR0097	480003	7868656	Sandstone	-0.01	0.25	-3	0.2	6	3	FA, ME
Trickster	WTR0098	479999	7868725	Sandstone	-0.01	0.07	-3	0.6	36	-2	FA, ME
Trickster	WTR0099	479925	7868797	Qtz Vein	0.02						FA
Trickster	WTR0100	480288	7868781	Sandstone	-0.01	0.09	-3	-0.1	7	5	FA, ME
Trickster	WTR0101	480319	7868824	Sandstone	0.04	-0.05	-3	0.1	11	-2	FA, ME
Trickster	WTR0102	480408	7868743	Sandstone	-0.01	0.12	382	6.5	326	18	FA, ME
Trickster	WTR0103	480547	7868691	Qtz Vein	-0.01						FA
Trickster	WTR0104	480570	7868687	Sandstone	-0.01	0.07	4	-0.1	10	3	FA, ME
Trickster	WTR0105	481181	7868240	Sandstone	-0.01	0.14	-3	-0.1	-5	-2	FA, ME
Trickster	WTR0106	481180	7868183	Sandstone	-0.01	0.06	4	0.1	6	2	FA, ME
Trickster	WTR0107	481250	7868376	Sandstone	-0.01	-0.05	-3	-0.1	7	-2	FA, ME
Trickster	WTR0108	481297	7868395	Sandstone	-0.01	0.07	-3	0.1	7	-2	FA, ME
Deva	WTR0109	488244.353	7861886.306	Sandstone	-0.01	-0.05	5	0.4	11	-2	FA, ME
Deva	WTR0110	488264.633	7861879.79	Qtz Vein	-0.01						FA
Deva	WTR0111	488280.621	7861852.579	Sandstone	-0.01	-0.05	3	1.7	12	-2	FA, ME
Deva	WTR0112	488320.548	7861824.279	Sandstone	-0.01	0.08	-3	0.4	7	2	FA, ME
Deva	WTR0113	488341.868	7861830.377	Qtz Vein	-0.01						FA
Deva	WTR0114	485669.207	7861578.614	Sandstone	-0.01	0.05	-3	0.2	-5	-2	FA, ME
Deva	WTR0115	485660.384	7861579.386	Sandstone	-0.01	0.07	-3	0.2	-5	-2	FA, ME
Deva	WTR0162	488780.364	7862053.396	Sandstone	-0.01	-0.05	-3	-0.1	9	-2	FA, ME
Deva	WTR0163	488768.91	7862052.832	Sandstone	-0.01	-0.05	-3	0.7	32	3	FA, ME
Deva	WTR0164	488752.2	7862067.096	Sandstone	-0.01	0.12	-3	1	37	2	FA, ME

Deva	WTR0165	488741.794	7862081.252	Sandstone	-0.01	0.25	-3	-0.1	-5	-2	FA, ME
Deva	WTR0166	488720.149	7862087.99	Sandstone	-0.01	-0.05	-3	1.3	8	2	FA, ME
Deva	WTR0167	488697.134	7862117.303	Sandstone	-0.01	-0.05	3	-0.1	8	3	FA, ME
Deva	WTR0168	488547.081	7861704.696	Sandstone	-0.01	-0.05	-3	0.1	10	-2	FA, ME
Deva	WTR0169	488529.854	7861714.423	Sandstone	-0.01	0.06	-3	0.2	5	-2	FA, ME
Deva	WTR0170	488505.69	7861723.479	Sandstone	-0.01	-0.05	-3	-0.1	8	3	FA, ME
Deva	WTR0171	488463.039	7861730.538	Sandstone	-0.01	0.1	-3	0.4	-5	-2	FA, ME
Deva	WTR0172	488464.404	7861729.648	Sandstone	-0.01	0.13	11	0.6	45	4	FA, ME
Deva	WTR0173	488419.535	7861764.808	Qtz Vein	-0.01	-0.05	4	0.6	17	3	FA, ME
Deva	WTR0174	488417.958	7861765.03	Qtz Vein	-0.01	-0.05	3	0.2	6	-2	FA, ME
Deva	WTR0175	488388.948	7861795.219	Qtz Vein	-0.01						FA
Deva	WTR0176	488384.949	7861797.211	Qtz Vein	-0.01						FA
Deva	WTR0177	488378.016	7861804.394	Sandstone	-0.01	0.29	-3	0.2	6	-2	FA, ME
Deva	WTR0178	488339.869	7861829.931	Qtz Vein	-0.01						FA
Deva	WTR0179	488352.243	7861865.684	Sandstone	-0.01	0.07	-3	-0.1	-5	-2	FA, ME
Deva	WTR0180	488426.674	7861765.035	Sandstone	-0.01	-0.05	-3	0.1	-5	-2	FA, ME
Deva	WTR0181	488512.65	7861673.798	Sandstone	-0.01	-0.05	-3	0.1	8	-2	FA, ME
Deva	WTR0182	488244.353	7861886.306	Sandstone	-0.01	-0.05	4	0.3	-5	5	FA, ME

FA – Fire assay analysis (gold) by 30g charge.

ME – Multi-element analysis, where sample was analysed using the IMS40Q method.

Killi Resources Limited

Killi Resources (ASX: KLI) is a gold, copper and rare earth explorer with four wholly owned assets in Australia, with a focus on the Tanami region of Western Australia, Figure 6. The Company is focussed on underexplored provinces with the potential for a large-scale new discovery. Exploration has focussed on the West Tanami and Ravenswood North Projects since the Company listed in February 2022.

Figure 6. Location of Killi Resources Limited gold, copper and rare earth projects in Australia.

This announcement relates to the West Tanami Project in Western Australia

The Company owns 100% of the West Tanami Gold Project in the north-east of Western Australian. The land holding totals 1,634km² of granted tenure over 100km strike of the major gold corridor, Tanami Fault System, with existing gold endowment of the Tanami Gold Province greater than 19M oz Au. Within the district there are multiple gold deposits which include Callie Gold Mine (Newmont, ~13Moz Au), the Tanami Goldfields (3M oz Au), Buccaneer (0.5M oz Au) and the Coyote and Kookaburra mines (Black Cat Syndicate, ~1M oz Au), Figure 7.

Aside from gold, recent work completed by explorers in the area have highlighted the potential for hydrothermal Rare Earth systems, within the district.

85% of the tenement package is covered by shallow transported cover (12-15m depth) which provides an opportunity for the discovery of new mineral systems.

Figure 7. Location of West Tanami Project in relation to existing gold and rare earth element deposits of the Tanami-Granites region.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or bandhold XBC instruments, ato, These aurophase should not 	Aircore drill program, drillholes TMAC0001 – TMAC0032, 4m composite samples were collected by sampling the 1m spoil piles on the ground, using a spear, that were then placed into a calico bag. The calico bags were then collected in polyweave bags and placed within a bulka bag and dispatched to the SGS laboratory in Perth.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any 	4m composite samples were analysed for gold via 30g fire assay (FAP303) down the hole. The last sample of each hole was analysed for multi-elements via (ICP40Q & IMS40Q) and for gold via 30g fire assay (FAP303).
	 measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	pXRF – the pXRF values were generated using a handheld Olympus Vanta M series XRF instrument. Readings were taken on the drill core at varying intervals down the hole to record values for lithology interpretation and potential mineralization.
	 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Rock chip samples were locations at the prospects where there was outcrop. Samples were collected using a geological pick, with the samples collected in a calico bag, labelled with the sample ID, collected in a polyweave bag, and then placed in a bulka bag for dispatch to the Perth laboratory. Samples weighed between 1-3kg, and were logged and have been recorded in the Company's Database.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	The aircore program was completed using a T450 drill rig. Aircore drilling used a bladed bit to drill through the regolith and rock, utilizing airflow and rotation to produce a sample. Where the rock was too hard to penetrate, a hammer was utilized to assist with sample recovery. The drilling technique generated a representative sample for each metre approximately 25kg in weight. The diameter of the drill bit size used for this program was 4.5 inches. The drillholes were oriented -60 degrees to the south, as the geology is interpreted as being sub-vertical.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Im sample piles were assessed by eye on the ground, and recorded in the company database, per metre where a percentage of recovery was recorded (10% - 100%) and the condition of the sample being dry, moist or wet was also recorded.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies 	Point locations where pXRF readings were taken on the core, were recorded on the core, and within the Company's database.
	and metallurgical studies.	Air core samples were logged for regolith, colour, lithology, alteration, texture, and veining.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Core was logged for regolith, colour, lithology, alteration, veining, sulphides, structures, geotech, core recovery, core orientation, and magnetic susceptibility.
	 The total length and percentage of the relevant intersections logged. 	The lithology and location of the rock chip samples was recorded and loaded in the Company's database.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	Aircore samples were taken with a spear tool, where 1m piles were sampled and inserted into a calico bag, as a 4m composite downhole. A 1m sample was submitted for multi-element analysis from the bottom of the hole.

Criteria	JORC Code explanation	Commentary
sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Certified Reference material (standards) (blanks) and duplicates were inserted into the sampling sequence. Where at least 1 standard, 1 blank and 1 duplicate were completed every 100 samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Ear appropriate tools appropriate particular tools and total. 	Aircore samples were analysed for gold and multi element via FAP303 (30g charge fire assay) ICP40Q method. Samples were analysed for: Ag, As, Au, B, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, Ge, Hf, Hg, In, La, Li, Mo, Nb, Ni, Pb, Rb, Re, S, Sb, Sc, Se, Sr, Ta, Te, Th, Tl, U, V, W, Y, Zn and Zr.
	 For geophysical loois, spectrometers, nanated XRP instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	Rock chip samples were analysed for gold and multi element via FAP303 (30g charge fire assay) and IMS40Q for Ag, As, Au, B, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, Ge, Hf, Hg, In, La, Li, Mo, Nb, Ni, Pb, Rb, Re, S, Sb, Sc, Se, Sr, Ta, Te, Th, Tl, U, V, W, Y, Zn and Zr.
	Nature of quality control procedures adopted (eg	Handheld XRF readings were received from an Olympus Vanta instrument.
standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias)	All readings were 30 seconds, 3 beam spot readings on points recorded on the core.	
	and precision have been established.	The readings are not representative of the average concentrations of the elements of interest in a certain volume. They are an indicator.
		Portable XRF solutions provided certified reference materials, used to calibrate the handheld XRF instrument.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel. The use of twinned balance	XRF results were collected by two permanent employees of the Company, a geologist and a field assistant. The core was logged down hole, and data loaded into the Company's database.
assaying	 The use of twinned noies. Documentation of primary data, data entry procedures, 	Results from the pXRF are preliminary and have not been adjusted.
	data verification, data storage (physical and electronic) protocols.	Aircore field data was collected by supervising geologists in the field. The data was collected and reconciled by comparison of field notes and GPS co-ordinates taken during the program.
	 Discuss any adjustment to assay data. 	Assays were interrogated to determine anomalism of elements from background, which have been reported in Table 1 in the main text of the document.
		All assays have been loaded into the Company's Aveza database and QAQC passes internal procedures.
		No adjustments have been applied to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings 	The location of the aircore hole was recorded using a hand-held GPS. With waypoints recorded at each location, within the MGA94_55S grid-system, and reconciled with the database.
	 Specification of the arid system used. 	pXRF reading locations down the hole were recorded on the core, and within the Company's database.
Data spacing and distribution	 Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The aircore drilling, was on 1.4km spaced drill lines, where the hole spacing along the line was 50 – 200m depending on the geology intercepted.
	 Whether sample compositing has been applied. 	

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	Drill holes were oriented -60 degrees perpendicular to the stratigraphy in order to complete a cross- section across the sub-vertical isoclinal folding of the sediments.
structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	XRF readings taken form the core could be biased, as the sample is not homogenous. Further XRF work will be completed on the core pulps to achieve a more representative.
Sample security	• The measures taken to ensure sample security.	The drill core was taken by a freight contractor from the Tanami to a core yard in Malaga, by a responsible freight company, which made no other collections or stops.
		Aircore samples were collected in bulka bags and dispatched from Coyote Gold Mine, by a transport company which delivered the samples directly to the SGS laboratory in Malaga, Perth.
		Rock Chip samples were dispatched with the aircore samples in the bulka bags.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	The company has completed an internal audit on the data to confirm the Company QAQC guidelines are followed.

Section 2 Reporting of Exploration Results

Criteria	JORC Co	de explanation	Commentary			
Mineral tenement and	(a) Type, reference name/number, location and ownership including agreements or material issue		The tenements relating to this announcement are held within Iron Bull Bangemall Ltd, which is a wholly owned subsidiary of Killi Resources limited.			
status		overriding royalties, native title interests, historical	The results in this announcement are on Killi tenure.			
		sites, wilderness or national park and environmental	Tenements E80/5101, E80/5102, E80/5100, E80/5103 are all granted.			
		settings.	At this point the company is not aware of any reasons that inhibit the company to operate on the			
	(b)	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	tenement in the future.			
Exploration done by other parties	(c)	Acknowledgment and appraisal of exploration by other parties.	Exploration has taken place on the tenement by Tanami Gold, Acacia Resources, Geographe Resources Limited, Barrick Gold of Australia Limited, Anglogold Australia Limited, Tanami Exploration NL, Afmeco Mining and Exploration Pty Ltd, Uranio Limited, Baracus Pty Ltd, Northern Minerals Limited, Hemisphere Resources Limited.			
Geology	(d)	Deposit type, geological setting and style of mineralisation.	Tenements E80/5101, E80/5102, E80/5100, E80/5103 are prospective for hydrothermal sediment hosted gold deposits. These tenements are along strike and adjacent the Kookburra, Coyote, Old Pirate, and Callie gold mines. In Western Australia and the Northern Territory.			
Drill hole Information	(e)	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Completed in Table 2.			
		(i) easting and northing of the drill hole collar				

Criteria	JORC Co	de explana	tion	Commentary
		(ii)	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
		(iii)	dip and azimuth of the hole	
		(iv)	down hole length and interception depth	
		(~)	hole length.	
	(f)	If the excl basis that exclusion of the rep explain w	usion of this information is justified on the the information is not Material and this does not detract from the understanding ort, the Competent Person should clearly hy this is the case.	
Data aggregation methods	In reportion technique cutting o and shoue	ng Explorati es, maximui f high grade ıld be stateo	on Results, weighting averaging m and/or minimum grade truncations (eg es) and cut-off grades are usually Material d.	N/A no weighting applied.
	Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.			
	The assur values sh	mptions used ould be cle	d for any reporting of metal equivalent arly stated.	
Relationship between	These rel Exploration	ationships a on Results.	re particularly important in the reporting of	N/A.
mineralisation widths and intercept	lf the geo angle is k	ometry of the known, its no	e mineralisation with respect to the drill hole iture should be reported.	
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').			
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.			Diagrams have been provided within the text of the announcement to provide context and location of the drill results in relation to the tenement boundaries.
Balanced reporting	Where co practical grades a reporting	omprehensi ble, represe Ind/or width I of Explorati	ve reporting of all Exploration Results is not entative reporting of both low and high is should be practiced to avoid misleading on Results.	All results can be found in Table 1 & 2.
Other substantive	Other ex reported geophysi	ploration do including (k ical survey	ata, if meaningful and material, should be but not limited to): geological observations; results; geochemical survey results; bulk	N/A

Criteria	JORC Code explanation	Commentary
exploration data	samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Killi Resources plans to carry out further exploration work programs on the tenement, including geophysics, further geochemical programs and drilling.
	(g) Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	