

ASX ANNOUNCEMENT

3 January 2023

REPLACEMENT ANNOUNCEMENT - REWARD RESOURCE

On 23 November 2022, Vertex Minerals Limited (ASX: VTX, **Company**) released an announcement in relation to the updated resource at the Reward Gold Mine (**Reward Resource Announcement**).

VTX now releases a replacement version of that announcement (**Replacement Announcement**) incorporating certain edits and additional disclosures deemed necessary to ensure compliance with the ASX Listing Rules. **There are no changes to the upgraded resource reported.**

Changes made relate to:

- The duplication of technical information previously reported within the JORC Tables within the body of the announcement; and
- The deletion of one reference within the JORC Tables to metallurgical testwork previously reported by Hill End Gold Ltd, now Peak Minerals Ltd (ASX:PUA), the parent company of VTX prior to the Company's separate listing in 2022. The Company formally retracts that reference on the basis set out below.

Retraction

The Company's 23 November 2022 announcement included within the JORC tables appended to the announcement a reference to certain metallurgical testing results. The metallurgical testing results had been previously reported in 2007 by Hill End Gold Ltd, now Peak Minerals Ltd (ASX:PUA), the parent company of VTX prior to the Company's separate listing in 2022. VTX has no reason to doubt the accuracy or veracity of the results previously reported, but notes that the historical reporting appears not to include JORC table disclosures for the testing performed. Accordingly VTX is retracting the reference and advises that investors should not rely on the retracted information.

Authorised for release by Alex Neuling, Company Secretary.

ASX Code: VTX

ETHICALLY AND ENVIRONMENTALLY SUSTAINABLE

Advanced Hill End Gold Project (NSW) 34km strike length high grade gold system – to be developed on a large scale - 1.6m ozs historically mined.

Advanced Hargraves Gold Project (NSW) moving to a PFS.

Combined existing 2012 JORC 485K oz at 3.3 g/t. Significant exploration upside likely to be amenable to gravity recovery, with recoveries potentially as high as 95%.

Highly prospective Pride of Elvire Gold Project (WA) & Taylors Rock Nickel Gold Project (WA).

Hill End is home to the largest gold reef ever found – world record.

W. <u>www.Vertexminerals.com</u>
E. info@vertexminerals.com.au

Reward Resource Update Vertex Resource Base at 485koz Au

ASX ANNOUCEMENT 3 JANUARY 2023

KEY HIGHLIGHTS:

Independent consultants, Groundwork Plus, estimated the Resource for the Reward Gold Mine. The updated Mineral Resource has been estimated in accordance with the guidelines set in the 2012 JORC Code.

Category	Tonnes	Grade Au (g/t)	Ounces
Indicated	55,000	12.4	22,000
Inferred	782,000	8.1	205,000
Total	837,000	8.5	227,000

- Reward Indicated and Inferred Resources now total 837 kt @ 8.5 g/t Au for 277,000 oz reported above a cut-off grade of 2 g/t Au
- Strong potential to continue growing the resource, with mineralisation open in a number of directions and on parallel structures.
- The Global Resource for Hill End & Hargraves now stands at 4.6 million tonnes at 3.3 g/t Au for 485,000 ounces of contained gold.
- The Reward ore recovers more than 90% of the contained gold using gravity processing techniques.
- The Reward Resource lies immediately adjacent the permitted Hill End gravity gold plant.

Ethical and environmental sustainability focused gold explorer Vertex Minerals Limited (ASX: VTX) ("Vertex" or the "Company") is pleased to announce that it has completed an updated Mineral Resource estimate for the Reward gold deposit at its 100%- owned Hill End Gold Project near Orange in the NSW Lachlan Fold belt.

The upgraded Resource for the Reward Gold Mine now totals 837 kt at 8.5 g/t Au for 277,000 oz. This brings Vertex's Global Resource estimate for the Hill End and Hargraves Projects to 485,000 ounces as detailed in Table 1.

Table 1 Reward Resource Table

Hill End Project Mineral Resource Estimate				
Deposit	Classification	Tonnes	Grade	Contained
		(kt)	Au (g/t)	Au (koz)
Reward Gold Mine				
	Indicated	55	12.4	22
	Inferred	782	8.1	205
Sub Total		837	8.5	227
Hargraves Project				
	Indicated	1,109	2.7	97
	Inferred	1,210	2.1	80
Sub Total		2,319	2.4	178
Red Hill Project				
	Indicated	413	1.4	19
	Inferred	1,063	1.8	61
Sub Total		1,476	1.7	80
Project Total				
	Indicated	1,577	2.7	138
	Inferred	3,055	3.5	347
Grand Total		4,632	3.3	485

Reward Gold Mine: 2g/t reporting cut off grade

Hargraves: 0.8 g/t reporting cut off grade (ASX Announcement 29 May 2020).

Red Hill: 0.5 g/t per block, ordinary kriging grade interpolation, classified mineral Resources Limited

to 160mRL below surface. (ASX Announcement November 2015)

Executive Chairman Roger Jackson commented:

"We are very pleased to add another 227k ozs to our global resource at Hill End & Hargraves. Given the Reward is proximal to our permitted gravity gold plant, and that the reward ore will recover at better than 90% by gravity processes, we can foresee near future production at Hill End. We are also pleased that this resource has set the foundation for our quest to drill for the bonanza gold grades which we now believe plunge to the North, and below the older workings, which historically averaged 309 q/t for 435k ozs produced."

Details of the Resource Estimate

The Reward deposit of the Hill End Project is located 190km north-west of Sydney, adjacent to the town of Hill End, NSW, Australia.

Mineralisation at the Reward deposit occurs within a series of bedding parallel quartz veins occurring along the limbs of the Hill End Anticline which is in the Hill End Trough, containing sedimentary and volcanic rocks. The age of trough is mid-Silurian to mid-Devonian. The deposit is best described as a brittle, thrust- dominated, competency-controlled orogenic gold low sulphide system developed post ductile deformation.

Gold in the area has been mined since the late 1800's with 435,000 ounces recovered from 44,000 tonnes of ore mined from a deposit adjacent to Reward. Modern exploration commenced in the early 1980's with series of drilling programs (RC and DDH) and trial mining occurring within the Reward deposit in the 2000's.

Grade domains for constraining Resource estimation were interpreted and modelled based on the geological logging and assay results contained within the supplied database.

The resource model is based on statistical and geostatistical investigations generated using 1m composited sample intervals. Assessment of the data suggests requirement for high-grade cutting (high grade cuts) for the input datasets to be used for resource estimation. A high-grade distance restriction was used in the estimation.

A rotated, sub-celled block model was constructed using parent block dimensions of 1m East by 10m North by 10mRL with sub-blocking for the purpose of providing appropriate definition of the grade domain boundaries.

Resource estimation was carried out for gold based on analytical results available up to October 2022. Ordinary Kriging (OK) was selected as an appropriate estimation method based on the quantity and spacing of available data and style of deposit under review.

The estimated Resource has been classified in accordance with the guidelines set out in the JORC Code (2012). Resource categories have been assigned based in confidence in geological knowledge, sampling and assay data, data density, variogram model ranges and prospects for eventual economic extraction.

Drilling techniques

A total of 289 holes have been drilled into the Reward deposit, totalling 27,636m of drilling. Seventy five percent (75%) of holes drilled are diamond drilling (DDH), 11% reverse circulation (RC) and 14% RC collar with DDH tail.

Sampling techniques

Sampling techniques vary depending on sample type, namely diamond core, RC chips or face samples.

For all <u>core samples</u>, quartz veining was sampled by diamond. Routinely a few centimetres of wall rock around the vein(s) were included in the sample to ensure that the vein footwall and hanging wall were left intact. Core was cut down the structural long axis and the same relative portion of half core was always sampled. Some intervals of strong fracture fill and disseminated sulphides were also sampled. Sample intervals, true vein thickness, angle of vein to core axis and vein composition were recorded. Minimum sample length is approximately 5cms, and maximum sample length is restricted to approximately 30cms so that the sample will fit in one 1kg pulveriser. Wall rock between samples without quartz veining is typically not assayed. Sampling of wall rock adjacent some of the highest-grade intervals drilled to date was carried out to test for peripheral mineralization. Minimal values were returned giving confidence to the premise that the gold is restricted to quartz veining.

For all post 2005 **RC drilling**, dust samples were collected in a side-mounted cyclone and dumped into large plastic bags annotated with the Hole Number and the interval depth (e.g. HHRCD19, 34-35m). The bags were stacked in order at each site. A wet sample was frequently encountered at the water table. In all cases the water was able to be controlled and only a few samples were damp in the entire program. This is probably due to free draining old workings below the area of RC drilling.

After weighing on a floor scale, each sample was carefully passed through a cradle riffle splitter by 2 field assistants sufficient to produce a ~3kg sample for dispatch to the laboratory. The 3kg sample was placed in a calico bag with a sample number recorded on the outside of the bag with felt marker pen. Samples were collected in groups of 5 (±20kg aggregate) and placed in woven bags, with the sample numbers marked on the outside of the bag, for consignment to ALS Chemex in Orange NSW. The woven bags were transported to ALS Orange by HEG staff.

<u>Face samples</u> were approximately 8kgs of representative vein material taken by a geologist from the face. Only quartz vein material was sampled, with two or more samples collected if two or more veins

are present. The distance between faces is approximately 1.75m and generally every second face was sampled giving approximately 3.5m sample spacing or rarely a 5.4m sample spacing.

Sample analysis method

Assaying of samples was generally undertake using conventional fire assay or screen fire assay, although some samples were treated with "Leachwell" reagent with fire assay finish.

Geology and geological interpretation

Historically the Hill End deposit has been described as a slate-belt gold system however it is better modelled as a brittle, thrust-dominated, competency controlled orogenic gold low sulphide system developed post ductile deformation.

The Hill End Anticline plunges to the north at approximately 10° in the Hill End area. The strata have a maximum dip on the limbs of the fold of about 60°. Local reversals of dip occur where small drag folds are developed on the limbs of the main structure. A well-developed axial plane cleavage strikes 170° and dips 80° on the eastern limb of the anticline. A weak sub-vertical foliation, which trends at approximately 115° and pre-dating the axial plane cleavage is observed locally. A crenulation cleavage post-dating the axial plane cleavage is also developed. Several sub-vertical small-scale faults, which show reverse or oblique slip movement, were encountered during mining on the eastern limb. These faults strike at approximately right angles to the fold axis and have lateral displacements up to 0.8m. They were referred to as "cross-courses" by the early miners.

The principal gold mineralisation is associated with a series of bedding parallel quartz veins and associated saddle reefs occurring along both limbs and across the axis of the Hill End Anticline. The veins occur in the upper part of the Chesleigh Group and lower portion of the Crudine Group almost exclusively within or at the contact of thin (<2m) siltstone bands with overlying sandy turbidite units. The vein systems are exposed over a strike length of at least 26km from the north of the Bruinbun Granite to the Dun Ailuro Mine. In the main Hill End area up to 12 separate veins were recognised.

The Reward deposit mineralised domain model contains eight (7) separate vein packages which are named according to interpreted vein intercepts assigned during logging of the holes. The vein packages form a series of stacked domains which extend for around 670m in the north south direction, with each individual vein package up to 20m wide, averaging around 5-10m wide. The vein domains, from top to bottom are Frenchman's; Stevens; Paxton's; Star of Peace; Mica; Phillipson's and Amalgamated.

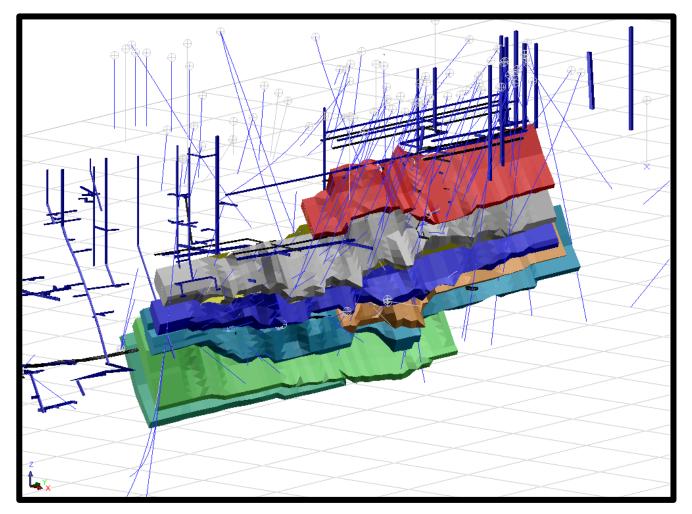


Figure 1 - Oblique view of mineralised domain wireframes

Estimation methodology

Resource estimation was undertaken using Ordinary Kriging (OK) as the estimation methodology for, gold within the mineralised domains. Surpac software was used for this estimation.

Ordinary Kriging (OK) was selected as an appropriate estimation method based on the quantity and spacing of available data and style of deposit under review. A three-pass strategy was employed to generate the grade estimates. The number of composites for a successful estimate was restricted to a minimum of 12 and a maximum of 24 for the first and second pass, reducing to 6 and 12 for the third pass. The search axes were aligned with the average orientation of the mineralised domains while search distances were derived from variographic analyses of the data sets.

An analysis was conducted to determine the appropriate search neighbourhood for the selection of composites to be used for grade estimates. In determining the search neighbourhood to be used, favourable consideration was given to the combination that: -

Ensured most cells were estimated;

- Restricted the influence of extreme high grades;
- Maximised slope of regression; and
- Minimised negative weights.

Search ellipse orientations were determined based on variogram orientation, variogram model anisotropy and ranges, mineralisation geometry and data distribution. Search distances and maximum number of samples were chosen to ensure adequate smoothing while also taking into consideration the search distance.

A multiple search strategy in obtaining the estimates using the results of the search neighbourhood analysis. The same search parameters were used for each domain.

A high-grade restriction was utilised to limit the influence of grades over 30g/t to 12m for the first pass and 24m for the second and third passes.

The estimates were completed using whole block discretisation of 2 points in the east-west dimension, 3 points in the north-south dimension, and 3 points in the vertical (dip) dimension for a total of 18 discretisation points per whole block estimate. Any sub-blocks within the 3-D limit of each whole block were assigned the whole block estimate.

Domain control was used for both the input composite data and block selections (i.e. hard boundaries).

Resource classification

The exploration data used for the Reward estimate is robust and appropriate for resource estimation purposes, with the current data spacing sufficient to generate robust mineralisation interpretations. The geology of the project area has been studied in detail over numerous years, providing confidence in the interpretation of mineralisation style. Historical mining records give further confidence in the existence of economic mineralisation.

Prospects for eventual economic extraction are high as the deposit is partly developed, the gold is easily beneficiated using simple methods and there is an existing processing plant on site.

The resource classification criteria were:

Indicated – Blocks that were estimated in the first pass. The search ellipse distance of the first estimation pass approximates the overall range of the variogram model. Most of these blocks occur immediately adjacent to development.

Inferred – Blocks that were estimated in the second or third pass.

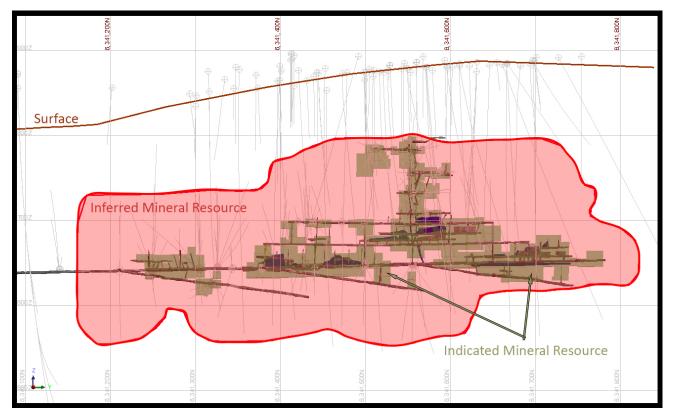


Figure 2 – Reward Gold Mine Long section showing Indicated and Inferred Resource

Cut-off grade

The Resource is reported at lower cut-off grade of 2 g/t Au and is depleted by mining.

Mining and metallurgical consideration

The mineralogy of the Hill End gold mineralisation is relatively simple with most gold being of high fineness and hosted within quartz veins with low sulphide content.

The gravity separation plant on site achieved a 95% recovery rate. During 2009 a total of 12,591 tonnes of ore at a grade of 15.9g/t was processed producing 5,871 ounces of gold.

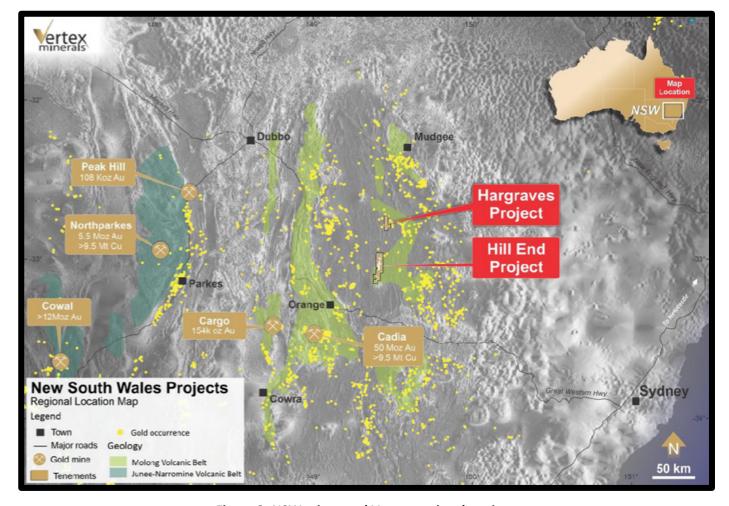


Figure 3: NSW mines and Vertex project locations

This announcement has been approved by the Board of Vertex Minerals Limited.

Further Information:

Roger Jackson Executive Chairman roger@vertexminerals.com.au Tully Richards
Technical Director
tully@vertexminerals.com.au

About Vertex Minerals Limited

Vertex Minerals Limited (ASX: VTX) is an Australian based gold exploration company developing its advanced Hargraves and Hill End gold projects located in the highly prospective Eastern Lachlan Fold Belt of Central West NSW. Other Company assets include the Pride of Elvire gold project and Taylors Rock gold/nickel/lithium project both located in the Eastern Goldfields of WA. The focus of Vertex Minerals is to advance the commercial production of gold from its NSW projects embracing an ethical and environmentally sustainable approach, utilising the below attributes/techniques to uniquely positioning the company as Australia's first truly environmentally sustainable producer of green gold:

- **Gravity Separation**: The deportment of gold at the Hill End Project allows high recovery to a concentrate produced using gravity separation techniques.
- Direct Smelting: The use of direct smelting of a gold concentrate that eliminates the need to use cyanide as a solvent.
- Contrast in Density: These separation techniques take advantage of the contrast in density of gold (ρ =19.3) relative to quartz (ρ =2.65).
- Renewable Energy: The unique landscape and infrastructure makes Hill End ideal for the establishment of renewable sources of power. The Crudine Ridge Windfarm is only 30km from the project site and Vertex plans to examine a pumped hydro-electricity scheme as an integral part of any proposed development. The topography and existing mine workings including shafts and adits make the establishment of a pumped hydro scheme achievable at modest expense.
- Benign Tailings: The tailings will essentially be quartz with little to no sulphide minerals.

Hargraves Gold Project (NSW)

- Hargraves Gold project is located approximately 2 5 km south of the town of Mudgee.
- The goldfield is 4 x 10 k m with numerous mineralised structures with little modern exploration.
- An updated mineral resource in accordance with JORC 2012 Code was completed by SRK Consulting (Australasia) Pty Ltd (SRK) – total of 2.3Mt at 2.38g/t Au for 177koz Au.

Hill End Gold Project (NSW)

- Consists of 10 mining leases and three Exploration Licenses located in the core of the Hill End Trough on the eastern Lachlan Fold Belt.
- 14km of continuous gold lode with gold recovery rate to gravity at +90% green gold.
- Work undertaken in 2015 by Hill End Gold Limited (HEG) culminated in a JORC 2012 resource estimate of 80,000 oz Au
 2015 a JORC 2012 resource estimate of 80,000 oz Au
 2016 a JORC 2012 resource estimate of 80,000 oz Au

Pride of Elvire Gold Project (WA)

- Tenements surround the Mt. Elvire homestead approximately 210km north of Southern Cross in Western Australia
- The project has seen historical drilling with encouraging gold results achieved.

Taylors Rock Project (WA)

- Located 80km WSW of Norseman in the Southern Goldfields region of Western Australia.
- The project has both Gold and Nickel potential, interesting historical intercepts have recorded encouraging mineralisation.

JORC Compliance Statements

This announcement contains references to Mineral Resource estimates, which have been extracted from previous ASX announcements. These include announcements made by Peak Resources Ltd (ASX:PUA), the parent company of VTX prior to the Company's separate listing in 2022. The Resource estimate for the Reward deposit was announced by Vertex on 23 November 2022. For full details of Exploration Results in this release that have been previously announced, refer to those announcements.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the said announcements, and in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not materially modified from the original market announcements.

Competent Persons Statement

The information in this report that relates to the Reward Mineral Resource estimate is based on information compiled by Mr. Troy Lowien, who is a full-time employee of Groundwork Plus. Mr. Lowien is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration results, Mineral Resources and Ore Reserves". Mr. Lowien consents to the inclusion of the data contained in relevant resource reports used for this announcement as well as the matters, form and context in which the relevant data appears.

The information in this report that relates to Exploration Results, Exploration Targets and the Hargraves and Red Hill Resource Estimates is based on information compiled by Mr. Roger Jackson. Mr. Jackson is a Director and Shareholder of the Company, who is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM), Fellow of the Australasian Institute of Geoscientists and a Member of Australian Institute of Company Directors. Mr. Jackson has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration results, Mineral Resources and Ore Reserves". Mr. Jackson consents to the inclusion of the data contained in relevant resource reports used for this announcement as well as the matters, form and context in which the relevant data appears.

Forward Looking Statements and Important Notice

This report contains forecasts, projections, and forward-looking information. Although the Company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions it can give no assurance that these will be achieved. Expectations and estimates and projections and information provided by the Company are not a guarantee of future performance and involve unknown risks and uncertainties, many of which are out of Vertex Minerals' control.

Actual results and developments will almost certainly differ materially from those expressed or implied. Vertex Minerals has not audited or investigated the accuracy or completeness of the information, statements and opinions contained in this announcement. To the maximum extent permitted by applicable laws, Vertex Minerals makes no representation and can give no assurance, guarantee or warranty, express or implied, as to, and takes no responsibility and assumes no liability for the authenticity, validity, accuracy, suitability or completeness of, or any errors in or omission from, any information, statement or opinion contained in this report and without prejudice, to the generality of the foregoing, the achievement or accuracy of any forecasts, projections or other forward looking information contained or referred to in this report.

Investors should make and rely upon their own enquiries before deciding to acquire or deal in the Company's securities.

APPENDIX 1 JORC Code, 2012 Edition – Table 1 report template

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling – Variable sample length depending on vein thickness. Quartz veining was half-cored by diamond saw except where veining was isolated and narrow. Core cut down long axis with same relative portion of sampled for each interval. Routinely a few centimetres of wall rock around the vein(s) were included in the sample to ensure that the vein footwall and hanging wall were left intact. Sampling of wall rock carried out adjacent to high grade intervals to test for peripheral mineralization with minimal values returned. Reverse Circulation Drilling – Samples collected over 1m intervals via a cyclone and split to 3kg samples for submission to the laboratory. The only RC holes that intercepted the mineralised domains interpreted in this estimate have diamond core tails through the mineralised intervals. Face Sampling - Face samples were approximately 8kgs of representative vein material taken by a geologist from the face. Only quartz vein material was sampled, with two or more samples collected if two or more veins are present. The distance between faces is approximately 1.75m and generally every second face was sampled giving approximately 3.5m sample spacing or rarely a 5.4m sample spacing
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond Drilling – Surface diamond drill holes were either NQ3 or HQ3 in size whereas underground drill holes were LTK48. Core was oriented using the Ballmark method. Reverse Circulation Drilling – RC holes were generally 130mm diameter face sampling bits with diamond core tails through mineralized zones.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond Drilling - Core recovery (total core recovery) averaged >99% and the average RQD was 75%. Reverse Circulation Drilling – Bag containing the 1m sample intervals were weighed prior to sub-sampling. No RC intervals intercepted mineralisation therefore recovery not an issue. There is no apparent relationship between sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Core was laid out in an angle iron with a base of hole line marked for core orientation. All artificial core breaks were marked by red chinagraph crosses. The core also had metre marks, tray and hole numbers marked in chinagraph pencil prior to digital photography.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Geotechnical logging was completed with recovery, rock quality designation (RQD), fracture frequency and orientation quality digitally recorded in Excel spreadsheets. Core was logged for geological and geotechnical parameters, with data collected digitally and transferred directly to the database. Holes were logged in detail for alteration, lithology, structure, vein style and mineralisation by geologists with data being plotted and interpreted on section during drilling. High quality digital photographs are available for all recent core.
		 Reverse Circulation Drilling – RC holes logged for lithology, colour, structure, alteration, mineralisation, weathering & oxidation, and vein quartz characteristics. As field staff sampled each hole the following information was recorded: Hole Name, Sample Name, Interval, Sample date, sampler name(s), Sample Mass, and sample moisture. This data was subsequently digitally recorded in Excel spreadsheets.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in 	 Diamond Drilling - Core was cut down the structural long axis and the same relative portion of half core was always sampled. Sample intervals, true vein thickness, angle of vein to core axis and vein composition were recorded. For screen fire assays each core sample was submitted to the laboratory, weighed, dried, and then pulverised in its entirety in an LM2 to a P85 of -75 microns. For Leachwell digestion methods sample protocol involved drill core samples of approximately 1kg weighed, dried, crushed and pulverised in an LM2 (removable-bowl)

Criteria	JORC Code explanation	Commentary
	situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.	 Pulveriser) to 85% passing -75 micron. Reverse Circulation Drilling - RC drilling: dust samples were collected in a side-mounted cyclone and dumped into large plastic bags annotated with the Hole Number and the interval depth. The bags were stacked in order at each site. A wet sample was frequently encountered at the water table. In all cases the water was able to be controlled and only a few samples were damp in the entire program. This is probably due to free draining old workings below the area of RC drilling. After weighing on a floor scale, each sample was carefully passed through a cradle riffle splitter by 2 field assistants sufficient to produce a ~3kg sample for dispatch to the laboratory. Sample sizes are appropriate for the grain size of the material being sampled. No systematic collection of field duplicate or second half sampling was recorded.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Prior to January 2007 all HEGL core samples were analysed by the screen fire assay technique at the ALS Chemex Laboratory in Orange, NSW. Each core sample was submitted to the laboratory, weighed, dried, and then pulverised in its entirety in an LM2 to a P85 of -75 microns. The entire sample was weighed and wet screened using -75 micron disposable nylon screen. The +75 micron fraction was dried in aluminium trays, weighed and fire assayed to extinction. The -75 micron fraction was collected using flocculant, the liquor then decanted and the fines sample dried in an oven. This was homogenised in the LM2, weighed and fire assayed in duplicate using a 50 g charge. The assays for the -75 micron fraction were averaged and a weighted average is calculated with the +75 micron fraction. In January 2007, drill core samples entered the production stream at SGS Labs-Townsville and were assayed for gold by accelerated cyanide leach using "Leachwell" reagent with fire assay finish. Sample protocol involved drill core samples of approximately 1kg weighed, dried, crushed and pulverised in an LM2 (removable-bowl pulveriser) to 85% passing -75 micron followed by a quartz flush. Both quartz flush and the sample were inserted in a Leachwell bottle filled with water and a predetermined number of Leachwell tablets. The containers were rolled for 24 hours whereupon the liquor was

Criteria	JORC Code explanation	Commentary
		homogenous and a subsample is extracted for fire assay. For assays greater than 10g/t, bottle tails were washed filtered and fire assayed. For assays greater than 50g/t, bottle tails were washed filtered and screen fire assayed. This additional protocol ensured coarse gold that may not have been dissolved in the accelerated cyanide leach process was captured. For HEGL, Reverse Circulation drilling produced 1 metre samples which initially were all submitted for fire assay with any intervals returning elevated gold being re-assayed by screen fire assay. Post-December 2005, RC samples containing quartz were assayed by screen fire assay. After January 2007 RC samples were assayed by Leachwell methods. Assay techniques are considered total and appropriate for the mineralisation style. There is no documentation of the systematic collection of field duplicates or use of Certified Reference Material during the various drilling and sampling programs to monitor the precision and accuracy of the assay results. Instead, previous companies relied on the quality control procedures of the laboratory undertaking the sample assays to verify accuracy and precision. Each sample assayed by screen fire assay method had a duplicate 50g firing from the -75 micron fraction. The ALS Chemex QC protocol required that each batch of 50 samples analysed included a reagent blank, 3 replicate determinations and 2 standard materials [Certified Reference Material]. Samples exhibiting anomalous values (high or low) were routinely analysed using either the original pulp or a second split. All routine replicate analyses were reported to the client. During the analytical sample preparation stage, crushing and grinding equipment was flushed with barren quartz material between each sample. The quartz flush sample was stored, which could later be analysed to test for contamination or "loss of grade". Review of results of the lab's internal QAQC results, indicate an acceptable level of accuracy and precision has been established for the drilling

Criteria	JORC Code explanation	Commentary
		 not raised any significant issues. The lack of QC at the sample collection stage is not considered to be a significant problem with the data from the deposit, as reconciliation of mined grades to model grades during trial production were within acceptable tolerances for an area of Paxtons vein mined and processed in 2008. Comparison of the estimated Mineral Resource and mill production to the end of June 2009 revealed a gold content reconciliation of 104%.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The drilling database was validated for overlapping sample intervals, compatibility of hole depths between database tables as well as collar elevations compared to surface surveys and visual checks of drill hole traces in Surpac. No issues were found. There are a number of drill holes that have intercepted mineralisation within relatively close proximity to each other and these drill holes have been investigated. Holes located less than 10m apart were assessed and found to have satisfactory levels of similarity and acceptable to be used in Resource estimation.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The majority of surface drill holes were surveyed using differential GPS and underground holes surveyed by underground total station methods. Underground sample locations were located using a tape from the nearest underground survey station which were generally less than 20m apart. Holes paths were surveyed using a downhole gyro or an Eastman single shot down-hole camera at 30 metres (or at the end of reverse circulation pre-collars) and then every 50 metres to the end of holes. The level of accuracy for drill hole locations is considered appropriate for Resource estimate was undertaken using Zone 55 of the MGA94 grid coordinate system. A reasonably detailed surface topographic survey was supplied. This Resource estimate is not impacted by surface topography as the uppermost extents of the mineralised domains occur between 60m and 100m below the surface.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole intercept spacing averages around 10m to 40m along strike and around 10m to 20m in the dip direction. Underground drill fans have resulted in intercepts as close as 2m apart in the dip direction. Down hole sampling intervals vary from 10cm to 5.25m with an average of 0.5m. The data spacing and distribution is sufficient to establish grade continuity appropriate for the Mineral Resource estimation procedures and classifications applied. No sample compositing was carried out prior to analysis.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Holes were drilled in an orientation to ensure sampling was undertaken, as close as possible, orthogonal to the strike and dip of the mineralised vein packages. This orientation achieves the least biased sample interval.
Sample security	The measures taken to ensure sample security.	 All samples were collected and sub-sampled on site by company staff. Samples were submitted to the external laboratory using standard paperwork and delivered by company staff.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Review of QAQC data by Snowden (2006) showed moderate to high variability in laboratory duplicate data, mainly in the lower grades (<0.1g/t), but would not have a major impact on the global grade of the resource. HEG personnel undertook audits of the ALS laboratory in Orange and the SGS laboratories in West Wyalong and Townsville with no issues discovered that may have a negative impact on sample preparation or analysis.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The project is located within granted Exploration Licence EL5868 Mining leases ML1541, ML1116, ML315, ML316, ML317, ML49, ML50, ML913, ML914, ML915 and GL5846 with the earliest expiry date of 19 January 2033. The leases are held by Vertex Minerals Pty Ltd. First Tiffany Resources Corporation is registered as having a 15% free carried interest in EL5868. The site is covered by EPL 12008, scheduled activity is mining for minerals.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Modern exploration of the Hill End goldfield has been carried out by various companies since the early 1980's using surface and underground mapping and sampling, geophysical investigations, diamond and reverse circulation drilling. Previous exploration appears to have been performed to industry standards.
Geology	Deposit type, geological setting and style of mineralisation.	 Mineralisation at the Reward deposit occurs within a series of bedding parallel quartz veins occurring along the limbs of the Hill End Anticline which is located in the mid-Silurian to mid-Devonian Hill End Trough containing sedimentary and volcanic rocks. The deposit is best described as a brittle, thrust-dominated, competency-controlled orogenic gold low sulphide system developed post ductile deformation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the 	 There are approximately 3,800 separate drill holes and face sample locations used in the estimate and tabulation of the information would be cumbersome. A summary of all relevant drill hole and face sample information in this report is considered not to be material to the understanding of the report.

Criteria	JORC Code explanation	Commentary
	information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Exploration results are not the subject of this report. Mineralised intercepts were composited to a nominal 1m in length for the purpose of statistical analysis and grade estimation. No metal-equivalent values have been used in reporting (gold only).
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Exploration results are not the subject of this report. Holes were drilled to intersect the direction of main grade continuity at approximate right angles.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Maps and sections of the drill hole locations, mineralised intercepts and domain interpretations are included in this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Exploration results are not the subject of this report. All intersections have been included in the estimation of Mineral Resources.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Exploration results are not the subject of this report. Bulk density measurements and metallurgical test results are discussed in the report. There are no potentially deleterious elements in the Reward deposit.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). 	 Further exploration work will include drilling to extend the Mineral Resource along strike as well as up and down dip.

Criteria	JORC Code explanation	Commentary
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A long section is included in the report showing the potential areas for extension of the Resource (Exploration Target).

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Core was logged for geological and geotechnical parameters, with data collected digitally and transferred directly to the database. Holes were logged in detail for alteration, lithology, structure, vein style and mineralisation by geologists with data being plotted and interpreted on section during drilling. The following database validation activities have been carried out: Ensure compatibility of total hole depth data in the collar and assay drill hole database files. Check for overlapping sample intervals. Checking of drill hole locations against the surface topography. Visual validation in Surpac software. No issues were found with the database.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 No site visit was completed by the Competent Person due to time and budgetary constraints.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Confidence in the geological interpretation is high as the deposit has been the subject of over 150 years of investigations and mining. Data from sampling of diamond drill holes and underground exposures has been used in the estimation of grade. Any unsampled intervals were considered to have practically zero grade There are currently no alternative geological interpretations as the current interpretation has been considered the only feasible explanation of mineralisation for some time.

Criteria	JORC Code explanation	Commentary
		 Geological mapping of bedding, vein and fault orientations have been used to guide and constrain Mineral Resource estimation. The principal gold mineralisation is associated with a series of bedding parallel quartz veins and associated saddle reefs occurring along both limbs and across the axis of the Hill End Anticline. veins are generally confined to slate units interbedded within coarser metasandstone units. Individual veins are narrow (0.05 to 0.3m wide) strike 190° and dip ~60°E. On some sections, up to 8 mineralised veins have been recorded. Minor near-horizontal, laminated (crack-seal), "leader" veins intersect layer-parallel veins. This intersection forms near-horizontal north plunging high-grade ore shoots. Also present are minor steeply dipping, crosscutting "spur" veins and crosscutting faults which kinematic analysis suggests resulted from minor dextral strike-slip movement. Steeply plunging high-grade ore shoots also formed at the intersection of these crosscutting structures and layer-parallel veins.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 Mineralisation occurs as a series of 8 stacked quartz vein sets that strike approximately north-south and steeply dip to the east. The current defined Mineral Resource extends for 650m along strike, has a horizontal combined width of around 70m and a vertical height of about 250m. The top of the Mineral Resource occurs between 70m and 90m below the surface.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). 	 Surpac software was used for data validation, analysis, geological and mineralized domain modelling, sample compositing, grade interpolation and reporting. Grade domains for constraining Resource estimation were interpreted and modelled based on geological logging and assay results contained within the supplied database. Eight separate vein sets were modelled. The resource model is based on statistical and geostatistical investigations generated using 1m composited sample intervals. Assessment of the data suggests requirement for high grade cutting for the input datasets to be used for resource estimation and a value of 240 g/t Au was used. A high-grade distance restriction was used in the estimation so that any composite with a grade of more than 30g/t

Criteria	JORC Code explanation	Commentary
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 was restricted to an influence of 12m for the first estimation pass and 24m for the second and third passes A rotated, sub-celled block model was constructed using parent block dimensions of 1m East by 10m North by 10mRL with sub-blocking for the purpose of providing appropriate definition of the grade domain boundaries. Resource estimation was carried out for gold on the basis of analytical results available up to October 2022. Ordinary Kriging (OK) was selected as an appropriate estimation method based on the quantity and spacing of available data and style of deposit under review. A three-pass strategy was employed to generate the grade estimates. The number of composites for a successful estimate was restricted to a minimum of 12 and a maximum of 24 for the first and second pass, reducing to 6 and 12 for the third pass. The search axes were aligned with the average orientation of the mineralised domains while search distances were derived from variographic analyses of the data sets. Production records are not available for comparison to this estimate. Comparison of the estimated Mineral Resource and mill production to the end of June 2009 revealed a gold content reconciliation of 104%. (HEG Annual Report 2009) No assumptions of byproduct recovery have been made. There are no deleterious elements associated with the Reward deposit. Sulphide content is low with an average of 3% logged when present. Block sizes in the block model were chosen based on average drill spacing. Parent block size are comparable to underground mining selective units. No assumptions about correlation between variables has been made. The search radii were aligned to reflect the directions of maximum grade continuity. Vein package domains were used to constrain composite selection and interpolation. Validation of the estimate was completed and included both interactive and statistical review. The validation methods included: -

Criteria	JORC Code explanation	Commentary
		 Visual comparison of the input data against the block model grade in plan and cross section. Comparison of global statistics. Swath plots, comparing the composite grade and the estimated grade grouped by intervals in plan and section The model was found to be robust.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	The tonnages are estimated on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The Mineral Resource has been reported using a lower cut-off grade of 2 g/t Au. This grade reflects the underground mining method and relatively low cost processing method and is consistent with previous estimates.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	The deposit has been mined in the past using small scale mining methods which have a high degree of selectivity. Lower cost bulk mining methods are currently being investigated for future mining campaigns.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 The mineralogy of the Hill End gold mineralisation is relatively simple with most gold being of high fineness and hosted within quartz veins with low sulphide content. The gravity separation plant on site achieved a 95% recovery rate. During 2009 a total of 12,591 tonnes of ore at a grade of 15.9g/t was processed producing 5,871 ounces of gold.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and	The free-milling coarse gold and low sulphide content of the ore is unlikely to present any significant mine waste issues.

Criteria	JORC Code explanation	Commentary
	processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Specific gravity determinations were made from 101 samples of unmineralized and mineralized quartz veins and wall rock submitted to the laboratory. The relative abundance of each rock type was factored into the analysis of the results, resulting in a bulk density of 2.7 t/m3 for all vein sets with the exception of Phillipson's with a bulk density of 2.8 t/m3.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Resource has been classified as Indicated and Inferred with the key parameters considered during the resource classification being: Geological knowledge and interpretation. Deposit style. Confidence in the sampling and assay data. The spacing of the exploration drill holes. Variogram model ranges in relation to the local data spacing and the estimation variance. Prospects for eventual economic extraction. The exploration data used for the Reward estimate is robust and appropriate for resource estimation purposes, with the current data spacing sufficient to generate robust mineralisation interpretations. The geology of the project area has been studied in detail over numerous years, providing confidence in the interpretation of mineralisation style. Historical mining records give further confidence in the existence of economic mineralisation. Prospects for eventual economic extraction are high as the deposit is partly developed, the gold is easily beneficiated using simple methods and there is an existing processing plant on site.

Criteria	JORC Code explanation	Commentary
		 Based on the consideration of items listed above, and review of the resource block model estimate quality, classification criteria were determined as summarised in the following: - Indicated – Blocks that were estimated in the first pass. The search ellipse distance of the first estimation pass approximates the overall range of the variogram model. The majority of these blocks occur immediately adjacent to development. Inferred – Blocks that were estimated in the second or third pass. There is insufficient confidence in historical drilling results, primarily due to a lack of information regarding quality control results and procedures used during drilling programs, that would allow the classification of a Measured Resource. The classification reflects the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 There have been no audits or reviews of the estimate apart from internal review by Groundwork Plus.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 There has been no attempt to apply geostatistical methods to quantify the relative accuracy of the Mineral Resource to within a set of confidence limits. The Competent Person believes the Mineral Resource estimate provides a good estimate of global tonnes and grade. No change of support adjustment has been made to the block estimates. The accuracy and confidence of this Mineral Resource estimate is considered suitable for public reporting by the Competent Person. Previous Mineral Resource estimates have reconciled well with mill production. Comparison of the estimated Mineral Resource and mill production to the end of June 2009 revealed a gold content reconciliation of 104%.