

FURTHER EXCELLENT GOLD RESULTS FROM MILLROSE

HIGH GRADE GOLD INTERSECTED IN MULTIPLE AREAS ACROSS THE MILLROSE PROJECT, INCLUDING A NEW STRUCTURE AT MILLROSE WEST

Key Points:

12 January 2023

- Further excellent primary gold mineralisation assays received from Millrose West, Millrose Central, Millrose North, and Wanamaker:
 - Millrose West (which is hosted in an entirely new structure to the west of Millrose) assays include:
 - MRRC317: 5m @ 8.7g/t Au from 89m, within a broader 19m @ 2.9g/t Au from 76m
 - MRRC313: 13m @ 2.1g/t Au from 83m
- Millrose Central peak assays include:
 - MRRC393D: 14m @ 3.0g/t Au from 79m, within a broader 32m @ 1.8g/t Au from 66m
 - MRRC389D: 12m @ 3.3g/t Au from 158m
 - MRRC247: 6m @ 3.8g/t Au from 94m, within a broader 40m @ 1.1g/t Au from 87m
- Millrose North peak assays include:
 - o MRRC417: 5m @ 8.0g/t Au from 101m
 - MRRC420: 6m @ 6.4g/t Au from 56m
 - o MRRC381D: 6.4m @ 3.1g/t Au from 64.6m
 - MRRC146W: 9m @ 2.0g/t Au from 39m and 21m @ 2.0g/t Au from 168m
- Wanamaker peak assays include:
 - MRRC129W: 6.7m @ 4.6g/t Au from 130.3m
 - MRRC343: 4m @ 2.9g/t Au from 88m
 - MRRC365: 21m @ 2.2g/t Au from 95m
- The drilling at Millrose West confirms this as a <u>separate, sub-parallel structure</u> to the main Millrose shear structure. It is hosted within an entirely distinct stratigraphic package, highlighting the <u>potential for a secondary, high-grade system analogous to Millrose</u>
- Mineralisation in this new structure has not been tested at depth, is open to both the north and south, and is traceable in geophysics datasets over approximately 5km. It is located approximately 200m to the west of the main Millrose structure (Figure 1)
- These results represent the balance of the assays due from the 2022 drilling campaign
- This data will feed into an updated Mineral Resource to be released in 2023
- Planning is currently underway for 2023 drilling campaigns

Introduction

Strickland Metals Limited (ASX:STK) (**Strickland** or the **Company**) is pleased to provide an update on its flagship Millrose gold project located on the world renowned Yandal Greenstone Belt in Western Australia. The Millrose gold project lies approximately 30km due east of Northern Star Ltd's (ASX:NST) Jundee gold operation.

Management Comment

Andrew Bray, Chief Executive Officer, said: "Our 2022 drilling campaign at Millrose has been enormously successful in delineating new zones of mineralisation, discovering significantly more oxide gold closer to surface, and achieving major extensions to the existing primary mineralised envelopes.

Of particular excitement towards the end of the drilling campaign, Strickland drilled further to the west of the main Millrose structure and intersected a secondary shear structure, hosted within an entirely separate stratigraphic package. Historically this area had only been subject to shallow aircore drilling, with little understanding of the structural controls on mineralisation, and drilling having been too shallow to have intersected the structure.

The two results (MRRC317: 5m @ 8.7g/t Au from 89m, and MRRC313:13m @ 2.1g/t Au from 83m) are associated with metasediments and granitoid intrusives, with mineralisation open along strike in multiple directions. These results confirm the structure is mineralised, with strong potential for a secondary, high-grade system at Millrose West. This structure remains entirely untested along strike.

From the work completed by Strickland, NE-trending fault structures are critical to the localisation of high-grade gold mineralisation along the Millrose Shear (and indeed, across the broader Yilgarn Craton). Given the recent discovery of this 'fertile' sub-parallel Millrose West Structure, there are many locations along strike where NE trending fault structures transect it, which to date have not been drill tested (see, for example, highlighted blue ovals in Figure 1).

Overall, this new western shear structure represents a highly compelling exploration target. Most significantly, it demonstrates the potential for a secondary 'look-a-like' Millrose analogue to the West.

Outside of the new western shear structure, the latest assays continue to demonstrate the ongoing excellent potential at Millrose, delivering both width and grade over a very large strike area. These assays will feed into the updated Mineral Resource due to be released during the first half of 2023."

Millrose West Assays:

Two holes drilled at Millrose West returned excellent results:

- MRRC317: 5m @ 8.7g/t Au from 89m, within a broader 19m @ 2.9g/t Au from 76m
- MRRC313: 13m @ 2.1g/t Au from 83m

These results were following up historic shallow aircore anomalism approximately 200m west of the main Millrose structure, including:

- AMILA058: 4m @ 902.0g/t Au from 40m
- MSAC091: 4m @ 18.7g/t Au from 54m and 6m @ 3.1g/t Au from 94m
- AMILA009: 16m @ 4.3g/t Au from 60m

Strickland's RC drilling intersected a secondary sub-parallel shear to the main structure hosting the Millrose Mineral Resource. Multiple NE-trending and conjugate NW-trending cross-cutting faults link the mineralisation at Millrose and Millrose West.

NE-trending structures are critical to the controls on gold mineralisation throughout the Yandal Greenstone Belt in Western Australia. At Millrose, two main fault structures – the Wanamaker fault and the Central fault – are integral to the controls on the high-grade gold mineralisation discovered to date. A third NE trending structure, the South-West Fault, has also been identified from the drone magnetic data, which to date has been poorly drill tested.

The results in MRRC313 and MRRC315 are located at the intersection of this new western shear structure and the Central fault (Figure 1). The mineralisation intersected is oxide and transition hosted, meaning that there is very strong potential for further fresh rock primary mineralisation at depth. Historic drilling was limited to shallow aircore holes, meaning that no drilling has occurred along strike targeting either the transition or primary mineralisation.

Further, the intersection of the NE-trending Wanamaker fault with this new western shear structure remains entirely untested. No historic aircore drilling has occurred within proximity of this high-priority target zone, making it an extremely exciting drill target for upcoming drilling.

In addition to these two new priority drill target areas, a third NE-trending structure (the South-West Fault) has been identified from the recently acquired drone magnetic survey, which appears to truncate the mineralisation at the southern end of the main Millrose mineralised trend (Figure 1). This NE trending South-West Fault transects the newly

identified western shear structure at this position and provides a third high priority target in which to drill test (see generally the blue ovals in Figure 1). Overall, this western shear structure is traceable over approximately 5km in existing geophysical datasets. By way of analogy, the main Millrose shear structure is traceable over approximately 3.2km, thus demonstrating the strong potential for a secondary mineralised system highly analogous to Millrose.

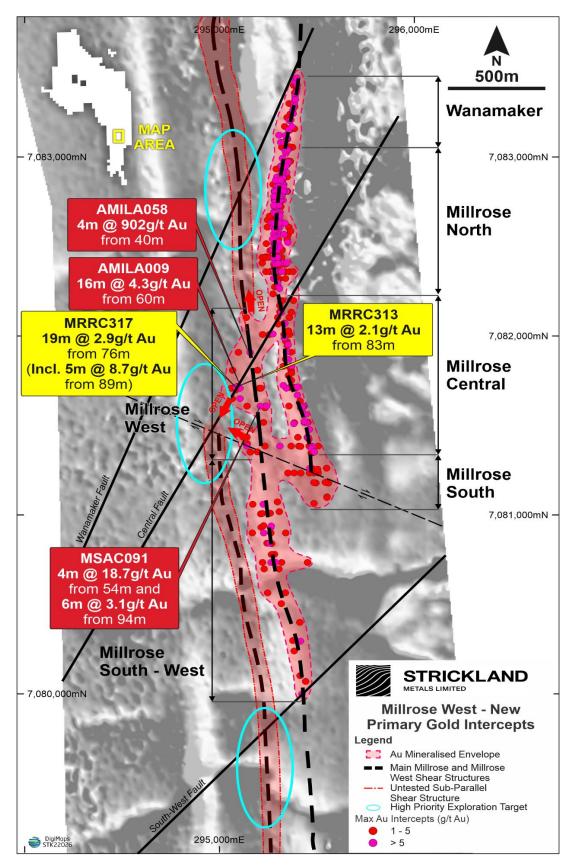


Figure 1: New sub-parallel Millrose West Shear Structure in relation to significant Au intercepts. Drone magnetic TMI RTP 1VD image underlay

Further Primary Mineralisation Gold Results from Millrose Central, North and Wanamaker

Further strong results have been returned from other parts of the project (Figure 2). Millrose North, Millrose Central and the Wanamaker lodes are all interpreted to be north-plunging, associated with the NE-striking cross-cutting shear structures. Primary gold mineralisation across all three domains remains open at depth.

Millrose Central:

Assays from Millrose Central include:

- MRRC393D: 14m @ 3.0g/t Au from 79m, within a broader 32m @ 1.8g/t Au from 66m
- MRRC389D: 12m @ 3.3g/t Au from 158m
- MRRC247: 6m @ 3.8g/t Au from 94m, within a broader 40m @ 1.1g/t Au from 87m
- MRRC387D: 14m @ 1.5g/t Au from 171m

Mineralisation at Millrose Central is associated with North-trending shearing of hanging wall felsic volcaniclastics, with associated Hematite-Carbonate-Silica alteration. The first sighting of visible gold was observed in MRDD011 at Millrose Central (please refer to ASX announcement 19 April 2022), hosted within the carbonate-chlorite veining related to the cross-cutting NE-striking shear structures.

Millrose North:

Assays from Millrose North include:

- MRRC417: 5m @ 8.0g/t Au from 101m
- MRRC420: 6m @ 6.4g/t Au from 56m
- MRRC381D: 6.4m @ 3.1g/t Au from 64.6m
- MRRC146W: 9m @ 2.0g/t Au from 39m and 21m @ 2.0g/t Au from 168m
- MRRC419: 9m @ 2.1g/t Au from 84m
- MRRC144D: 7m @ 2.1g/t Au from 94m
- MRRC422: 4m @ 3.4g/t Au from 123m, within a broader 17m @ 1.6g/t Au from 114m

Mineralisation at Millrose North is dominated by disseminated free gold throughout the intensely sheared, silicacarbonate-altered hanging wall volcaniclastics, with significant visible gold present throughout the primary shear fabric (MRDD008), as well as being hosted within the cross-cutting NE-striking carbonate-silica vein sets. High-grade mineralisation occurs in multiple stacked shears within an overall 100m-thick mineralised envelope.

Well-developed, thick oxide gold is present above the Millrose North deposit, which has been successfully linked to the high-grade oxide gold present at Wanamaker and Central, giving a total strike length of 3.2km oxide mineralisation for the Millrose gold deposit.

Wanamaker:

Assays from Wanamaker include:

- MRRC129W: 6.7m @ 4.6g/t Au from 130.3m
- MRRC343: 4m @ 2.9g/t Au from 88m
- MRRC365: 21m @ 2.2g/t Au from 95m
- MRRC363: 7m @ 2.3g/t Au from 56m
- MRRC367D: 12m @ 1.6g/t Au from 83m

The Wanamaker discovery is a distinct primary high-grade mineralised lode, consisting of Silica-Chlorite alteration. The presence of lamprophyre intrusives (confirmed by recent petrology analysis), associated with the high-grade gold mineralisation, is a unique geological characteristic associated with Wanamaker.

High grade gold mineralisation is open at depth across all three primary mineralised lodes.

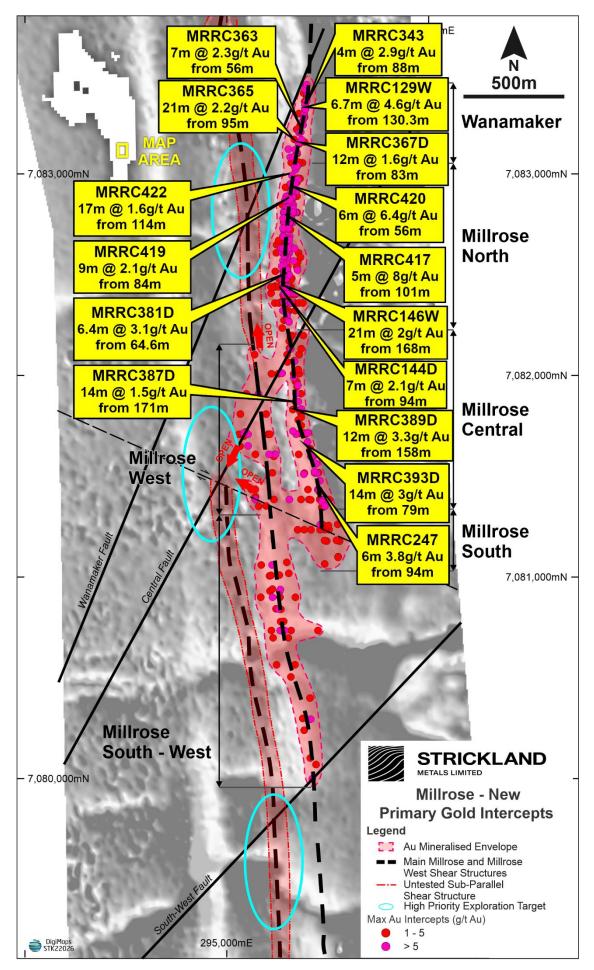
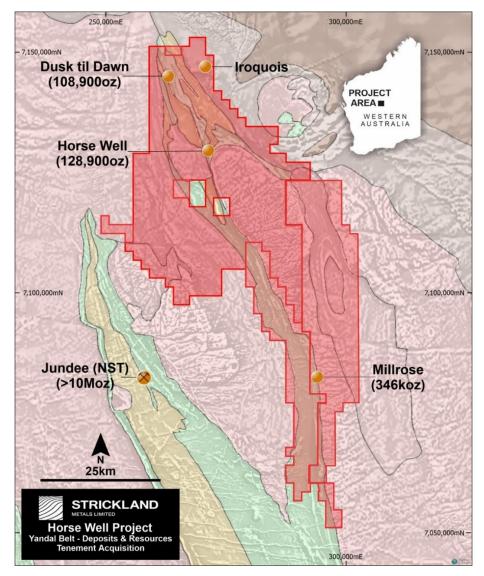



Figure 2: New Primary Mineralisation Gold Results from Millrose Central, North and Wanamaker. Drone magnetic TMI RTP 1VD image underlay

About Strickland Metals Ltd

Strickland controls over 100km of strike along the prodigious Yandal Greenstone Belt (Figure 3), the vast majority of which has not been explored. The tenements contain a total gold Mineral Resource of 603,000 ozs Au (11.7mt @ 1.6g/t Au¹). The Company's flagship Millrose gold project lies approximately 30km due east of Northern Star Ltd's (ASX:NST) world class Jundee gold operation. Strickland is targeting a resource upgrade in 2023, with substantial ongoing programs planned for 2023 designed to continue growing the project's global gold Mineral Resource.

The most northern part of Strickland's tenements cover part the Earaheedy Basin contact margin, where Strickland made the Iroquois Zn-Pb discovery (IQRC001: 23m @ 5.5% Zn + Pb²) along strike from Rumble Resources Limited's (ASX:RTR) world class Zn-Pb Earaheedy project. Strickland recently announced an intention to conduct an IPO of the Iroquois project, with the intention to create a separate, ASX-listed base metal exploration company. The IPO is currently planned to occur in first half of 2023, and the Company has stated its intention to conduct a full in-specie distribution of the DemergerCo shares to Strickland shareholders.

Figure 3: Strickland's Yandal Project area in relation to the existing gold resources and the northern Base Metal Iroquois Project This announcement has been approved for release by the Chief Executive Officer of the Company.

¹ 11,772,400 tonnes @ 1.60 g/t Au for 603,000 ounces. See ASX announcement dated 23 June 2021 for full further details.

² See announcement dated 14 October 2021.

For more information contact

Andrew Bray

Chief Executive Officer Phone: +61 (8) 6317 9875 info@stricklandmetals.com.au stricklandmetals.com.au

Competent Person Statement

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled or reviewed by Mr Richard Pugh who is the Strickland Metals Limited Geology Manager and is a current Member of the Australian Institute of Geoscientists (AIG). Mr Richard Pugh has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pugh consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Appendix A – Table of Significant Intercepts

Millrose Assay

			Coordina 51)	tes (MGA94	Zone				Minera	lisation Int	tersection		
		Hole							From	То	Width	Grade	
Prospect	Hole ID	Туре	Easting	Northing	RL	Depth	Dip	Azimuth	(m)	(m)	(m)	(g/t)	Grade Summary
Millrose Regional													
Ν	MRRC281	RC	294340	7088300	544	160	-60	270	93	101	8	1	8 metres @ 1g/t Au from 93 metres
Wanamaker	MRRC343	RC	295430	7083320	544	136	-60	270	88	92	4	2.9	4 metres @ 2.9g/t Au from 88 metres
									34	36	2	1.7	2 metres @ 1.7g/t Au from 34 metres
									85	92	7	1	7 metres @ 1g/t Au from 85 metres
Wanamaker	MRRC345	RC	295430	7083280	544	124	-60	270	103	113	10	0.8	10 metres @ 0.8g/t Au from 103 metres
									36	37	1	2.6	1 metre @ 2.6g/t Au from 36 metres
									93	105	12	0.6	12 metres @ 0.6g/t Au from 93 metres
Wanamaker	MRRC361	RC	295380	7083170	544	124	-60	270	112	121	9	0.5	9 metres @ 0.5g/t Au from 112 metres
									56	63	7	2.3	7 metres @ 2.3g/t Au from 56 metres
Wanamaker	MRRC363	RC	295400	7083170	544	124	-60	270	93	97	4	1	4 metres @ 1g/t Au from 93 metres
									42	47	5	0.6	5 metres @ 0.6g/t Au from 42 metres
Wanamaker	MRRC365	RC	295360	7083120	544	124	-60	270	95	116	21	2.2	21 metres @ 2.2g/t Au from 95 metres
Wanamaker	MRRC129W	DDH	295448	7083299	544	225.15	-60	270	130.3	137	6.7	4.6	6.7 metres @ 4.6g/t Au from 130.3 metres
Wanamaker	MRRC371	RC	295420	7083500	544	117	-60	270	105	109	4	0.9	4 metres @ 0.9g/t Au from 105 metres
		-			-			-	57	58	1	3.7	1 metre @ 3.7g/t Au from 57 metres
									83	95	12	1.6	12 metres @ 1.6g/t Au from 83 metres
Wanamaker	MRRC367D	DDH	295380	7083120	544	192.3	-60	270	159.2	166	6.8	1.2	6.8 metres @ 1.2g/t Au from 159.2 metres
Wananaker		bbii	255500	7003120	511	152.5	00	270	135.2	100	0.0	1.2	19 metres @ 2.9g/t Au from 76 metres
Millrose West	MRRC317	RC	295150	7081650	544	124	-60	270	76	95	19	2.9	(including 5 metres @ 8.7g/t Au from 89 metres)
									83	96	13	2.1	13 metres @ 2.1g/t Au from 83 metres
Millrose West	MRRC313	RC	295128	7081700	544	184	-60	270	101	106	5	1.7	5 metres @ 1.7g/t Au from 101 metres
											-		32 metres @ 1.7g/t Au from 60 metres
Millrose West	AMILC001*	RC	295114	7081711	544	140	-60	270	60	92	32	1.7	(including 4 metres @ 8.3g/t Au from 60 metres)
													35 metres @ 2.3g/t Au from 60 metres
Millrose West	AMILA009*	AC	295138	7081709	544	95	-60	270	60	95	35	2.3	(including 16 metres @ 4.3g/t Au from 60 metres)
									54	58	4	18.7	4 metres @ 18.7g/t Au from 54 metres
Millrose West	MSAC091*	AC	295268	7081609	544	115	-60	270	94	100	6	3.1	6 metres @ 3.1g/t Au from 94 metres
Millrose West	MSRC048*	RC	295282	7081699	544	160	-60	270	103	113	10	1.2	10 metres @ 1.2g/t Au from 103 metres
Millrose West	MSRC055*	RC	295243	7081517	544	150	-60	270	32	36	4	2.2	4 metres @ 2.2g/t Au from 32 metres
Millrose West	MSAC238*	AC	295178	7081385	544	92	-60	270	74	92	18	3.5	18 metres @ 3.5g/t Au from 74 metres

Millrose West	AMILA058*	AC	295178	7081909	544	103	-60	270	40	44	4	902	4 metres @ 902g/t Au from 40 metres
Millrose North	MRDD051	DDH	295358	7082910	544	173.9	-60	270	119	137	18	0.5	18 metres @ 0.5g/t Au from 119 metres
									45	50	5	1.2	5 metres @ 1.2g/t Au from 45 metres
									64.6	71	6.4	3.1	6.4 metres @ 3.1g/t Au from 64.6 metres
Millrose North	MRRC381D	DDH	295370	7082540	544	269	-60	270	178	207.8	29.8	0.3	29.8 metres @ 0.3g/t Au from 178 metres
									39	48	9	2	9 metres @ 2g/t Au from 39 metres
Millrose North	MRRC146W	DDH	295372	7082500	544	228.3	-60	270	168	189	21	2	21 metres @ 2g/t Au from 168 metres
									84	90	6	1.3	6 metres @ 1.3g/t Au from 84 metres
Millrose North	MRRC417	RC	295330	7082780	544	124	-60	270	101	106	5	8	5 metres @ 8g/t Au from 101 metres
									57	58	1	1.3	1 metre @ 1.3g/t Au from 57 metres
									72	78	6	1	6 metres @ 1g/t Au from 72 metres
Millrose North	MRRC419	RC	295360	7082910	544	94	-60	270	84	93	9	2.1	9 metres @ 2.1g/t Au from 84 metres
									56	62	6	6.4	6 metres @ 6.4g/t Au from 56 metres
Millrose North	MRRC420	RC	295370	7082950	544	142	-60	270	95	100	5	1.5	5 metres @ 1.5g/t Au from 95 metres
Millrose North	MRRC421	RC	295370	7083000	544	178	-60	270	96	100	4	1.2	4 metres @ 1.2g/t Au from 96 metres
		-			_	-		-					17 metres @ 1.6g/t Au from 114 metres (incl 4 metres @ 3.4g/t Au from 123
									114	131	17	1.6	metres)
Millrose North	MRRC422	RC	295390	7083000	544	208	-60	270	201	208	7	1.4	7 metres @ 1.4g/t Au from 201 metres to EOH
									4	6	2	0.6	2 metres @ 0.6g/t Au from 4 metres
									65	66	1	16.9	1 metre @ 16.9g/t Au from 65 metres
									76.5	80.6	4.1	1	4.1 metres @ 1g/t Au from 76.5 metres
									144	152.1	8.1	1	8.1 metres @ 1g/t Au from 144 metres
Millrose North	MRRC383D	DDH	295370	7082460	544	210.4	-60	270	162.2	183.2	21	1.2	21 metres @ 1.2g/t Au from 162.2 metres
									94	101	7	2.1	7 metres @ 2.1g/t Au from 94 metres
Millrose North	MRRC144D	DDH	295330	7082499	544	249.4	-60	270	115	124.1	9.1	0.9	9.1 metres @ 0.9g/t Au from 115 metres
Millrose Central	MRRC096D	DDH	295397	7082072	544	180.1	-60	270	124.8	143	18.2	0.4	18.2 metres @ 0.4g/t Au from 124.8 metres
													60.8 metres @ 0.7g/t Au from 61 metres (incl 20 metres @ 1.2g/t Au from 79
Millrose Central	MRRC243D	DDH	295418	7081753	544	225.3	-60	270	61	121.8	60.8	0.7	metres)
Millrose Central	MRRC247	RC	295510	7081478	544	184	-60	270	87	127	40	1.1	40 metres @ 1.1g/t Au from 87 metres (incl 6 metres @ 3.8g/t from 94 metres)
Williose Central	WINNE247	inc.	255510	/0014/0	J44	104	-00	270	78	85	40 7	1.3	7 metres @ 1.3g/t Au from 78 metres
Millrose Central	MRRC249D	DDH	295483	7081560	544	151.8	-60	270	103	108	5	1.6	5 metres @ 1.6g/t Au from 103 metres
Williose Central	MIRIC249D		293483	7081300	544	131.0	-00	270	51	58	7	1.0	7 metres @ 1.2g/t Au from 51 metres
											-		
Millroco Control	MPDC295D	DDH	205290	7082030	EAA	122 6	60	270	88 109.7	103.1 112.5	15.1 2.8	1.1 1.1	15.1 metres @ 1.1g/t Au from 88 metres
Millrose Central	MRRC385D	עטח	295380	7082030	544	132.6	-60	270					2.8 metres @ 1.1g/t Au from 109.7 metres
									83	97.6	14.6	0.6	14.6 metres @ 0.6g/t Au from 83 metres 19 metres @ 1g/t Au from 111 metres
									111	130	19	1	(including 3.9 metres @ 3g/t Au from 115.1 metres)
											-		29.8 metres @ 1g/t Au from 155.2 metres
									155.2	185	29.8	1	(including 14 metres @ 1.5g/t Au from 171 metres)
Millrose Central	MRRC387D	DDH	295410	7081910	544	270.3	-60	270	269.1	270.3	1.2	10.7	1.2 metres @ 10.7g/t Au from 269.1 metres to EOH
Millrose Central	MRRC389D	DDH	295400	7081870	544	220.7	-60	270	50	52	2	4.9	2 metres @ 4.9g/t Au from 50 metres

1	1	1	I	1	I	1	i -	I	i	1	i	1	1 .
									76	103.1	27.1	1.1	27.1 metres @ 1.1g/t Au from 76 metres
									118	124	6	0.9	6 metres @ 0.9g/t Au from 118 metres
									158	170	12	3.3	12 metres @ 3.3g/t Au from 158 metres
									121.5	125	3.5	1.7	3.5 metres @ 1.7g/t Au from 121.5 metres
									133.1	135	1.9	1.4	1.9 metres @ 1.4g/t Au from 133.1 metres
									160	162.3	2.3	2	2.3 metres @ 2g/t Au from 160 metres
Millrose Central	MRRC391D	DDH	295460	7081750	544	264	-60	270	176	179	3	1.4	3 metres @ 1.4g/t Au from 176 metres
													32 metres @ 1.8g/t Au from 66 metres (incl 14 metres @ 3g/t Au from 79
									66	98	32	1.8	metres)
Millrose Central	MRRC393D	DDH	295440	7081670	544	220.9	-60	270	178	184.1	6.1	2.5	6.1 metres @ 2.5g/t Au from 178 metres
									164.7	186.4	21.7	0.5	21.7 metres @ 0.5g/t Au from 164.7 metres
Millrose Central	MRRC395D	DDH	295520	7081640	544	268.8	-60	270	194	200	6	1.2	6 metres @ 1.2g/t Au from 194 metres
									47	52	5	0.6	5 metres @ 0.6g/t Au from 47 metres
									86	96	7	1.1	7 metres @ 1.1g/t Au from 86 metres
									102	114	12	0.6	12 metres @ 0.6g/t Au from 102 metres
Millrose Central	MRRC407	RC	295400	7081970	544	148	-60	270	125	130	5	0.7	5 metres @ 0.7g/t Au from 125 metres
									33	35	2	1.3	2 metres @ 1.3g/t Au from 33 metres
									44	50	6	1.2	6 metres @ 1.2g/t Au from 44 metres
									79	86	7	1.8	7 metres @ 1.8g/t Au from 79 metres
Millrose Central	MRRC411	RC	295360	7082070	544	154	-60	270	95	100	5	1.1	5 metres @ 1.1g/t Au from 95 metres
Millrose Central	MRRC415	RC	295350	7082170	544	124	-60	270	75	85	10	1.1	10 metres @ 1.1g/t Au from 75 metres
Millrose Central	MRRC427	RC	295445	7081560	544	112	-60	270	79	82	3	4.7	3 metres @ 4.7g/t Au from 79 metres
Millrose Central	MRRC428	RC	295470	7081480	544	118	-60	270	81	85	4	2	4 metres @ 2g/t Au from 81 metres
Millrose South	MRRC384	RC	295590	7080948	544	114	-60	270	62	66	4	0.9	4 metres @ 0.9g/t Au from 62 metres

*Historic drill intercepts

Appendix B – JORC Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria JORC Code explanation	Commentary
 Sampling techniques Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 material riffle split at time of drilling to produce a representative sample weighing approximately 2-3kg. Historic (pre-STK) Diamond core (NQ2) was cut in half and sampled every 1m to provide a representative sample of approximately 2kg. RC and core sample material were dispatched to the laboratories of either ALS or Genalysis or both for gold analysis. The whole sample was pulverised to produce a representative charge for gold assay by either aqua regia with carbon rod AAS finish (0.01 g/t detection limit), or fire assay (0.01 g/t detection limit).

Criteria	JORC Code explanation	Commentary
		 Two even 2 – 3 kg duplicate sample splits, from the A- and B-chutes of the splitter, were collected at the same time for each metre, with the remaining reject bulk sample being collected in labelled green bags directly below the cyclone, minimising external contamination.
		• Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and green bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery.
		• Green bags were then placed in neat lines on the ground, with tops folded over to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work.
		• In mineralised zones, the original A-chute sample split was sent to the laboratory for analysis. In non-mineralised 'waste' zones, a 4 m composite scoop sample was collected from the green bags and the A-chute bag retained on site for follow up analysis test work. All composite intervals over 0.1 g/t Au were resampled at 1 m intervals using the original A-chute bag from the cyclone splitter.
		• QA samples were inserted at a combined ratio of 1:20 throughout. Field duplicates were collected at a 1:40 ratio from the B-chute of the cone splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:40. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		• The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. Dual air-vibrators on the cyclone transfer box were utilised, when necessary, to aid sample throughput. Vibrators were placed on opposite sides of the

Criteria	JORC Code explanation	Commentary
		cyclone and perpendicular to the chutes to avoid vibration-induced splitting bias.
		 Diamond Drilling Diamond core samples were collected at geologically defined intervals, with a minimum sample length of 0.3 m and maximum of 1.2 m. Samples were cut using an automated variable-speed diamond saw, with half-core submitted for analysis.
		• OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		 Density measurements were collected as per Water Displacement Method 3 (Lipton, 2001) with paraffin wax coatings used for oxide and porous samples. Selected core samples were 0.1 – 0.2 m in size. Aluminium cylinders of 0.1 and 0.2 m in length, with known mass and density were measured at regular intervals at a ratio of 1:20, as a reference material. Duplicate sample weights were measured in fresh rock at a ratio of 1:20.
		Handheld instruments, such as an Olympus Vanta pXRF, Terraplus KT-10 meter, and ASD TerraSpec 4 were used to aid geological interpretation. CRMs were tested at regular intervals at a ratio of 1:20.

Criteria	JORC Code explanation	Commentary
		To assist with understanding the main controls on gold mineralisation, Strickland undertook micro-XRF scanning of core samples (courtesy of Portable Spectral Services) across Millrose to map the relationship between gold, alteration, structure, and geochemistry (Figure 2). This technique scanned a 4cm by 2cm wide piece of core to map the various elements present. Several samples from diamond holes MRDD002 and MRDD008 (Millrose North) and several samples from MRDD011 (Millrose Central) were analysed as part of this process. Micro X-ray Fluorescence spectroscopy (μ XRF) is a rapid and non-destructive technique used to quickly acquire qualitative and quantitative geochemical data at high spatial resolution (i.e., μ m scale). Micro-XRF is an ideal method for element mapping large samples (19 x 16cm) with little to no sample preparation. Elements ranging from sodium (Na) to uranium (U) can be measured with quantification limits down to parts per million. These qualitative element maps show the spatial variation and abundance of major, minor and trace elements and enable small-scale textural and compositional features to be identified, including those that are not visibly discernible.
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Historic Drilling RC drilling utilised a nominal 5 ½ inch face sampling hammer whilst all diamond drilling was NQ2 having a nominal 2inch diameter. All diamond drilling was as tails from 45 RC and 1 AC holes. Selected diamond holes had core orientated using a spear method every 3m. STK Drilling RC drilling was undertaken by Ranger Drilling, using a truck-mounted Hydco 350RC Rig with a 1350 cfm @ 500 psi on-board compressor, a 1150 cfm on-board Booster, and a truck-mounted Sullair 900 cfm @ 350 psi Auxiliary Compressor. RC holes were drilled with a 5 ½" hammer. Maximum RC hole depth was 250m. Diamond Drilling was undertaken by Terra Drilling using a truck-mounted KWL1600 drill rig.

Criteria	JORC Code explanation	Commentary
		 Diamond coring was undertaken predominantly as NQ sizing, with PQ and HQ utilised to maximise recoveries where necessary. Triple-tubing was utilised to maximise recovery. REFLEX Sprint IQ North-Seeking Gyro was used for downhole dip and
		azimuth calculation.
		REFLEX ACT Orientation tools were used for core orientation.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 Historic Drilling 1m intervals of RC drill chip material were weighed to estimate a weight
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	recovery whilst diamond core recovery was measured. RC and diamond recoveries were recorded in the database. No significant RC chip or core loss issue exists, and most sampled intervals record better than 90% recovery.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 RC drilling used auxiliary booster(s) to ensure that sample return was not unduly affected by the ingress of water however, some wet samples were recorded.
		• There appears to be no potential sample bias as diamond drilling returned similar grades and similar widths compared to the RC drilling.
		STK Drilling
		RC
		• During the RC sample collection process, the original and duplicate cone split samples, and green bag reject bulk samples were weighed to test for bias and sample recoveries. The majority of this work was undertaken in ore zones.
		• Once drilling reached fresh rock, a fine mist of water was used to suppress dust and limit loss of fines through the cyclone chimney.
		• At the end of each metre, the bit was lifted off the bottom of hole to separate each metre drilled.
		• The majority of samples were of good quality, with ground water having minimal effect on sample quality or recovery.

Criteria	JORC Code explanation	Commentary
		 From the collection of recovery data, no identifiable bias exists. Diamond Drilling Diamond core samples are considered dry. Appropriate tube diameter was used (NQ, HQ or PQ) depending on ground competency. Triple-tubing was utilised to maximise recoveries. Sample Recovery is recorded every run and is generally above 98 %, except for very broken ground. Core was cut in half, with the same half of core submitted for assay. From collection of recovery data, no identifiable bias exists.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Historic Drilling Geological core logging to a resolution of 5cm and RC chip logging every 1m were undertaken with a record kept of, inter alia, colour, lithology, weathering, grain size, mineralisation, alteration, etc. Diamond core is stored at the Millrose homestead. The data is believed to be of an appropriate level of detail to support a resource estimation. Logging was qualitative. Diamond core was photographed. All drilled intervals were logged and recorded.
		STK DrillingLogging of lithology, structure, alteration, veining, mineralization, oxidation state, weathering, mineralogy, colour, magnetic susceptibility and pXRF geochemistry were recorded. Select samples were analysed by ASD SWIR/NIR using a TerraSpec 4.Logging was both qualitative and quantitative in nature. RC• RC chips were washed, logged and a representative sub-sample of the 1 m

Criteria	JORC Code explanation	Commentary		
		drill sample retained in reference chip trays for the entire length of a hole.Reference chip trays were photographed wet and dry.		
		Diamond Drilling		
		 Diamond core was geotechnically logged at 1 cm scale: recording recovery, RQD, orientation confidence, joint density, joint sets, joint asperity and fill mineralogy. Core trays were photographed wet and dry. 		
Sub-sampling	• If core, whether cut or sawn and whether quarter, half or all core taken.	Historic Drilling		
techniques and sample preparation	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Diamond core was machine sawn and half core taken for analytical analysis purposes.		
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• All non-core when resampled at 1m was riffle split at the time of drilling. Split samples comprised approximately 8-10% of the original sample		
	• Quality control procedures adopted for all sub-sampling stages to maximise	material.		
	 representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- 	• Collection of RC chips by riffle split techniques and the collection of half core ensured the nature, quality and appropriateness of the sample preparation method.		
	half sampling.	• The methodology of collecting RC and drill core samples was consistent		
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	throughout the entirety of the drilling programmes and undertaken by qualified geoscientists. Each sub-sample is representative of the interval.		
		• Field duplicates were routinely collected at a rate of approximately 1 in every 20 samples and submitted with the sample batch. Additional samples were sent to umpire laboratories for assaying. All QA/QC and umpire laboratory samples returned satisfactory results.		
		• Sample sizes collected were appropriate to reasonably represent the material being tested.		
		STK Drilling		
		• RC samples were split from dry, 1 m bulk sample via a cone splitter directly from the cyclone.		
		• Diamond core samples were collected at geologically defined intervals, with a minimum sample length of 0.3 m and maximum of 1.2 m. Samples were		

Criteria	JORC Code explanation	Commentary
		cut using an automated variable-speed diamond saw, with half-core submitted for analysis.
		 The quality control procedures adopted throughout the process include: Weighing of calico and reject green samples to determine sample recovery compared to theoretical sample recovery, and check sample bias through the splitter.
		• Field duplicates collected from the B-chute of the splitter at a 1:40 ratio through the entire hole at the same time as the original sample collection from the A-chute.
		 OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		 Field Duplicates and CRMs were submitted to the lab using unique Sample IDs for both core and chip samples
		 A 2-3 kg sample was submitted for RC and diamond core to Intertek Laboratory, Maddington WA.
		 All samples were sorted and dried at 105 C, crushed to ~3 mm and linearly split, ensuring jars are filled to 85 % full. Samples were then analysed by Photon-Assay (PAAU002) method with detection limits of 0.02-350 ppm.
		 Intertek separately analyse 1 CRM in every 50 samples as well as 1 duplicate assay in every 50 samples as part of standard QAQC protocol for Photon analysis.
Quality of	• The nature, quality and appropriateness of the assaying and laboratory	Historic Drilling
assay data and laboratory	procedures used and whether the technique is considered partial or total.	• The sample preparation follows industry best practice and was undertaken
tests	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	at the accredited laboratories of either ALS (Kalgoorlie or Perth) and/or Genalysis (Perth). Both laboratories have full certification. Sample preparation was appropriate and involved drying, crushing and grinding of

Criteria	JORC Code explanation	Commentary
	 Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	the whole sample followed by splitting and then pulverisation to a grind size of 85% passing 75 microns. Samples were considered a partial digestion when using an aqua regia digest and total when using fire assay. A program of checking aqua regia (partial) vs. fire assay (total) vs. gold cyanide leach (Partial) to compare digest methods confirmed no bias between the assay techniques.
		• Standard chemical analyses were used for grade determination. There was no reliance on determination of analysis by geophysical tools.
		• Field QAQC procedures included the insertion of field duplicates at regular intervals within every sample batch. External laboratory checks were performed on samples from all phases of drilling. Check sampling using partial and full digest methods were employed. Results were satisfactory and demonstrate acceptable levels of accuracy and precision.
		STK Drilling
		• QA samples were inserted at a combined ratio of 1:20 throughout. Field duplicates were collected at a 1:40 ratio from the B-chute of the cone splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:40. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		• All samples were sorted and dried at 105 C, crushed to ~3 mm and linearly split, ensuring jars are filled to 85 % full. Samples were then analysed by Photon-Assay (PAAU002) method with detection limits of 0.02-350 ppm.
		 Intertek separately analyse 1 CRM in every 50 samples as well as 1 duplicate assay in every 50 samples as part of standard QAQC protocol for Photon analysis.
Verification of	The verification of significant intersections by either independent or	Historic Drilling
sampling and assaying	alternative company personnel.The use of twinned holes.	• Several Geoscientists both internal and external to MGM have verified the intersections.

Criteria	JORC Code explanation	Commentary
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	• There were no twin holes although a number of scissor holes were drilled and on occasion, at better than 20 x 20m drill density.
	• Discuss any adjustment to assay data.	• Field data was uploaded at point of collection using Toughbook or similar hardware and verified at point of entry. Data is stored at various locations in Perth where it is backed-up.
		STK Drilling
		 Logging and sampling were recorded directly into LogChief, utilizing lookup tables and in-file validations, on a Toughbook by a geologist at the rig. Logs and sampling were imported daily into Micromine for further validation and geological confirmation. When received, assay results were plotted on section and verified against neighbouring drill holes. From time to time, assays will be repeated if they fail company QAQC protocols. Historic holes have been twinned by STK to validate assay data. Further infill drilling has been completed by STK to validate historic resource models.
Location of	Accuracy and quality of surveys used to locate drill holes (collar and down-	Historic Drilling
data points	 hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• Drill hole collars were surveyed by registered surveyors using theodolite and EDM equipment. Drill holes were down hole surveyed using an Eastman camera arrangement. For confirmation, some holes were surveyed using a Gyro arrangement provided by Surtron. There was no difference between the methodologies. There are no magnetic lithologies in the gold mineralisation zone which would affect an Eastman camera.
		• The grid system used was AMG 84 Zone 51. This data has since been transformed into the MGA 94 Zone 51 grid system and validated in the field (full collar details are listed in Appendix A).
		• The topographic surface of the deposit was generated from the coordinates of the drill hole collars.
		STK Drilling
		• The grid system used was MGA94 Zone 51 and drillhole collar positions

Criteria	JORC Code explanation	Commentary
		surveyed using a Garmin GPSMAP 64.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Historic Drilling Drill hole density across the deposit (including all drilling) is approximately 40x40m closing in to better than 20 x 20m in places. The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised horizon to support the classification of the Mineral Resources reported. RC samples were first submitted as 4m composites. Samples returning greater than 0.2g/t Au were resampled at 1m using the riffle split sample collected at the time of drilling. The majority of collected and assayed samples within the interpreted mineralised envelopes had a sample length of one metre with an average length of 1.08 m. No composited sample was used in the resource estimate. STK Drilling Drill hole density across the deposit (including all drilling) is approximately 40x40m closing in to better than 20 x 20m in places. The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised horizon to support the classification of the Mineral Resources reported. 1 m cone-split sampling has been used throughout ore zones and exploration drilling, with 4 m compositing used in waste zones. Where composite assays are returned with greater than 0.1 g/t Au, the original 1 m A-chute split was sent for assay.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	considered normal to the overall trend (north-south) and dip of the gold mineralisation which lies within a sub-vertical shear zone.

Criteria	JORC Code explanation	Commentary
Sample security	• The measures taken to ensure sample security.	 Chain of Custody of digital data was managed by the Company. Physical material was stored on site and, when necessary, delivered to the assay laboratory. Thereafter laboratory samples were controlled by the nominated laboratory which to date has been ALS and Genalysis. All sample collection was controlled by digital sample control files and hard-copy ticket books.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Historic Drilling A quality control (QC) analysis was conducted on the assay data in November 1999. The report indicated that the assay data was accurate and precise and could be reliably included in the Millrose resource estimate of 1999.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Millrose gold deposit is located within STK's 100% owned Exploration Licence E53/1304, located 10km east of the Jundee gold operations. It is located within the Wiluna Native Title Group (WAD6164/98) claimant area. A Mining Lease application (M53/1110) is currently in place.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The existing Exploration Licence is in good standing with the governing authority and there is no known impediment to the future grant of this Mining Licence, subject to meeting all necessary Government requirements. L11 Capital Pty Ltd holes a 1% gross revenue royalty over the above tenure.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Modern exploration started with Mining and Resources Australia (MRA)'s exploration activities in the reporting period 1996-1997 where it acquired airborne magnetic and radiometric data, and undertook RAB (21 holes for 1,287m) and aircore (85 holes for 8,091m) drilling which resulted in the definition of a significant interface geochemical anomaly at old Camp Bore (now named Millrose). To 1998 MRA completed further air core (429 holes for 37,194m), RC (36 holes for 5,914m) and Diamond (7 tails for 890.95m) drilling and defined a gold anomaly with strike length of 3.7km at > 1g/t Au including significant mineralisation over 480m to a vertical depth of 260m. To 1999 MRA completed regional aircore (188 holes for 11,987m), and RC

Criteria	JORC Code explanation	Commentary
		(116 holes for 17,745m) and Diamond (39 tails for 3,504.43m) drilling at the Millrose gold deposit to better delineate the gold mineralisation. In late 1999 MRA reported a Mineral Resource estimate for the Millrose (North) gold deposit. In 2004 Audax drilled RAB (3 holes for 75m) and air core (99 holes for 8,980m) at Millrose and submitted lateritic gold bearing material for cyanide leach testing. Various economic studies were undertaken which confirmed economic viability of toll treatment option as best development option. In 2005 Audax completed RC (96 holes for 1,007m) peripheral to the Millrose gold deposit. In 2009 Northwind completed an economic study which confirmed economic viability of toll treatment option as best development option. In December 2012 six diamond drill core samples (1/4 core from historic drilling) were collected for metallurgical testing by standard bottle roll cyanidation test work. Gold recoveries were circa 90% with rapid leaching times.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Millrose gold deposit is a typical Archaean aged, shear related gold deposit. The shear (Celia Shear) strikes north-south and is sub-vertical. Gold mineralisation is associated with the shearing and alteration of a volcaniclastic succession. There is an extensive lateritic profile with a pronounced depletion zone. Mineralisation is sub horizontal in the lateritic profile and subvertical when fresh.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Please refer to Appendix A.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Historic Drilling A nominal 0.5g/t Au cut off was used to delineate significant gold intercepts associated with the resource estimation. No metal equivalents were used. STK Drilling A nominal cut-off of 0.5g/t Au was used to delineate significant gold intercepts from this recent phase of drilling Several discrete zones of core loss were encountered in the weathered portion of the MRDD005 diamond drill hole. To calculate the grade average for this hole, a value of 0.02g/t Au (Photon Assay detection limit), was assigned to the core loss zone.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 All drilling is at a declination of 60deg generally to grid west (270°) although some holes were drilled to grid east (90°). The shear hosted gold mineralisation is sub vertical to steeply east dipping. Down hole intercepts are not true thickness. Down hole intercept lengths are not true widths and are marked as such.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to main ASX announcement report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Exploration results have been previously released into the public domain.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater,	• Six diamond drill core samples (1/4 core from historic drilling) were submitted for in Bottle Roll Cyanidation Tests to assess potential gold recovery. The metallurgical test results confirmed positive recovery results (approx. 90%) with rapid leach kinetics.

Criteria	JORC Code explanation	Commentary
	geotechnical and rock characteristics; potential deleterious or contaminating substances.	• Several samples from diamond holes MRDD002 and MRDD008 (Millrose North) and several samples from MRDD011 (Millrose Central) were analysed with micro XRF to quickly acquire qualitative and quantitative geochemical data in relation to the gold mineralisation at high spatial resolution.
		• Detailed geological and structural analysis has been undertaken by Dr Mark Munro (Model Earth Structural Geologist).
Further work	• The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	Additional micro XRF analysis at a higher resolution, to further define the main controls on gold mineralisation.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	• An upgraded resource estimation from all the drilling completed at Millrose to date. This work is ongoing and will be reported in due course.