ASX Announcement 25 January 2023 # HIGH-GRADE POTENTIAL CONTINUES TO GROW AT CARDINIA WITH NEW RESULTS FROM HELENS EAST Further assays of up to 18g/t from recent deeper Reverse Circulation drilling delineate extensive highgrade lode-style mineralisation over a significant strike extent along the Helens East Fault #### **Highlights** - Further encouraging RC drilling results received from targeted deeper drilling completed along the Helens East Fault, at the 100%-owned 1.4Moz Cardinia Gold Project in late 2022. - Drilling has confirmed the presence of higher-grade, quartz-sulphide lode style mineralisation below and along strike from shallow 35koz Mineral Resources at Fiona, within an emerging high-grade structure known as the Helens East Fault. - Helens East Fault new assay results: - o 4m at 5.69g/t Au from 101m in HE22RC053 incl 1m at 18.16 g/t Au from 103m - 3m at 6.06g/t Au from 127m in HE22RC049 - o 5m at 3.23g/t Au from 126m in HE22RC047 - o 2m at 4.17g/t Au from 34m in HE22RC050 - 1m at 7.13g/t Au from 100m in HE22RC052 - Reinforces previous high-grade intersections along Helens East Fault, position including: - 7m at 24.7g/t Au from 107m (HE22RC022) - o **2m at 24.0g/t Au from 204m** (HE22RC039) - o 7m at 6.16 g/t Au from 58m (HE20RC358) - 8m at 6.83g/t Au from 22m (HE17RC026) - 7m at 5.99g/t Au from 23m (HE17RC099) - This newly identified quartz-sulphide vein-style mineralisation remains open in all directions along strike and down-dip with the potential for the current 1km strike length to extend up to 2km with further drilling below a defined gold-in-soil anomaly. - The Eastern Corridor has been confirmed as a series of high-grade lodes along an extensive interconnected structural system with significant depth potential. Further strategically targeted drilling planned in 2023 to unlock this opportunity at Cardinia. Further to its ASX announcement of 17 January 2023, **Kin Mining NL** (ASX: KIN or "the Company") is pleased to report further significant assay results from Reverse Circulation (RC) drilling completed towards the end of last year at its 100%-owned **1.4Moz Cardinia Gold Project (CGP)** near Leonora in Western Australia targeting a new high-grade exploration opportunity along the Eastern Corridor. RC drilling extending south along the Helens East Fault from the shallow 35,000oz Fiona Mineral Resource has intersected a strongly mineralised zone of vein-style quartz-sulphide mineralisation over a strike length of approximately 1km to the south, associated with the Helens East Fault position. The Helens East Fault appears to be a second significant mineralised structure, running parallel to the Helens-Rangoon Fault, which forms part of the Eastern Corridor series of deposits at Cardinia. The Eastern Corridor has been a major focus for Kin's exploration activities over the past 12-18 months. Commenting on the latest results, Kin Mining Managing Director, Andrew Munckton, said: "Our exploration strategy targeting high-grade potential along the Eastern Corridor is rapidly gaining momentum. These latest assays build on the strong results reported earlier this month and show that there is an exciting new exploration opportunity based on a high-grade lode style of mineralisation at Cardinia, located below and along strike to some of our existing shallow deposits. "These results show that the Helens East Fault is a significant structure, hosting high-grade gold mineralisation over a strike length of approximately 1km and to at least 200m below surface which runs parallel to the Helens-Rangoon Fault. "We now know that the Eastern Corridor hosts a number of significant structures including the Helens-Rangoon Fault, the Helens East Fault and the Cardinia Hill Fault containing several yet-to-be drilled targets where narrow, high-grade quartz-sulphide lodes persist to significant depths as part of a large mineralised system. "Confirming the presence and continuity of high-grade mineralised zones opens up an important new avenue for our exploration team to target new, high-grade discoveries within the Eastern Corridor, complementing the shallower, bulk style resources which we have already defined. "The 17 RC holes in the recent program were collared to test the interpreted position of the Helens East Fault at up to 200m below surface between and around the Fiona deposit and isolated high-grade RC drilling results received in late 2021 and early 2022. Assay results have confirmed the presence of strong gold mineralisation, corresponding to sulphide mineralisation observed in a number of drill-holes. "We are looking forward to refining our forward-program of drilling for 2023 and re-commencing exploration to target these high-grade sulphides lodes over a considerable strike extent. If we are successful in confirming the continuity of mineralisation over the entire strike extent of these high-grade structures, this will create an important new avenue to rapidly add to our resource inventory at Cardinia in the months and years ahead." Figure 1. Plan view of Eastern Corridor at Cardinia showing extensive high-grade drill-hole (+5.0g/t and +10.0g/t Au only) trends along fault positions and corridors. Long Sections in Figure 6 shown with line D-D'. #### **Helens East Fault RC Drilling Program** Kin Mining recently completed a 17-hole RC drilling program to confirm the extent of the high-grade mineralisation intersected along the Helens East Fault, south of the Fiona deposit. The Helens East Fault represents a second significant mineralised structure, located approximately 200m east of and parallel to the Helens-Rangoon Fault. The Helens East Fault is interpreted to intersect the Helens-Rangoon Fault at depth (Figure 6). Assays have been returned for all of the 17 holes, with significant intersections shown in Table 1 and illustrated in Figure 4 and Figure 5. Drill-hole location details are summarised in Table 2. The results received to date have confirmed the extension of high-grade mineralisation below and to the south of the Fiona deposit and the discovery of new, steep west-dipping lodes of quartz sulphide mineralisation that sit on the Helens East Fault. The strike length of the high-grade mineralised structure intersected to date, inclusive of the near-surface Fiona deposit, is approximately 1km and remains open in all directions. The recent RC drilling program has confirmed west-dipping, narrow high-grade lodes and it is interpreted that Helens East fault mineralisation is sourced from the east-dipping Helens-Rangoon Fault at depth, adding to the attraction of the depth extensions of Helens East. Importantly, the Helens East Fault has been mapped at surface for a strike length of approximately 2km extending south of the recent drilling parallel to the Helens-Rangoon Fault. This southern extension of the Helens East Fault corresponds to a significant surface gold-in-soil anomaly and remains untested by drilling other than two isolated historical drill holes at the very southern extent, both of which intersected shallow, high-grade mineralisation. See Figure 5 for the positions of IP22DD002 (0.25m at 11.64g/t from 39m) (ASX Announcement 15 December 2022) and CRC0542 (1m at 5.80g/t Au from 27m) (historic result). Figure 2 – Geological Plan of the Helens East RC holes, showing collar positions relative to the +5.0 and +10.0g/t Au down-hole intersections for previous drilling, overlain on the mapped geology and structure. Optimised pit outlines at Helens, Fionas and Cardinia Hill are shown in gold. Recent drill-hole collars at the Helens East Fault (this announcement) are shown as black points. Cross section C-C' location shown in Figure 4. Figure 3 – Chip tray photo of high-grade intercept in HE22RC053 101-105m down-hole showing logged sulphide content with moderate quartz veining and assay data. Figure 4 – Schematic cross-section through C-C' looking north on 6815000N showing recent drilling with reported intercepts. Interpreted mineralised structures shown in pink. True width is approximately 80% of downhole width. A longitudinal projection of the Helens East Fault showing the Fiona Mineral Resource position and recent drilling results is illustrated in Figure 5. Significant recent drilling results from Helens East including 7m at 24.7g/t (HE22RC022), 8m at 6.83g/t (HE17RC026) and 7m at 5.99g/t (HE17RC099) are illustrated showing a series of north-plunging high-grade shoots of gold mineralisation over a structure confirmed to be mineralised over a strike length of 1km. Cross-section 6815000N showing the extent of high-grade mineralisation and orientation of the mineralisation relative to the position of the Helens East Fault is illustrated in Figure 4. New intersections join previous high-grade mineralisation along the Helens East Fault trend. Previously reported intersections include: - 7m at 24.7g/t Au from 107m (HE22RC022) - 2m at 24.0g/t Au from 204m (HE22RC039) - 3m at 5.38g/t Au from 108m (HE22RC030) - 2m at 6.50g/t Au from 33m (HE22RC033) - 1m at 7.98g/t Au from 9m (HE22RC028) - 1m at 5.20g/t Au from 32m (HE22RC025) - 21m at 3.58g/t Au from 45m (HE20RC358) including 7m at 6.16 g/t Au from 58m - 8m at 6.83g/t Au from 22m (HE17RC026) - 7m at 5.99g/t Au from 23m (HE17RC099) - 15m at 3.50g/t Au from 32m (HE17RC082) - 17m at 2.53g/t Au from 4m (HE17RC044) Please refer to previous announcements dated 17/01/23, 01/06/22, 01/09/2020, 28/06/2017, 23/03/2017. #### Geology and Mineralisation Mineralisation within the Eastern Corridor is situated along a 2km wide north-south striking zone consisting of a number of distinct faults which pass through the area, cross-cutting stratigraphy and typically hosting high-grade gold-pyrite mineralisation. The gold mineralisation is characterised by carbonate-sericite rich alteration zones with quartz veining, pyrite and a distinctive suite of pathfinder elements concentrated along the faults and at the contacts of strongly altered mafic and felsic rocks. High-grade gold
mineralisation has been delineated at five deposits within the Eastern Corridor to date (Helens, Rangoon, Cardinia Hill, Fiona and East Lynne), which collectively hosts more than 315koz of generally shallow open pit material. These deposits are believed to represent the near-surface expression of an extensive, high-grade mineralised system that extends over an area of approximately 2km by 5km on the eastern side of the CGP known as the Eastern Corridor. Figure 5 – Helens East Long Section D-D' looking east showing position relative to Fiona Mineral Resource drilling. Select high-grade intersections represented. Density of drilling outside of Fiona Mineral Resource area is minimal in comparison. Interpreted high grade shoots plunging north shown in pink. #### **Implications and Next Steps** The results of RC drilling at Helens East outlined in this announcement continue to demonstrate the potential of the Eastern Corridor to host significant new zones of high-grade gold mineralisation. High-grade (+5.0g/t Au) intercepts typically exhibit a quartz-sulphide lode-style of mineralisation located along the extensive fault and structural system of the Eastern Corridor. The Helens East Fault appears to be a continuous mineralised position extending over a strike length of at least 1km containing a number of high-grade shoots of mineralisation. It appears to be related to the 3.0km long Helens-Rangoon Fault which, at surface, lies approximately 200m to the west and is intersected at depth. See Figure 6 for schematic representation of the structural relationships. Other, as yet untested faults and structures are also present, have been mapped at surface and are marked by an extensive soil geochemical signature. Their relationship to the Helens-Rangoon and Helens East Faults remains to be determined, however it is clear that the Eastern Corridor contains a complex of interconnected structural positions that are favourable to quartz-sulphide lode formation and high-grade gold mineralisation. Follow-up programs are currently being designed, aimed at improving the confidence in the extensions along strike at the Helens East, Cardinia Hill and other mapped faults in the area ahead of future potentially significant in-fill drilling programs to update and extend Mineral Resource estimates across the Eastern Corridor. Figure 6 – Schematic cross-section looking north through the Helens – Helens East deposits, showing the interpreted interaction at depth. There is no drilling information below 200m. | Hole ID | From | То | Width (m) | Gold g/t | Gram M | |-----------|------|-----|-----------|----------|--------| | HE22RC037 | 113 | 118 | 5 | 1.69 | 8.5 | | HE22RC038 | 140 | 141 | 1 | 1.11 | 1.1 | | HE22RC039 | 204 | 206 | 2 | 24.0 | 48.0 | | HE22RC042 | 7 | 9 | 2 | 1.64 | 3.2 | | | 83 | 84 | 1 | 4.12 | 4.1 | | | 153 | 156 | 3 | 2.30 | 6.9 | | HE22RC043 | 93 | 100 | 7 | 2.42 | 16.9 | | HE22RC044 | 35 | 38 | 3 | 1.20 | 3.6 | | HE22RC045 | 14 | 15 | 1 | 1.07 | 1.1 | | HE22RC047 | 126 | 131 | 5 | 3.23 | 16.1 | | HE22RC048 | 9 | 11 | 2 | 1.40 | 2.8 | | HE22RC049 | 127 | 130 | 3 | 6.06 | 18.2 | | HE22RC050 | 34 | 36 | 2 | 4.17 | 8.3 | | HE22RC052 | 100 | 101 | 1 | 7.13 | 7.1 | | HE22RC053 | 101 | 105 | 4 | 5.69 | 22.8 | | inc | 103 | 104 | 1 | 18.16 | 18.2 | Table 1: Significant intercepts received from Helens East RC drillholes (cut-off grade of 1.0g/t applied). | Hole ID | Hole
Type | Easting | Northing | RL | Depth | Dip | Azi | Comment | |-----------|--------------|---------|----------|-----|-------|-----|-----|---| | HE22RC037 | RC | 365338 | 6815201 | 417 | 126 | -63 | 76 | | | HE22RC038 | RC | 365303 | 6815197 | 417 | 143 | -60 | 70 | Hole ended early
due to water –
did not reach | | HE22RC039 | RC | 365270 | 6815191 | 417 | 218 | -60 | 70 | target | | HE22RC040 | RC | 365339 | 6815150 | 417 | 133 | -60 | 70 | | | HE22RC041 | RC | 365280 | 6815135 | 417 | 157 | -62 | 76 | Hole ended early
due to water –
did not reach
target | | HE22RC042 | RC | 365397 | 6814896 | 420 | 163 | -60 | 70 | | | HE22RC043 | RC | 365351 | 6814873 | 420 | 157 | -60 | 70 | | | HE22RC044 | RC | 365395 | 6815008 | 418 | 60 | -61 | 79 | | | HE22RC045 | RC | 365300 | 6814853 | 420 | 210 | -57 | 70 | | | HE22RC046 | RC | 365413 | 6814859 | 423 | 60 | -62 | 76 | | | HE22RC047 | RC | 365365 | 6814830 | 424 | 150 | -62 | 70 | | | HE22RC048 | RC | 365399 | 6814803 | 421 | 78 | -60 | 70 | | | HE22RC049 | RC | 365339 | 6814781 | 420 | 150 | -60 | 70 | | | HE22RC050 | RC | 365420 | 6814758 | 421 | 66 | -60 | 70 | | | HE22RC051 | RC | 365432 | 6814716 | 424 | 147 | -60 | 70 | | | HE22RC052 | RC | 365357 | 6814678 | 419 | 154 | -60 | 70 | | | HE22RC053 | RC | 365353 | 6815000 | 419 | 162 | -60 | 70 | | Table 2: Details of the completed drillholes relating to this announcement. #### -ENDS- #### Authorised for release by the Board of Directors #### For further information, please contact: #### **Investor enquiries** Andrew Munckton Managing Director, Kin Mining NL +61 8 9242 2227 #### **Media enquiries** Nicholas Read Read Corporate +61 419 929 046 #### **ABOUT KIN MINING NL** Kin Mining NL (ASX: KIN) is a West Australian based gold development and exploration company. Kin's key focus is its 100% owned Cardinia Gold Project (CGP) located in the highly prospective North-Eastern Goldfields region of Western Australia. The CGP has a 1.41Moz gold Mineral Resource (see Table A1) defined in both oxide and deeper primary mineralisation with considerable potential to grow this resource with further drilling. Kin's exploration effort is the systematic program of exploration across the Cardinia Mining Centre that seeks to advance a number of targets in parallel while developing a pipeline of exploration targets for ongoing Mineral Resource expansion. Table 1. Mineral Resource Estimate Table September 20221 | | | | Cardir | nia Gold F | roject: C | Open Pit I | Mineral R | esource | s: Septen | nber 2022 | | | | | | |---------------------|---------------------|-----------------|----------------|----------------|--------------|----------------|----------------|--------------|----------------|----------------|--------------|----------------|----------------|--------------|-----------| | | Resource | Lower Cut | Measi | ured Reso | ources | Indica | ated Reso | urces | Infer | red Resou | ırces | Tot | al Resour | ces | Date | | Project Area | Gold Price
(AUD) | off (g/t
Au) | Tonnes
(Kt) | Au
(g/t Au) | Au
(k Oz) | Announced | | Mertondale | | | | | | | | | | | | | | | | | Mertons Reward | \$ 2,600 | 0.4 | | | | 893 | 2.1 | 62 | 1,987 | 0.6 | 41 | 2,879 | 1.1 | 103 | 26-Nov-20 | | Mertondale 3-4 | \$ 2,600 | 0.4 | | | | 1,345 | 1.8 | 80 | 1,048 | 1.0 | 32 | 2,393 | 1.5 | 112 | 26-Nov-20 | | Tonto | \$ 2,600 | 0.4 | | | | 1,850 | 1.1 | 68 | 1,145 | 1.2 | 45 | 2,996 | 1.2 | 113 | 26-Nov-20 | | Mertondale 5 | \$ 2,600 | 0.4 | | | | 536 | 1.6 | 27 | 892 | 1.2 | 34 | 1,428 | 1.3 | 62 | 26-Nov-20 | | Eclipse | \$ 2,600 | 0.4 | | | | - | 0.0 | 0 | 765 | 1.0 | 24 | 765 | 1.0 | 24 | 26-Nov-20 | | Quicksilver | \$ 2,600 | 0.4 | | | | - | 0.0 | 0 | 1,202 | 1.1 | 42 | 1,202 | 1.1 | 42 | 26-Nov-20 | | Subtotal Mertondale | | | | | | 4,625 | 1.6 | 237 | 7,039 | 1.0 | 219 | 11,664 | 1.2 | 456 | | | Cardinia | | | | | | | | | | | | | | | | | Bruno/Lewis | \$ 2,600 | 0.4 | 769 | 1.2 | 31 | 7,699 | 1.0 | 257 | 3,594 | 0.9 | 100 | 12,063 | 1.0 | 388 | 17-May-2: | | Kyte | \$ 2,600 | 0.4 | | | | 340 | 1.5 | 17 | 114 | 0.9 | 3 | 453 | 1.4 | 20 | 26-Nov-20 | | Helens | \$ 2,600 | 0.4 | | | | 738 | 2.1 | 50 | 337 | 1.9 | 21 | 1,075 | 2.1 | 71 | 26-Nov-20 | | Fiona | \$ 2,600 | 0.4 | | | | 588 | 1.3 | 25 | 215 | 1.2 | 8 | 803 | 1.3 | 34 | 26-Nov-20 | | Rangoon | \$ 2,600 | 0.4 | | | | 1,121 | 1.1 | 40 | 1,153 | 1.4 | 53 | 2,274 | 1.3 | 94 | 26-Sep-22 | | Hobby | \$ 2,600 | 0.4 | | | | - | 0.0 | 0 | 582 | 1.3 | 23 | 582 | 1.3 | 23 | 17-May-2 | | Cardinia Hill | \$ 2,600 | 0.4 | | | | 533 | 2.2 | 38 | 1,702 | 1.1 | 62 | 2,235 | 1.4 | 100 | 22-Sep-21 | | Subtotal Cardinia | | | 769 | 1.2 | 31 | 11,020 | 1.2 | 428 | 7,696 | 1.1 | 271 | 19,485 | 1.2 | 729 | | | Raeside | | | | | | | | | | | | | | | | | Michaelangelo | \$ 2,600 | 0.4 | | | | 1,163 | 2.0 | 74 | 449 | 2.1 | 31 | 1,612 | 2.0 | 105 | 26-Nov-20 | | Leonardo | \$ 2,600 | 0.4 | | | | 404 | 2.4 | 31 | 212 | 1.9 | 13 | 615 | 2.2 | 44 | 26-Nov-20 | | Forgotten Four | \$ 2,600 | 0.4 | | | | 111 | 2.1 | 7 | 148 | 2.1 | 10 | 259 | 2.1 | 17 | 26-Nov-20 | | Krang | \$ 2,600 | 0.4 | | | | 383 | 1.6 | 20 | 57 | 1.8 | 3 | 440 | 1.7 | 23 | 26-Nov-20 | | Subtotal Raeside | | | | | | 2,059 | 2.0 | 133 | 866 | 2.0 | 57 | 2,925 | 2.0 | 189 | | | Open Pit TOTAL | | | 769 | 1.2 | 31 | 17,704 | 1.4 | 797 | 15.601 | 1.1 | 547 | 34.074 | 1.3 | 1,374 | | **Table 1A:** Cardinia Gold project Open Pit Mineral Resource estimate. Mineral Resources estimated by Jamie Logan, and reported in accordance with JORC 2012 using a 0.4g/t Au cut-off within AUD2,600 optimisation shells. Note * Cardinia Hill, Hobby and Bruno-Lewis Mineral Resource Estimates completed by Cube Consulting, and also reported in accordance with JORC 2012 using a 0.4g/t Au cut-off within AUD2,600 optimisation shells. | | Card | linia Gol | d Project: | Underg | round Mi | neral Reso | ources: S | eptembe | r 2022 | | | | | | |---------------------|-----------|-----------|------------|--------|----------|------------|-----------|---------|-----------|--------|--------|------------|--------|----------| | | Lower Cut | Meas | ured Resc | urces | Indica | ated Reso | ırces | Infer | red Resou | ırces | To | tal Resour | ces | Date | | Project Area | off (g/t | Tonnes | Au | Au | Announce | | | Au) | (Kt) | (g/t Au) | (k Oz) | | | Mertondale | | | | | | | | | | | | | | | | Mertons Reward | 2.0 | | | | 3.7 | 2.6 | 0.3 | 6.8 | 2.8 | 0.6 | 10.5 | 2.7 | 0.9 | 26-Sep-2 | | Mertondale 3-4 | 2.0 | | | | 2.2 | 2.2 | 0.2 | | | | 2.7
 2.2 | 0.2 | 26-Sep-2 | | Quicksilver | 2.0 | | | | 1.5 | 2.2 | 0.1 | 1.9 | 2.3 | 0.1 | 3.5 | 2.2 | 0.2 | 26-Sep-2 | | Subtotal Mertondale | | | | | 7.4 | 2.4 | 0.6 | 8.8 | 2.7 | 0.8 | 16.7 | 2.6 | 1.4 | | | Cardinia | | | | | | | | | | | | | | | | Bruno/Lewis | 2.0 | 2.2 | 3.0 | 0.2 | 3.7 | 2.7 | 0.3 | 14.7 | 2.7 | 1.3 | 18.4 | 3.0 | 1.8 | 26-Sep-2 | | Helens | 2.0 | | | | 1.8 | 2.7 | 0.2 | 44.9 | 2.8 | 4.1 | 46.6 | 2.8 | 4.2 | 26-Sep-2 | | Fiona | 2.0 | | | | | | | 10.0 | 2.4 | 0.8 | 10.0 | 2.4 | 0.8 | 26-Sep-2 | | Rangoon | 2.0 | | | | | | | 10.6 | 2.8 | 1.0 | 10.9 | 2.8 | 1.0 | 26-Sep-2 | | Cardinia Hill | 2.0 | | | | | | | 126.0 | 2.6 | 10.7 | 126.0 | 2.6 | 10.7 | 22-Sep-2 | | Subtotal Cardinia | | 2.2 | 3.0 | 0.2 | 5.5 | 2.7 | 0.5 | 206.1 | 2.7 | 17.8 | 212.0 | 2.7 | 18.5 | | | Raeside | | | | | | | | | | | | | | | | Michaelangelo | 2.0 | | | | 5.2 | 2.4 | 0.4 | 56.8 | 2.4 | 4.3 | 62.0 | 2.4 | 4.7 | 26-Sep-2 | | Leonardo | 2.0 | | | | 2.2 | 2.5 | 0.2 | 27.0 | 2.6 | 2.3 | 29.2 | 2.6 | 2.5 | 26-Sep-2 | | Forgotten Four | 2.0 | | | | 24.9 | 2.7 | 2.2 | | | | 24.9 | 2.7 | 2.2 | 26-Sep-2 | | Krang | 2.0 | | | | 31.3 | 2.5 | 2.5 | 9.2 | 2.6 | 0.8 | 40.5 | 2.5 | 3.3 | 26-Sep-2 | | Subtotal Raeside | | | | | 63.5 | 2.6 | 5.3 | 92.9 | 2.5 | 7.4 | 156.5 | 2.5 | 12.6 | | | Underground TOTAL | | 2 | 3.0 | 0.2 | 76 | 2.6 | 6.3 | 308 | 2.6 | 25.9 | 385 | 2.6 | 32.5 | | **Table 1B:** Cardinia Gold Project Underground Mineral Resource estimate. Mineral Resources reported in accordance with JORC 2012 using a 2.0g/t Au cut-off grade outside AUD2,600 optimisation shells. ¹The company confirms that it is not aware of any new information or data that materially affects the information included in the ASX Announcement of 23 September 2022 "Cardinia Gold Project Mineral Resource Hits 1.4Moz.....", and that all material assumptions and technical parameters underpinning the estimates in that announcement continue to apply and have not materially changed. #### **COMPETENT PERSON'S STATEMENT** The information contained in this report relating to exploration results relates to information compiled or reviewed by Leah Moore. Ms Moore is a member of the Australian Institute of Geoscientists and is a full-time employee of the company. Ms Moore has sufficient experience of relevance to the styles of mineralisation and the types of deposit under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 edition of the JORC "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Ms Moore consents to the inclusion in this report of the matters based on information in the form and context in which it appears. #### **CAUTIONARY STATEMENT** In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of sulphide material abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. # Appendix A ## **JORC 2012 TABLE 1 REPORT** # Cardinia Gold Project - Section 1 & 2 #### **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |---------------------|---|---| | Sampling techniques | Nature and quality of sampling (eg cut | Diamond | | | channels, random chips, or specific specialised industry standard | Historic (pre-2014) diamond core (DD) sampling utilised half core or quarter core sample intervals; typically varying from 0.3m to 1.4m in length. 1m sample intervals were favoured and sample boundaries principally coincided with geological contacts. | | | measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to | Recent (2014-2018) diamond core (DD) samples, either HQ3 or NQ2 in size diameter, were either cut in half longitudinally or further cut into quarters, using a powered diamond core drop saw centered over a cradle holding core in place. Core sample intervals varied from 0.2 to 1.25m in length but were predominantly aligned to 1m intervals or with sample boundaries which respected geological contacts. | | | | 2019 diamond core samples, either HQ3 or NQ2 in size diameter, were either cut in half longitudinally or a third longitudinally, using an automated Corewise core saw Core was placed in boats, holding core in place. Core sample intervals varied from 0.3 to | | | | 1.3m in length but were predominantly aligned to 1m intervals or with sample boundaries which respected geological contacts. RC | | | | Historic reverse circulation (RC) drill samples were collected over 1m downhole intervals beneath a cyclone and typically riffle split to obtain a sub-sample (typically 3-4kg). 1m sub-samples were typically collected in pre-numbered calico bags and 1m sample rejects were commonly stored at the drill site. 3m or 4m composited interval samples were often collected by using a | | | Aspects of the determination of mineralisation that are Material to the | scoop (dry samples) or spear (wet samples). If composite samples returned anomalous results once assayed, the single metre sub-samples of the anomalous composite intervals were retrieved and submitted for individual gold analysis. | | | Public Report. In cases where 'industry standard' work | Recent reverse circulation (RC) drill samples were collected by passing through a cyclone, a sample collection box, and riffle or cone splitter. All RC sub-samples were collected over one metre downhole intervals and averaged 3-4kg. | | has been done t | has been done this would be relatively simple (eg 'reverse circulation drilling | 2019 RC drilling samples were collected in 1m downhole intervals by passing through a cyclone, a collection box and then dropping through a cone splitter. All RC sub-samples were collected over one metre downhole intervals and averaged 3-4kg. | | | was used to obtain 1 m samples from | <u>AC/RAB</u> | | | which 3 kg was pulverised to produce a 30g charge for fire assay'). In other | Historic air core (AC) and rotary air blast (RAB) were typically collected at 1 metre intervals and placed on the ground with 3-4kg sub-samples collected using a scoop or spear. Three metre or four metre composited interval samples were often collected by | | Criteria | JORC Code explanation | Commentary | |---------------------|--|---| | | cases more explanation may be required, such as where there is coarse | using a scoop (dry samples) or spear (wet samples). If composite samples returned anomalous results once assayed, the single metre sub-samples of the anomalous composite intervals were retrieved and submitted for individual gold analysis. | | | gold that has inherent sampling | Assay Methodology | | | problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Historic sample analysis typically included a number of commercial laboratories with preparation as per the following method, oven drying (90-110°C), crushing (<-2mm to <-6mm), pulverizing (<-75µm to <-105µm), and riffle split to obtain a 30, 40, or 50gram catchweight for gold analysis. Fire Assay fusion, with AAS finish was the common method of analysis however, on occasion, initial assaying may have been carried out via Aqua Regia digest and AAS/ICP finish. Anomalous samples were subsequently re-assayed by Fire Assay fusion and AAS/ICP finish. | | | | Rock Chips | | | | All rock chip samples are taken using a pick. The samples are taken from outcrop where possible. Samples are also taken from in situ float material or waste rock around historic workings, where outcrop is not present. Care is taken to ensure all samples are representative of the medium being sampled. For example, if a 1m sediment unit is being sampled, a channel sample will be taken across the entire unit. | | | | All recent drilling, sample collection and sample handling procedures were conducted and/or supervised by KIN geology personnel to high level industry standards. QA/QC procedures were implemented during each drilling program to industry standards. | | Drilling techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, | Drilling carried out since 1986 and up to the most recent drill programs completed by
KIN Mining was obtained from a combination of reverse circulation (RC), diamond core (DD), air core (AC), and rotary air blast (RAB) drilling. | | | auger, Bangka, sonic, etc) and details | Data prior to 1986 is limited due to lack of exploration. | | | (eg core diameter, triple or standard | <u>Diamond</u> | | | tube, depth of diamond tails, face-
sampling bit or other type, whether core | Diamond coring was undertaken with a surface drill rig and an industry recognized contractor | | | is oriented and if so, by what method, | Core size is HQ until competent followed up NQ | | | etc). | The core was orientated using a Reflex Ez-Ori Tool | | | | <u>RC</u> | | | | 2022 RC drilling was carried out by Swick Mining Services truck-mounted Swick version Schramm 685 RC Drill Rig (Rod Handler & Rotary Cone Splitter) with support air truck and dust suppression equipment. Drilling utilised downhole face-sampling hammer bits (Ø 140mm). The majority of drilling retrieved dry samples, with the occasional use of the auxiliary and booster air compressors beneath the water table, to maintain dry sample return as much as possible. | | | | 2022 RC was surveyed at regular downhole intervals (every 30m with an additional end-of-hole survey) using electronic gyroscopic survey equipment. | | | | <u>AC/RAB</u> | | | | Historic AC drilling was conducted utilising suitable rigs with appropriate compressors (eg 250psi/600cfm). AC holes were drilled using 'blade' or 'wing' bits, until the bit was unable to penetrate ('blade refusal'), often near the fresh rock interface. Hammer bits were used only when it was deemed necessary to penetrate further into the fresh rock profile or through notable "hard | | Criteria | JORC Code explanation | Commentary | |-----------------------|--|---| | | | boundaries" in the regolith profile. No downhole surveying is noted to have been undertaken on AC drillholes. | | | | Historic RAB drilling was carried out using small air compressors (eg 250psi/600cfm) and drill rods fitted with a percussion hammer or blade bit, with the sample return collected at the drillhole collar using a stuffing box and cyclone collection techniques. Drillhole sizes generally range between 75-110mm. No downhole surveying is noted to have been undertaken on RAB drillholes. | | Drill sample recovery | Method of recording and assessing core | <u>Diamond</u> | | | and chip sample recoveries and results assessed. | Historic core recovery was recorded in drill logs for most of the diamond drilling programs since 1985. A review of historical reports indicates that core recovery was generally good (>80%) with lesser recoveries recorded in zones of broken ground and/or areas of mineralisation. Overall recoveries are considered acceptable for resource estimation. | | | Measures taken to maximise sample recovery and ensure representative nature of the samples. | Recent core recovery data was recorded for each run by measuring total length of core retrieved against the downhole interval actually drilled and stored in the database. KIN representatives continuously monitor core recovery and core presentation quality as drilling is conducted and issues or discrepancies are rectified promptly to maintain industry best standards. Core | | | Whether a relationship exists between sample recovery and grade and whether | recoveries averaged >95%, even when difficult ground conditions were being encountered. When poor ground conditions were anticipated, a triple tube drilling configuration was utilised to maximize core recovery | | | sample bias may have occurred due to | RC/AC/RAB | | | preferential loss/gain of fine/coarse material. | Historic sample recovery information for RC, AC, and RAB drilling is limited. | | | material. | Recent RC drilling samples are preserved as best as possible during the drilling process. At the end of each 1 metre downhole interval, the driller stops advancing, retracts from the bottom of hole, and waits for the sample to clear from the bottom of the hole through to the sample collector box fitted beneath the cyclone. The sample is then released from the sample collector box and passed through either a 3-tiered riffle splitter or cone splitter fitted beneath the sample box. | | | | Sample reject is collected in plastic bags, and a 3-4kg sub-sample is collected in pre-marked calico bags for analysis. Once the samples have been collected, the cyclone, sample collector box and riffle splitter are flushed with compressed air, and the splitter cleaned by the off-sider using a compressed air hose at both the end of each 6 metre drill rod and then extensively cleaned at the completion of each hole. This process is maintained throughout the entire drilling program to maximise drill sample recovery and to maintain a high level of representivity of the material being drilled. | | | | Collected samples are deemed reliable and representative of drilled material and no material discrepancy, that would impede a mineral resource estimate, exists between collected RC primary and sub-samples. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support | Logging data coded in the database, prior to 2014, illustrates at least four different lithological code systems, a legacy of numerous past operators (Hunter, MPI, Metana, CIM, MEGM, Pacmin, SOG, and Navigator). Correlation between codes is difficult to establish however, based on historical reports, drill hole logging procedures appear consistent with normal industry practices of the time. | | | appropriate Mineral Resource estimation, mining studies and | KIN has attempted to validate historical logging data and to standardize the logging code system by incorporating the SOG and Navigator logging codes into one. | | | metallurgical studies. | <u>Diamond</u> | | | Whether logging is qualitative or quantitative in nature. Core (or costean, | KIN DD logging is carried out on site once geology personnel retrieve core trays from the drill rig site. Core is collected from the rig daily. The entire length of every hole is logged. Recorded data includes lithology, alteration, structure, texture, | | Criteria | JORC Code explanation | Commentary | |-----------------------------|--|---| | | channel, etc) photography. | mineralisation, sulphide content, weathering and other features. Drillhole collar coordinates, azimuth, dip, depth and sampling intervals are also recorded. KIN DD logging is to geological contacts. | | | The total length and percentage of the relevant intersections logged. | Qualitative logging includes classification and description of lithology, weathering, oxidation, colour, texture and grain size. Quantitative logging includes percentages of identified minerals, veining, and structural measurements (using a kenometer tool). In addition, logging of diamond drilling includes geotechnical data, RQD and core recoveries. | | | | Drill core is photographed at the Cardinia site, prior to any cutting and/or sampling, and then stored in this location. Photographs are available for every diamond drillhole completed by KIN and a selection of various RC chip trays. SG data is also collect | | | | All information collected is entered directly into laptop computers or tablets, validated in the field, and then transferred to the database. The level of logging detail is considered appropriate for exploration and to support appropriate mineral resource estimation, mining studies, and metallurgical studies. | | | | RC/AC/RAB | | | | KIN RC logging of was carried out in the field and logging has predominantly been undertaken on a metre by metre basis. KIN logging is inclusive of the entire length of each RC drillhole from surface to 'end of hole'. | | | | Recorded data includes lithology, alteration, structure, texture, mineralisation, sulphide content, weathering and other features. Drillhole collar coordinates, azimuth, dip, depth and sampling intervals are also recorded. | | | | Qualitative logging includes classification and description of lithology, weathering, oxidation, colour, texture and grain size. Quantitative logging includes identification and percentages of mineralogy, sulphides, mineralisation, and veining. | | | | All information collected is entered directly into laptop computers or tablets, validated in the field, and then transferred to the database. The level of logging detail is considered appropriate for exploration and to support appropriate mineral resource estimation, mining studies, and metallurgical studies. | | Sub-sampling techniques and | If core, whether cut or sawn and | Diamond | | sample preparation | whether quarter, half or all core taken. | Historic diamond drill core (NQ/NQ3 or
HQ/HQ3) samples collected for analysis were longitudinally cut in half, and occasionally | | | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | in quarters for the larger (HQ/HQ3) diameter holes, using a powered diamond core drop saw centered over a cradle holding the core in place. Half core or quarter core sample intervals typically varied from 0.3m to 1.4m in length. 1m sample intervals were favoured and are the most common method of sampling, however sample boundaries do principally coincide with geological contacts. The remaining core was retained in core trays. | | | For all sample types, the nature, quality and appropriateness of the sample preparation technique. | All sub-sampling techniques and sample preparation procedures conducted and/or supervised by KIN geology personnel are to standard industry practice. Sub-sampling and sample preparation techniques used are considered to maximise representivity of drilled material. QA/QC procedures implemented during each drilling program are to industry standard practice. | | | Quality control procedures adopted for all sub-sampling stages to maximise | Samples sizes are considered appropriate for this style of gold mineralisation and as an industry accepted method for evaluation of gold deposits in the Eastern Goldfields of Western Australia. | | | representivity of samples. | RC/AC/RAB | | | Measures taken to ensure that the | Samples obtained from conventional RC drilling techniques with cross-over subs often suffered from down hole contamination, especially beneath the water table. Samples obtained from RC drilling techniques using the face sampling hammer suffered less | | Criteria | JORC Code explanation | Commentary | |--|---|---| | | material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | from down hole contamination and were more likely to be kept dry beneath the water table, particularly if auxiliary and booster air compressors were used. These samples are considered to be representative. | | | | The vast majority of Reverse Circulation (RC) drill samples were collected at 1m downhole intervals from beneath a cyclone and then riffle split to obtain a sub-sample (typically 3-4kg). After splitting, 1m sub-samples were typically collected in prenumbered calico bags, and the 1m sample rejects were commonly stored at the drill site in marked plastic bags, for future reference. First pass sampling often involved collecting composite samples by using a scoop (dry samples) or spear/tube (wet samples) to obtain 3m or 4m composited intervals, with the single metre split sub-samples being retained at the drill site. If the composite sample assays returned anomalous results, single metre sub-samples for the anomalous composite intervals were retrieved and submitted for analysis. | | | | Recent RC sub-samples were collected over 1 metre downhole intervals and retained in pre-marked calico bags, after passing through a cyclone and either a riffle splitter, prior to March 2018, or cone splitter, after March 2018. The majority of RC sub-samples consistently averaged 3-4kg. Sample reject from the riffle splitter were retained and stored in plastic bags, and located near each drillhole site. When drilling beneath the water table, the majority of sample returns were kept dry by the use of the auxiliary and booster air compressors. Very few wet samples were collected through the splitter, and the small number of wet or damp samples is not considered material for resource estimation work. | | | | KIN RC drill programs utilise field duplicates, at regular intervals at a ratio of 1:25, and assay results indicate that there is reasonable analytical repeatability; considering the presence of nuggety gold. | | | | All sub-sampling techniques and sample preparation procedures conducted and/or supervised by KIN geology personnel are to standard industry practice. Sub-sampling and sample preparation techniques used are considered to maximise representivity of drilled material. QA/QC procedures implemented during each drilling program are to industry standard practice. | | | | Samples sizes are considered appropriate for this style of gold mineralisation and as an industry accepted method for evaluation of gold deposits in the Eastern Goldfields of Western Australia. | | | | No duplicates are taken for rock chip sampling. Sample sizes are approximately 3kg, this is considered appropriate for the material being sampled. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory | Assaying and laboratory procedures used are NATA certified techniques for gold. Samples were prepared and assayed at NATA accredited Intertek Genalysis. | | | procedures used and whether the technique is considered partial or total. | Numerous assay laboratories and various sample preparation and assay techniques have been used since 1981. Historical reporting and descriptions of laboratory sample preparation, assaying procedures, and quality control protocols for the samples from the various drilling programs are variable in their descriptions and completeness. | | | For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the | Assay data obtained prior to 2001 is incomplete and the nature of results could not be accurately quantified due to the combinations of various laboratories and analytical methodologies utilised. | | | analysis including instrument make and | Limited information is available regarding check assays for drilling programs prior to 2004. | | | model, reading times, calibrations factors applied and their derivation, etc. | KIN sample analysis from 2014 to 2018 was conducted by SGS Australia Pty Ltd's ("SGS") Kalgoorlie and Perth laboratories. Sample preparation included oven drying (105°C), crushing (<6mm), pulverising (P90% passing 75μm) and riffle split to obtain a 50 gram catchweight. Analysis for gold only was carried out by Fire Assay fusion technique with AAS finish (SGS Lab Code FAA505). | | | Nature of quality control procedures | Catchweight. Analysis for gold only was carried out by the Assay fusion technique with AAS lillish (303 Lab Code FAA505). | | Criteria | JORC Code explanation | Commentary | |------------------------------|---|--| | | adopted (eg standards, blanks,
duplicates, external laboratory checks)
and whether acceptable levels of
accuracy (ie lack of bias) and precision | From late 2018 samples have been analysed by Intertek Genalysis, with sample preparation either at their Kalgoorlie prep laboratory or the Perth Laboratory located in Maddington. Sample preparation included oven drying (105°C), crushing (<6mm), pulverising (P90% passing 75µm) and split to obtain a 50 gram catchweight. Analysis for gold only was carried out by Fire Assay fusion technique with AAS finish. | | | have been established. | • KIN regularly insert blanks and CRM standards in each sample batch at a ratio of 1:25. Kin accepts that this ratio of QAQC is industry standard. Field duplicates are typically collected at a ratio of 1:25 samples and test sample assay repeatability. Blanks and CRM standards assay result performance is predominantly within acceptable limits for this style of gold mineralisation. | | | | • KIN requests laboratory pulp grind and crush checks at a ratio of 1:50 or less in order to better qualify sample preparation and evaluate laboratory performance. Samples have generally illustrated appropriate crush and grind size percentages since the addition of this component to the sample analysis procedure. | | | | • Intertek include laboratory blanks and CRM standards as part of their internal QA/QC for sample preparation and analysis, as well as regular assay repeats. Sample pulp assay repeatability, and internal blank and CRM standards assay results are typically within acceptable limits. | | | | • All samples are initially sent to Intertek sample Preparation facility in Kalgoorlie.
Samples submitted for analysis via Photon assay technique were dried, crushed to nominal 85% passing 2mm, linear split and a nominal 500g sub sample taken (method code PAP3512R) | | | | • The 500g sample is assayed for gold by PhotonAssay (method code PAAU2) along with quality control samples including certified reference materials, blanks and sample duplicates. | | | | • About the Intertek PhotonAssay Analysis Technique: | | | | Developed by CSIRO and the Chrysos Corporation, the PhotonAssay technique is a fast and chemical free alternative to the traditional fire assay process and utilizes high energy x-rays. The process is non-destructive on and utilises a significantly larger sample than the conventional 50g fire assay. Intertek has thoroughly tested and validated the PhotonAssay process with results benchmarked against conventional fire assay. The National Association of Testing Authorities (NATA), Australia's national accreditation body for laboratories, has issued Intertek with accreditation for the technique in compliance with ISO/IEC 17025:2018-Testing. | | | | • In addition to the Company QAQC samples (described earlier) included within the batch the laboratory included its own CRM's, blanks and duplicates. | | Verification of sampling and | The verification of significant | Intersection assays were documented by KIN's professional exploration geologists and verified by KIN's Exploration Manager. | | assaying | intersections by either independent or | No drillholes were twinned. | | | alternative company personnel. The use of twinned holes. | • All assay data were received in electronic format from Intertek, checked, verified and merged into KIN's database by the Database Administrator. | | | Documentation of primary data, data | Original laboratory data files in CSV and locked PDF formats are stored together with the merged data. | | | entry procedures, data verification, data | • There were no adjustments to the assay data. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | storage (physical and electronic) protocols. | | | | Discuss any adjustment to assay data. | | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Several local grids were established and used by previous project owners. During the 1990s, SOG transformed the surface survey data firstly to AMG and subsequently to MGA (GDA94 zone51). Navigator recognised errors in the collar co-ordinates resulting from transformations and as a result, a significant number of holes were resurveyed and a new MGA grid transformation generated. Historical collars have been validated against the original local grid co-ordinates and independently transformed to MGA co-ordinates and checked against the database. Navigator's MGA co-ordinates were checked against the surveyor's reports. Recent KIN drill hole collars are located and recorded in the field by a contract surveyor using RTK-DGPS (with a horizontal and vertical accuracy of ±50mm). Location data was collected in the GDA94 Zone51 grid coordinate system. A small selection of drillhole collars, which do not have DGPS collar surveys, were picked up with a handheld GPS and individually appraised in regards to their location prior to modelling; the position of these collars is deemed appropriate for the resource estimation work. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Drill hole spacing patterns vary considerably throughout the Cardinia Gold Project area and are deposit specific, depending on the nature and style of mineralisation being tested. Drill hole spacing within the resource areas is sufficient to establish an acceptable degree of geological and grade continuity and is appropriate for both the mineral resource estimation and the resource classifications applied. | | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to | The Cardinia greenstone sequence displays a NNW to NW trend. Drilling and sampling programs were carried out to obtain unbiased locations of drill sample data, generally orthogonal to the strike of mineralisation. At Helens mineralisation is structurally controlled in sub-vertical shear zones, with supergene components of varying lateral extensiveness present in the oxide profile. The vast majority of historical drilling, pre-Navigator (pre-2004), and KIN drilling is orientated at -60°/245° (WSW) and -60°/065° (ENE). At Bruno-Lewis and Kyte, mineralisaton is either stratigraphy parallel (trending NNW, steep to moderately W-dipping) or crosscutting and dipping shallowly to the NE (striking NW). The vast majority of the drilling is therefore predominantly orientated at - | | Criteria | JORC Code explanation | Commentary | |-------------------|--|---| | | have introduced a sampling bias, this should be assessed and reported if | 60°/225-250° or -60°/090°. Grade Control drillholes were drilled vertically. Since late 2018, Kin's drilling has been largely oriented to 070° to target contact lodes and 225-250° to target the NE-dipping potassic lodes. | | | material. | The chance of sample bias introduced by sample orientation is considered minimal. No orientation sampling bias has been identified in data thus far. | | Sample security | The measures taken to ensure sample security. | KIN employees or contractors are utilised to transport samples to the laboratory. No perceived opportunity for samples to be compromised from collection of samples at the drill site, to delivery to the laboratory, where they were stored in their secure compound, and made ready for processing is deemed likely to have occurred. | | | | On receipt of the samples, the laboratory independently checked the sample submission form to verify samples received and readied the samples for sample preparation. Intertek sample security protocols are of industry standard and deemed acceptable for resource estimation work. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audits or reviews completed | ## **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |----------|---|--| | | including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and | The Cardinia Project, 35-40km NE of Leonora is managed, explored and maintained by KIN, and constitute a portion of KIN's Leonora Gold Project (LGP), which is located within the Shire of Leonora in the Mt Margaret Mineral Field of the North
Eastern Goldfields. | | | | The Helens and Rangoon area includes granted mining tenements M37/316 and M37/317, The tenements are held in the name of Navigator Mining Pty Ltd, a wholly owned subsidiary of KIN. | | | The Bruno-Lewis and Kyte areas includes granted mining tenements M37/86, M37/227, M37/277, M37/300, M37/428 and M37/646. The tenements are held in the name of Navigator Mining Pty Ltd, a wholly owned subsidiary of KIN. The following royalty payment may be applicable to the areas within the Cardinia Project's Bruno and Lewis areas that comprise the deposits being reported on: | | | | | 1. Gloucester Coal Ltd (formerly CIM Resources Ltd and Centenary International Mining Ltd) in respect of M37/86 - 1% of the quarterly gross value of sales for gold ounces produced, in excess of 10,000 ounces. | | | | There are no known native title interests, historical sites, wilderness areas, national park or environmental impediments over the outlined current resource areas, and there are no current impediments to obtaining a licence to operate in the area. | | Criteria | JORC Code explanation | Commentary | |-----------------------------------|---|---| | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | At Cardinia, from 1980-1985, Townson Holdings Pty Ltd ("Townson") mined a small open pit over selected historical workings at the Rangoon prospect. Localised instances of drilling relating to this mining event are not recorded and are considered insubstantial and immaterial for resource modelling. Companies involved in the collection of the majority of the gold exploration data since 1985 and prior to 2014 include: Thames Mining NL ("Thames") 1985; Mt Eden Gold Mines (Aust) NL (also Tarmoola Aust Pty Ltd "MEGM") 1986-2003; Centenary International Mining Ltd ("CIM") 1986-1988, 1991-1992; Metana Minerals NL ("Metana") 1986-1989; Sons of Gwalia Ltd ("SOG") 1989, 1992-2004; Pacmin Mining Corporation ("Pacmin") 1998-2001, and Navigator Resources Ltd ("Navigator") 2004-2014. | | | | In 2009 Navigator commissioned Runge Limited ("Runge") to complete a Mineral Resource estimate for the Bruno, Lewis, Kyte, Helens and Rangoon deposits. Runge reported a JORC 2004 compliant Mineral Resource estimate, at a cut-off grade of 0.7g/t Au, totaling 1.45Mt @ 1.3 g/t au (61,700 oz Au) for Helens and Rangoon, and totaling 4.34Mt @ 1.2 g/t au (169,700 oz Au) for Bruno, Lewis and Kyte. | | | | A trial pit (Bruno) was mined by Navigator in 2010, and a 'test parcel' of ore was extracted and transported firstly to Sons of Gwalia's processing plant in Leonora, and finally to Navigator's processing plant located at Bronzewing, where approximately 100,000 tonnes were processed at an average head grade of 2.33 g/t au (7,493 oz Au). | | Geology | Deposit type, geological setting and style of mineralisation. | The Cardinia Project area is located in the central part of the Norseman-Wiluna Greenstone Belt, which extends for some 600km on a NNW trend across the Archean Yilgarn Craton of Western Australia. | | | | The regional geology comprises a suite of NNE-North trending greenstones positioned within the Mertondale Shear Zone (MSZ) a splay limb of the Kilkenny Lineament. The MSZ denotes the contact between Archaean felsic volcanoclastics and sediment sequences in the west and Archaean mafic volcanics in the east. Proterozoic dolerite dykes and Archaean felsic porphyries have intruded the sheared mafic/felsic volcanoclastic/sedimentary sequence. | | | | Locally within the Cardinia Project area, the stratigraphy consists of intermediate, mafic and felsic volcanic and intrusive lithologies and locally derived epiclastic sediments, which strike NNW, dipping steep-to-moderately to the west. Structural foliation of the areas stratigraphy predominantly dips steeply to the east but localised inflections are common and structural orientation can vary between moderately (50-75°) easterly to moderately westerly dipping. | | | | Mineralisation at Helens is controlled by a cross-cutting fault, hosted predominantly in mafic rock units, adjacent to the felsic volcanic/sediment contacts. The ore zones are associated with increased shearing, intense alteration and disseminated sulphides. Minor supergene enrichment occurs locally within mineralised shears throughout the regolith profile. | | | | Mineralisation at Bruno-Lewis is largely controlled by the stratigraphic contact between basalt and felsic volcanics. Gold is associated with significant sulphide mineralisation in the sediments and volcaniclastics between the 2 volcanic units. Gold Is also hosted within shallowly NE-dipping lodes, associated with increased potassic-sericite alteration and quartz stockwork veining. These lodes also host the mineralisation at Kyte. Substantial supergene mineralisation sits above both styles of mineralisation. | | Criteria | JORC Code explanation | Commentary | |--|---|---| | Drill hole Information | A summary of all information material to the understanding of
the exploration results including a tabulation of the following
information for all Material drill holes: | Material drilling information for exploration results has previously been publicly reported in numerous announcements to the ASX by Navigator (2004-2014) and KIN since 2014. | | | easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | When exploration results have been reported for the resource areas, the intercepts are reported as weighted average grades over intercept lengths defined by geology or lower cut-off grades, without high grade cuts applied. Where aggregate intercepts incorporated short lengths of high grade results, these results were included in the reports. Since 2014, KIN have reported RC drilling intersections with low cut off grades of >= 0.5 g/t Au and a maximum of 2m of internal dilution at a grade of <0.5g/t Au. There is no reporting of metal equivalent values. | | Relationship between
mineralisation widths and
intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | The orientation, true width, and geometry of mineralised zones have been primarily determined by interpretation of historical drilling and continued investigation and verification of KIN drilling. Drill intercepts are reported as downhole widths not true widths. Accompanying dialogue to reported intersections normally describes the attitude of mineralisation. | | Criteria | JORC Code explanation | Commentary | |------------------------------------
---|--| | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Appropriate maps and sections are included in the main body of this report. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | Public reporting of exploration results by KIN and past tenement holders and explorers for the resource areas are considered balanced. Representative widths typically included a combination of both low and high grade assay results. All meaningful and material information relating to this mineral resource estimate is or has been previously reported. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Since 2018, a campaign of determining Bulk Densities has been undertaken. The water displacement method is used on drill samples selected by the logging geologist. These measurements are entered into the logging software interface and loaded to the Datashed database. | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | KIN intend to continue exploration and drilling activities at in the described area, with the intention to increase the project's resources. |