

Friday, 3 February 2023 ASX Code: LEL

MARKET ANNOUNCEMENT

Multiple Exceptional Drilling Results from Burke Graphite Deposit

KEY HIGHLIGHTS

- Drilling programme at Burke Tenement now completed with a total of 29 RC holes (totalling 2,589m) and 7 diamond core holes (totalling 715m).
- Initial assays from 7 RC drill holes now received, confirming the Burke Deposit as one of the highest-grade graphite deposits globally, with significant intercepts of exceptionally high grade graphite content over 20% TGC and over thick widths in multiple drill holes:
- Multiple high-grade intercepts of graphite include:
 - BGRC021: **48m @ 21.9%** TGC from 45m
 - BGRC017: 43m @ 21.6% TGC from 69m
 - BGRC016: 30m @ 23.3% TGC from 84m
 - BGRC020: 33m @ 21.9% TGC from 72m
 - BGRC018: 22m @ 20.6% TGC from 18m
 - BGRC019: 21m @ 20.3% TGC from 93m
 - BGRC015: 18m @ 20.0% TGC from 97m
 - BGRC017: **10m @ 27.0%** TGC from 10m
- Assay results from the balance of RC holes and the diamond core holes are pending.
- Drilling results to be used to upgrade current JORC Inferred Mineral Resource of 6.3Mt
 @ 16% TGC.
- Maiden RC and diamond core drilling programme at Corella Graphite Tenement, with the objective of delineating a maiden JORC Inferred Mineral Resource, will commence after the end of the Queensland wet season.

Lithium Energy Limited (ASX:LEL) (**Lithium Energy** or the **Company**) is pleased to confirm that initial assay results from Reverse Circulation (**RC**) drilling¹ confirm the 100% owned Burke Graphite Project located in Queensland, Australia (**Burke Project**) as one of the highest grade graphite deposits globally.

First Assay results received from 7 RC holes include multiple outstanding (composite) intercepts of graphite in excess of 20% Total Graphitic Carbon (TGC) (refer Tables 1 and 3).

¹ Refer LEL ASX Announcement dated 22 December 2022: Completion of RC Infill Drilling at Burke Graphite Deposit

www.lithiumenergy.com.au

LITHIUM ENERGY LIMITED

A.B.N. 94 647 135 108

Multiple Exceptional Drilling Results from Burke Graphite Deposit

These grades are exceptionally high when compared with most other known graphite deposits globally. Assays remain pending for a further 22 RC holes.

The diamond core (metallurgical and geotechnical) component of the drilling programme has also been completed at the Burke Tenement, with 715 metres drilled across 7 holes. Core samples have been submitted for assaying, with results expected to be received through the course of February/March 2023.

Lithium Energy notes that previous CSIRO testwork⁵ has confirmed Burke Graphite suitability for use in lithium ion batteries and that the Company is planning to commence Engineering Studies shortly to assess the viability of establishing a Purified Spherical Graphite (**PSG**) anode manufacturing facility in Australia using the Burke Graphite as feedstock material.

Burke Tenement Drilling

Drilling company, DDH1, has completed both the RC and diamond core component of the drilling programme at the Burke Tenement comprising:

- 2,589 metres drilled across 29 RC holes (Hole ID's BGRC010 to BGRC038); and
- 715 metres drilled across 7 diamond core holes (Hole ID's BGDD02 to BGDD08).

Initial assay results from 7 RC drill holes (BGRC015 to BGRC021) confirm the high-grade nature of the Burke Deposit, with composited graphite intersections encountered reported in Table 1:

Drill Hole ID	FROM	то	INTERSECTION	GRADE
	Metres	Metres	Metres	% TGC
BGRC015	64	115	51	14.3
including	97	115	18	20.0
BGRC016	55	115	60	17.4
including	84	114	30	23.3
BGRC017	10	20	10	27.0
BGRC017	49	112	63	18.2
including	69	112	43	21.6
BGRC018	18	40	22	20.6
BGRC019	34	114	80	13.1
including	93	114	21	20.3
BGRC020	33	105	72	15.5
including	72	105	33	21.9
BGRC021	9	94	85	19.0
including	45	93	48	21.9

Table 1 - Significant Intersections Encountered - RC Drilling - Holes BGRC015 to BGRC021

Notes:

- Intersections reported only if greater than 2 metres width and at a cut-off of 6% or higher TGC
- Intersections with greater than 20% TGC are considered to be highly significant and are highlighted in **bold** in the table.

The complete assay results (for %TC and %TGC) for RC Holes BGRC015 to BGRC021 are reported in Table 3. Details of the collar location, inclination, azimuth and depth for RC Holes BGRC015 to BGRC021 are reported in Table 2.

The balance of the assay results for both RC and diamond holes are pending and will be released when received (expected through the course of February and March 2023).

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Figure 1 shows the location of RC Holes BGRC010 to BGRC038 and the location of the two cross-section lines (shown in Figures 2 and 3) on the south-east corner of the Burke Tenement (with the results of the previous Electro Magnetic (EM) surveys² also shown).

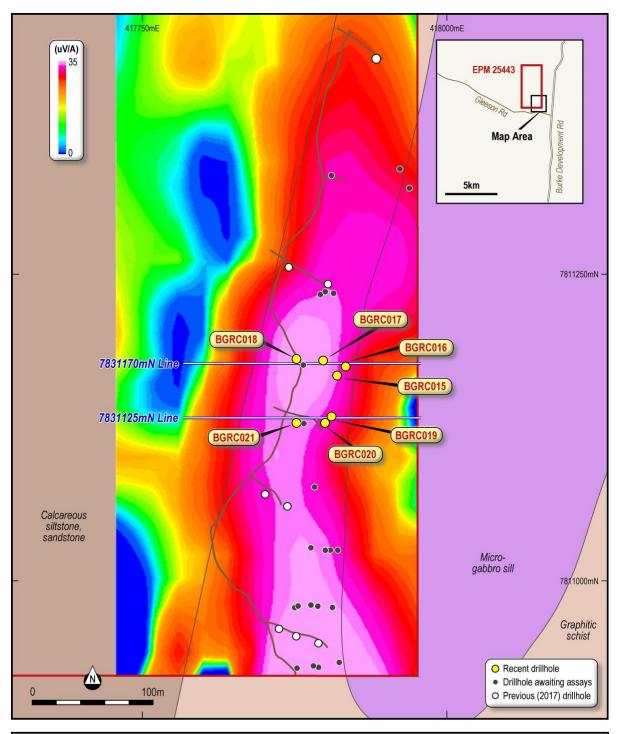
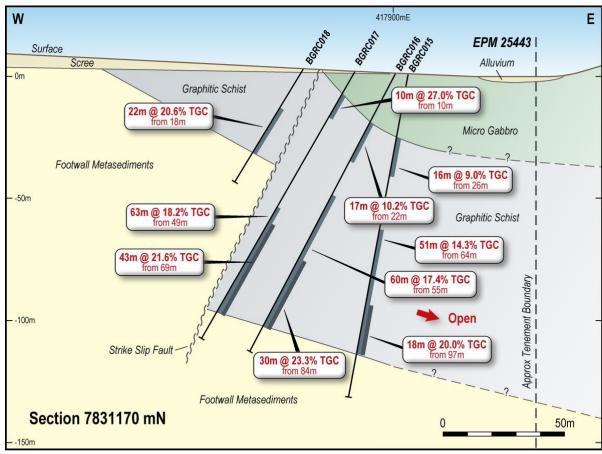


Figure 1: Location of Drillholes and Cross-Sections Lines on Burke Tenement

Refer SRK ASX Announcement dated 26 June 2018: Burke Graphite Project – New Target Area Identified from Ground Electro-Magnetic Surveys

Multiple Exceptional Drilling Results from Burke Graphite Deposit



Graphite drill sample from Burke Tenement

DDH1 RC Drill Rig at the Burke Tenement

Figure 2 shows the cross-section for Holes BGRC015 to BGRC018 on the 7831170mN line.

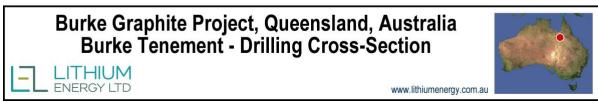


Figure 2: Cross-Section Line (7831170mN) Showing Holes BGRC015 to BGRC018 on Burke Tenement

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Figure 3 shows the cross-section for Holes BGRC019 to BGRC021 on the 7831125mN line.

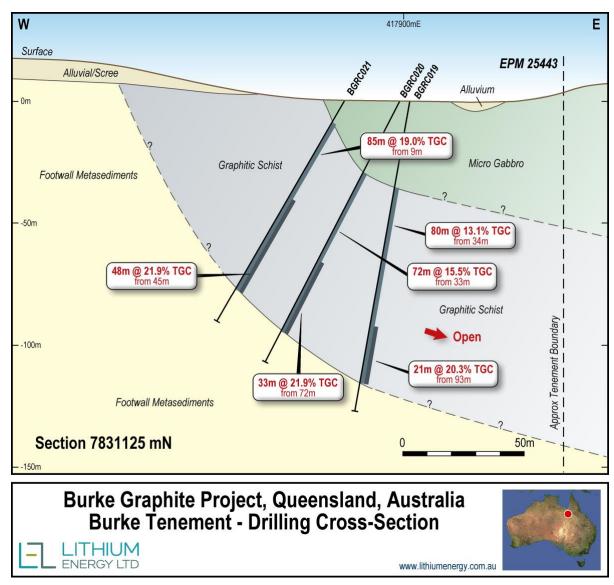


Figure 3: Cross-Section Line (7831125mN) Showing Holes BGRC019 to BGRC021 on Burke Tenement

DDH1 have also completed 7 diamond core and geotechnical holes totalling 715 metres, with assays of the core samples expected to be received in February/March 2023.

The diamond core will also provide representative graphite samples of the Burke Deposit for an extensive metallurgical, Purified Spherical Graphite (**PSG**) and anode testwork and development programme.

DDH1 will now shift to the Corella Tenement (EPM 25696), located ~150km south of the Burke Tenement, to commence a maiden drilling programme to test the extent of graphite mineralisation (identified through previous sampling and EM surveys³) with the objective of delineating a maiden JORC Inferred Mineral Resource.

Approximately 2,000 metres of RC drilling and ~200 metres of diamond drilling is planned at the Corella Tenement, which will provide assays and samples for supporting resource development and metallurgical testwork. The Corella drilling programme is expected to commence after the end of the Queensland wet season, in March/April 2023.

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Burke Graphite Project Background

The Burke Graphite Project comprises two granted Exploration Permits for Minerals (**EPM**) totalling approximately 26 square kilometres located in the Cloncurry region in North Central Queensland, where there is access to well-developed transport infrastructure to an airport at Mt Isa (~122km) and a port in Townsville (~783km) (refer Figure 4).

The Burke EPM 25443 tenement (**Burke Tenement**) is located 125km north of Cloncurry adjacent to the Mt Dromedary Graphite Project held by Novonix Limited (ASX: NVX). The Corella EPM 25696 tenement (**Corella Tenement**) is located 40km west of Cloncurry near the Flinders Highway that links Mt Isa to Townsville.

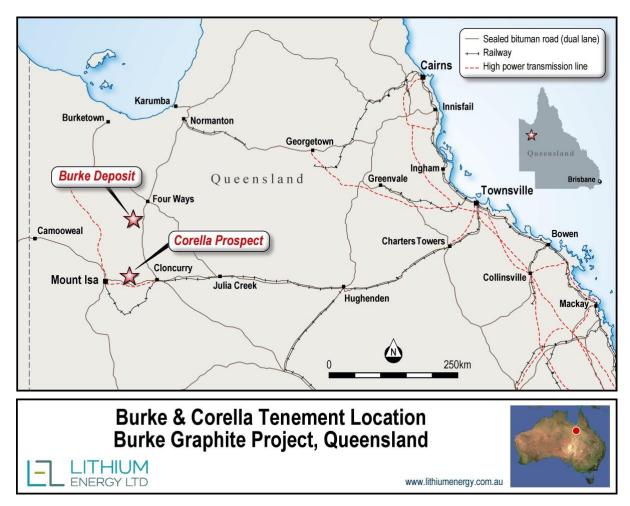


Figure 4: Burke Graphite Project Tenement Locations in North Central Queensland

Burke Deposit

A Mineral Resource Estimate (**MRE**) for the Burke Tenement previously defined a maiden Inferred Mineral Resource (**Burke Deposit**) of:

- **6.3 million tonnes @ 16.0% TGC** (with a TGC cut-off grade of 5%) for **1,000,000 tonnes** of contained graphite;
- Within the mineralisation envelope there is included higher grade material of 2.3 million tonnes @ 20.6% TGC (with a TGC cut-off grade of 18%) for 464,000 tonnes of contained graphite which will be investigated further.

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Mineral Resource				Contained	
Category	Weathering State	Mt	TGC (%)	Graphite (Mt)	Density (t/m)
Inferred Mineral Resource	Oxide	0.5	14.0	0.1	2.5
	Fresh	5.8	16.2	0.9	2.4
	Total Oxide + Fresh	6.3	16.0	1.0	2.4

Note: The Mineral Resource was estimated within constraining wireframe solids defined above a nominal 5% TGC cut-off. The Mineral Resource is reported from all blocks within these wireframe solids. Differences may occur due to rounding.

Refer Grade Tonnage Data in Table 2 of CSA Global Pty Ltd's Burke Graphite Project MRE Technical Summary dated 9 November 2017 (attached as Annexure A of Strike's ASX Announcement dated 13 November 2017: Maiden Mineral Resource Estimate Confirms Burke Project as One of the World's Highest Grade Natural Graphite Deposits

The results from the recently completed 36 hole RC and diamond core (metallurgical and geotechnical) drilling programme at the Burke Tenement will be used to upgrade the maiden inferred Mineral Resource for the Burke Deposit from an Inferred to Indicated JORC Mineral Resource category.

In addition to the high-grade nature of the deposit, the Burke Deposit:

- Comprises natural graphite that has been demonstrated to be able to be processed by standard flotation technology to international benchmark product categories. The flotation tests previously conducted have confirmed that a concentrate of purity in excess of 95% and up to 99% TGC can be produced using a standard flotation process.³
- Contains graphite from which Graphene Nano Platelets (GNP) have been successfully extracted direct from the Burke Deposit via Electrochemical Exfoliation (ECE).⁴ The ECE process is relatively low cost and environmentally friendly compared to other processes, yet it can produce very high purity Graphene products. The ECE process is however not applicable to the vast majority of worldwide graphite deposits as it requires a TGC of over 20% and accordingly the Burke Deposit has potentially significant processing advantages over other graphite deposits.
- Has highly encouraging preliminary results from CSIRO testwork (to determine its suitability for use
 as a battery anode material), including achieving a purity of 99.94 % TGC, which closely compares
 to typical industry requirements of +99.95% TGC for lithium-ion battery anode material.⁵
- Is favourably located with well-developed transport infrastructure and logistics and relative to the Lansdown Eco-Industrial Precinct near Townsville in North Queensland, which is emerging as an important precinct for the production of critical materials for battery technologies in Australia.

AUTHORISED FOR RELEASE - FOR FURTHER INFORMATION:

William Johnson Peter Smith
Executive Chairman Executive Director
T | (08) 9214 9737 T | (08) 9214 9737

ABOUT LITHIUM ENERGY LIMITED (ASX:LEL)

Lithium Energy Limited is an ASX listed battery minerals company which is developing its flagship Solaroz Lithium Brine Project in Argentina and the Burke Graphite Project in Queensland. The Solaroz Lithium Project (LEL:90%) comprises 12,000 hectares of highly prospective lithium mineral concessions located strategically within the Salar de Olaroz Basin in South America's "Lithium Triangle" in north-west Argentina. The Solaroz Lithium Project is directly adjacent to or principally surrounded by mineral concessions being developed into production by Allkem Limited (ASX/TSX:AKE) and Lithium Americas Corporation (TSX/NYSE:LAC). The Burke Graphite Project (LEL:100%) contains a high grade graphite deposit and presents an opportunity to participate in the anticipated growth in demand for graphite and graphite related products.

³ Refer SRK ASX Announcement dated 16 October 2017: Test-work confirms the potential suitability of Burke graphite for Lithium-ion battery usage and Graphene production

⁴ Refer SRK ASX announcement dated 21 April 2017: Jumbo Flake Graphite Confirmed at Burke Graphite Project, Queensland

⁵ Refer LEL ASX Announcement dated 1 December 2022: Burke Graphite Shows Excellent Lithium-Ion Battery Anode Potential

Multiple Exceptional Drilling Results from Burke Graphite Deposit

JORC CODE (2012) COMPETENT PERSON STATEMENTS

The information in this document that relates to Exploration Results in relation to drilling on the Burke EPM 25443 tenement is based on, and fairly represents, information and supporting documentation prepared by Mr Peter Smith, BSc (Geophysics) (*Sydney*) AIG ASEG, who is a Member of The Australasian Institute of Geoscientists (**AIG**). Mr Smith is a Director of the Company (since 18 March 2021). Mr Smith has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves" (JORC Code). Mr Smith has approved and consented to the inclusion in this document of the matters based on his information in the form and context in which it appears.

The Competent Person(s) named below have been previously engaged by Strike Resources Limited (ASX:SRK) (**Strike**), the former parent company of Lithium Energy Limited (and subsidiaries) that hold the interests in the Burke Graphite Project. Lithium Energy Limited was spun out of Strike into a new ASX listing in May 2021.

- (a) The information in this document that relates to Mineral Resources in relation to the Burke Graphite Project is extracted from the following ASX market announcement made by Strike dated:
 - 13 November 2017 entitled "Maiden Mineral Resource Estimate Confirms Burke Project as One of the World's Highest-Grade Natural Graphite Deposits".

The information in the original announcement (including the CSA Global MRE Technical Summary in Annexure A) that relates to these Mineral Resources is based on information compiled by Mr Grant Louw under the direction and supervision of Dr Andrew Scogings. Dr Scogings takes overall responsibility for this information. Dr Scogings and Mr Louw are both former employees of CSA Global Pty Ltd, who had been engaged by Strike to provide mineral resource estimate services. Dr Scogings is a Member of AlG and the Australasian Institute of Mining and Metallurgy (AusIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement (referred to above).

- (b) The information in this document that relates to metallurgical test work results in relation to the Burke Graphite Project is extracted from the following ASX market announcements made by Strike dated:
 - 16 October 2017 entitled "Test-work confirms the potential suitability of Burke graphite for lithium-ion battery usage and Graphene production".
 - 13 November 2017 entitled "Maiden Mineral Resource Estimate Confirms Burke Project as One of the World's Highest-Grade Natural Graphite Deposits".

The information in the original announcements that relates to these metallurgical test work matters is based on, and fairly represents, information and supporting documentation prepared by Mr Peter Adamini, BSc (Mineral Science and Chemistry), who is a Member of AuslMM. Mr Adamini is a full-time employee of Independent Metallurgical Operations Pty Ltd, who had been engaged by Strike to provide metallurgical consulting services. Mr Adamini has the requisite experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code (2012). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements (referred to above). The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements (referred to above).

Multiple Exceptional Drilling Results from Burke Graphite Deposit

- (c) The information in this document that relates to other Exploration Results in relation to the Burke Graphite Project is extracted from the following ASX market announcements released by:
 - (i) Lithium Energy dated:
 - 27 September 2021 entitled "High Grade Burke Graphite to be Optimised for Lithium Battery Application"
 - 9 July 2021 entitled "Graphene from Burke Graphite Project Opens Up Significant Lithium-Ion Battery Opportunity".
 - (ii) Strike dated:
 - 21 April 2017 entitled "Jumbo Flake Graphite Confirmed at Burke Graphite Project, Queensland".
 - 13 June 2017 entitled "Extended Intersections of High-Grade Graphite Encountered at Burke Graphite Project".
 - 21 June 2017 entitled "Further High-Grade Intersection Encountered at Burke Graphite Project".
 - 16 October 2017 entitled "Test-work confirms the potential suitability of Burke graphite for lithium-ion battery usage and Graphene production".
 - 13 November 2017 entitled "Maiden Mineral Resource Estimate Confirms Burke Project as One of the World's Highest-Grade Natural Graphite Deposits".
 - 26 June 2018 entitled "Burke Graphite Project New Target Area Identified from Ground Electro-Magnetic Surveys".

The information in the original announcements is based on, and fairly represents, information and supporting documentation prepared and compiled by Mr Peter Smith (BSc (Geophysics) (Sydney) AIG ASEG). Mr Smith is a Member of AIG, a consultant to Strike and also a Director of the Company (since 18 March 2021). Mr Smith has the requisite experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code (2012). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements (referred to above). The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements (referred to above).

Lithium Energy's ASX Announcements may be viewed and downloaded from the Company's website: www.lithiumenergy.com.au or the ASX website: www.asx.com.au under ASX code "LEL".

Strike's ASX Announcements may be viewed and downloaded from the Company's website: www.strikeresources.com.au or the ASX website: www.asx.com.au under ASX code "SRK".

FORWARD LOOKING STATEMENTS

This document contains "forward-looking statements" and "forward-looking information", including statements and forecasts which include without limitation, expectations regarding future performance, costs, production levels or rates, mineral reserves and resources, the financial position of Lithium Energy, industry growth and other trend projections. Often, but not always, forward-looking information can be identified by the use of words such as "plans", "expects", "is expected", "is expecting", "budget", "scheduled", "estimates", "forecasts", "intends", "anticipates", or "believes", or variations (including negative variations) of such words and phrases, or state that certain actions, events or results "may", "could", "would", "might", or "will" be taken, occur or be achieved. Such information is based on assumptions and judgements of management regarding future events and results. The purpose of forward-looking information is to provide the audience with information about management's expectations and plans. Readers are cautioned that forward-looking information involves known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of Lithium Energy and/or its subsidiaries to be materially different from any future results, performance or achievements expressed or implied by the forward-looking information. Such factors include, among others, changes in market conditions, future prices of minerals/commodities, the actual results of current production, development and/or exploration activities, changes in project parameters as plans continue to be refined, variations in grade or recovery rates, plant and/or equipment failure and the possibility of cost overruns.

Forward-looking information and statements are based on the reasonable assumptions, estimates, analysis and opinions of management made in light of its experience and its perception of trends, current conditions and expected developments, as well as other factors that management believes to be relevant and reasonable in the circumstances at the date such statements are made, but which may prove to be incorrect. Lithium Energy believes that the assumptions and expectations reflected in such forward-looking statements and information are reasonable. Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used. Lithium Energy does not undertake to update any forward-looking information or statements, except in accordance with applicable securities laws.

Multiple Exceptional Drilling Results from Burke Graphite Deposit

ANNEXURE A

JORC CODE (2012 EDITION) CHECKLIST OF ASSESSMENT AND REPORTING CRITERIA FOR EXPLORATION RESULTS

Section 1 Sampling Techniques and Data

Criteria	Explanation	Comments
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Sampling Methodology – Diamond Drill Core Detailed geochemical sampling was routinely conducted on a 1-metre interval basis of Quarter-Split Triple Tube HQ drill core collected from the Burke Graphite Project. The HQ and PQ triple tube drill core was initially split 50% using a diamond core saw cutting machine. Half-split core is being retained initially as a visual reference or for use as a bulk metallurgical sample. The remaining half-core was then split 50% into quarter-core, again using a manual core saw. The quarter-split core was routinely submitted for geochemical analysis. Samples were analysed for %TGC by Intertek method C73/CSA and for %TC by Intertek method CSA01. Sulphur was assayed on drill core by Intertek method FP1/OM. The remaining Quarter-Split Core was used as a metallurgical sample. Selective Petrological sampling of some lithological units identified in drill core was undertaken. These petrology samples are by necessity a small sample, but were selected on the basis of being "typical" of the lithological unit from which they were collected. Sampling Methodology – Reverse Circulation Sampling of the RC drilling was done via a Cyclone with splitter unit attached to the drill rig, with samples taken every 1m. Samples were analysed for %TGC by Intertek method C73/CSA and for %TC by Intertek method CSA01. Sulphur was assayed on drill core by Intertek method FP1/OM
Drilling techniques	Drill type (eg core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond Drill Core DDH1 Drilling undertook the diamond drilling programme and supplied a UDR650 multi-purpose track mounted rig. HQ and PQ Triple Tube diamond core was selected as the optimum sampling method for drilling the graphite mineralised zones at the Burke Graphite Project, on the basis of maximising recovery of graphite, as the method minimises disturbance to core, limiting potential losses in drilling water. Drill core was oriented with a Reflex Act III orientation tool. Reverse Circulation DDH1 Drilling undertook the reverse circulation (RC) drilling programme and supplied a UDR650 multi-purpose track mounted rig. A larger diameter RC hammer was used to drill an initial pre-collar of 4m in the soil-colluvium profile, which was then cased off using PVC pipe to avoid unconsolidated material falling behind the drill rods. A combined Cyclone and Sample Splitter unit was fitted to the side of the drill rig. The Cyclone collected a 75% bulk sample in a big calico bag and a 25% sample in a small calico bag.

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Criteria	Explanation	Comments
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and	Diamond Drilling
recovery	results assessed. • Measures taken to maximise sample	Diamond Drill Core recovery was routinely recorded every drill run (core barrel of 3m), with overall recovery of > 92.5% achieved for the drillhole.
	recovery and ensure representative nature of the samples.	RC Drilling
	Whether a relationship exists	Recovery from the Graphitic Schist zone was 100%.
	between sample recovery and grade and whether sample bias may have	
	occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have have applicable and applicable.	Logging Drill Core
	been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. • Whether logging is qualitative or	Core was initially cleaned to remove drill mud and greases. The core was then orientated using "Top of Core" marks from the Reflex orientation tool, marked into 1m intervals and the core recovery recorded. The core was then photographed using high-resolution digital camera and then geologically logged.
	quantitative in nature. Core (or costean, channel, etc) photography. • The total length and percentage of	Geological logging of Drill Core was routinely undertaken on a systematic one-metre interval basis, recording the following geological data:
	the relevant intersections logged.	Core Recovery
		Rock Lithology
		3. Colour
		4. Minerals
		5. Texture
		6. Hardness
		7. Minerology
		8. Oxidation
		9. Graphite Content
		Geotechnical data was collected, including Rock Quality Designation (RQD), Fracture Density and orientations of structures such as faults, fractures, joints, foliation, bedding, veins recorded.
		The Specific Gravity was collected using an <i>Archimedes Principle</i> water displacement device.
		The core was then split into one half and then into 2x quarters using a manual core saw. One ¼ split core was used for geochemical analysis and the other ¼ split core used for bulk Variability metallurgical testing.
		The core was then stored in a secured container in Mt Isa.
		Logging – Reverse Circulation Drilling
		Geological logging of reverse circulation drill chips was routinely undertaken for each 1-metre interval using similar procedures to core logging (described above).
		Visual record samples were collected from the large bulk sample and contents placed into a 20-compartment plastic tray. Each chip tray was photographed using a high-resolution digital camera.
Subsampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube.	One-metre intervals of quarter-split drill core and RC drill chips were submitted into an Intertek sample preparation laboratory in Townsville, Queensland. Geochemical analysis was subsequently performed at an Intertek laboratory in
	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	Perth, Western Australia.

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Criteria	Explanation	Comments
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples were analysed for %TGC by Intertek method C73/CSA and for %TC by Intertek method CSA01. Sulphur was assayed on drill core by Intertek method FP1/OM.
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	No work has been completed to determine if sample size is appropriate to the grain size of the material being sampled, with grain size of the graphite being determined post drilling by combination of petrology and metallurgical analysis.
Quality of	• The nature, quality and	Geochemical Analysis
assay data and laboratory tests	appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	One-metre intervals of Quarter-Split Drill Core and RC Drill Chips were submitted into Intertek sample preparation laboratory in Townsville. Geochemical analysis was subsequently performed at Intertek laboratory in Perth.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	The laboratory inserted its own standards, Certified Reference Material (CRM) plus blanks and completed its own QAQC. Whilst company standards, duplicates and blanks were routinely inserted every 10 th sample.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	The QA/QC protocols adopted for Burke Graphite drilling programme involved routinely inserting a Certified Graphite Reference Standard (7 different Standards used), duplicates of Blank sample into the tag book number sequence every 10
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	samples. The QA/QC sample density is considered to be more than adequate and is very robust. Additional QA/QC controls were also provided by internal laboratory repeats and standards.
	Discuss any adjustment to assay data.	Laboratory performance and all reported analytical results was statistically evaluated using QA/QC monitoring software All Certified Reference Materials reported within 1 Standard Deviation of the Certified value.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in	M.H. Lodewyk Pty Ltd licensed surveyors of Mt Isa were contracted to accurately survey each drillhole collar to submetre accuracy, using a Differential Positioning System (DGPS instrument, in the MGA Zone 54 projection.
	 Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Downhole surveys were routinely collected every 18m, using a <i>Reflex</i> Gyro after completion of the hole, with surveying carried out both going into the hole (inside of rods), and also coming out of the hole. Results were averaged to determine the final drillhole deviation information.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the 	Data was routinely collected on a continuous one-metre interval basis. Samples were collected at one-metre interval down each hole.

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Criteria	Explanation	Comments
	Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill Hole Orientation Drill holes were designed to intersect graphite mineralisation at perpendicular to strike observed in outcrop. Core Orientation Core orientation was routinely undertaken during drilling using a Reflex ACT III tool. The unit is attached to the top of the core inner tube barrel and initialised. The unit is removed and the orientation marked on the Top of Core using a coloured paint marker or chinagraph pencil.
Sample security	The measures taken to ensure sample security.	All samples were collected by company consultants, retaining chain of custody until delivery to laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken given early stage of exploration project. Company technical staff will review and implement procedures as appropriate.

Section 2 Reporting of Exploration Results

Criteria	Explanation	Comments
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Exploration Permit for Minerals (EPM) No. 25443 "Mt Dromedary" (Burke Tenement) was lodged with the Queensland Government Department of Mines and Energy on 2 December 2013. The tenement was granted on 4 September 2014 to Burke Minerals Pty Ltd (BMPL), for an initial period of five years, which was renewed for a further 5 years in October 2019 (expiring on or about 4 September 2024). Lithium Energy Limited (ASX:LEL) (LEL) is the ultimate parent company of BMPL.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Mt Dromedary graphite occurrences were first identified by Bill Bowes in the 1970's. Mr Bowes was the manager of the nearby Coolullah Station. A few small pits were excavated and no further work was carried out. The Mt Dromedary area was explored by Nord Resources (Pacific) Pty Ltd (EPM 6961) from 1991-1999, Nord collected numerous rock chips and submitted them for petrological and preliminary metallurgical appraisal by Peter Stitt and Associates. The preliminary flotation studies were encouraging and indicated 60-70% flake graphite (>75um size), whilst the floatation techniques utilised failed to achieve suitable recoveries. CRAE Exploration entered into a JV with Nord focusing on Copper exploration, and also did further rock chip sampling and trenching. CRAE's internal Advanced Technical Development division did a brief petrographical review which indicated the samples were predominately < 75um. Based on this advice exploration activity by CRAE for Graphite ceased.

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Criteria	Explanation	Comments
Geology	Deposit type, geological setting and style of mineralisation.	The Mt Dromedary graphite project on EPM25443 was identified by previous exploration dating back to the 1970's, and is hosted by a mapped graphitic schist (Qld Dept NRM) as a sub unit of the Corella Formation, within the Mary Kathleen Group and is of Proterozoic age. The graphitic schists within the Burke Minerals EPM 25443, are intruded by the Black Mountain (1685-1640Ma) gabbro, and sills, with subsequent metamorphism to amphibolite grade during the Isan Orogeny 1600-1580Ma. The Corella graphite project on EPM 25696 also covers a sequence of mapped graphitic schists within the Corella Formation, which also have been intruded by gabbro dykes and sills, with subsequent metamorphism to amplibolite grade during the Isan Orogeny 1600-1580Ma. At both projects, the style of mineralisation sought is crystalline graphite within the graphitic schists
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth of hole length. • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Holes were orientated to intersect outcropping graphitic schists with a dip angle of 60o, the drillhole azimuth was aimed to perpendicular intersect graphite beds. Downhole surveys were taken with the Reflex Gyro every 6m. With the survey being done within the drill rods, by running the Gyro down the inside of the rods at the end of the drillhole, surveying going down and coming out of the hole. Diamond Drill Core Diamond core drilling was undertaken and HQTT core recovered in 3m core barrels. Core orientation was routinely undertaken during drilling using a Reflex ACT III tool. Reverse Circulation The RC hammer bit had a measured diameter of 123mm. A larger diameter RC hammer was used to drill an initial precollar of 4m in the soil-colluvium profile, which was then cased off using PVC pipe to avoid unconsolidated material falling behind the drill rods. Full details of the collar location, azimuth, depth for Drillhole ID's BGRC015 to BGRC021 are reported in Table 2.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Graphite intersections were aggregated into composited mineralised intervals on the basis of >2m widths and >10% TGC for "High Grade". Intersection widths of >10m and >10% TGC were regarded as "significant". The composited graphite Intersections for Drillhole ID's BGRC015 to BGRC021 are reported in Table 1. The complete assays (for %TC and %TGC) for Drillhole ID's BGRC015 to BGRC021 are reported in Table 3.

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Criteria	Explanation	Comments
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Foliation structural data from the borehole televiewer and structural core measurements indicates the graphite mineralisation was intersected orthogonally down-dip and is close to true width. The graphite schist is relatively undisturbed other than broad folding, offset faulting and the foliation is interpreted to represent original bedding. Intercept widths are down hole widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts would be included for any significant discovery being reported. These should include, but not be limited too plan view of drill hole collar locations and appropriate sectional views.	Figure 1 shows the location of RC Holes BGRC010 to BGRC038 (with Holes BGRC015 to BGRC021 identified) and the location of the two cross-section lines (shown in Figures 2 and 3) on the south-east corner of the Burke Tenement (with the results of the previous (2018) EM surveys also shown). Figure 2 shows the cross-section for RC Holes BGRC015 to BGRC018 on the 7831170mN line. Figure 3 shows the cross-section for RC Holes BGRC019 to BGRC021 on the 7831125mN line.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The information reported in this document is factual in nature and considered to be balanced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations, geophysical survey results, geochemical survey results, bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or containing substances.	A 9 hole RC and diamond core drilling programme (in 2017) and various geophysical surveys and metallurgical test work (on samples collected from the 2017 drilling programme) have been undertaken in respect of the Burke Tenement, which have been (where material and relevant) disclosed in ASX market announcements released by LEL and Strike Resources Limited (ASX:SRK) (Strike), the former parent company of LEL (and LEL subsidiaries) – LEL was spun out of Strike into a new ASX listing in May 2021.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, providing this information is not commercially sensitive. 	A review of the data from the (2022/2023) RC and diamond core drilling programme will be undertaken to increase the geological understanding of the graphite deposit on the Burke Tenement. The Company will seek to upgrade the current JORC Inferred Mineral Resource on the Burke Tenement to a higher standard JORC Indicated Mineral Resource category. The diamond core will also provide representative graphite samples for a planned metallurgical, Purified Spherical Graphite (PSG) and anode testwork and development programme. The upgrade in the resource classification and the metallurgical and PSG optimisation testwork will also support a planned Engineering Study to assess the viability of establishing a PSG Anode manufacturing facility, using the Burke Tenement graphite as feedstock material.

Multiple Exceptional Drilling Results from Burke Graphite Deposit

Table 2 - Drillhole Collar Location, Azimuth and Depth for RC Holes BGRC015 to BGRC021

	Easting	Northing	Elevation	Inclination	Azimuth(Grid)	Final Depth
Hole ID	GDA94-MG	GA Zone 54	AHD	Degrees	Degrees	Metres
BGRC 015	417913	7831166	141	75	270	133
BGRC 016	417908	7831165	141.5	60	270	127
BGRC 017	417896	7831173	142	60	270	125
BGRC 018	417876	7831176	142.5	60	270	52
BGRC 019	417896	7831122	141	75	270	127
BGRC 020	417898	7831124	141.2	60	270	118
BGRC 021	417876	7831125	142	60	270	103

Table 3 – Total Carbon (TC) and Total Graphitic Carbon (TGC) Assays Results
- RC Holes BGRC015 to BGRC021

	Intersection	(metres)		% TGC
Drillhole ID	From	То	% Total Carbon (TC)	
BGRC015	0	1	0.71	0.4
BGRC015	1	2	1.01	0.2
BGRC015	2	3	1.25	0.2
BGRC015	3	4	0.65	0.3
BGRC015	4	5	0.49	0.3
BGRC015	5	6	0.75	0.3
BGRC015	6	7	1.6	0.3
BGRC015	7	8	3.42	0.6
BGRC015	8	9	3.97	2.7
BGRC015	9	10	2.59	2.2
BGRC015	10	11	3.29	3.1
BGRC015	11	12	4.47	4.1
BGRC015	12	13	4.13	4
BGRC015	13	14	0.45	0.4
BGRC015	14	15	0.23	0.2
BGRC015	15	16	0.12	Х
BGRC015	16	17	0.12	0.1
BGRC015	17	18	0.03	Х
BGRC015	18	19	0.09	Х
BGRC015	19	20	0.08	Х
BGRC015	20	21	0.13	0.1
BGRC015	21	22	0.07	Χ
BGRC015	22	23	0.06	Χ
BGRC015	23	24	0.11	Χ
BGRC015	24	25	3.02	2.9
BGRC015	25	26	6.01	5.7
BGRC015	26	27	7.45	7.3
BGRC015	27	28	7.87	7.5
BGRC015	28	29	6.16	6
BGRC015	29	30	4.62	4.6
BGRC015	30	31	6.73	6.3
BGRC015	31	32	8.5	8.3
BGRC015	32	33	9.23	8.6
BGRC015	33	34	8.44	8.2
BGRC015	34	35	10.97	10.3
BGRC015	35	36	12.47	11.9
BGRC015	36	37	4.46	4.1
BGRC015	37	38	14.26	12.7
BGRC015	38	39	9.22	8.8

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC015	39	40	11.02	10.3
BGRC015	40	41	13.66	12.9
BGRC015	41	42	16.92	15.8
BGRC015	42	43	2.77	2.7
BGRC015	43	44	4.32	4
BGRC015	44	45	3.97	3.8
BGRC015	45	46	4.13	3.6
BGRC015	46	47	4.4	3.9
BGRC015	47	48	7.24	7.1
BGRC015	48	49	4.14	3.9
BGRC015	49	50	2.64	2.4
BGRC015	50	51	2.71	2.7
BGRC015	51	52	3.94	3.8
BGRC015	52	53	3.81	3.8
BGRC015	53	54	2.5	2.4
BGRC015	54	55	2.1	2
BGRC015	55	56	1.77	1.7
BGRC015	56	57	2.08	2
BGRC015	57	58	3.95	3.8
BGRC015	58	59	8.47	8.1
	59	60	4.76	4.6
BGRC015				
BGRC015	60	61	8.83	8.3
BGRC015	61	62	6.1	5.3
BGRC015	62	63	5.3	5.1
BGRC015	63	64	4.89	4.8
BGRC015	64	65	12.88	12.1
BGRC015	65	66	15.59	13.2
BGRC015	66	67	12.82	11.3
BGRC015	67	68	18.28	15.3
BGRC015	68	69	20.91	19
BGRC015	69	70	13.77	11.7
BGRC015	70	71	11.68	10.6
BGRC015	71	72	7.33	7
BGRC015	72	73	10.73	9.6
BGRC015	73	74	11.83	9.6
BGRC015	74	75	12.4	10.4
BGRC015	75	76	10.17	8.9
BGRC015	76	77	7.97	7.4
BGRC015	77	78	7.43	6.6
BGRC015	78	79	7.93	7.4
BGRC015	79	80	7.07	5.9
BGRC015	80	81	9.29	8.2
BGRC015	81	82	7.01	6.4
BGRC015	82	83	6.67	6.1
BGRC015	83	84	8.73	7.9
BGRC015	84	85	8.76	8
BGRC015	85	86	8.31	7
BGRC015	86	87	8.32	7.6
BGRC015	87	88	8.35	7.6
BGRC015	88	89	8.91	8.1
BGRC015	89	90	15.4	13.9
BGRC015	90	91	17.45	14.7
BGRC015	91	92	18.53	15.2
BGRC015	92	93	19.63	16.6
BGRC015	93	94	21.04	18.2
BGRC015	94	95	21.02	19.1
BGRC015	95	96	21.02	19.3
BGRC015	96	97	21.6	19.4
BGRC015	97	98	22.01	19.4
	98	99	23.09	19.6
BGRC015	30	99	23.09	19.0

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC015	99	100	20.88	19.4
BGRC015	100	101	23.44	22.4
BGRC015	101	102	22.72	20.2
BGRC015	102	103	23.57	21.7
BGRC015	103	104	23.31	19.8
BGRC015	104	105	22.78	18.5
BGRC015	105	106	23.3	20.5
BGRC015	106	107	23.56	21.1
BGRC015	107	108	23.08	19.7
BGRC015	108	109	22.13	21.4
BGRC015	109	110	22.24	19
BGRC015	110	111	26.23	20.2
BGRC015	111	112	23.68	19.9
BGRC015	112	113	20.8	17.8
BGRC015	113	114	21.11	18.7
BGRC015	114	115	24.77	20.8
BGRC015	115	116	2.36	2.3
BGRC015	116	117	0.86	0.8
BGRC015	117	118	0.54	0.5
BGRC015	118	119	0.47	0.4
BGRC015	119	120	0.5	0.5
BGRC015	120	121	0.53	0.5
BGRC015	121	122	0.44	0.3
BGRC015	122	123	0.21	0.2
BGRC015	123	124	0.32	0.3
BGRC015	124	125	0.36	0.3
BGRC015	125	126	0.15	0.1
BGRC015	126	127	0.17	0.1
BGRC015	127	128	0.32	0.3
BGRC015	128	129	0.2	0.2
BGRC015	129	130	0.14	Х
BGRC015	130	131	0.12	0.1
BGRC015	131	132	0.12	0.1
BGRC015	132	133	0.13	0.1
BGRC016	0	1	1.38	0.4
BGRC016	1	2	0.81	0.2
BGRC016	2	3	0.47	0.3
BGRC016	3	4	0.43	0.3
BGRC016	4	5	0.19	0.1
BGRC016	5	6	0.05	X
BGRC016	6	7	0.05	X
BGRC016	7	8	0.09	Х
BGRC016	8	9	0.06	Х
BGRC016	9	10	0.12	Х
BGRC016	10	11	0.18	0.1
BGRC016	11	12	0.29	0.1
BGRC016	12	13	0.12	X
BGRC016	13	14	0.22	0.2
BGRC016	14	15	0.13	X
BGRC016	15	16	0.1	X
BGRC016	16	17	0.06	X
BGRC016	17	18	0.06	X
BGRC016	18	19	0.04	X
BGRC016	19	20	0.4	0.3
BGRC016	20	21	0.14	0.1
BGRC016	21	22	4.23	4.2
BGRC016	22	23	21.14	20.9
55110010				25.9
BGRC016	23	74	/n.5	
BGRC016 BGRC016	23 24	24 25	26.5 8.94	7.9

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (n	netres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC016	26	27	10.16	9.9
BGRC016	27	28	9.27	9.3
BGRC016	28	29	8.67	8.6
BGRC016	29	30	10.45	10.3
BGRC016	30	31	12.58	12.6
BGRC016	31	32	11.74	11.2
BGRC016	32	33	7.91	7.6
BGRC016	33	34	4.37	4.2
BGRC016	34	35	4.51	4.5
BGRC016	35	36	8.96	8.9
BGRC016	36	37	8.99	8.8
BGRC016	37	38	7.67	7.5
BGRC016	38	39	7.46	7.4
BGRC016	39	40	2.56	2.5
BGRC016	40	41	3.16	3.1
BGRC016	41	42	2.17	2.1
BGRC016	42	43	2.16	2.1
BGRC016	43	44	3.32	3.3
BGRC016	44	45	2.18	2.1
BGRC016	45	46	2.55	2.4
BGRC016	46	47	4.54	4.5
BGRC016	47	48	5.45	5.4
BGRC016	48	49	3.68	3.5
BGRC016	49	50	3.36	3.1
BGRC016	50	51	2.97	2.8
BGRC016	51	52	4.41	4.1
BGRC016	52	53	3.55	3.4
BGRC016	53	54	4.08	3.9
BGRC016	54	55	3.9	3.7
BGRC016	55	56	15.62	15.4
BGRC016	56	57	7.01	6.8
BGRC016	57	58	8.34	7.6
BGRC016	58	59	11.11	11.1
BGRC016	59	60	10.72	10.6
BGRC016	60 61	61 62	13.31 13.75	13 12.5
BGRC016 BGRC016	62	63	9.56	9.2
BGRC016	63	64	11.81	11.1
BGRC016	64	65	9.5	9.2
BGRC016	65	66	6.69	6.3
BGRC016	66	67	7.84	7.7
BGRC016	67	68	8.18	7.6
BGRC016	68	69	9.97	9.4
BGRC016	69	70	8.68	8.4
BGRC016	70	70	8.68	8.6
BGRC016	71	72	10.33	10.2
BGRC016	72	73	9.04	8.5
BGRC016	73	74	5.92	5.5
BGRC016	74	75	8.43	7.9
BGRC016	75	76	12.32	12.2
BGRC016	76	77	19.36	17.3
BGRC016	77	78	18.77	17.3
BGRC016	78	79	18.55	18.2
BGRC016	79	80	18.17	16.1
BGRC016	80	81	16.66	16.4
BGRC016	81	82	15.23	14.5
BGRC016	82	83	14.3	13.6
BGRC016	83	84	18.2	16.6
BGRC016	84	85	21.07	19.7
BGRC016	85	86	22.51	19.9
·				

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (n	netres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC016	86	87	23.42	21.5
BGRC016	87	88	26.41	24.6
BGRC016	88	89	22.87	21.5
BGRC016	89	90	23.76	22.8
BGRC016	90	91	24.86	24
BGRC016	91	92	28.69	26
BGRC016	92	93	27.54	26.4
BGRC016	93	94	27.2	24.7
BGRC016	94	95	25.9	22.3
BGRC016	95	96	28.63	27.9
BGRC016	96	97	28.98	26.7
BGRC016	97	98	31.02	30.9
BGRC016	98	99	28.18	26.9
BGRC016	99	100	23.35	21.9
BGRC016	100	101	23.59	22.7
BGRC016	101	102	22.89	19.7
BGRC016	102	103	24.54	23.9
BGRC016	103	103	21.52	20
BGRC016	103	105	20.95	20.4
BGRC016	104	106	19.77	18.3
BGRC016 BGRC016	106 107	107 108	21.16 25.35	20.3 25
BGRC016	107	109		
			26.27	23.9
BGRC016	109	110	27.75	23.3 22.7
BGRC016	110	111 112	23.21 26.21	
BGRC016	111 112	112	26.21	24.9
BGRC016				24.5
BGRC016	113	114	25.33	22.1
BGRC016	114	115	18.92	18
BGRC016	115	116	0.48	0.4
BGRC016	116	117	0.68	0.3
BGRC016	117	118	0.55	0.5
BGRC016	118	119	0.44	0.3
BGRC016	119	120	0.45	0.4
BGRC016	120	121	0.37	0.3
BGRC016	121	122	0.26	0.2
BGRC016	122	123	0.22	0.1
BGRC016	123	124	0.18	X
BGRC016	124	125	0.18	X
BGRC016	125	126	0.17	X
BGRC016	126	127	0.29	0.2
BGRC017	0	1	2.71	0.7
BGRC017	1	2	0.63	0.1
BGRC017	2	3	0.14	X
BGRC017	3	4	0.98	0.1
BGRC017	4	5	0.54	0.1
BGRC017	5	6	0.85	X
BGRC017	6	7	0.38	0.1
BGRC017	7	8	0.36	0.2
BGRC017	8	9	0.9	0.3
BGRC017	9	10	6.35	5
BGRC017	10	11	26.67	21.6
BGRC017	11	12	25.91	24.3
BGRC017	12	13	31.27	29.2
BGRC017	13	14	30.86	28.1
BGRC017	14	15	28.59	27.5
BGRC017	15	16	36.47	35.7
BGRC017	16	17	32.62	30.1
BGRC017	17	18	27.77	26.8
BGRC017	18	19	27.51	26.3

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (r	netres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC017	19	20	21.57	20.4
BGRC017	20	21	10.7	10.4
BGRC017	21	22	7.68	7.3
BGRC017	22	23	5.53	5.3
BGRC017	23	24	5.6	5.4
BGRC017	24	25	4.16	4.1
BGRC017	25	26	6.2	5.6
BGRC017	26	27	6.44	6.2
BGRC017	27	28	4.66	4.4
BGRC017	28	29	4.12	3.9
BGRC017	29	30	4.82	4.8
BGRC017	30	31	5.95	5.9
BGRC017	31	32	6.83	6.3
BGRC017	32	33	6.55	6.3
BGRC017	33	34	11.49	11.2
BGRC017	34	35	5.11	5
BGRC017	35	36	4.56	4.4
BGRC017	36	37	3.45	3.2
BGRC017	37	38	3.08	2.9
BGRC017	38	39	2.09	1.9
BGRC017	39	40	2.62	2.4
BGRC017	40	41	3.69	3.4
BGRC017	41	42	5.07	4.8
BGRC017	42	43	3.56	3.4
BGRC017	43	44	3.12	2.8
BGRC017	44	45	3.06	2.7
BGRC017	45	46	3.62	3.4
BGRC017	46	47	3.86	3.5
BGRC017	47	48	4.23	4
BGRC017	48	49	4.6	4.3
BGRC017	49	50	11.9	11.3
BGRC017	50	51	9.1	9
BGRC017	51 52	52 53	11.77	11.3 13
BGRC017 BGRC017	53	54	13.35 13.06	12.8
BGRC017	54	55	16.14	14.8
BGRC017	55	56	12.22	11.1
BGRC017	56	57	8.68	8.1
BGRC017	57	58	13.45	13.2
BGRC017	58	59	16.63	16
BGRC017	59	60	15.33	14.4
BGRC017	60	61	15.46	15.3
BGRC017	61	62	10.19	9.2
BGRC017	62	63	8.06	7.5
BGRC017	63	64	8.17	7.6
BGRC017	64	65	10.58	9.9
BGRC017	65	66	7.68	7
BGRC017	66	67	5.18	5
BGRC017	67	68	8.42	7.9
BGRC017	68	69	17.34	15.5
BGRC017	69	70	21.17	20.6
BGRC017	70	71	19.47	18.5
BGRC017	71	72	17.69	16.3
BGRC017	72	73	17.08	15.7
BGRC017	73	74	16.32	15.5
BGRC017	74	75	14.43	13.2
BGRC017	75	76	16.67	15.2
BGRC017	76	77	18.9	18.8
BGRC017	77	78	26.08	23.5
BGRC017	78	79	30.79	29.9

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (n	netres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC017	79	80	29.75	26.8
BGRC017	80	81	27.6	27.4
BGRC017	81	82	30.88	29.4
BGRC017	82	83	24.28	23.8
BGRC017	83	84	21.67	19.1
BGRC017	84	85	27.54	26.1
BGRC017	85	86	24.61	22.8
BGRC017	86	87	23.42	22.5
BGRC017	87	88	22.23	20.1
BGRC017	88	89	23.27	21.7
BGRC017	89	90	26.48	24.2
BGRC017	90	91	27.94	25.2
BGRC017	91	92	31.51	29.4
BGRC017	92	93	29.15	28.5
BGRC017	93	94	24.47	21.8
BGRC017	94	95	21.34	17.9
BGRC017	95	96	21.61	19.9
BGRC017	96	97	21.19	20.8
BGRC017	97	98	22.43	22.2
BGRC017	98	99	21.1	21
BGRC017	99	100	20.57	20.5
BGRC017	100	101	20.25	19.4
BGRC017	101	102	18.54	17.2
BGRC017	102	103	23.43	22.7
BGRC017	103	104	23.58	21.9
BGRC017	104	105	22.36	21
BGRC017	105	106	18.58	18.1
BGRC017	106	107	16.28	15.9
BGRC017	107	108	20.84	19.6
BGRC017	108	109	24.96	24.5
BGRC017	109	110	25.59	23.8
BGRC017	110	111	23.1	22.3
BGRC017	111	112	23.08	22.9
BGRC017	112	113	0.49	0.3
BGRC017	113	114	0.8	0.7
BGRC017	114	115	0.63	0.5
BGRC017	115	116	0.29	0.2
BGRC017	116	117	0.19	0.1
BGRC017	117	118	0.29	0.1
BGRC017	118	119	0.73	0.4
BGRC017	119	120	0.33	0.3
BGRC017	120	121	0.32	0.2
BGRC017	121	122	0.25	0.2 0.3
BGRC017	122	123	0.31	
BGRC017	123	124	0.4	0.4
BGRC017 BGRC018	124 0	125	0.41	0.4
		1	8.95	4
BGRC018 BGRC018	1 2	3	8.89 9.58	5.9
BGRC018	3	4	9.58	6.4
	4	5		6.3
BGRC018 BGRC018	5	6	8.68 8.81	4.9
BGRC018	6	7	10.46	6.3
BGRC018	7	8	7.41	3.3
BGRC018	8	9	3.28	2.7
BGRC018	9	10	3.01	2.7
BGRC018	10	11	3.06	3.1
BGRC018	11	12	2.69	2.6
BGRC018	12	13	2.35	2.2
BGRC018	13	14	4.72	4.6
DQUC010	12	14	4./2	4.0

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (n	netres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC018	14	15	2.76	2.6
BGRC018	15	16	2.31	2.3
BGRC018	16	17	2.11	2.1
BGRC018	17	18	6.12	5.3
BGRC018	18	19	16.45	16.2
BGRC018	19	20	14.63	14.1
BGRC018	20	21	22.51	21.3
BGRC018	21	22	22.81	21.7
BGRC018	22	23	22.22	19.4
BGRC018	23	24	24.78	21.4
BGRC018	24	25	19.8	19.1
BGRC018	25	26	19.97	20
BGRC018	26	27	22.3	21.9
BGRC018	27	28	21.74	21.1
BGRC018	28	29	22.14	20
BGRC018	29	30	20.78	20.7
BGRC018	30	31	31.43	29.8
BGRC018	31	32	27.2	26.5
BGRC018	32	33	25.9	24
BGRC018	33	34	23.08	17.8
BGRC018	34	35	21.55	20.5
BGRC018	35	36	25.99	21.9
BGRC018	36	37	23.86	20.9
BGRC018	37	38	21.5	21.1
BGRC018	38	39	23.13	21.9
BGRC018	39	40	13.16	12.3
BGRC018	40	41	1.32	1.2
BGRC018	41	42	0.79	0.6
BGRC018	42	43	0.79	0.6
BGRC018	43	44	0.62	0.3
BGRC018	44	45	0.35	0.3
BGRC018	45	46	0.48	0.4
BGRC018	46	47	0.19	0.2
BGRC018	47	48	0.14	0.1
BGRC018	48	49	0.38	0.3
BGRC018 BGRC018	49 50	50 51	0.16 0.13	X X
BGRC018	51	52	0.13	X
BGRC019	0	1	0.84	0.7
BGRC019	1	2	0.49	0.3
BGRC019	2	3	0.24	0.2
BGRC019	3	4	0.25	0.2
BGRC019	4	5	0.08	X
BGRC019	5	6	0.08	X
BGRC019	6	7	0.05	X
BGRC019	7	8	0.32	0.3
BGRC019	8	9	0.11	0.1
BGRC019	9	10	0.06	X
BGRC019	10	11	0.06	X
BGRC019	11	12	0.06	X
BGRC019	12	13	0.05	X
BGRC019	13	14	0.49	0.4
BGRC019	14	15	0.12	X
BGRC019	15	16	0.07	X
BGRC019	16	17	0.06	X
BGRC019	17	18	0.05	X
BGRC019	18	19	0.06	Х
BGRC019	19	20	0.11	Х
BGRC019	20	21	0.14	0.1
BGRC019	21	22	0.15	Х
BGRC019	21	22	0.15	X

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC019	22	23	0.26	0.2
BGRC019	23	24	0.24	0.2
BGRC019	24	25	0.18	0.2
BGRC019	25	26	0.29	0.3
BGRC019	26	27	0.17	Χ
BGRC019	27	28	0.27	0.2
BGRC019	28	29	0.21	0.2
BGRC019	29	30	0.13	Χ
BGRC019	30	31	0.19	Χ
BGRC019	31	32	0.17	0.2
BGRC019	32	33	0.15	Χ
BGRC019	33	34	0.11	Χ
BGRC019	34	35	5.07	4.9
BGRC019	35	36	6.35	6.3
BGRC019	36	37	7.67	7.6
BGRC019	37	38	10.14	9.7
BGRC019	38	39	10.17	9.9
BGRC019	39	40	8.79	8.6
BGRC019	40	41	18.08	18
BGRC019	41	42	20.08	19.7
BGRC019	42	43	30.98	30.6
BGRC019	43	44	17.52	17
BGRC019	44	45	6.8	6.7
BGRC019	45	46	12.56	12
BGRC019	46	47	8.61	8.3
BGRC019	47	48	12.66	12.5
BGRC019	48	49	10.33	9.9
BGRC019	49	50	6.49	6.5
BGRC019	50	51	7.46	7.3
BGRC019	51	52	6.79	6.7
BGRC019	52	53	8.15	8.2
BGRC019	53	54	6	5.6
BGRC019	54	55	5.08	4.8
BGRC019	55	56	4.87	4.7
BGRC019	56	57	20.02	19.9
BGRC019	57	58	9.74	9.6
BGRC019	58	59	5.47	5.4
BGRC019	59	60	19.49	19.2
BGRC019	60	61	8.71	8.6
BGRC019	61	62	6.59	6.6
BGRC019	62	63	6.73	6.7
BGRC019	63	64	7.24	7.1
BGRC019	64	65	6.72	6.6
BGRC019	65	66	6.27	6.1
BGRC019	66	67	6.3	6.1
BGRC019	67	68	6.35	6.1
BGRC019	68	69	21.08	19.8
BGRC019	69	70	27.09	24.1
BGRC019	70	71	10.12	10
BGRC019	70	72	7.69	7.5
BGRC019	72	73	11.83	11.6
BGRC019	73	74	9.66	9.5
BGRC019	74	75	11.68	11.5
BGRC019	75	76	11.83	11.8
BGRC019	76	77	8.37	8.3
BGRC019	77	78	7.05	6.9
BGRC019	78	78	6.68	6.5
BGRC019	78	80	6.01	6.5
BGRC019	80	80	6.75	6.6
BGRC019	81	82	5.41	5.4
BGKC019	81	82	5.41	5.4

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (n	netres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC019	82	83	5.71	5.7
BGRC019	83	84	8.72	8.5
BGRC019	84	85	10.39	10.2
BGRC019	85	86	12.53	12.1
BGRC019	86	87	13.4	13.4
BGRC019	87	88	14.6	14.3
BGRC019	88	89	14.64	14.2
BGRC019	89	90	12.86	12.7
BGRC019	90	91	14.3	14.1
BGRC019	91	92	17.14	16.3
BGRC019	92	93	19.35	17.5
BGRC019	93	94	22.25	20.8
BGRC019	94	95	22.04	22
BGRC019	95	96	17.6	17.5
BGRC019	96	97	15.6	15.4
BGRC019	97	98	16.29	14.5
BGRC019	98	99	17.57	16.4
BGRC019	99	100	15.79	15.6
BGRC019	100	101	13.08	12
BGRC019	101	102	18.72	18.6
BGRC019	102	103	22.81	22.8
BGRC019	103	104	25.03	23.7
BGRC019	104	105	24.6	24.1
BGRC019	105	106	24.09	22.6
BGRC019	106	107	23.29	20.2
BGRC019	107	108	23.15	21.8
BGRC019	108	109	25.64	22.5
BGRC019	109	110	28.2	25.4
BGRC019	110	111	24.61	22.4
BGRC019	111	112	24.92	24
BGRC019	112	113	25.58	22.8
BGRC019	113	114	22.29	21.4
BGRC019	114	115	1.39	1.3
BGRC019	115	116	1.41	1.3
BGRC019	116	117	0.47	0.2
BGRC019	117	118	0.61	0.4
BGRC019	118	119	0.4	0.3
BGRC019	119	120	0.39	0.4
BGRC019	120	121	0.54	0.5
BGRC019	121	122	0.59	0.5
BGRC019	122	123	0.37	0.3
BGRC019	123	124	0.35	0.3
BGRC019	124	125	0.48	0.4
BGRC019	125	126	0.51	0.4
BGRC019	126	127	0.48	0.3
BGRC020	0	1	3.83	1.7
BGRC020	1	2	3.53	1.7
BGRC020	2	3	1.43	0.2
BGRC020	3	4	0.56	0.4
BGRC020	4	5	0.36	0.4
BGRC020	5	6	0.24	0.2
BGRC020	6	7	0.43	0.2
BGRC020	7	8	0.19	0.2
BGRC020	8	9	0.06	X
BGRC020	9	10	0.2	0.2
BGRC020	10	11	0.09	X
BGRC020	11	12	0.24	0.2
BGRC020	12	13	0.12	0.1
BGRC020	13	14	0.19	X
BGRC020	14	15	0.07	X
23.16020		15	0.07	^

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC020	15	16	0.07	Х
BGRC020	16	17	0.06	Х
BGRC020	17	18	0.04	Х
BGRC020	18	19	0.07	Х
BGRC020	19	20	0.04	Х
BGRC020	20	21	0.02	Х
BGRC020	21	22	0.13	Х
BGRC020	22	23	0.13	Χ
BGRC020	23	24	0.24	Χ
BGRC020	24	25	0.3	0.1
BGRC020	25	26	0.42	Χ
BGRC020	26	27	0.39	Х
BGRC020	27	28	0.63	Х
BGRC020	28	29	0.47	Х
BGRC020	29	30	0.44	Х
BGRC020	30	31	0.37	Χ
BGRC020	31	32	0.82	0.7
BGRC020	32	33	3.78	3.7
BGRC020	33	34	7.65	7.7
BGRC020	34	35	8.95	8.9
BGRC020	35	36	11.58	11.6
BGRC020	36	37	12.5	11.9
BGRC020	37	38	13.77	13.2
BGRC020	38	39	16.86	16.3
BGRC020	39	40	23.8	22.5
BGRC020	40	41	11.45	11.3
BGRC020	41	42	4.02	4
BGRC020	42	43	3.47	3.2
BGRC020	43	44	5.53	5.4
BGRC020	44	45	5.57	5.5
BGRC020	45	46	7.23	7.2
BGRC020	46	47	11.32	10.9
BGRC020	47	48	7.81	7.7
BGRC020	48	49	13.73	13.6
BGRC020	49	50	6.66	6.5
BGRC020	50	51	5.71	5.6
BGRC020	51	52	5.57	5.5
BGRC020	52	53	5.69	5.7
BGRC020	53	54	7.08	6.9
BGRC020	54	55	16.2	15.4
BGRC020	55	56	7.09	7
BGRC020	56	57	10.86	10.8
BGRC020	57	58	6.29	6.2
BGRC020	58	59	8.25	8.2
BGRC020	59	60	10.67	10.6
BGRC020	60	61	11.1	11.1
BGRC020	61	62	8.94	8.9
BGRC020	62	63	12.69	12.4
BGRC020	63	64	11.09	10.8
BGRC020	64	65	8.33	8.3
BGRC020	65	66	9.08	8.9
BGRC020	66	67	6.47	6.5
BGRC020	67	68	9.81	9.7
BGRC020	68	69	9.93	9.8
BGRC020	69	70	12.13	11.9
BGRC020	70	71	14.46	14.2
BGRC020	71	72	16.81	16.3
BGRC020	72	73	20.24	20.2
BGRC020	73	74	17.88	17
BGRC020	74	75	26.2	25.4

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (n	netres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC020	75	76	22.56	21
BGRC020	76	77	20.37	20.4
BGRC020	77	78	19.76	19.5
BGRC020	78	79	17.27	17.2
BGRC020	79	80	20.5	19.8
BGRC020	80	81	17.68	17.7
BGRC020	81	82	14.08	13.7
BGRC020	82	83	14.9	14.7
BGRC020	83	84	19.51	18.7
BGRC020	84	85	21.38	21.3
BGRC020	85	86	22.08	22
BGRC020	86	87	24.35	24.1
BGRC020	87	88	30.24	30.2
BGRC020	88	89	26.6	25.9
BGRC020	89	90	22.63	22.5
BGRC020	90	91	27.49	27.2
BGRC020	91	92	25.54	25
BGRC020	92	93	25.21	24.1
BGRC020	93	94	21.95	21.9
BGRC020	94	95	19.35	19.1
BGRC020	95	96	21.04	20.8
BGRC020	96	97	24.59	24.6
BGRC020	97	98	23.09	22.1
BGRC020	98	99	20.27	20.2
BGRC020	99	100	25.07	24.9
BGRC020	100	101	24.98	24.5
BGRC020	101	102	26.15	25.6
BGRC020	102	103	23.18	22.9
BGRC020	103	104	24.63	24.4
BGRC020	104	105	24.63	24.5
BGRC020	105	106	11.23	11.1
BGRC020	106	107	0.46	0.4
BGRC020	107	108	0.26	0.2
BGRC020	108	109	2.01	1.8
BGRC020	109	110	0.64	0.6
BGRC020	110	111	0.36	0.2
BGRC020	111	112	0.28	0.2 0.2
BGRC020	112	113 114		0.2
BGRC020 BGRC020	113 114	114	0.23 0.48	0.3
BGRC020	115		0.62	0.4
BGRC020	116	116 117	0.3	0.2
BGRC020	116	117	0.35	0.1
BGRC020	0	1	9.82	0.9
BGRC021	1	2	9.91	4
BGRC021	2	3	9.75	3.7
BGRC021	3	4	9.76	4
BGRC021	4	5	9.84	5.8
BGRC021	5	6	11.63	7.4
BGRC021	6	7	9.61	5.6
BGRC021	7	8	0.93	0.4
BGRC021	8	9	0.49	0.3
BGRC021	9	10	15.4	10.4
BGRC021	10	11	15.27	12.5
BGRC021	11	12	17.32	16.1
BGRC021	12	13	18.77	18.3
BGRC021	13	14	19.15	19
BGRC021	14	15	23.15	22.6
BGRC021	15	16	21.11	19.6
BGRC021	16	17	22.99	22.7
			1	

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection ((metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC021	17	18	22.51	19.7
BGRC021	18	19	22.72	22.4
BGRC021	19	20	21.49	20.7
BGRC021	20	21	20.34	20.3
BGRC021	21	22	23.08	23
BGRC021	22	23	19.65	19.1
BGRC021	23	24	21.99	21.4
BGRC021	24	25	26.44	26
BGRC021	25	26	21.59	21.2
BGRC021	26	27	26.24	24.8
BGRC021	27	28	17.74	17.4
BGRC021	28	29	11.38	11.1
BGRC021	29	30	14.83	14.6
BGRC021	30	31	20.6	20.6
BGRC021	31	32	3.7	3.7
BGRC021	32	33	9.62	9.4
BGRC021	33	34	7.51	7.4
BGRC021	34	35	11.68	11.3
BGRC021	35	36	10.51	10.5
BGRC021	36	37	9.76	9.7
BGRC021	37	38	8.97	8.4
BGRC021	38	39	8.8	8.5
BGRC021	39	40	7.36	7.2
BGRC021	40	41	6.15	6.1
BGRC021	41	42	6.51	6.5
BGRC021	42	43	10.87	10.7
BGRC021	43	44	16.88	16.8
BGRC021	44	45	17.51	16.9
BGRC021	45	46	24.46	23.1
BGRC021	46	47	26.33	24.2
BGRC021	47	48	26.26	24.8
BGRC021	48	49	17.73	16.5
BGRC021	49	50	17.24	15
BGRC021	50	51	23.52	19.3
BGRC021	51	52	34.4	27.1
BGRC021	52	53	32.8	28.4
BGRC021	53	54	22.43	22.2
BGRC021	54	55	22.26	21
BGRC021	55	56	22.57	21.4
BGRC021	56	57	26.56	25.3
BGRC021	57	58	26.92	24.1
BGRC021	58	59	19.3	18.6
BGRC021	59	60	21.73	20.2
BGRC021	60	61	30	27.3
BGRC021	61	62	27.13	25
BGRC021	62	63	23.66	21.6
BGRC021	63	64	26.27	24.9
BGRC021	64	65	22.38	21.3
BGRC021	65	66	23.09	22.7
BGRC021	66	67	24.96	23.6
BGRC021	67	68	25.04	21.9
BGRC021	68	69	22.59	21.4
BGRC021	69	70	21.46	19.5
BGRC021	70	71	25.23	22.5
BGRC021	71	72	21.14	20.6
BGRC021	72	73	20.02	19.4
BGRC021	73	74	23.89	21.8
BGRC021	74	75	23.68	21.2
		1		
BGRC021	75	76	26.12	23.2

Notes to Table 3:

• Results below detectable levels are reported as "X"

Multiple Exceptional Drilling Results from Burke Graphite Deposit

	Intersection (metres)			
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
BGRC021	77	78	20.11	19
BGRC021	78	79	20.21	19.6
BGRC021	79	80	23.62	21.6
BGRC021	80	81	24.06	22.5
BGRC021	81	82	24.16	22.2
BGRC021	82	83	23.54	21.3
BGRC021	83	84	23.08	22
BGRC021	84	85	23.04	21.6
BGRC021	85	86	23.23	21.5
BGRC021	86	87	23.64	22.1
BGRC021	87	88	24.1	21.7
BGRC021	88	89	22.05	19
BGRC021	89	90	20.92	19.7
BGRC021	90	91	22.54	20.3
BGRC021	91	92	21.27	20.3
BGRC021	92	93	27.9	25
BGRC021	93	94	8.01	7.9
BGRC021	94	95	0.39	0.4
BGRC021	95	96	0.27	0.2
BGRC021	96	97	0.21	0.1
BGRC021	97	98	0.23	0.1
BGRC021	98	99	0.18	0.1
BGRC021	99	100	4.89	3.9
BGRC021	100	101	0.33	0.3
BGRC021	101	102	0.16	Х
BGRC021	102	103	0.2	0.2

Notes to Table 3:

• Results below detectable levels are reported as "X"