

ASX ANNOUNCEMENT 1 6 February 2023 HIGH-GRADE LITHIUM, TIN AND TANTALUM RESULTS AT UIS LITHIUM PROJECT NAMIBIA

HIGHLIGHTS

- Phase 1 reconnaissance sampling completed during the due diligence phase on EPL 8535, part of the Uis Lithium Project in Namibia, returns sample results as high as:
 - o 3.3% Lithium Oxide (Li₂O)
 - o 3.2% Tin (Sn)
 - 4,280ppm Tantalum (Ta)
 - o 7,980ppm Rubidium (Rb)
- Pegmatites on EPL 8535 are spodumene dominant of the LCT-type
- Abundance of altered spodumene visible in pegmatites positive indicator for lithium exploration
- First phase drilling campaign to start imminently multiple significant pegmatite targets will be drill tested designed to confirm the continuity of the high lithium grades at depth

Askari Metals Limited (ASX: AS2) ("Askari Metals" or "the Company") is pleased to announce results from due diligence samples collected during the acquisition of Exclusive Prospecting Licence ("EPL") 8535, part of the Uis Lithium Project, located in the Erongo Region of central-west Namibia. The Uis Lithium Project comprises both EPL 7345 and EPL 8535 and covers an area of 308.12km² in a highly mineralised, spodumene rich pegmatite belt with a history of prior production and exploration success.

A total of 162 rock chip samples were collected from EPL 8535 during the due diligence phase of the tenement acquisition. Sampling was conducted over exposed pegmatites and included several old artisanal workings mined for either tin or semi-precious stones.

Several of the pegmatites are characterised by coloured tourmalines (green and blue especially), as well as examples of altered/weathered spodumene and lepidolite crystals. Some weathered cassiterite was also identified.

The overall outcome of the due diligence sampling campaign is exceptionally positive, yielding five results greater than 3% Li₂O and eight results greater than 1% Li₂O. Excellent results were also returned for tin mineralisation, with one sample assaying 3.2% SnO₂ and 10 samples producing results greater than 1,875ppm Sn (0.24% SnO₂).

Tantalum results were highly positive, with 42 samples returning results greater than 100ppm Ta and two samples with results greater than 1,000ppm Ta. There were also indications of very strong rubidium with results up to 7,980ppm Rb.

EPL 8535 forms part of the Uis Lithium Project (Uis Project) and is located less than 17km from the town of Uis and adjacent to the operating Uis Mine, owned by London-listed Andrada Mining Limited (LSE:ATM), as shown in Figure 1 below.

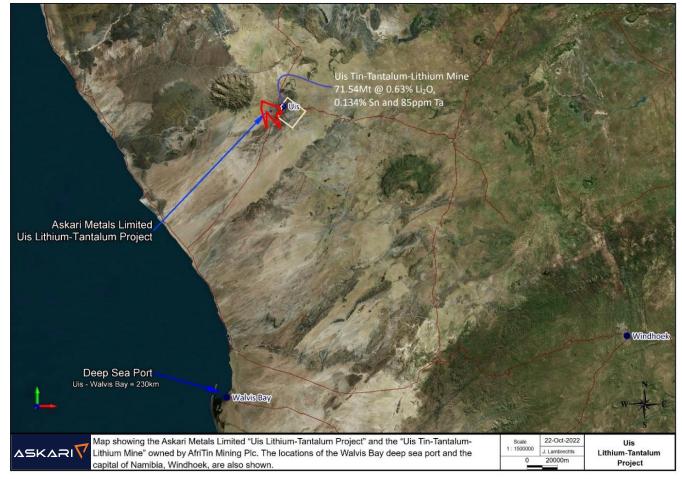


Figure 1: Location of the Uis Projects and the region's infrastructure

Commenting on the results, Askari VP Geology and Exploration Mr Johan Lambrechts said:

"These extraordinary results from the due diligence sampling campaign are significant for Askari, including five results greater than 3% Li₂O, ten results greater than 0.24% tin and forty-two results greater than 100ppm tantalum.

The Company has been rewarded for its commitment to unlocking mineral resource potential as efficiently as possible, and strategically manoeuvring to capture shareholder value through the acquisition of the Uis Lithium project next door to an operating world-class tin, tantalum, lithium mine.

Askari is strategically advancing its drive toward the top of the lithium exploration field in Namibia. We see immense potential in our growing Namibian portfolio as we believe the country hosts significant and untapped lithium and critical mineral riches vital for the global energy transition to a lower carbon future.

The first phase of drilling EPL 8535 is imminent and exploration work on the neighbouring EPL 7345 licence continues to progress. We are incredibly excited about the future and look forward to keeping our shareholders informed as we progress."

Due Diligence Sampling Campaign

The Company commissioned a geologist and technical team to conduct a reconnaissance sampling campaign as part of the due diligence process for EPL 8535, part of the Uis Project.

This involved the collection of 162 samples from exposed pegmatites and old workings in pegmatites on the Project.

The pegmatites are hosted by mafic schists and metasediments and occur as post-depositional intrusions. Several specimens were collected with visible spodumene, lepidolite and cassiterite.

Figure 2 below shows one of the pegmatite outcrops on the project.

Figure 2: Pegmatite outcrop on the Uis Lithium Project

Figure 3: Rock sample containing lepidolite and green tourmaline

Discussion of Results

The maximum assay results for the due diligence program are:

Lithium	- 15,400ppm Li	- <u>3.3% Li₂O</u>
Tin	- 25,000ppm Sn	- 3.2% SnO ₂
Tantalum	- 4,280ppm ta	- 5,226ppm Ta ₂ O ₅
Rubidium	- 7,980ppm Rb	- 8,323ppm Rb ₂ O

Lithium Results

Lithium is a mobile element and is seldom found at the surface in its original state and grade. Generally, it is leached, and a more representative lithium content of any pegmatite is usually located below the weathered horizon.

With this in mind, these initial results from the Uis Lithium Project are very encouraging, with a maximum of 3.3% Li₂O, with 14 samples returning results greater than 0.5% Li₂O and 26 samples above 0.1% Li₂O.

The high proportion of samples with high-grade lithium results in the oxide zone correlates well with the visual lithium mineralisation identified in the field and depicted in figures 2 and 3 above. This bodes well as an indicator for the lithium mineralisation potential below the surface at the Uis Lithium Project.

Table 1 below tabulates the top lithium sample results received from the reconnaissance program in EPL 8535, while Figure 4 below shows the distribution of the Li_2O results on the project. Of note is the large number of samples with results greater than 0.1% Li_2O .

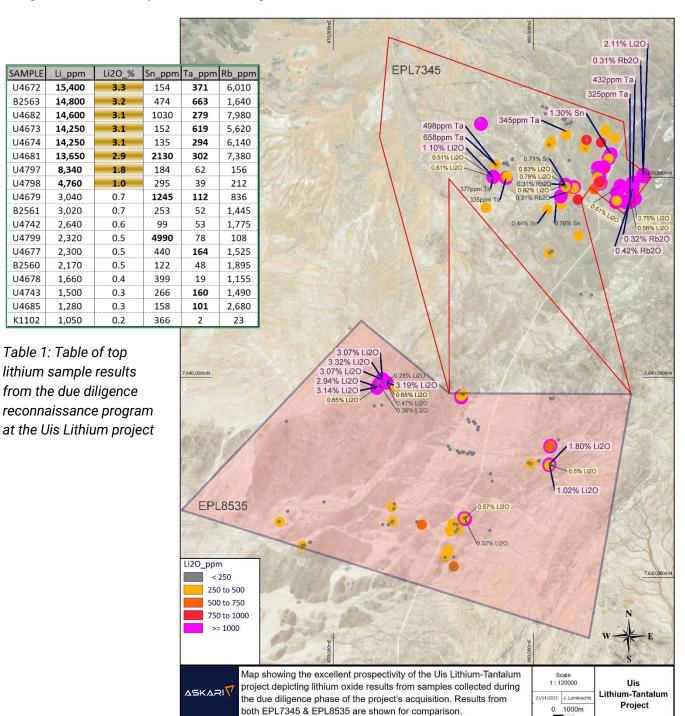
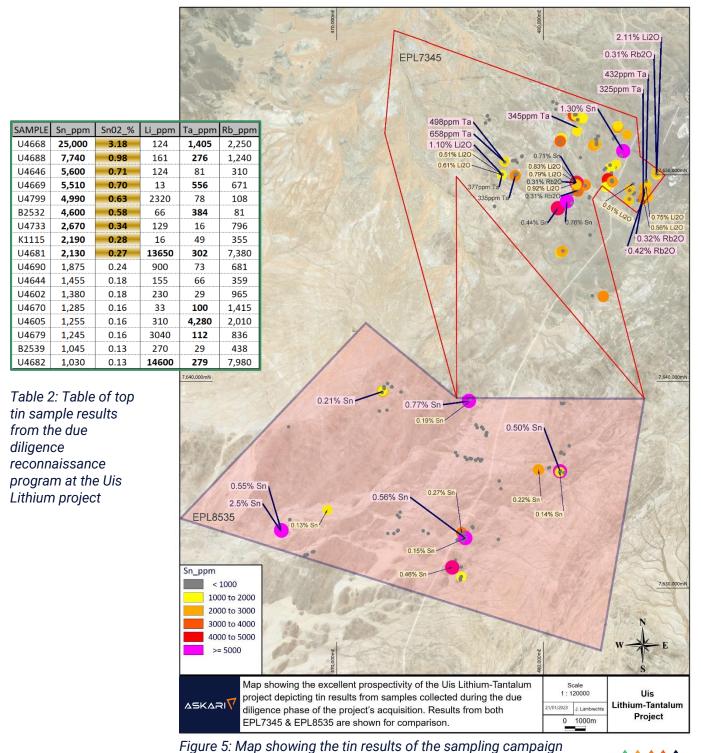


Figure 4: Map showing the lithium results of the sampling campaign



Tin Results

The maximum tin grade of 3.2% Sn is very encouraging and with an additional 17 samples collected during the due diligence reconnaissance program grading above 0.1% Sn, giving the Company a high level of confidence regarding the tin mineralisation potential of the Uis Project.

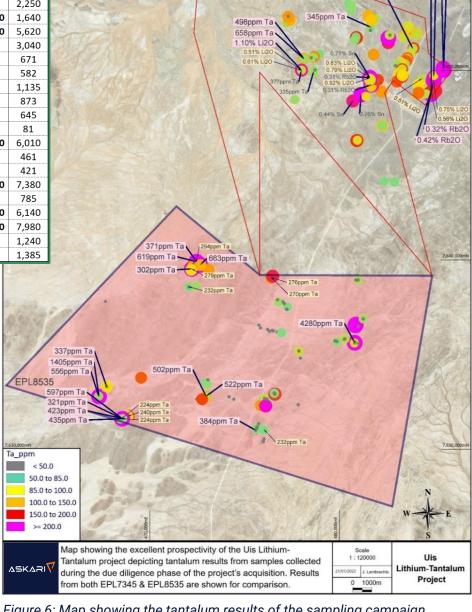
Table 2 below tabulates the top tin sample results received from the reconnaissance program in EPL 8535, while Figure 5 shows the distribution of the tin results on the project.

2.11% Li20

0.31% Rb20 432ppm Ta

325ppm

30% Sr


Tantalum Results

The maximum tantalum values were 4,280ppm Ta, while 42 samples returned results greater than 100ppm Ta and the average tantalum grade for all 162 samples is 118ppm Ta. This indicates exceptional tantalum prospectivity at the Uis Project and comparable to results from Andrada's operational mine, adjacent to EPL 8535, where the present tantalum grade in the resource is 85ppm Ta, demonstrating that higher grades have been identified on EPL 8535.

Table 3 below shows the top tantalum sample results from the due diligence reconnaissance program at the Uis Project and Figure 6 shows the distribution of the tantalum results.

					5.6
SAMPLE	Ta_ppm	Ta2O5_ppm	Sn_ppm	Li_ppm	Rb_ppm
U4605	4,280	5,226	1255	310	2,010
U4668	1,405	1,716	25000	124	2,250
B2563	663	810	474	14800	1,640
U4673	619	756	152	14250	5,620
U4769	597	729	203	16	3,040
U4669	556	679	5510	13	671
U4784	522	637	73	67	582
U4783	502	613	164	183	1,135
U4772	435	531	165	17	873
U4771	423	516	77	12	645
B2532	384	469	4600	66	81
U4672	371	453	154	15400	6,010
U4666	337	411	41	15	461
U4768	321	392	151	11	421
U4681	302	369	2130	13650	7,380
U4778	296	361	164	27	785
U4674	294	359	135	14250	6,140
U4682	279	341	1030	14600	7,980
U4688	276	337	7740	161	1,240
U4689	270	330	675	800	1,385

Table 3: Table of top tantalum sample results from the due diligence reconnaissance program at the Uis Lithium project

EPI 7345

Figure 6: Map showing the tantalum results of the sampling campaign

Rubidium Results

The maximum rubidium results from the sampling campaign is 0.83% Rb₂O, 13 samples returned results greater than 0.2% Rb₂O, while the average rubidium grade for all 162 samples is 870ppm Rb₂O. This indicates excellent rubidium prospectivity, adding additional potential shareholder value on top of the extremely positive lithium, tin and tantalum results.

Table 4 shows the top rubidium sample results and Figure 7 shows the distribution of the Rubidium results on the Uis Lithium project.

				12	
				No.	
SAMPLE	Rb_ppm	Rb2O_ppm	Li_ppm	Sn_ppm	Ta_ppm
U4682	7,980	8,323	14600	1030	279
U4681	7,380	7,697	13650	2130	302
U4674	6,140	6,404	14250	135	294
U4672	6,010	6,268	15400	154	371
U4673	5,620	5,862	14250	152	619
U4769	3,040	3,171	16	203	597
U4685	2,680	2,795	1280	158	101
K1104	2,670	2,785	620	503	50
U4668	2,250	2,347	124	25000	1,405
K1103	2,080	2,169	260	216	17
U4605	2,010	2,096	310	1255	4,280
U4765	1,960	2,044	170	134	140
U4643	1,960	2,044	92	75	11
B2560	1,895	1,976	2170	122	48

Table 4: Table of top rubidium sample results from the due diligence reconnaissance program at the Uis Lithium project

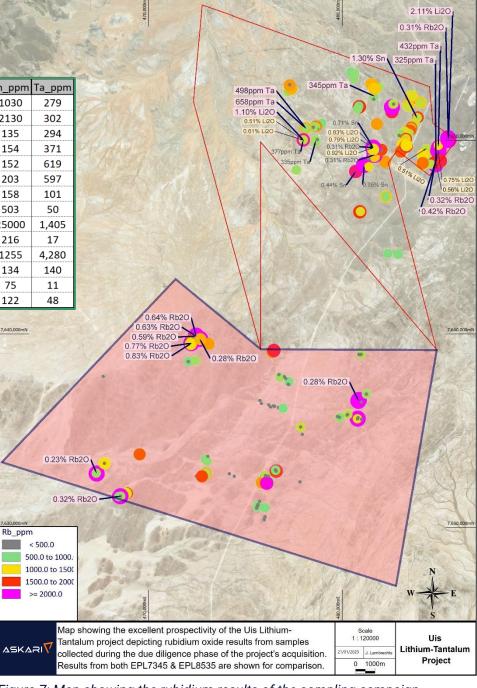


Figure 7: Map showing the rubidium results of the sampling campaign

Future Work and Planned Exploration

Phase I RC drilling at EPL 8535 is imminent with the Company planning an initial 3,500 – 4,000m of RC drilling testing the continuity of the high grades of lithium at depth. The project boasts a multitude of pegmatites across the project area, with many having been mined historically for tin and semi-precious stones.

Altered spodumene is also visible within the workings and exposed pegmatites, which is a positive indicator for ongoing lithium exploration.

Further updates on the drilling campaign will be provided in due course.

This announcement is authorised for release by the executive board.

- ENDS -

FOR FURTHER INFORMATION PLEASE CONTACT

INVESTORS

Gino D'Anna EXECUTIVE DIRECTOR

M. +61 400 408 878 E. gino@askarimetals.com

Johan Lambrechts

VICE PRESIDENT - EXPLORATION & GEOLOGY

M. +61 431 477 145E. johan@askarimetals.com

MEDIA

Josh Lewis SENIOR MEDIA COUNSEL

M. +61 412 577 266

E. lewisj@spokecorporate.com

ABOUT ASKARI METALS

Askari Metals was incorporated for the primary purpose of acquiring, exploring and developing a portfolio of high-grade battery (Li + Cu) and precious (Au + Ag) metal projects across Namibia, Western Australia, Northern Territory and New South Wales. The Company has assembled an attractive portfolio of lithium, copper, gold and copper-gold exploration/mineral resource development projects in Western Australia, Northern Territory, New South Wales and Namibia.

For more information please visit: www.askarimetals.com

CAUTION REGARDING FORWARD-LOOKING INFORMATION

This document contains forward-looking statements concerning Askari Metals Limited. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes.

Forward looking statements in this document are based on the Company's beliefs, opinions and estimates of Askari Metals Limited as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

COMPETENT PERSON'S STATEMENT

The information in this report that relates to Exploration Targets, Exploration Results or Mineral Resources is based on information compiled by Johan Lambrechts, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr. Lambrechts is a full-time employee of Askari Metals Limited, who has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Lambrechts consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

UIS LITHIUM PROJECT BACKGROUND – GEOLOGY AND MINERALISATION

The rocks of the Erongo Region, and specifically the Dâures Constituency, are represented by rocks of the Khomas Subgroup, a division of the Swakop Group of the Damara Sequence which have been intruded by numerous zones and unzoned mineralised pegmatites rich in cassiterite, lepidolite, petalite, amblygonite, spodumene, tantalite, columbite, beryl, gem tourmaline, and rare to sparse sulphides, wolframite, scheelite, pollucite or rare earths.

The Uis and Nainais-Kohero swarm of pegmatites represent the fillings of en-echelon tension fractures that formed as a result of regional shearing. These pegmatites can be described as being pervasively altered or extensively albitised with only relics of the original potassium feldspars left after their widespread replacement by albite. They are remarkably similar in composition, except for the varying intensity of pneumatolytic effects and the introduction or concentration of trace elements during the final stages of crystallisation has resulted in complex pegmatite mineralogies. These pegmatites are found within schistose and quartzose rocks of the Khomas Subgroup, a division of the Swakop Group, which have been subjected to intense tectonic deformation and regional metamorphism.

Detailed geological mapping within the Uis area suggests that the Uis swarm of pegmatites consists of over 80 individual pegmatite bodies. Shearing resulted in spaces being opened within the Khomas Subgroup which were subsequently intruded by pegmatite or quartz veins. Within the Nainais pegmatites high tin values are found in smaller altered mica-rich pegmatites near the pegmatite edges. The pegmatite mineralisation composition changes with distance from the granitic contacts with a mineral crystallisation sequence, which indicates garnet and schorl occurring closest to the granitic contacts, cassiterite and lithium-tourmaline occurring further away therefrom, and the tantalite being associated with lithium-tourmaline and quartz blows.

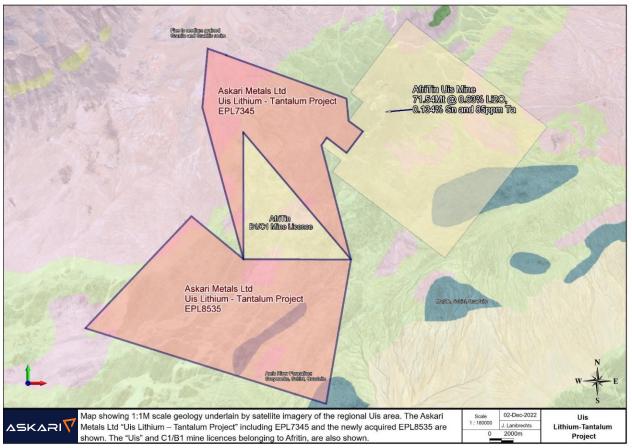


Figure 8: A map showing the geology of the Uis Project

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	Rock samples Samples are clear of organic matter.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details.	Not Applicable
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	Not Applicable
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource Estimation, mining studies and metallurgical studies. 	Samples were logged with comments in the field before being placed into Calico bags.
Sub-sampling techniques and sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	All samples are crushed and then pulverised in a ring pulveriser (LM5) to a nominal 90% passing 75 microns. An approximately 100g pulp sub-sample is taken from the large sample, and the residual material is stored.
		A quartz flush is put through the pulveriser prior to each new batch of samples. A number of quartz flushes are also put through the pulveriser to ensure the bowl is clean prior to the next sample being processed. A selection of this pulverised quartz flush material is then analysed and reported by the lab to gauge the potential level of contamination that may be carried through from one sample to the next.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	All samples were submitted to ALS Laboratories in Namibia. The samples were sorted, wet-weighed, dried then weighed again. Primary preparation involved crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which was pulverised in a vibrating pulveriser. All coarse residues have been retained. The samples have been analysed by a 40g lead collection fire assay as well as multi-acid digest with an Inductively Coupled Plasma (ICP) Optical Emission Spectrometry finish for multi- elements
		The lab randomly inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring.

Criteria	JORC Code explanation	Commentary
		AS2 also inserted Certified Reference Material (CRM) samples and certified blanks to assess the accuracy and reproducibility of the results. All of the QAQC data has been statistically assessed to determine if the results were within the certified standard deviations of the reference material. If required, a batch or a portion of the batch may be re-assayed. (no re-assays are required for the data in the release).
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	An internal review of results was undertaken by Company personnel. No independent verification was undertaken at this stage. Validation of both the field and laboratory data is undertaken prior to the final acceptance and reporting of the data. Quality control samples from both the Company and the Laboratory are assessed by the Company geologists for verification. All assay data must pass this data verification and quality control process before being reported.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Samples were collected, and GPS located in the field using a hand-held GPS with roughly a 2-4m error.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The samples reported in this announcement were collected on outcrops by the geologist in the field.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Not Applicable
Sample security	The measures taken to ensure sample security.	All samples were collected and accounted for by geologists in the field and placed into calico bags. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits have been conducted on the historical data to our knowledge. NOTE: No historic Lithium data is available on this tenement.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	The Uis Lithium-Tantalum-Tin Project (Uis Project) is located less than 5km from the township of Uis and less than 2.5km from the operating Uis Tin-Tantalum-Lithium Mine, owned and operated by AfriTin Mining plc (LSE. ATM), within the Erongo Region of west-central Namibia. Swakopmund, the capital city of the Erongo Region and Namibia's fourth largest settlement, is located approximately 165km south of the Uis Project, while the Namibian capital city of Windhoek is located approximately 270km southeast of the Uis Project. The Uis Project boasts more than 80 mapped pegmatites across the project area, with many of the pegmatites having been mined historically for tin and semi-precious stones.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Limited exploration of Lithium in this region. No drilling for Lithium has been previously reported. An in depth review is in progress.
Geology	Deposit type, geological setting and style of mineralisation.	The rocks of the Erongo Region, and specifically the Dâures Constituency, are represented by rocks of the Khomas Subgroup, a division of the Swakop Group of the Damara Sequence which have been intruded by numerous zones and unzoned mineralised pegmatites rich in cassiterite, lepidolite, petalite, amblygonite, spodumene, tantalite, columbite, beryl, gem tourmaline, and rare to sparse sulphides, wolframite, scheelite, pollucite or rare earth metals. The Uis and Nainais-Kohero swarm of pegmatites represents the fillings of en-echelon tension gashes that formed as a result of shearing of a regional nature, which evolved slowly over considerable geological time. These pegmatites can be described as being pervasively altered or extensively albitised, with only relics of the original potassium feldspars left after their widespread replacement by albite. They are remarkably similar in composition, except for the varying intensity of pneumatolytic effects, and the introduction or concentration of trace elements during the final stages of crystallisation has resulted in complex pegmatite mineralogies. These pegmatites are found within schistose and quartzose rocks of the Khomas Subgroup, a division of the Swakop Group, which have been subjected to intense tectonic deformation and regional metamorphism. Detailed geological mapping within the Uis area suggests that the Uis swarm of pegmatites consists of over 100 individual pegmatites high tin values are found in smaller altered mica-rich pegmatites near the pegmatite edges. The pegmatite mineralisation composition changes in distance from the granitic contacts with a mineral crystallisation sequence having been mapped which indicates garnet and schorl occurring closest to the granitic contacts, the cassiterite and lithium-tourmaline occurring further away therefrom, and the tantalite being associated with lithium-tourmaline and quartz blows.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Not Applicable
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	Not Applicable

Criteria	JORC Code explanation	Commentary
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Not Applicable
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Diagrams are included in the body of the document.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of results. 	All results reported are exploration results in nature.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Assessment of other substantive exploration data is not yet complete however considered immaterial at this stage.
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Follow-up work programmes will be subject to the interpretation of recent and historical results, which is ongoin, and as set out in the announcement

Appendix 2: Table of assay results pertaining to this announcement

Sample#	Li_ppm	Cs_ppm	Ta_ppm	Sn_ppm	Nb_ppm	Be_ppm	Rb_ppm	Ga_ppm	Sample#	Li_ppm	Cs_ppm	Ta_ppm	Sn_ppm	Nb_ppm	Be_ppm	Rb_ppm	Ga_ppm
B2532 B2533	66 300	35.1 75.2	384.00 40.00	4600 343	1025.0 94.8	530.0 153.0	80.5 543.0	21.3 45.7	U4670 U4671	33	76.0	100.00 16.05	1285 30	85.4 83.4	480.0	1415.0 430.0	30.5 29.2
B2534	201	71.2	18.65	289	29.9	28.1	458.0	43.8	U4672	15400	2930.0	371.00	154	65.3	52.6	6010.0	82.1
B2535	211	40.2	13.20	313	22.4	54.7	260.0	34.8	U4673	14250	3120.0	619.00	152	72.5	17.8	5620.0	85.5
B2536 B2537	280 193	74.2 52.9	13.55 8.36	584 263	46.2 24.6	8.9	565.0 457.0	52.1 41.4	U4674 U4675	14250 106	2650.0 22.2	294.00 30.90	135 255	62.0 76.4	15.1 177.0	6140.0 311.0	77.3
B2538	220	38.9	7.82	211	22.0	13.6	439.0	49.1	U4676	95	16.7	21.20	218	54.7	158.5	262.0	32.2
B2539	270	40.3	29.30	1045	141.5	19.3	438.0	42.6	U4677	2300	216.0	163.50	440	166.0	141.0	1525.0	37.9
B2540 B2541	2	7.1	0.16	10	1.0	2.0	246.0 301.0	11.2	U4678 U4679	1660 3040	89.2 390.0	19.10 111.50	399 1245	19.3 72.4	194.0 3260.0	1155.0 836.0	27.8
B2542	2	4.2	0.08	4	2.4	4.3	145.5	21.8	U4681	13650	1680.0	302.00	2130	101.0	20.2	7380.0	45.2
B2543	9	104.0	232.00	567	208.0	134.0	544.0	28.3	U4682	14600	1845.0	279.00	1030	99.2	21.9	7980.0	51.2
B2558 B2559	138 28	50.5 22.4	27.90 79.30	56 354	53.2 97.4	21.4	1230.0 643.0	33.1 33.4	U4683 U4684	710 80	144.5 122.5	91.40 19.90	182 127	80.9	44.1 74.0	1090.0 1020.0	51.5 24.9
B2560	2170	281.0	48.00	122	12.6	17.0	1895.0	24.1	U4685	1280	490.0	100.50	158	45.4	14.2	2680.0	32.2
B2561	3020	218.0	51.90	253	24.3	14.5	1445.0	34.0	U4686	61	36.8	232.00	207	96.5	186.5	525.0	27.0
B2562 B2563	55 14800	79.3 498.0	6.87 663.00	37	18.8 104.5	37.6 21.3	1185.0 1640.0	22.8 30.8	U4687 U4688	45 161	32.4 70.6	124.50 276.00	227 7740	57.8 180.5	163.0 280.0	485.0 1240.0	24.4
B2564	65	12.8	3.31	22	43.1	6.2	326.0	37.6	U4689	800	129.5	270.00	675	115.5	260.0	1385.0	49.8
B2565	19	13.1	1.18	17	7.8	2.8	544.0	20.1	U4690	900	32.2	73.20	1875	132.5	91.8	681.0	25.7
B2566 B2567	20	8.3 8.8	2.58 4.10	21	27.5	2.2	183.5 314.0	27.6	U4691 U4692	340 162	73.6 25.7	104.50 172.00	364 929	92.9 130.0	107.5 44.3	1210.0 453.0	51.9 41.3
B2568	18	7.0	2.27	18	13.0	3.9	191.5	21.5	U4693	63	78.9	114.00	820	63.8	60.0	1635.0	31.8
B2569	10	13.8	0.28	16	4.3	1.5	428.0	18.2	U4694	300	62.3	167.50	506	190.5	134.5	1095.0	49.2
B2570 B2571	10	7.2	6.12 0.19	11	23.3 4.8	7.3	156.5 381.0	22.6	U4695 U4696	57 29	58.3 25.2	80.30 12.55	497 225	86.2	540.0 132.0	816.0 268.0	51.3 33.9
B2572	10	10.7	6.22	15	4.8	2.5	165.0	20.0	U4697	17	53.5	12.55	92	52.6	27.3	455.0	20.9
B2573	2	14.2	0.24	15	5.6	0.4	493.0	16.3	U4731	63	19.8	3.84	67	19.4	3.7	288.0	23.5
B2574 K1019	15 22	23.8	149.50 1.16	57 19	222.0 6.4	0.8	631.0 177.0	22.6	U4732 U4733	85 129	40.4	10.05 15.60	578 2670	40.3	210.0 194.0	319.0 796.0	24.0 29.9
K1019	19	12.2	7.33	21	12.8	1.6	346.0	17.5	U4734	129	48.3	8.98	343	37.4	84.5	358.0	36.1
K1021	11	10.8	0.58	19	4.6	1.6	558.0	16.6	U4735	139	37.8	9.99	285	41.5	39.3	327.0	38.7
K1022 K1023	44 29	20.2	1.21 3.23	23	19.9 16.9	1.8	369.0 244.0	19.2 18.4	U4736 U4737	147 136	31.9 33.4	5.43 5.90	384 414	22.7	280.0 138.0	312.0 247.0	35.5 35.6
K1023	46	25.8	5.18	43	51.8	7.0	364.0	31.4	U4737	130	27.9	9.61	483	21.3	152.5	268.0	33.7
K1025	103	16.5	3.32	32	93.4	2.8	302.0	52.2	U4739	156	31.7	7.60	592	22.7	163.0	312.0	36.1
K1026 K1080	16 72	9.2 12.3	1.40 4.05	11 26	10.8 68.8	1.9 2.5	351.0 239.0	16.3 45.9	U4740 U4741	189 270	32.3 67.7	6.26 4.14	307 229	21.0 25.5	76.1 123.5	339.0 511.0	41.2
K1080	86	13.0	2.43	28	57.2	3.7	196.0	54.3	U4741	2640	693.0	52.80	99	27.4	9.9	1775.0	22.7
K1082	109	12.4	7.35	18	49.4	2.3	153.5	40.5	U4743	1500	431.0	160.00	266	276.0	56.1	1490.0	43.1
K1083 K1084	38 59	14.4 8.2	3.83	22	24.9 27.0	3.1	98.3 272.0	27.4 31.3	U4744 U4745	440 620	32.6 50.2	29.60	759 92	49.0 14.9	82.9 97.2	173.0 568.0	18.2
K1084	25	16.6	5.31	23	11.8	2.3	384.0	24.3	U4746	81	16.0	6.83 14.65	65	57.4	220.0	97.2	15.6 21.7
K1087	27	17.9	7.23	15	37.5	3.6	217.0	24.2	U4747	930	36.8	38.00	364	112.0	23.4	543.0	20.7
K1101 K1102	770 1050	135.5 6.5	16.85 1.86	93	23.0	5.9	934.0 22.5	26.5 14.4	U4748 U4749	142 139	33.1 35.1	6.63 11.55	448 95	23.3 39.0	133.5 113.5	255.0 264.0	32.9 28.6
K1102	260	406.0	17.40	366 216	28.8	11.1	2080.0	57.0	U4750	155	57.4	25.60	201	101.5	159.5	313.0	34.9
K1104	620	978.0	49.70	503	103.5	36.0	2670.0	152.0	U4765	170	195.5	140.00	134	111.5	420.0	1960.0	70.0
K1106 K1107	280 63	46.0 52.7	4.05 36.80	419 239	18.8 70.1	10.0	457.0 467.0	53.1 27.8	U4766 U4767	15 42	47.5	55.00 196.50	36	30.4 73.5	159.5 155.0	545.0 1635.0	41.9
K1107 K1108	72	20.3	22.00	239	47.4	82.5	467.0	35.2	U4768	11	69.5	321.00	115	30.5	64.5	421.0	55.6 29.4
K1109	67	43.7	15.10	447	60.7	152.5	566.0	35.3	U4769	16	464.0	597.00	203	34.7	124.5	3040.0	32.6
K1110 K1111	183 18	53.9 8.3	36.90 15.60	638 222	104.5 51.4	53.1 185.5	862.0 265.0	67.0 31.2	U4770 U4771	23	66.7 62.9	224.00 423.00	137	45.9 154.0	320.0 250.0	541.0 645.0	32.5 30.5
K1111 K1112	31	26.8	67.80	776	114.0	145.5	441.0	41.0	U4772	12	84.3	425.00	165	134.0	82.0	873.0	33.6
K1113	25	24.2	9.63	158	36.5	167.0	242.0	27.7	U4773	20	110.0	240.00	60	117.5	150.5	973.0	44.3
K1114 K1115	95 16	77.6 18.9	20.70 48.80	342 2190	59.5 109.5	93.3 159.0	792.0 355.0	60.4 29.1	U4774 U4775	26 67	112.0 140.5	242.00 55.60	80 181	119.0 56.8	270.0 600.0	1060.0 1485.0	56.7 45.1
U4601	16	9.9	5.00	31	38.9	33.0	106.0	33.0	U4777	24	67.1	224.00	65	95.0	219.0	857.0	43.1
U4602	230	210.0	29.20	1380	62.1	3380.0	965.0	61.0	U4778	27	72.6	296.00	164	95.0	174.5	785.0	51.0
U4603 U4604	480 460	41.3 20.3	30.20 16.70	171	283.0 182.5	9460.0 480.0	194.0 200.0	33.5 38.0	U4779 U4780	23	77.1 58.1	117.50 156.50	79 87	57.8 83.4	90.7	1045.0 718.0	39.7 35.7
U4605	310	455.0	4280.00	1255	678.0	480.0	2010.0	120.5	U4781	22	36.3	19.15	36	67.7	10.5	743.0	22.9
U4641	230	65.4	16.30	100	80.6	980.0	159.0	7.2	U4782	34	12.3	27.50	41	67.7	141.5	230.0	30.1
U4642 U4643	183 92	115.5 89.4	37.50 10.75	69 75	122.5 53.2	124.0 34.5	1245.0 1960.0	22.1 16.4	U4783 U4784	183 67	34.2 39.8	502.00 522.00	164 73	290.0 138.5	117.0 113.5	1135.0 582.0	65.7 32.3
U4643	155	16.4	66.20	1455	159.0	67.0	359.0	40.9	U4785	52	39.8 19.5	76.20	89	91.5	30.1	568.0	32.3
U4645	117	29.0	12.30	265	40.1	119.5	503.0	35.8	U4786	42	11.6	7.25	38	44.9	6.9	185.0	24.3
U4646 U4647	124 105	14.6 26.3	80.50 24.90	5600 821	120.0 59.6	97.1 46.1	310.0 570.0	32.0 39.8	U4787 U4788	60 56	6.7 22.1	9.82 6.44	29 36	53.9 44.0	230.0 119.0	187.0 743.0	20.4 16.4
U4648	24	26.3	4.23	57	34.3	9.8	365.0	39.8	U4788 U4789	19	36.4	0.82	25	9.1	2.4	434.0	18.2
U4649	15	11.5	7.78	32	16.4	6.1	235.0	24.5	U4790	37	5.2	0.92	8	6.6	0.9	77.2	4.9
U4661 U4662	290 125	4.7 73.9	0.15	6 91	0.8 98.4	1.1	18.4 524.0	0.5	U4791 U4792	22 29	35.4 5.3	0.29	22	1.5 5.0	3.4 2.3	337.0 52.9	15.4 20.7
U4662 U4663	125	11.9	16.65 53.50	45	121.5	95.1	406.0	39.2	U4792 U4793	40	14.6	6.40	7	20.5	1.4	102.5	12.4
U4664	10	60.1	2.81	43	13.8	4.3	1440.0	20.1	U4794	60	78.4	11.30	98	35.6	56.2	625.0	24.8
U4665	84	13.6	15.00	72	74.7	109.0	373.0	38.4	U4795	52	34.7	3.14	75	19.7	151.5	488.0	21.3
U4666 U4667	15 19	44.1 102.0	337.00 193.00	41 84	107.0 65.7	124.0 47.3	461.0 1010.0	43.9	U4796 U4797	69 8340	18.5 58.3	8.74 62.10	81 184	33.4 310.0	66.2 2170.0	148.5 155.5	24.8 28.5
U4668	124	112.5	1405.00	25000	680.0	230.0	2250.0	85.8	U4798	4760	92.6	38.80	295	223.0	2880.0	212.0	29.1
U4669	13	52.9	556.00	5510	212.0	201.0	671.0	35.0	U4799	2320	149.5	78.40	4990	240.0	8340.0	108.0	28.7