07 February 2023

ASX: VSR

3 Li		TI TREE LITHIUM PROJECT UPDATE Lithium-fertile pegmatites confirmed throughout entire Volta corridor with three (3) drill targets identified
HIGHLIGHTS	•	 Highly successful maiden surface geochemical sampling campaign: Three (3) priority drill targets identified ("Andrada", "Ceres", "Morpheus") with significant lithium-caesium-tantalum (LCT) anomalism. Awaiting POW approvals to drill test. Rockchips with highly anomalous lithium content (peak: 887 ppm Li₂O, 35 times above background*). Anomalous tantalum and caesium also identified within Li-enriched pegmatitic rockchips, confirming the presence of a lithium-caesium-tantalum (LCT) system (peak: 205 ppm Ta₂O₅ & 320 ppm Cs₂O respectively). 228 samples collected across Ti Tree North & South – LCT anomalism identified across entire Volta corridor with < 5% of the tenure tested to date. Confirmation that the source granitic suites within Ti Tree are highly prospective ("fertile") for hosting LCT pegmatites, on par with those at the neighbouring Yinnietharra Lithium discovery (Red Dirt Metals Ltd) & other globally significant LCT terranes Identification of fertile parental granites is a critical exploration tool in the search for LCT pegmatites as their discovery can focus and expedite the search for lithium prospects. Through geochemical analysis, two important hallmarks of LCT pegmatite systems have been confirmed: The right source (parental) rocks ✓ The right chemistry within the pegmatites (highly fractionated) ✓ This has expedited target generation and vectoring towards several high-calibre drill targets.

Crustal abundance in granite ("background concentration") of LCT elements given as 43 ppm Li₂O, 4 ppm Cs₂O & 3 ppm Ta₂O₅. Reference: Breaks et. al 2005, p. 4.

Voltaic Strategic Resources Limited ('Voltaic' or 'the Company') (ASX:VSR) is pleased to provide an update on its Ti Tree project, located in the Gascoyne region of Western Australia. Assays have been received for the maiden surface geochemical sampling campaign and have confirmed that the in-situ granitic intrusions across the entire project area are fertile for lithium (Li) mineralisation. This is highly significant at such an early stage of the project's evolution and has resulted in an expansion of the Volta corridor to 40km strike length and the identification of 3 priority drill targets.

In addition to confirming the presence of fertile source (parental) rocks for hosting LCT pegmatites, further geochemical analysis has identified that several of the rockchip samples have anomalous tantalum (Ta) and caesium (Cs), and display the same chemical composition and texture as typical LCT pegmatites (highly fractionated and containing Cs, Ta and/or tourmaline). This further strengthens the prospectivity for hosting a true LCT system. It is worth noting that the Yinnietharra (Malinda) lithium discovery was initially identified as a prospect from fertility analysis undertaken by Segue Resources Ltd in 2016 (see <u>ASX:AMD release 09/06/2016</u>). Segue demonstrated that the Thirty-Three Supersuite (TTS) granitic belt is unequivocally fertile and hence, the likely source of lithium mineralisation in the region. The TTS underlies both the Yinnietharra lithium discovery and Voltaic's Ti Tree tenements (**the 80 km strike "Volta corridor"**).

Voltaic's CEO, Michael Walshe, commented:

"Through the use of established best practices in lithium exploration, Voltaic have clearly demonstrated that the granites (and associated schists) within our tenure are fertile and the respective pegmatites are of comparable calibre to those at the neighbouring Yinnietharra project. The Ti Tree project has never been systematically explored for Li, providing Voltaic with an outstanding opportunity to make a 'greenfields 'discovery in a region that has become a Li exploration hotspot. Indeed, it could be argued that the TTS granites that underlay Ti Tree and Yinnietharra are comparable to those at world-class lithium deposits such as Pilgangoora in Western Australia, in terms of both fertility and fractionation (see **Figure 6**), and the Gascoyne region could soon emerge as Australia's next major lithium supply hub."

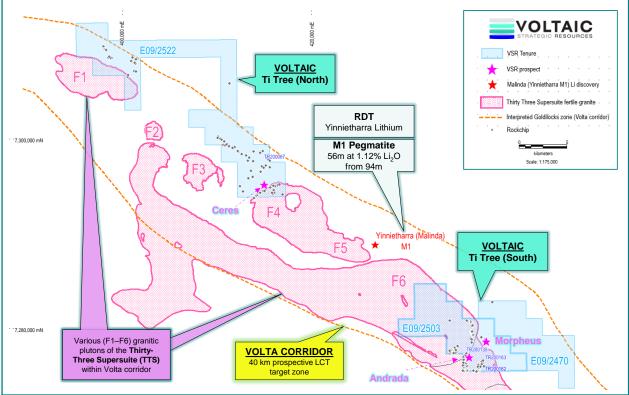


Figure 1: Location of rockchip samples collected across 40 km prospective lithium-caesium-tantalum (LCT) corridor within Ti Tree project area. TTS granites also shown (potential source for Li mineralisation)

A selection of rockchip sample photos is provided in **Figure 2** below with anomalous lithium, caesium, and tantalum. Encouragingly, LCT anomalism has been observed within both pegmatites and ironstones with pegmatitic fabric, which indicates that there are various potential source geological terranes that could host economic mineralisation within the Ti Tree project.

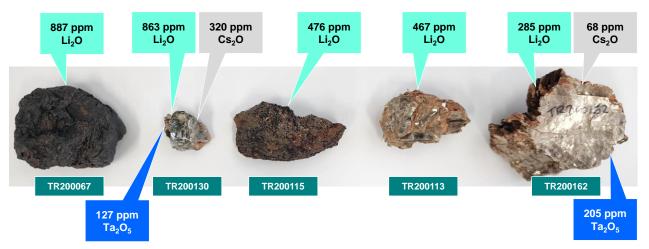


Figure 2: Pegmatite & ironstone rockchip photos with anomalous lithium, caesium, tantalum

Significance of the Results

The results highlight the potential for an economic LCT discovery within the project area from the **favourable geochemistry** of the initial rockchip results and the **extensive occurrence of pegmatite outcrop** throughout the tenure. The nature of LCT pegmatites limits the number of applicable exploration tools that can be utilised due to their typically non-responsive geophysical characteristics: non-magnetic, non-conductive and may not be distinguishable from surrounding rocks utilising gravity methods (Cerny 1989). Hence, geochemical exploration is key, and the company is encouraged by these favourable initial rockchip results. The pegmatites at Ti Tree may originate from the same fertile granitic source as the **Yinnietharra lithium discovery**, which further underpins the prospectivity at the project.

Voltaic's <u>Ti Tree project</u> is along strike, both north-west and south-east, of the Yinnietharra project and both are underlain by the Thirty-Three Supersuite (TTS) granites, which we have now demonstrated to be fertile from favourable rockchip geochemistry. Red Dirt Metals Limited (ASX:RDT) are actively drilling 90,000m into the Yinnietharra project and other regional targets. Initial drill results for the 'M1 pegmatite' are significant and include 56m at 1.12% Li₂O from 94m (YNRD005) (<u>ASX:RDT release:20/01/2023</u>), and visual identification of spodumene within multiple holes (<u>ASX:RDT</u> <u>release:28/11/2022</u>). M1 shows significant down-dip continuity with excellent Li₂O grades from surface, which is very encouraging for the entire region.

From the fertility analysis of these initial rockchips, Voltaic has identified a significant increase in the prospective **LCT** "goldilocks" corridor* from 22km to 40km strike length within the Ti Tree tenure, which is highly significant. As discussed in <u>ASX:VSR announcement 30/012023</u>, the source of Li fertility of the M1 pegmatite may be granitic pluton F6 which underlies Voltaic's tenure (see *Figure 1*).

* The **Volta corridor** is an 80km interpreted prospective corridor of LCT-bearing pegmatites that comprises the "goldilocks" zone around potential fertile parental granitic plutons (London 2018). Voltaic's tenure has an interpreted 50% of this "goldilocks" zone (40km) (See Figure 1)

Figure 3: Photos from Ti Tree South.

Rockchip sampling has confirmed favourable geochemistry for the presence of LCT mineralisation.

RESULTS

Table 1: Phase 1 & 2 rockchip results - LCT oxides & fertility ratios (Mg/Li, Nb/Ta)

O served a UD	F actions		0	1 Minute and				DATI	00**
Sample ID	Easting	Northing	Sample	Lithology		ASSAYS	00.0	RATI	
			Туре		Li ₂ O	Ta₂O₅	Cs ₂ O	Mg/Li	Nb/Ta
TR200067	414791	7298760	Rock	Ironstone	<mark>(ppm)*</mark> 887.0	(ppm) 0.5	(ppm) 0.3	(-)	(-) 6
TR200007	436040	7277262	Rock	Pegmatite	863.4	127.0	320.1	3 4	3
TR200130	436285	7276081	Rock	Pegmatite	475.8	6.1	10.3	7	12
TR200113	436129	7276060	Rock	Pegmatite	456.4	1.2	56.5	161	15
TR200129	435940	7277068	Rock	Pegmatite	426.3	4.1	7.8	5	11
TR200133	435416	7278251	Rock	Pegmatite	385.4	6.8	8.6	6	12
TR200163	438043	7276481	Rock	Pegmatite	381.1	127.0	85.2	33	1
TR200117	436277	7276383	Rock	Pegmatite	312.2	13.3	19.6	10	8
TR200125	435126	7277501	Rock	Pegmatite	288.5	5.5	5.8	9	11
TR200162	438019	7276427	Rock	Pegmatite	284.2	205.1	68.3	31	1
TR200188	436013	7277096	Rock	Pegmatite	284.2	4.0	12.3	5	10
TR200173	437627	7275621	Rock	Pegmatite	198.1	4.9	7.8	9	7
TR200006	415975	7294668	Rock	Metachert-FeOx	196.8	0.6	27.0	16	13
TR200181	436363	7276784	Rock	Pegmatite	190.8	15.1	43.1	8	6
TR200158	436481	7276815	Rock	Pegmatite	185.6	11.8	38.7	16	5
TR200167	437579	7275781	Rock	Pegmatite	184.1	7.1	20.9	8	5
TR200179	436399	7277152	Rock	Pegmatite	181.7	3.9	12.3	30	8
TR200174	437592	7275596	Rock	Pegmatite	150.1	5.6	10.8	17	10
TR200182	436344	7276793	Rock	Pegmatite	141.5	7.2	52.3	13	5
TR200189	436242	7277181	Rock	Pegmatite	135.4	7.1	9.2	10	8
TR200159	437553	7276224	Rock	Pegmatite	133.3	7.8	10.3	8	7
TR200009	415812	7294224	Rock	Metachert-FeOx	126.2	0.4	1.8	7	10
TR200053	415589	7294923	Rock	Mica gneiss	125.1	1.8	51.9	142	11
TR200119	436100	7276183	Rock	Pegmatite	122.5	4.8	8.4	16	13
TR200138 TR200176	434846 437432	7277819	Rock	Pegmatite	119.3	7.1	11.3	19	10
		7275579	Rock	Pegmatite	119.3	2.7	6.9	13	10
TR200139 TR200124	434811 435211	7277815 7277542	Rock Rock	Pegmatite	118.4	2.2	6.5	19	9
TR200124	435441	7278147	Rock	Pegmatite Pegmatite	118.2 116.1	40.8 6.1	39.3 4.5	18 13	<u>4</u> 5
TR200090	398091	7309587	Rock	Quartz-goethite vein	114.8	0.1	0.2	3	11
TR200168	437428	7276066	Rock	Pegmatite	113.9	19.1	19.3	13	3
TR200172	437423	7275673	Rock	Pegmatite	112.4	10.0	17.8	13	6
TR200123	435292	7277582	Rock	Pegmatite	108.7	6.0	8.7	17	8
TR200136	434876	7277861	Rock	Pegmatite	104.4	9.7	4.8	21	3
TR200164	437998	7276374	Rock	Tourmaline-peg.	103.8	13.1	12.3	142	3
TR200013	414800	7294582	Rock	Granite	100.8	2.5	15.6	147	11
TR200166	437469	7275879	Rock	Pegmatite	98.4	14.5	15.5	11	3
TR200070	411035	7299515	Rock	Ironstone	98.4	2.1	3.9	61	10
TR200186	436015	7276816	Rock	Pegmatite	95.2	28.2	21.0	4	2
TTSRK004	438192	7278662	Rock	Pegmatite	94.5	1.4	15.0	235	13
TR200143	434532	7277725	Rock	Pegmatite	94.3	5.5	3.9	21	6
TR200052	415596	7294916	Rock	Granite	92.8	3.4	19.4	41	8
TR200120	436010	7276199	Rock	Pegmatite	91.9	2.7	3.1	17	8
TR200010	415763	7294376	Rock	Granite	91.3	5.5	8.0	36	6
TR200177	437371	7275550	Rock	Pegmatite	89.1	4.3	7.2	14	7
TR200137	434848	7277872	Rock	Pegmatite	83.3	9.4	11.5	23	8
TR200002	416573	7295278	Rock	Granite	78.6	4.1	17.9	70	5
TR200165	437895	7276318	Rock	Pegmatite	78.6	6.7	16.1	25	5
TR200064	414686	7298726	Rock	Qz-goethite	78.6	0.1	0.1	5	4
TR200190	436212	7277210	Rock	Pegmatite	77.3	4.9	4.6	14	8
TR200161	438122	7276093	Rock	Pegmatite	73.4	5.3	7.7	15	8
TR200183	436313	7276813	Rock	granite gneiss	71.3	7.6	10.8	21	4
TR200184	436100	7276776	Rock	Pegmatite	69.1	3.4	5.8	17	6
TR200005	416110	7295097	Rock	Pegmatite	64.8	1.8	4.0	1100	12
TR200008	416880	7294215	Rock	Dolerite	64.2	2.6	9.7	103	9
TR200141 TR200004	434647 416104	7277749	Rock	Granite Pegmatite	60.9 59.0	11.0 1.2	13.0	30	7 9
TR200004 TR200180	416104 436407	7295099 7276799	Rock Rock	Metachert-FeOx	59.0 58.1	1.2 31.0	15.1 20.9	107 15	9 2
	436407	7295181	Rock	Pegmatite	55.8	1.2	20.9 56.2	49	12
	415929	7295101	Rock	Metachert-FeOx	55.8	2.5	8.4	49 144	9
TR200003		1233103		Granite	53.8	2.5	8.4	144 8	8
TR200054		7276207	ROCK			0.0	0.7		0
TR200054 TR200121	435925	7276207	Rock		-	0.0	24		3
TR200054 TR200121 TTSRK021	435925 436876	7279777	Rock	Pegmatite	53.4	0.9	2.4 6.7	60	3
TR200054 TR200121 TTSRK021 TR200187	435925 436876 435895	7279777 7277059	Rock Rock	Pegmatite Biotite schist	53.4 52.3	2.4	6.7	60 17	7
TR200054 TR200121 TTSRK021	435925 436876	7279777	Rock	Pegmatite	53.4			60	

* Cutoff used: Li₂O < 45 ppm. See Table 3 in the Appendix for the supplementary suite of assay data.

**Ratios: Mg/Li < 50 indicates a fertile system, with <10 highly prospective. Nb/Ta <= 8 indicates highly fractionated zonation (favourable for LCT mineralisation).

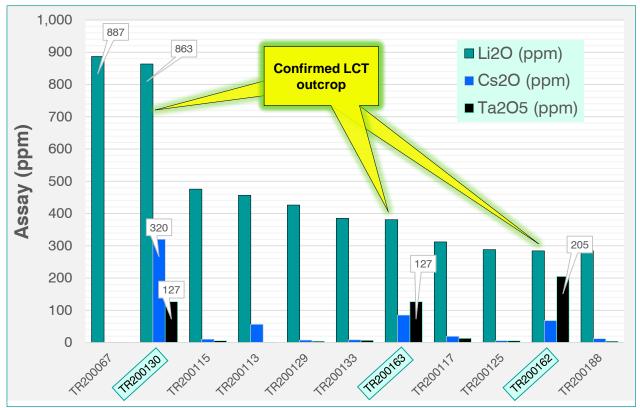


Figure 4: Ti Tree phase 1 & 2 rockchip samples - lithium, caesium & tantalum oxide assays

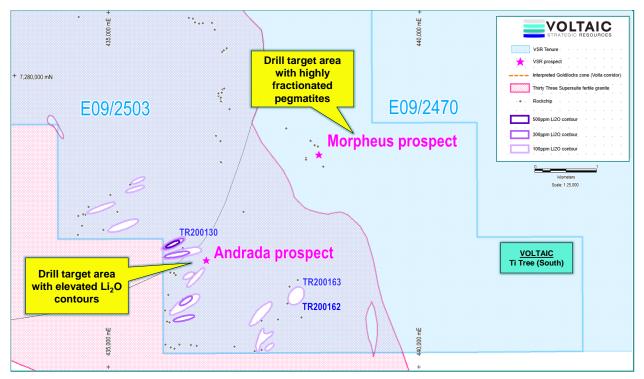


Figure 5: Lithium oxide contours within E09/2503 with two (2) drill target areas shown (Andrada & Morpheus)

TECHNICAL DISCUSSION

For this discussion, a pegmatite can be viewed as the **offspring of a parental granitic rock**, and the granite / pegmatite can be categorised as either "barren" (not enriched) or "fertile" (enriched in the minerals of interest).

- Identification of fertile parental granites is a critical exploration tool in the initial search for LCT pegmatites as their discovery can greatly reduce the search area for lithium deposits (Cerny 1989; London 2018).
- Lithium-bearing pegmatites are plutonic rocks formed by the late-stage fractionation and emplacement of fertile, peraluminous (high alumina content) granites. They are commonly referred to as LCT pegmatites due to the enrichment in the incompatible elements of lithium, caesium, and tantalum (Breaks et al. 1997).
- As the pegmatites evolve, their chemical composition changes with distance from the parent granitic source as different minerals begin to form. This is called **fractionation**. A high degree of fractionation is a well-known hallmark of LCT-enriched pegmatites (Selway et al. 2005).
- LCT pegmatites are generally emplaced ~0-10 km of fertile granites ("goldilocks" zone) (Bradley et. al 2017).

What is a "fertile granite"?

The initial step for determining regional-scale favourability for hosting LCT pegmatites is **fertility analysis** – utilising whole-rock geochemistry to determine whether the right chemical conditions are present for LCT minerals to form.

- Fertile LCT granites/pegmatites have elevated Li, Cs, Ta abundances compared to the average upper continental crust; low Ca, Fe, and Mg; and atypical elemental ratios* (of which the ratios Mg/Li and Nb/Ta are the most useful) with the required ranges provide below (Cerny 1989; Breaks et al. 2005; Steiner 2019)
- Increasing fractionation can be identified from elemental analysis: Li, Ca, Ta (and Rb) are observed to increase, while elements like Sr, Zr, and Mg decrease (Breaks et al. 1997; Breaks et al. 2003).

Table 2: Geochemical fertility ratios within fertile granites / pegmatites						
Geochemical ratio	Required range for fertility / fractionation					
Magnesium : Lithium (Mg/Li)	>50 = barren, <50 = fertile, with <30 highly fertile					
Niobium : Tantalum (Nb/Ta)	<=8 indicating high fractionation					
Potassium : Rubidium (K/Rb)	42 – 270					
Magnesium : Lithium (K/Cs)	1,600 – 15,400					
Zirconium : Hafnium (Zr/Hf)	16 – 64					

* Geochemical ratios are highly effective LCT pegmatite exploration tools as they help overcome extreme concentration variations in zoned pegmatites (Breaks et al. 2005)

Source: Cerny (1989, p.283); Breaks et al. (2005, p. 9)

The most important fertility indicator ratio, Mg/Li, is plotted for the Ti Tree rockchips in *Figure 6* below, with a comparison also provided for the world-class Pilgangoora lithium deposit & early samples from Yinnietharra. Encouragingly, a significant number of the Ti Tree rockchips fall within the 'fertile' region (Mg/Li<50) and are comparable to both peers. Other fertility ratio plots are provided in the Appendix, all of which support favourable fertility for the Ti Tree rockchips.

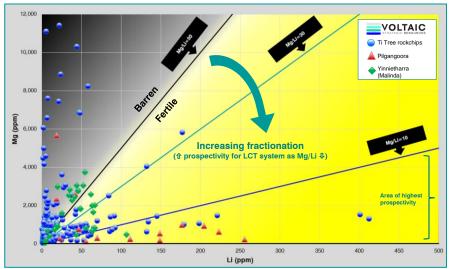


Figure 6: Fertility analysis derived from Mg/Li ratio – Ti Tree, Yinnietharra, Pilgangoora Li deposit Source: Segue Resources (2016), WAMEX report A106348 (Pilbara Minerals 2017)

Pathway to discovery

As discussed above, the pegmatites at Ti Tree may originate from the same fertile granitic source as the neighbouring Yinnietharra lithium discovery. Voltaic's technical team have undertaken a detailed analysis of the Yinnietharra project's journey towards the initial discovery in 2017 (by Segue Resources Ltd who later became Arrow Minerals Ltd) and a timeline of key events is provided in *Figure 7* below. A comparison is also made to Voltaic's journey so far at Ti Tree, and we are encouraged by the progress made within our initial three months of exploration.

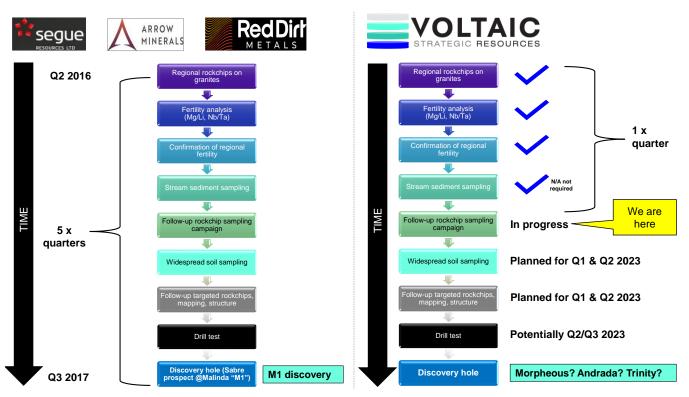


Figure 7: Timeline of key events for making the Yinnietharra Li discovery with comparison to VSR's Ti Tree Source: Segue Resources (2016; 2017)

Upcoming Exploration

- Phase 3' of ground reconnaissance at Ti Tree is planned for February/March 2023 and will comprise further geochemical sampling and planning for the subsequent regional soil sampling campaign.
- The regional broad-coverage soil sampling campaign is planned to commence in February 2023 for the entire Volta corridor and will comprise 8,000 soil samples in total. Phase-1 will commence at Ti Tree South E09/2503 & E09/2470 (3,000 samples), with follow up phases thereafter across Volta. This campaign will provide geochemical data over the entire prospective corridor and will target the schists within Volta (see <u>ASX:VSR</u> <u>announcement 30/01/2023</u>).
- A high-resolution UAV drone survey is planned for February 2023 and will provide detailed high-resolution imagery to assist with regional geological mapping and identification of pegmatite outcrops.
- Detailed geophysical and structural interpretation analysis is underway in collaboration with Southern Geoscience Consultants (SGC), to complement the Company's pipeline of targets. Follow-up geophysical surveys may commence in March/April 2023, depending on the results from SGC's assessment.
- Reverse circulation drilling will follow priority target ranking.

ASX / Media Release 07 February 2023

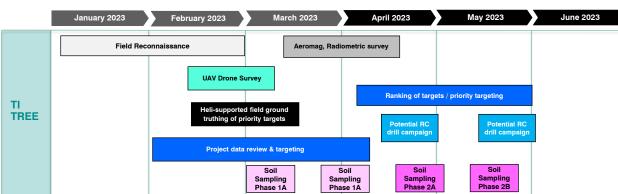


Figure 8: Planned and completed activities at Ti Tree – Q1-Q2 2023

Upcoming Newsflow

- February 2023: Update on geophysical targeting & planned soil sampling campaign at Ti Tree
- February 2023: Gascoyne regional update
- March/April 2023: Drill results from Paddys Well

Previous Related Market Announcements

ASX:VSR <u>Ti Tree Project Update</u> 3	30/01/2023
ASX:VSR <u>Gascoyne Tenement and Project Update</u> 1	2/01/2023
ASX:VSR <u>Pegmatite occurrences confirmed at Ti Tree</u> 1	2/12/2022
ASX:VSR <u>Ti-Tree Lithium Project Update - Malinda Lookalike Targets</u> 3	30/11/2022
ASX:VSR <u>Lithium Potential Expanded at Gascoyne Project</u> 0)2/11/2022

Authorised by:

Board of Voltaic Strategic Resources Ltd

For further information, contact:

MICHAEL WALSHE Chief Executive Officer

+61 (0)8 6245 9821 Email: michael.walshe@voltaicresources.com

SIMON ADAMS

Chief Financial Officer, Company Secretary

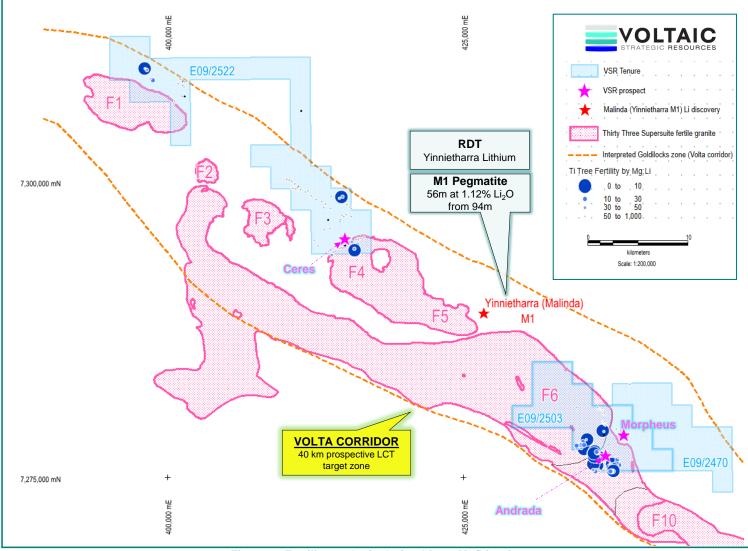
+61 (0)8 6245 9821 Email: simon.adams@voltaicresources.com

COMPETENT PERSON STATEMENT

The information in this announcement related to Exploration Results is based on and fairly represents information compiled by Mr Claudio Sheriff-Zegers. Mr Sheriff-Zegers is employed as an Exploration Manager for Voltaic Strategic Resources Ltd and is a member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. He consents to the inclusion in this announcement of the matters based on information in the form and context in which they appear.

FORWARD-LOOKING STATEMENTS

This announcement may contain forward-looking statements involving several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update statements if these beliefs, opinions, and estimates should change or to reflect other future development.


MAP COORDINATES

All coordinates in MGA Zone 50 GDA

Voltaic Strategic Resources Ltd ASX:VSR

ANNEXURE 1 – SUPPLEMENTARY DATA Fertility Analysis by Geochemical Ratios - Concentration Plots

Figure 9: Fertility analysis derived from Mg/Li ratio. Mg/Li < 50 indicates a fertile granitic system with LCT prospectivity increasing as Mg/Li decreases

ASX / Media Release 07 February 2023

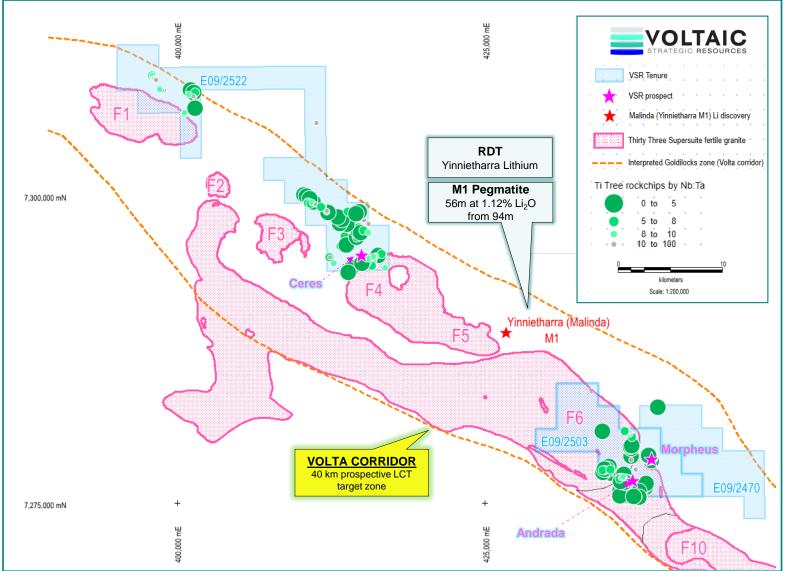


Figure 10: Fertility analysis derived from Nb/Ta ratio Nb/Ta < 8 indicates high fractionation and favourable LCT prospectivity

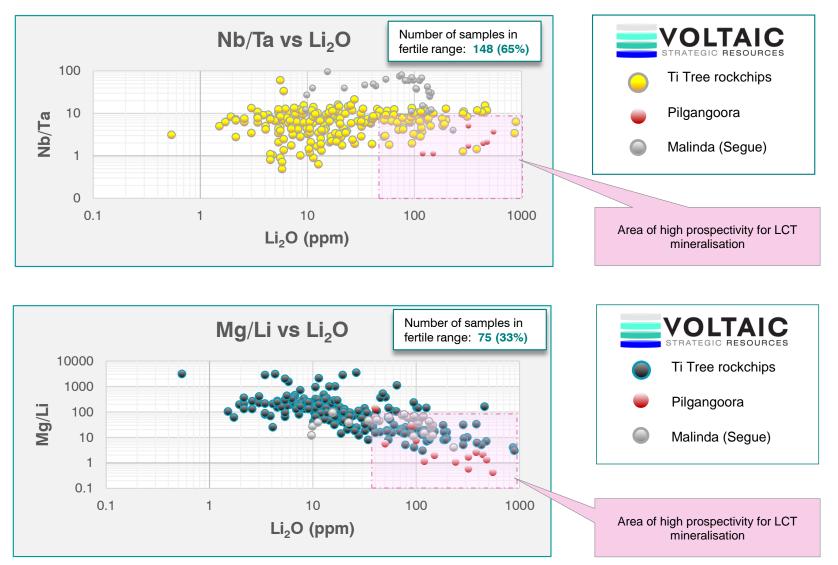
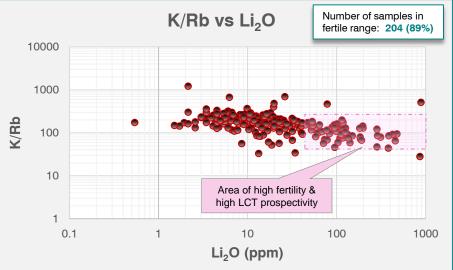



Figure 11: Fertility ratios Mg/Li & Nb/Ta vs/ Li₂O concentration for rockchip samples – Ti Tree & Yinnietharra rockchips, Pilgangoora Li deposit NOTE: Pink shaded area represents area of high prospectivity for LCT mineralisation with anomalous Li₂O & favourable fertility Source: Segue Resources (2016), WAMEX report A106348 (Pilbara Minerals 2017)

ASX / Media Release 07 February 2023 **VOLTAIC** STRATEGIC RESOURCES

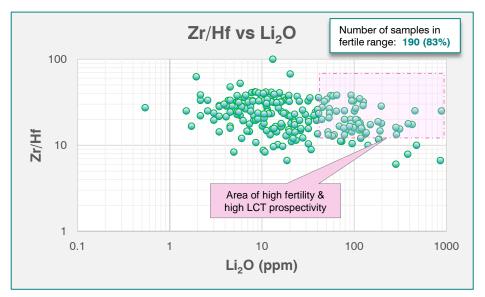


Figure 12: Fertility ratios K/Cs, K/Rb, Zr/Hf vs Li₂O concentration for Ti Tree rockchip samples. NOTE: Pink shaded area represents area of high prospectivity for LCT mineralisation with anomalous Li₂O & favourable fertility

ANNEXURE 2 – JORC TABLES

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Rock chip samples were taken as individual rocks representing an outcrop to give an indication of possible grades and widths that can be expected from drilling. Individual rock samples can be biased towards higher grade mineralisation. Rock chip samples were typically between 1 and 2 kg. The entire sample received by the laboratory was crushed and pulverised to 85% passing 75 micron A duplicate sample of between 0.1 and 0.2 kg was retained by the Company fo all samples reported.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No new drilling results are included in this report.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No new drilling results are included in this report.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	No new drilling results are included in this report.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The entire sample received by the laboratory was crushed and pulverised to 85% passing 75 micron.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision 	 Rock chip samples were analysed by Labwest Minerals Analysis Pty Ltd in Perth. The sample analysis uses multi-acid microwave digest with an Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) finish.

Criteria	JORC Code explanation	Commentary				
Verification of sampling and assaying	 have been established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Industry standard dummy samples of known composition were used for QA/QC verification checks. Analyses were originally reported in elemental form but have been converted to relevant oxide concentrations as per industry standards: <u>Conversion factors used to convert from element to oxide</u>: 				
		Element Oxide Conversion Factor Equivalent Oxide				
		Lithium (Li) 2.153 Li ₂ O				
		Tantalum (Ta) 1.224 Ta ₂ O ₅				
		Niobium (Nb) 1.430 Nb ₂ O ₅				
		Caesium (Cs) 1.060 Cs ₂ O				
		Reference: Breaks et. al 2003, p. 174				
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Rock chip sample locations were surveyed using a handheld GPS using the UTM coordinate system, with an accuracy of +/- 5m 				
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No new drilling results are included in this report.				
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and 	 Rock chip samples were selected to target specific geology, alteration an mineralisation. The samples were collected to assist the Company in developin its understanding of the geology and exploration potential of its tenure. 				
	reported if material.	No new drilling results are included in this report.				
Sample security	The measures taken to ensure sample security.	 Samples were given individual samples numbers for tracking. The sample chai of custody was overseen by the Company's Exploration Manager. Samples wer transported to Perth in a sealed bags bag and subsequently to the laboratory 				
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The sampling techniques and analytical data are monitored by the Company's geologists. External audits of the data have not been completed. 				

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
	 e preceding section also apply to this section.) JORC Code explanation Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	 The project area is located approximately 100km northeast of the Gascoyne Junction and 250km east of Carnarvon. The Ti Tree project comprises one granted Exploration Licence, E09/2503, and two Exploration Licence Applications: E09/2470 and E09/2522. All the tenements are in good standing with no known impediments. Numerous exploration campaigns have been completed in the general area since the early 1970's focusing predominantly on uranium and diamonds. Historical exploration activity has been extensive throughout the region occurring during four (4) main phases (WAMEX Report 114263); 1970's (uranium focus); 1980's (largely base metals plus lesser uranium); 1990 (base metals); and 2000's (uranium with minor work on other commodities). Limited exploration to determine the potential for gemstones, Industrial minerals (mica & tourmaline) & rare earths within pegmatites within the Gascoyne Complex has also been undertaken. Although not on Voltaic's tenement, drilling in the area has largely been restricted to the 1970's & 1980's, with AGIP Nucleare conducting extensive exploration history, reliability of the data (location and analysis QA/QC information) is equivocal, being limited to hand drafted maps (using local grids), and frequently absent assay data (WAMEX Report 114635). Some more significant and relevant exploration work is outlined.
	Acknowledgment and appraisal of exploration by other parties.	 Numerous exploration campaigns have been completed in the general ar since the early 1970's focusing predominantly on uranium and diamonds. Historical exploration activity has been extensive throughout the re occurring during four (4) main phases (WAMEX Report 114263); 1 (uranium focus); 1980's (largely base metals plus lesser uranium); (base metals); and 2000's (uranium with minor work on other commodities). Limited exploration to determine the potential for gemstones, Industrial minerals (mica & tourmaline) & rare earths w pegmatites within the Gascoyne Complex has also been undertake Although not on Voltaic's tenement, drilling in the area has largely restricted to the 1970's & 1980's, with AGIP Nucleare conducting extensive exploration history, reliability of the data (location and ar QA/QC information) is equivocal, being limited to hand drafted mag (using local grids), and frequently absent assay data (WAMEX Rep 114635). Some more significant and relevant exploration work is o below. Noranda Australia Ltd (1972-1974): focussed on the eastern side of Voltaic's ground, exploration followed up on an earlier airborne rado us verye, and included reconnaissance ground radiometry over 1.5-lik kilometres, detailed ground radiometry over 2.5-line kilometres and collection of 112 soil samples that were subsequently analysed for
		 uranium (poor results). Groundwork observed concentration of uraniur silica (silcrete) capped clayey soil profile developed above weathered granite/gneiss. The silcrete cap was observed to mask the radiometric anomaly with best readings restricted to exposed and eroded margins Anomalous results were returned by "green clays" in the regolith profil with results up to 1,200 cps and 1,026 ppm uranium. Nine auger drillh were subsequently completed to 3m depth, several of them intersectin carnotite in the subsurface soil profile. Approximately twenty (20) occurrences of secondary carnotite mineralisation were in the Mt Philli and Glenburgh 1:250,000 map sheet areas, albeit south of Voltaic's ground. Occurrences were normally found at the contact of the calcret with the underlying basement and below the silcrete capping when present (WAMEX Report 124242). Two (2) granite-associated targets are described as located within E 09/2503, with primary uranium mineralisation of possible gummite, pitchblende and euxenite identified in beryl and tournaline bearing pegmatite (WAMEX Report 124242). Secondary mineralisation was associated with ferruginous weathering and gossans developed in association with these pegmatites. Two iron oxide veins were further located on a pegmatite margin that returned maximum surface counts

 around 500 to 1, 600 cps, with a sample returning 803 ppm uranium. The minimality around including detailed and minimality around including detailed and provide the second sec	0.11		STRATEGIC RESOURCES
 westermost larget averaged around 170 cps over leached and minoralised granic (WAMEX Report 12424). From 1976-78, more detailed work was completed incluing detailed grand mapping and 110-line kilomatics of ground radiomsky. Percussion drilling comprised b hold grand (MAMEX Report 126014). Form 1976-78, more detailed work was completed incluing of more than 50 cps in the top one metre of the hole (WAMEX Report 106018). So of the drilling confirmed the presence of geochemically anomalous uranium in pegmatite, with results up to 330 cps and 120 pm Uraniu and mineralisation was present in a quart vore in associated with a 64 dri intrusive (WAMEX Report 7698). Whin Credk Consolidated NL (1880 - 1892): focus was on exploration scheeling stram sodieme typication scheeling and interesting upochemistry with the collection of 88 series and rock goochemistry. Stram sodiment samples appear only to have been subjected to scheeling arise interest. Geographe Resources Exploration (1997 - 1989): work included levels. Two rock chip samples returned 3.7% and 0.7% Verspectivel (WAMEX Report 23030), with ungater mineralisation on 36 series of the samples collect on scheeling end to collision of 8 series and rock geochemistry. Strams endment samples appear only to have were analysed. All samples returned less than the collection of 8 series and rock geochemistry. Strams endments and the collection of 8 series and rock geochemistry. Strams endments and the collection of 8 series and rock geochemistry. Strams endments and the collection of 8 series and rock geochemistry. Strams endments and the collection of 8 series and rock geochemistry. Strams endments and the collection of 8 series and rock geochemistry. Strams endments and the col	Criteria	JORC Code explanation	
	Criteria	JORC Code explanation	 Commentary around 500 to 1,600 cps, with a sample returning 803 ppm uranium. The westernmost target averaged around 170 cps over leached and mineralised granite (WAMEX Report 124242). From 1976-78, more detailed work was completed including detailed ground magnetometry, trenching, geological mapping and 110-line kilometres of ground radiometry. Percussion drilling comprised 6 holes for a total of 518 metres to the east of E 09/2503, with a quartz limonite vein with readings of more than 500 cps from the ground radiometry, returned 95 cps in the top one metre of the hole (WAMEX Report 106018). Some of the drilling confirmed the presence of geochemically anomalous uranium in pegmatite, with results up to 330 cps and 120 ppm Uranium, and mineralisation was present in a quartz vein associated with a dolerite intrusive (WAMEX Report 7598). Whim Creek Consolidated NL (1980 - 1982): focus was on exploration for scheelite skarns over an area that covered part of the western portion of the current tenement area and toward the west. Work included geological mapping, stream sediment geochemistry with the collection of 68 samples and rock geochemistry. Stream sediment samples appear only to have been subjected to scheelite grain counts and results were at threshold levels. Two rock chip samples returned 37% and 0.7% W respectively (WAMEX Report 239038), with tungsten mineralisation considered to be poddy and not of economic interest. Geographe Resources Exploration (1997 - 1998): work included acquisition of aero magnetometry data and the collection of 58 BLEG stream sediment samples returned less than the detection limit of 0.1 ppb except for two samples on a single drianage that contained 0.6 ppb and 0.3 ppb U, respectively (WAMEX Report 55760). More recent exploration 2006 - 2017 (RiverRock Energy Ltd, Dynasty Metals, Glengarry Resources, Zeus Resources and Segue Resources) included 69 prock chip
these results supported the tenement's potential to host an LCT pegmatite. Despite that conclusion, the ground was surrendered in 20 (WAMEX Report 124242).			pegmatite. Despite that conclusion, the ground was surrendered in 2020

Criteria	JORC Code explanation	Commentary STRATEGIC RESOURCES
omena		
Geology	Deposit type, geological setting and style of mineralisation.	 The project area has historically been considered prospective for unconformity vein style uranium, although it equally considered prospective for rare earth element (REE) mineralisation hosted in iron-rich carbonatite dykes or intrusions, or lithium-caesium-tantalum (LCT) pegmatites. The project area encompasses a portion of the Gascoyne Province of the Capricorn Orogen. This geological belt is positioned between the Archaean Yilgarn Craton to the south, and the Archaean Pilbara Craton to the north, and largely consists of a suite of Archaean to Proterozoic gneisses, granitic and metasedimentary rocks. The tenements lie astride the contact between a tight WNW trending syncline of Meso Proterozoic age rocks of the Bangemall Basin, known as the Ti Tree Syncline, and metamorphic rocks of the Gascoyne Complex. Bangemall Group sediments preserved in the syncline include the basal Irregully Dolomite, overlain by black and grey siltstone and shale of the Jillawarra Formation. They are intruded by thick dolerite sills. Rocks immediately underlying the Bangemall Group rocks consist of phyllite, meta conglomerate and meta sandstone of the Mt James subgroup. Within the Ti Tree project, historical exploration efforts have identified several anomalous uranium and potential LCT pegmatite samples. The status of these anomalies including the scale and exact location of the samples has not yet been confirmed. The ground truthing of the anomalies remains a priority prior to significant exploration activities. The project is within a prospective corridor of pegmatites where a recent exploration effort on within and adjacent to the Thirty-Three Supersuite granites on adjacent tenements has identified the presence of highly anomalous Li and Ta from geochemical, geophysical, hyperspectral, and drilling.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• N/A.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No drilling results are included in this report A cut-off grade of Li₂O < 45ppm has been applied to rock chip assays.
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	The orientation of the mineralisation is interpreted and yet to be structurally validated.

Criteria	JORC Code explanation	Commentary
widths and intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Maps showing relevant data have been included in the report .
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	- All rock chip samples have been reported above a cut-off grade of $Li_2O < 45$ ppm
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All of the relevant exploration data has been included in this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 On-going field reconnaissance exploration in the project area continues and is a high priority for the Company. Exploration is likely to include further lithological and structural mapping; rockchip sampling; acquisition of high-resolution geophysical data and arial drone imagery to assist geological interpretation, target identification; soil sampling campaigns and eventual drilling of ranked drill targets.

ANNEXURE 3 - REFERENCES

Bradley, C, McCauley, A & Stillings, LL 2017, 'Mineral-deposit model for lithium-cesium-tantalum pegmatites', *United States Geological Survey Scientific Investigations Report*, vol. 2010-5070, pp.1-58.

Breaks, F & Tindle, A, 1997, 'Rare-Metal Exploration Potential of the Separation Lake Area: an Emerging Target for Bikita-Type Mineralization in the Superior Province of NW Ontario', *Ontario Geological Survey*, Open File Report 5966, pp. 1-27.

Breaks, F, Selway, J & Tindle, A 2003, 'Fertile Peraluminous Granites and Related Rare-Element Mineralization in Pegmatites, Superior Province, Northwest and Northeast Ontario: Operation Treasure Hunt', *Ontario Geological Survey*, Open File Report 6099, pp. 1-180.

Breaks, F, Selway, J & Tindle, A 2005, 'A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits', *Canadian Institute of Mining, Metallurgy and Petroleum*, vol. 14, no. 1-4, pp. 1-30.

Cerny, P, 1989, 'Exploration strategy and methods for pegmatite deposits of tantalum', *In Lanthanides, Tantalum, and Niobium*, Springer-Verlag, New York, pp. 274-302.

London, D 2018, 'Ore-forming processes within granitic pegmatites', Ore Geology Reviews, vol. 101, pp. 349–383.

Pilbara Minerals 2017, 'WAMEX report A106348 - Annual Group Report C123-2002, Geochemical dataset, https://geodocs.dmirs.wa.gov.au/Web/documentlist/10/Report_Ref/A106348.

Segue Resources, 2016, ASX release 09 June, 'Positive results from Gascoyne lithium project', viewed 18 January 2023, https://www.asx.com.au/asxpdf/20160609/pdf/437srh8cv283bn.pdf.

Segue Resources, 2017, ASX release 20 September, 'Assays Confirm Lithium Discovery at The Malinda Project', viewed 18 January 2023, https://www.asx.com.au/asxpdf/20170920/pdf/43mgwy92kvdwb6.pdf.

Steiner, B, 2019, "Tools and Workflows for Grassroots Li–Cs–Ta (LCT) Pegmatite Exploration", *Minerals*, vol. 9, no. 8, pp. 499-522.

ANNEXURE 4 - SUPPLEMENTARY ELEMENTAL DATA FOR FERTILITY ANALYSIS

			& 2 rockchi						-
SAMPLE	EASTING	NORTHING	Mg (ppm)	Nb (ppm)	Rb (ppm)	K (ppm)	Cs (ppm)	Hf (ppm)	Zr (ppm)
TR200001	416318	7295190	524	11.4	232	38200	5.1	1	11
TR200002	416573	7295278	2550	18	413	47900	16.9	2.7	68
TR200003	416124	7295181	1260	11.3	469	58000	53	4.62	175
TR200004	416104	7295099	2940	8.5	425	56500	14.2	3.67	137
TR200005	416110	7295097	33100	18	215	22300	3.8	5.8	221
TR200006	415975	7294668	1460	5.9	250	35900	25.5	2.25	64
TR200007	415991	7294398	7590	7.2	146	33700	2.1	1.59	39
TR200008	416880	7294215	3060	19.3	338	51700	9.1	2.66	66
TR200009	415812	7294224	403	2.8	105	13500	1.7	0.97	31
TR200010	415763	7294376	1540	27.6	325	40100	7.5	2.25	45
TR200011	415129	7294810	1150	30.4	156	13000	5	1.94	32
TR200012	414794	7294599	1410	29.5	298	44000	6.4	2.36	46
TR200013	414800	7294582	6880	21.6	283	45700	14.7	2.33	58
TR200014	414791	7294606	857	28	281	41900	6.2	1.94	39
TR200015	414657	7294603	8850	16.8	176	29200	5.8	4.55	156
TR200016	414752	7294627	7440	12.9	204	33400	4.8	4.33	130
TR200017									
TR200018	414517	7294353	970 2110	30.6	270	44200	5	1.76	33
TR200019	414521	7294354	2110	9	19.1	4990	0.5	1.71	29
TR200019 TR200020	414288	7294292	519	2.8	260	68800	3.1	0.84	17
	414277	7294258	594	15.5	236	61200	2.5	1.28	13
TR200021	414300	7294273	448	13.5	171	40300	1.7	2.76	24
TR200022	414285	7294245	807	13.1	168	35300	3.6	2.8	32
TR200023	414204	7294188	785	15.1	196	39000	4.7	2.96	38
TR200024	414543	7294371	1060	8.5	162	47200	2.7	1.48	35
TR200025	412717	7294537	172	0.25	0.9	155	0.2	0.08	5
TR200026	412363	7295041	4160	0.7	3.9	606	0.9	1.87	51
TR200027	412380	7295057	11400	15.3	185	32000	6.3	4.64	150
TR200028	413265	7295919	313	0.25	1.1	144	0.3	0.08	2
TR200029	413571	7296708	4480	0.8	2.2	467	0.5	1.9	55
TR200030	413556	7296717	6070	2.4	7.8	1550	0.4	4.91	163
TR200111	435960	7276030	191	9	117	18600	2	0.3	5
TR200112	436002	7276014	309	5.5	68.6	11800	2.3	0.07	1
TR200113	436129	7276060	34100	15.1	405	26500	53.3	2.94	74
TR200114	436131	7276058	11100	0.25	1.9	290	0.2	2.8	74
TR200115	436285	7276080	1470	58.6	328	30800	9.7	0.5	5
TR200116	436312	7276127	306	8.4	228	44300	2.5	0.39	6
TR200117		7276383	1440						28
TR200118	436277			91.3	461	36200	18.5	1.81	
TR200110	436211	7276393	477	10.2	240	35300	11	0.71	13
	436100	7276183	924	52.2	406	46800	7.9	0.33	5
TR200120	436010	7276199	731	18.3	158	18200	2.9	0.28	5
TR200121	435925	7276207	208	4.8	376	61000	8.2	0.15	4
TR200122	435980	7276454	464	16	103	13100	2.8	0.37	9
TR200123	435292	7277582	866	40.4	345	25600	8.2	0.51	10
TR200124	435211	7277542	978	123	793	59900	37.1	1.99	24
TR200125	435126	7277501	1150	49.4	280	24200	5.5	0.15	2
TR200126	434938	7277504	361	9.7	219	36000	4.5	0.45	10
TR200127	434523	7277420	545	23.1	97.4	12600	1.9	0.33	5
TR200128	434588	7277566	461	41.2	334	39000	9.1	1.05	15
TR200129	434568		1060		234				4
TR200123		7277068		35.3		21500	7.4	0.23	
TR200130	436040	7277262	1530	354	2350	64700	302	4.37	29
	435441	7278147	675	23.1	202	21100	4.2	0.11	2
TR200132	434538	7280929	866	36.9	257	57500	9.8	1.38	20
TR200133	435416	7278251	1010	65.3	374	31700	8.1	0.45	8
TR200134	435365	7278227	764	9.3	115	16500	1.9	1.23	28
TR200135	435046	7278065	200	7.5	479	72500	8.4	0.4	8
TR200136	434876	7277861	999	25.9	168	21500	4.5	0.1	2
TR200137	434848	7277872	887	59.8	414	39700	10.8	0.53	8

TR200138	434846	7277819	1030	57.1	324	31700	10.7	0.71	11
TR200139	434811	7277815	1030	17.1	306	53400	6.1	0.12	2
TR200140	434696	7277872	160	0.25	160	31500	3.2	0.61	15
TR200141	434647	7277749	835	59	419	40800	12.3	0.53	7
TR200142	434608	7277750	47	0.7	501	72500	7.6	0.14	3
TR200143	434532	7277725	925	29.4	239	36500	3.7	0.14	2
TR200144	435157	7277794	401	10.6	262	48200	10.6	0.09	2
TR200145	436266	7277427	1220	0.25	316	32900	9.3	2.5	33
TR200146	437188	7277795	539	1	37.6	5780	0.2	0.42	12
TR200147	436747	7279024	124	93.3	791	26800	27.1	1.01	9
TR200148	436818	7278929	759	28.1	616	34700	26.6	2.89	31
TR200149			514				0.6		
TR200150	436962	7279447		0.6	12.5	2890		0.35	9
TR200151	436836	7278589	42100	2.8	7.3	5050	0.3	0.81	12
TR200152	436826	7278595	723	1.7	219	53500	3.7	1.41	34
	436439	7275637	359	4.1	95.3	15700	1.7	1.45	26
TR200153	436345	7275653	268	0.7	128	26200	1.7	0.17	3
TR200154	436161	7275659	312	13.2	253	36500	5.6	0.65	12
TR200155	436081	7275592	328	11.1	234	35600	4.1	0.65	13
TR200156	436020	7275608	276	12.7	197	36300	2.5	0.28	5
TR200157	435933	7275659	232	1.6	237	43000	7.9	1.1	18
TR200158	436481	7276815	1410	48.8	697	49500	36.5	0.17	2
TR200159	437553	7276224	469	43.3	570	52400	9.7	1.99	27
TR200160	437748	7276060	261	21.2	175	11700	6.9	1.54	24
TR200161	438122	7276093	507	34	341	23900	7.3	0.18	2
TR200162	438019	7276427	4040	213	1580	74700	64.4	2	12
TR200163	438043	7276481	5820	149	1510	66200	80.4	2.54	20
TR200164	437998	7276374	6840	32.4	245	14700	11.6	2.57	69
TR200165	437895	7276318	906	25.4	446	30200	15.2	0.76	10
TR200166	437469	7275879	506	38.5	478	64000	14.6	0.25	4
TR200167	437409	7275781	650	30.5	249	19800	14.0	0.23	4 5
TR200168									
TR200169	437428	7276066	703	44.5	439	38200	18.2	1	15
TR200109	437927	7276587	150	43.7	569	50300	18.4	1.07	13
	438060	7276695	477	28.4	283	31600	8	0.62	6
TR200171	437482	7276043	470	18.6	581	62500	20	1.16	12
TR200172	437423	7275673	668	53.1	726	67000	16.8	0.9	16
TR200173	437627	7275621	834	27.6	426	54800	7.4	0.39	7
TR200174	437592	7275596	1200	45.4	365	31000	10.2	0.98	17
TR200175	437480	7275568	293	22.3	393	49600	7.3	0.64	10
TR200176	437432	7275579	698	21.3	312	38100	6.5	0.51	8
TR200177	437371	7275550	600	23.5	310	42000	6.8	2.06	34
TR200178	437042	7275623	2780	22.9	212	18200	6.7	8.24	192
TR200179	436399	7277152	2510	23.8	327	41900	11.6	0.48	9
TR200180	436407	7276799	410	46.2	709	57100	19.7	2.43	31
TR200181	436363	7276784	730	68.7	864	57700	40.7	0.41	6
TR200182	436344	7276793	839	29.6	524	31100	49.3	0.4	4
TR200183	436313	7276813	693	25.4	199	11300	10.2	0.4	3
TR200184	436100	7276776	555	17	290	31000	5.5	0.24	4
TR200185									
TR200186	436075	7276808	272	13.5	530	52900	15.6	0.59	8
FR200180	436015	7276816	163	45.6	141	6530	19.8	0.67	7
	435895	7277059	413	13.5	462	66900	6.3	0.38	5
R200188	436013	7277096	634	32.6	371	45100	11.6	0.31	5
R200189	436242	7277181	653	44.5	292	22200	8.7	0.43	6
R200190	436212	7277210	514	31.6	313	35600	4.3	0.19	3
FR200031	413755	7296014	397	1	3.8	617	0.2	0.17	4
FR200032	413735	7296050	442	0.25	2.5	338	0.1	0.07	2
TR200033	414211	7294110	1400	8	569	66400	5.9	1.44	38
TR200034	414059	7294024	654	6.9	225	59500	2.8	1.48	29
TR200035	413922	7293899	2470	14.2	542	63900	8.6	1.45	41
TR200036	413926	7293857	605	3	117	37200	1.3	1.75	21
TR200037	413890	7293829	463	17.8	199	41700	5.2	2.17	26
TR200038	414545	7296664	5000	4	16.7	3390	0.6	4.17	135
	111070	00004				0000	0.0	1.1.1	

PROVAL 44:97 727(95) CH 16 0.5 256 0.4 0.41 71 PROVAL 156 244 716 156 13 163 55 PROVAL 41575 727377 260 44 716 156 13 163 55 PROVAL 41592 723777 260 44 716 156 13 217 55 586 13 177 63 PROVAL 41592 723741 1700 218 70 1560 13 171 63 PROVAL 41497 724463 170 218 70 1560 22 214 59 PROVAL 41497 724463 170 218 72 154 59 PROVAL 41497 724403 161 15 257 154 16 PROVAL 41498 723 164 16 15 159 16 15 15	TR200040	414589	7296616	773	0.25	0.8	139	0.05	0.11	3
TACODAG 414917 727044 1380 2.4 7.05 4300 1.3 1.7 5.1 TACODAG 415175 72275 2.96 4.4 7.15 1.50 1.3 1.7 8.5 TACODAG 41528 722731 2.02 1.9 6.6 7.31 0.2 0.27 9.9 TACODAG 41528 723741 1.510 6.2 1.5 3300 1.6 2.28 9.9 TACODAG 41538 7237071 1.255 6.8 1.33 0.3 0.17 0.3 0.2 2.91 3.33 0.3 0.17 0.3 0.2 2.91 0.33 0.3 0.1 0.3 0.2 2.91 0.33 0.3 0.1 0.3 0.2 0.3 0.1 0.3 0.2 0.3 0.1 0.3 0.3 0.1 0.3 0.3 0.1 0.3 0.3 0.1 0.3 0.3 0.1 0.3 0.3 0.1 0.3 <th>TR200041</th> <th>414712</th> <th></th> <th></th> <th>1.6</th> <th>10.5</th> <th>2050</th> <th></th> <th></th> <th>27</th>	TR200041	414712			1.6	10.5	2050			27
1200064 44191 270/27 2026 4.4 77.8 1980 1.3 1.88 35 1201064 44190 270/378 854 10.3 164 3720 3.3 2.91 99 1201064 44190 720/378 854 10.3 164 3720 1.3 1.77 10.3 1202064 441971 728/41 1410 37 737 758 1.3 1.77 10.3 1202064 441971 728/41 1213 2.2 2.1 3910 4.4 1.4 30 1202065 441971 728/47 1430 2.2 2.7 3860 4.2 2.3 101 1202065 41392 729/14 140 1.8 2.7 344 0.5 0.33 51 1202065 41321 729/74 140 1.8 2.7 344 0.5 0.31 51 1202065 41321 <th729774< th=""> 140 1.8</th729774<>	TR200042									
TACOMA 44545 27231 22 33 0.6 711 0.2 0.7 9 TACOMAS 44582 223741 150 6.2 15 360 15 231 177 633 TACOMAS 44583 2237071 155 2.5 0.6 150 0.3 0.41 95 TACOMAS 44593 728476 90 2.2 201 38100 9.2 2.44 65 TACOMAS 44897 728476 903 2.2 201 38100 4.4 1.54 90 TACOMAS 44898 728476 1803 2.2 201 38100 4.3 2.3 164 TACOMAS 41838 728478 180 0.2 73 1700 4.4 151 171 173 173 171 TACOMAS 41388 728478 1824 0.6 0.3 181 TACOMAS 41388 728478 144 11 <th>TR200043</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	TR200043									
TECONAL 41680 728735 564 10.3 10.4 3720 3.3 281 96 TECONAL 41607 728641 1900 6.2 15 3650 15 365 85 TECONAL 41607 728771 1230 2.5 0.8 130 0.41 97 TECONAL 41607 728701 1230 2.5 0.8 130 0.41 98 TECONAL 41607 728475 803 2.2 201 38100 4.4 100 TECONAL 41698 728475 1400 1.1 9 1170 6.5 0.5 1.2 1.4 TECONAL 41692 728473 180 0.28 7.9 1260 4.0 1.3 1.2 TECONAL 41692 728773 100 0.28 7.9 1260 0.3 1.6 TECONAL 41693 728774 120 0.4 4.3 1.6 0.3	TR200044									
THOOME 44532 729741 1590 6.2 15 560 1.6 2.93 59 TECOMA 41517 728441 1410 3.7 37.6 7280 1.3 1.7 83 TECOMA 41487 728468 1120 2.8 6.6 1.3 9.1 6.5 0.25 7.7 TECOMA 41487 728468 1120 2.8 2.00 18.3 2.2 2.84 6.6 TECOMA 41609 728471 14001 1.1 9 1170 0.5 0.25 7.7 TECOMA 41638 729774 180 0.2 2.7 3280 18.3 2.5 0.13 1.1 TECOMA 41538 729774 180 0.2 2.7 344 0.5 0.3 1.1 TECOMA 41538 729876 1.02 2.7 344 0.5 0.3 1.1 TECOMA 41537 729877 10.2 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>										
THOOMAL 44577 728041 1410 37 57.6 7250 1.3 1.77 0.8 TECLOMA 44020 728071 1220 2.5 0.6 130 0.3 0.41 91 TECLOMA 44887 728476 923 2.2 201 39100 4.4 1.44 30 TECLOMA 44888 728471 41500 1.1 37 5.7 32800 4.4 1.44 30 TECLOMA 41588 728473 1400 1.8 2.7 44400 7.9 2.25 40 TECLOMA 41588 728473 3510 1.8 2.7 4440 7.9 2.5 40 TECLOMA 41502 728785 1.0 0.5 7.5 1.50 0.5 0.3 5 TECLOMA 412270 728474 1.40 1.1 1.3 2.00 0.3 1.8 TECLOMA 41302 7280805 5.21 3.7										
TRODAMS 445267 7237771 1250 2.5 6.6 139 0.3 9.1 9.6 TRODAMS 444676 7234683 1103 2.13 200 38000 9.2 2.54 66 TRODAMS 444076 7234621 41500 1.1 9 1170 0.5 0.25 7 TRODAMS 445966 7234621 2440 16.3 564 5600 4.9 121 TRODAMS 445959 7234623 2440 16.8 257 5450 1.5 0.33 111 TRODAMS 443929 723714 1640 1.8 25.9 5600 1.5 0.33 111 TRODAMS 44321 723463 424 0.6 2.4 443 0.5 0.33 116 38 TRODAMS 42320 723464 1160 2.2 16.4 4390 1.6 1.6 1.1 1.0 1.0 1.1 1.3 1.0 1.0										
TRODONG 44467 7294688 1120 21.8 270 3550 9.2 2.44 68 TRODONG 44466 7294676 803 72 201 39103 4.4 301 TRODONG 445056 7248476 1730 122.5 227 32600 16.3 2.73 104 TRODONG 445589 7784714 1640 18.8 297 44400 7.9 2.53 60 TRODONG 413766 7297783 130 0.25 7.9 1200 0.5 0.13 5 TRODONG 413221 728778 130 0.25 7.9 120 0.24 8 TRODONG 413220 7286474 1140 1.1 1.3 2.20 0.24 8 TRODONG 412250 7286474 142 0.5 0.21 106 12 106 TRODONG 412381 738779 120 0.5 0.5 1.3 0.6										
TRODON 444876 7234378 903 22 201 39100 44 154 301 TRODONS 444966 7234071 41900 1.1 9 1170 0.5 0.23 7 TRODONS 419566 7234023 8240 10.3 554 5000 49 4.19 121 TRODONS 419529 7329103 3010 18.8 229 4400 7.9 2.55 401 TRODONS 413364 723714 1600 1.8 229 5939 0.5 0.13 1.1 TRODONS 413321 723805 577 0.25 2.7 344 0.5 0.24 8 TRODONS 41322 7238074 1660 2.2 1.4 4430 1.8 1.62 1.6 TRODONS 441216 7238740 1650 2.7 1.2 1.9 1.0 1.1 TRODONS 44486 7298729 62 1.5										
TROUGH 41505 7294571 41505 1 0 1 0 1 0 5 25 7 TROUGDS 41566 7294571 170 225 227 22000 18.3 2.7.3 114 TROUGDS 41569 7294473 8240 16.3 2.5 60 TROUGDS 413766 7291743 1840 18 2.97 4440 7.9 2.5 60 TROUGDS 41362 7397743 1840 1.8 2.97 344 0.5 0.31 5 TROUGDS 41362 7398985 557 0.25 2.7 344 0.5 0.24 8 TROUGDS 41225 728894 966 0.8 2.3 0.05 2.1 8 TROUGDS 41225 728894 960 2.7 1.2 0.05 2.1 16 TROUGDS 41247 728894 960 2.7 1.2 1.1 0.3 <th></th>										
TECONO. 41595 7.24416 1760 2.5 2.7 3380 0.3 2.7 104 TECONO.5 415959 7234423 62.40 163 50.44 5000 49 4.19 [21] TECONO.5 415959 725714 1640 18 22.9 5900 1.5 1.25 40 TECONO.5 413764 7297783 130 0.25 7.9 5900 50.5 0.33 111 TECONO.5 413364 738005 442 0.6 2.4 443 0.5 0.34 18 TECONO.5 413364 738005 442 0.7 290 0.5 0.45 16 TECONO.5 41205 7238741 1160 1.1 1.3 220 0.5 0.45 1.8 1.2 TECONO.5 41364 72873 2.00 0.25 0.5 164 0.1 0.65 1.3 TECONO.5 44166 728779 1.00										
TROUMS: 41553 729423 8240 6.3 504 5000 49 4.99 121 TROUMS: 41558 729403 3010 18 2.27 44400 7.9 2.26 00 TROUMS: 413766 7297714 140 1.8 2.29 9.5 0.13 5 TROUMS: 413260 729773 130 0.25 7.9 120 0.5 0.33 11 TROUMS: 413260 7296855 57 0.25 2.7 344 0.5 0.3 166 38 TROUMS: 41226 7296874 180 2.2 18.4 4380 1.8 162 66 TROUMS: 41488 728779 182 0.25 0.7 227 0.5 0.63 2.4 TROUMS: 41488 728779 100 2.6 5 250 0.3 0.44 13 TROUMS: 41488 728779 100 2.6										
TROUGGE 419929 729033 3610 16.8 297 44400 7.9 2.55 60 TROUGGE 41376 729773 1130 0.25 7.9 120 0.5 0.13 5 TROUGGE 413365 7298055 557 0.25 2.7 344 0.5 0.24 81 TROUGGE 413721 7298044 1140 1.1 1.3 220 0.3 106 33 TROUGGE 41276 7298140 1160 2.2 18.4 4300 1.8 1.62 661 TROUGGE 41276 7298740 1650 2.2 18.4 430 1.8 1.62 661 TROUGGE 414864 728773 120 0.25 0.7 327 0.1 0.06 1.3 TROUGGE 414864 728773 120 0.25 0.5 1.43 0.3 0.43 1.12 TROUGGE 414984 729177 1.12										
TROUMS 41378 729774 1640 1.6 25.9 590 1.5 1.25 40 TROUMS 41321 729773 130 0.25 7.9 1220 0.5 0.13 5 TROUMS 41306 729783 57 0.25 2.7 344 0.5 0.16 8 TROUMS 41302 729874 1140 1.1 1.3 2.0 0.5 0.24 8 TROUMS 41228 729874 126 0.2 18.4 4360 18 1.62 66 TROUMS 41224 729874 122 0.7 2.0 0.5 2.1 191 TROUMS 41488 729779 662 1 5 166 0.6 0.5 TROUMS 41488 729779 0.0 0.2 0.5 1.6 0.3 0.44 12 TROUMS 41480 729779 1300 0.6 5 250 0.3										
THCODES 413221 7297783 130 0.25 7.9 1290 0.5 0.13 5 TRCDODE/ 41386 7286955 557 0.26 2.7 344 0.5 0.24 81 TRCDODE 41570 7288645 557 0.26 2.4 441 0.5 0.24 81 TRCDODE 415270 7288644 596 0.8 9.2 370 0.5 0.45 165 TRCDODE 41216 728970 128 4.2 0.7 299 0.05 0.3 2.4 TRCDODE 41486 728773 192 0.25 0.7 327 0.1 0.05 13 TRCDODE 41486 728739 200 0.25 0.5 144 0.1 0.06 0.5 TRCDODE 41486 7289739 200 0.25 5.9 1340 0.3 0.48 11 TRCDODE 41188 7289179 1040 0.3 <th></th>										
TRC00067 41336 7298055 557 0.25 2.7 344 0.5 0.33 11 TRC00163 413302 7298054 442 0.6 2.4 443 0.5 0.24 8 TRC00000 412266 7298674 1560 2.2 18.4 4090 18 16.2 66 TRC00012 412147 7298770 1650 2.2 18.4 4090 18 16.2 66 TRC00013 413851 7298779 662 1 5 1500 0.5 0.63 2.1 TRC00014 414866 7298729 662 2.7 1.2 131 0.3 0.41 133 TRC00015 414860 7298729 1000 2.5 5 146 0.3 0.68 12 TR200017 414791 7299797 1040 6.7 0.9 149 0.3 0.84 12 TR200017 41038 7299979 1040 <										
TRC00058 44332 728305 442 0.6 2.4 4433 0.5 0.24 8 TRC00059 41276 7238644 1140 1.1 1.3 220 0.5 0.45 16 38 TRC00051 41216 7238674 1650 2.2 16.4 4390 1.8 1.62 66 TRC00052 411417 7238779 12.8 4.2 0.7 293 0.65 2.1 5 TRC00052 414686 7238778 192 0.25 0.7 327 0.1 0.65 1 TR200054 414686 7238719 1600 2.5 5 2550 0.3 0.48 10 TR200054 414791 7238719 1040 6.7 0.9 149 0.3 0.08 0.21 TR200074 41038 7298197 11404 0.7 0.25 1.3 2.30 0.3 0.44 111 TR200074 41005 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
TRC00069 H125 T238474 H140 L1 L3 L20 0.3 L16 38 TR200060 412236 7238474 566 0.8 9.2 3370 0.5 0.45 166 TR200072 41216 7238747 128 4.2 0.7 209 0.05 2.1 59 TR200082 412147 7238747 128 4.2 0.7 209 0.05 0.61 1 TR200084 414868 7238739 560 2.7 1.2 131 0.3 0.41 13 TR200084 414863 7238739 500 2.6 5 2550 0.3 0.48 12 TR200084 414861 7239179 1040 6.7 0.9 149 0.3 0.8 18 TR200074 414735 723950 100000 0.25 5 1440 0.3 0.9 2 TR200074 410356 7239504 270 17<										
TF200060 H220 D2 D3 D3 D3 D3 D3 D4 D3 TF200061 41226 7284740 1650 2.2 16.4 4390 1.8 1.62 66 TF200063 413851 728779 662 1 5 1500 0.5 0.63 24 TF200064 44466 728779 660 2.7 1.2 131 0.3 0.41 13 TF200066 44466 728779 660 2.7 1.2 131 0.3 0.48 12 TF200066 44466 728797 1040 6.7 0.9 1449 0.3 0.06 0.5 TF200067 411038 728650 106000 0.25 5.9 1340 0.3 0.45 171 TF200071 410056 7300157 778 3.4 2.44 210 5 1.37 56 TF200074 410471 7289990 4580 1.7										
TR200081 H220 T28700 D2 D3 D3 <thd3< th=""> <thd3< th=""> D3</thd3<></thd3<>										
THC20022 412147 7298787 128 4.2 0.7 2.09 0.05 2.1 99 TR200063 41381 7298729 662 1 5 1500 0.5 0.63 24 TR200064 444868 7298779 200 0.25 0.5 146 0.1 0.66 0.51 TR200064 444806 7298779 200 0.25 0.5 146 0.1 0.66 0.51 TR200064 414906 729879 1000 2.6 5 2.50 0.3 0.44 12 TR200070 41103 729850 106000 0.25 5.9 1340 0.3 0.43 11 TR200071 41028 7300341 22170 0.72 1.3 230 0.3 0.44 117 TR200074 410478 7299790 4580 1.7 2.8 530 0.6 1.12 37 TR200076 41073 7299790 845										
TF2200053 H385 T238729 E62 1 5 1500 0.5 0.63 24 TF2200054 444868 7298725 192 0.25 0.7 327 0.1 0.05 1 TF2200056 444868 7298739 200 0.25 0.5 146 0.1 0.06 0.55 TF2200057 444791 7298760 1300 2.6 5 2550 0.3 0.48 12 TF2200064 411038 7299520 106000 0.25 5.9 1340 0.3 0.09 2 TF220070 411038 7299515 2770 7.2 2.2 2510 3.7 2.66 971 TF220071 41038 7390301 2.21 1.8 1.5 310 0.3 0.44 177 TF220074 410059 7300317 738 3.4 2.44 2810 5 1.37 566 TF220075 410737 7299818 1070 <th></th>										
TF200054 44488 7298728 192 0.25 0.7 227 0.1 0.05 1 TR200055 444883 7298719 560 2.7 1.2 131 0.3 0.41 13 TR200067 414791 7298780 1300 2.6 5 2550 0.3 0.48 12 TR200064 411650 7299197 1040 6.7 0.9 149 0.3 1.08 31 TR200070 411033 7299505 12770 17.2 23.2 2510 3.7 2.96 97 TR200071 410288 7300157 738 3.4 2.4.4 2810 5 1.37 56 TR200074 410478 7299709 450 1.7 2.8 530 0.6 1.12 37 TR200074 41073 7299790 845 0.8 132 2970 0.7 1.04 433 TR200074 410743 7299790 845										
TF200065 41483 728719 560 2.7 1.2 131 0.3 0.41 13 TR200064 414966 7289739 200 0.25 0.5 146 0.1 0.06 0.5 TR200064 411950 7299197 1040 6.7 0.9 149 0.3 0.88 31 TR200074 41038 729950 106000 0.25 5.9 130 0.3 0.99 2 TR200071 41008 7300044 1570 0.25 1.3 230 0.3 0.44 111 TR200074 410078 7299990 4580 1.7 2.8 530 0.65 1.12 37 TR200075 41073 7299918 1070 0.25 3.6 77 0.4 0.38 15 TR200075 410737 7299418 0.70 0.5 616 0.3 0.12 2 TR200074 410627 7299448 317 0.7										
TR20006a 414806 7298739 200 0.25 0.5 146 0.1 0.06 0.5 TR200067 414791 7298760 1300 2.6 5 2550 0.3 0.48 12 TR200069 411038 7299520 106000 0.25 5.9 1340 0.3 0.08 21 TR200070 411035 7299915 2770 17.2 23.2 2510 3.7 2.96 97 TR20071 41028 7300304 1570 0.25 1.3 230 0.3 0.34 117 TR20072 410059 730157 738 3.4 2.44 2810 5 1.37 56 TR20075 41073 729990 4860 1.7 2.8 530 0.6 1.12 37 TR20076 410743 729970 845 0.8 132 2970 0.7 1.04 43 TR20076 410671 7299476 48										
TR200067 414791 7298760 1300 2.6 5 2550 0.3 0.48 12 TR200068 411600 7299197 1040 6.7 0.9 149 0.3 10.8 311 TR200070 411038 7299520 106000 0.25 5.9 1340 0.3 0.09 2 TR200071 41028 7300094 1570 0.25 1.3 230 0.3 0.34 111 TR200072 410096 7300177 738 3.4 244 2810 5 1.37 56 TR20073 410737 729990 4580 1.7 2.8 530 0.6 1.12 37 TR20076 41073 729990 845 0.8 132 287 0.4 0.38 15 TR20076 410621 7299476 48 0.25 0.8 118 0.2 0.4 13 TR20077 410621 7299475 72										
TF200068 411850 7239197 1040 6.7 0.9 149 0.3 108 31 TR200069 411038 729950 106000 0.25 5.9 1340 0.3 0.09 2 TR20070 411035 7299515 2770 17.2 23.2 2510 3.7 2.96 97 TR20072 410059 7300301 231 1.8 1.5 310 0.3 0.45 177 TR20074 410748 729970 4560 1.7 2.8 530 0.6 1.12 37 TR20075 410737 729818 1070 0.25 3.6 787 0.4 0.33 0.51 TR20076 410743 729970 845 0.8 132 2970 0.7 1.04 43 TR200074 410627 729970 845 0.8 132 2.010 1.18 0.2 0.4 13 TR200074 410627 729976										
HR200069 41103 T29357 1000 0.25 5.9 1340 0.3 0.09 2 TR200070 411035 T299516 2770 17.2 23.2 2510 3.7 2.96 97 TR200071 410288 T300094 1570 0.25 1.3 230 0.3 0.44 11 TR200072 410059 T300157 738 3.4 24.4 2810 5 1.37 56 TR20073 410737 729816 1070 0.25 3.6 787 0.4 0.33 0.12 2 TR20076 410737 729816 1070 0.25 0.8 787 0.4 0.33 0.12 2 TR20076 410743 729970 845 0.8 132 2970 0.7 1.04 433 TR20077 410627 729476 48 0.25 0.8 118 0.2 0.04 1 TR200077 410627										
TR200070 411035 7299515 2770 17.2 23.2 2510 3.7 266 97 TR200071 410288 7300094 1570 0.25 1.3 230 0.3 0.34 111 TR200072 410096 730017 738 3.4 244 2810 5 1.37 56 TR200074 410478 729990 4580 1.7 2.8 530 0.6 1.12 37 TR200075 410737 7298918 1070 0.25 3.6 787 0.4 0.38 15 TR200076 410743 729970 845 0.8 115 0.3 0.03 0.5 TR200077 410627 7299476 48 0.25 0.8 118 0.2 0.4 1 TR200079 410627 729476 48 0.25 0.8 118 0.2 0.4 13 TR200079 410649 7299476 860 0.8 <										
TR200071 41028 T30029 150 0.25 1.3 200 0.3 0.45 17 TR200072 410096 7300301 231 1.8 1.5 310 0.3 0.45 17 TR20074 410059 7300157 738 3.4 24.4 2810 5 1.37 566 TR200074 410748 729990 4580 1.7 2.8 530 0.6 1.12 37 TR200075 410737 729818 1070 0.25 3.6 787 0.4 0.38 15 TR20077 410627 729948 317 0.7 3.5 616 0.3 0.12 2 TR20079 410627 7299476 48 0.25 0.8 118 0.2 0.04 1 TR200079 410627 7299476 48 0.25 0.8 118 0.2 0.04 1 TR20081 410627 7299937 1310 3 <th></th>										
TR20072 41096 730301 231 1.8 1.5 310 0.3 0.45 17 TR20073 410059 730157 738 3.4 24.4 2810 5 1.37 56 TR20074 410478 729990 4580 1.7 2.8 530 0.6 1.12 37 TR20075 410737 7299818 1070 0.25 3.6 787 0.4 0.38 15 TR20077 410611 7299476 48 0.25 0.8 115 0.3 0.12 2 TR20079 410627 729476 48 0.25 0.8 115 0.3 0.03 0.5 TR20079 410627 729476 48 0.25 0.8 118 0.2 0.04 13 TR20080 410829 7299373 586 1.2 16.6 2670 1.2 0.4 13 TR20081 410949 7299471 1310 3										
TR200073 410059 730157 738 3.4 4.4 2810 5 1.37 56 TR200074 410478 729990 4580 1.7 2.8 530 0.6 1.12 37 TR200075 410737 7299818 1070 0.25 3.6 787 0.4 0.38 15 TR200076 410743 729970 845 0.8 13.2 2970 0.7 1.04 43 TR200077 410501 729948 317 0.7 3.5 616 0.3 0.12 2 TR200078 410627 7299476 4.8 0.25 0.8 118 0.2 0.04 1 TR200081 410622 7299475 72 0.25 0.8 118 0.2 0.04 1 TR200081 410623 7299373 586 1.2 166.5 2670 1.2 0.3 35 TR200082 411258 729937 1310 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>										
TR200074 410478 729990 4580 1.7 2.8 530 0.6 1.12 37 TR200075 410737 729918 1070 0.25 3.6 767 0.4 0.38 15 TR200076 410743 729970 845 0.8 13.2 2970 0.7 1.04 43 TR20077 410617 7299478 317 0.7 3.5 616 0.3 0.12 2 TR20079 410627 7299476 48 0.25 0.8 115 0.3 0.03 0.5 TR20080 410829 7299373 586 1.2 16.6 2670 1.2 0.4 13 TR20080 410829 7299307 1310 3 24.8 4100 31 1.72 58 TR20082 411636 7299102 860 0.8 7 1890 0.5 0.58 19 TR20084 411636 729907 1310 3 </th <th></th>										
TR200075 H1073 T29918 H1070 0.25 3.6 TR2 0.4 0.38 15 TR200076 410743 7299790 845 0.8 13.2 2970 0.7 1.04 43 TR200077 410501 7299448 317 0.7 3.5 616 0.3 0.12 2 TR200079 410627 7299476 48 0.25 0.8 118 0.2 0.04 1 TR200079 410627 7299476 48 0.25 0.8 118 0.2 0.04 1 TR200080 410829 7299373 566 1.2 16.6 2670 1.2 0.4 13 TR20081 410949 7299461 804 1.5 45.1 7000 2.2 1.03 35 TR20084 41433 728983 388 0.25 0.7 179 0.1 0.07 2 TR20086 41126 7305928 25000										
TR200076 H0743 T29730 R45 0.8 13.2 2970 0.7 1.0.4 43 TR200077 410501 729948 317 0.7 3.5 616 0.3 0.12 2 TR200079 410627 7299476 48 0.25 0.8 115 0.3 0.03 0.5 TR20009 410622 7299425 72 0.25 0.8 118 0.2 0.4 1 TR20009 410629 7299461 804 1.5 45.1 7000 2.2 1.03 35 TR200082 41153 7298507 1310 3 24.8 4100 3.1 1.72 58 TR200084 41153 7298503 388 0.25 0.7 179 0.1 0.07 2 TR200085 411269 7305904 960 16.5 46.5 31200 0.2 2.64 51 TR200086 411276 7305928 25000										
TR200077 H1051 729448 317 0.7 3.5 616 0.3 0.12 2 TR200078 410627 7294476 48 0.25 0.8 115 0.3 0.03 0.5 TR200079 410622 729425 72 0.25 0.8 118 0.2 0.04 1 TR200080 410829 729373 586 1.2 16.6 2670 1.2 0.4 133 TR20082 411286 729307 1310 3 24.8 4100 3.1 1.72 585 TR20082 411286 7299102 860 0.8 7 1890 0.5 0.58 199 TR20084 41433 729583 388 0.25 0.7 179 0.1 0.07 2 TR20084 411276 7309504 960 16.5 46.5 31200 0.2 2.64 51 TR20086 411276 7309800 1040 0.9										
TR200078 H10627 7299476 H8 D.0										
TR200079 H10622 T299425 T2 0.0 110 0.0 0.0 11 TR200080 410829 T299373 586 1.2 16.6 2670 1.2 0.4 13 TR200081 410949 T299461 804 1.5 45.1 7000 2.2 1.03 35 TR200082 411258 T299307 1310 3 24.8 4100 3.1 1.72 58 TR200084 414533 T298583 388 0.25 0.7 179 0.1 0.07 2 TR200085 411276 7305928 25000 42.9 50.1 12000 1.3 11.1 404 TR200086 39796 7309804 960 0.5 16 273 0.3 0.39 144 TR200087 397963 7309807 1060 0.25 1.6 286 0.2 0.23 9 TR200089 398010 7309778 1060 0.25										
TR200080 TR20008141082972993735861.216.626701.20.413TR200081 TR2000824109497294618041.545.170002.21.0335TR20008241125872993071310324.841003.11.7258TR20008441453372985833880.250.71790.10.072TR200085411269730590496016.546.5312000.22.6451TR20008641126973059242500042.950.1120001.311.1404TR20008739796373098244642.1312000.40.5822TR20008839796730980010400.91.62730.30.3914TR200089398010730977810600.251.62860.20.239TR20009039809173095871801.21.32580.20.4917TR20009239821473095871801.21.32580.20.4917TR2000933982827309467594.13.65940.41.3349TR20009440126473086311900.922.1444011.11.474TR2000954010807308468720.51533100.80.96400TR2009										
TR200081 H10949 729461 804 1.5 4.51 7000 2.2 1.03 35 TR200082 411258 729307 1310 3 24.8 4100 3.1 1.72 58 TR200083 411636 729102 860 0.8 7 1890 0.5 0.58 19 TR200084 414533 7298583 388 0.25 0.7 179 0.1 0.07 2 TR200086 411269 7305924 960 16.5 46.5 31200 0.2 2.64 51 TR200086 411276 7305928 25000 42.9 50.1 12000 1.3 11.1 404 TR200086 397963 7309800 1040 0.9 1.6 273 0.3 0.39 14 TR200089 398010 7309577 180 1.2 1.3 258 0.2 0.49 17 TR200090 398021 7309535 710										
TR200082 411258 729307 1310 3 24.8 4100 3.1 1.72 58 TR200083 411636 729102 860 0.8 7 1890 0.5 0.58 19 TR200084 414533 7298583 388 0.25 0.7 179 0.1 0.07 2 TR200086 411269 7305904 960 16.5 46.5 31200 0.2 2.64 51 TR200086 411276 7305928 25000 42.9 50.1 12000 1.3 11.1 404 TR200087 397963 7309804 464 2.1 3 1200 0.4 0.58 22 TR200089 398010 7309778 1060 0.25 1.6 286 0.2 0.23 9 TR200090 398011 7309778 1060 0.25 1.6 286 0.2 0.49 17 TR200091 398126 7309535 710										
TR2000831116311030110311030.11112103TR20008441163672991028600.8718900.50.5819TR20008441453372985833880.250.71790.10.072TR200085411269730590496016.546.5312000.22.6451TR20008641127673059282500042.950.1120001.311.1404TR2000873979637308244642.1312000.40.5822TR20008839796730980010400.91.62730.30.3914TR200089398010730977810600.251.62860.20.239TR20009039809173095871801.21.32580.20.4917TR2009139812673095357103.20.5980.30.5523TR2009239821473096537594.13.65940.41.3349TR2009339828273094664274.52.512100.21.0534TR20094401264730856311900.922.1444011.174TR2009540108073084668720.51533100.80.9640TR20096401407308445863000.25 <th></th>										
TR200084 H160 H260 H2 H160 H2 <										
TR200085411269730590496016.546.5312000.22.6451TR20008641127673059282500042.950.1120001.311.1404TR20008739796373098244642.1312000.40.5822TR20008839796730980010400.91.62730.30.3914TR200089398010730977810600.251.62860.20.239TR20009039809173095871801.21.32580.20.4917TR2009139812673095357103.20.5980.30.5523TR2009239821473094657594.13.65940.41.3349TR2009339828273094664274.52.512100.21.0534TR20094401264730863311900.922.1444011.174TR20095401807308445863000.257.923600.20.8243TR200964013407308445863000.257.923600.20.8243TR20097401439730843118701.47.511900.71.61161TR200984014507308448873000.255.111000.10.2110TR20099400550730669 </th <th></th>										
TR20008641127673059282500042.950.112001.311.1404TR20008739796373098244642.1312000.40.5822TR200088397966730980010400.91.62730.30.3914TR200089398010730977810600.251.62860.20.239TR20009039809173095871801.21.32580.20.4917TR20009139812673095357103.20.5980.30.5523TR20009239821473094657594.13.65940.41.3349TR20009339828273094664274.52.512100.21.0534TR200094401264730856311900.922.1444011.174TR2000954010807308468720.51533100.80.9640TR2000964013407308445863000.257.923600.20.8243TR200097401439730843118701.47.511900.71.61161TR200098401450730848873000.255.111000.10.2110TR2000994005507306609150018.8132117004.41.9954TR2001004006127306										
TR20008739796373098244642.1312000.40.5822TR200088397996730980010400.91.62730.30.3914TR200089398010730977810600.251.62860.20.239TR20009039809173095871801.21.32580.20.4917TR20009139812673095357103.20.5980.30.5523TR20009239821473094657594.13.65940.41.3349TR20009339828273094264274.52.512100.21.0534TR200094401264730866311900.922.1444011.174TR2000954018073084668720.51533100.80.9640TR2000974014397308445863000.257.923600.20.8243TR2000984014507308448873000.255.111900.71.61161TR200099400550730609150018.8132117004.41.9954TR20010040061273068011550.63.86820.20.062										
TR200088397996730980010400.91.62730.30.3914TR200089398010730977810600.251.62860.20.239TR20009039809173095871801.21.32580.20.4917TR20009139812673095357103.20.5980.30.5523TR20009239821473094657594.13.65940.41.3349TR20009339828273094264274.52.512100.21.0534TR200094401264730866311900.922.1444011.174TR20009540108073084668720.51533100.80.9640TR200097401439730843118701.47.511900.71.61161TR2000984014507308448873000.255.111000.10.2110TR2000994005507306609150018.8132117004.41.9954TR20009940061273068011550.63.86820.20.062										
TR200089398010730977810600.251.62860.20.239TR20009039809173095871801.21.32580.20.4917TR20009139812673095357103.20.5980.30.5523TR20009239821473094657594.13.65940.41.3349TR20009339828273094264274.52.512100.21.0534TR200094401264730856311900.922.1444011.174TR20009540108073084668720.51533100.80.9640TR2000964013407308445863000.257.923600.20.8243TR200097401439730843118701.47.511900.71.61161TR2000994005507306609150018.8132117004.41.9954TR20009940061273068011550.63.86820.20.062										
TR20009039809173095871801.21.32580.20.4917TR20009139812673095357103.20.5980.30.5523TR20009239821473094657594.13.65940.41.3349TR20009339828273094264274.52.512100.21.0534TR200094401264730856311900.922.1444011.174TR20009540108073084668720.51533100.80.9640TR2000964013407308445863000.257.923600.20.8243TR200097401439730843118701.47.511900.71.61161TR2000984014507308448873000.255.111000.10.2110TR2000994005507306609150018.8132117004.41.9954TR2001004006127308011550.63.86820.20.062										
TR200091 398126 7309535 710 3.2 0.5 98 0.3 0.55 23 TR200092 398214 7309465 759 4.1 3.6 594 0.4 1.33 49 TR200093 398282 7309465 759 4.1 3.6 594 0.4 1.33 49 TR200094 401264 7308563 1190 0.9 22.1 4440 1 1.1 74 TR200095 401080 7308466 872 0.5 15 3310 0.8 0.96 40 TR200096 401340 7308445 86300 0.25 7.9 2360 0.2 0.82 43 TR200097 401439 7308431 1870 1.4 7.5 1190 0.7 1.61 161 TR200098 401450 7308448 87300 0.25 5.1 1100 0.1 0.21 10 TR200099 400550 7306609 1500										
TR200092 398214 7309465 759 4.1 3.6 594 0.4 1.33 49 TR200093 398282 7309426 427 4.5 2.5 1210 0.2 1.05 34 TR200094 401264 7308563 1190 0.9 22.1 4440 1 1.1 74 TR200095 401080 7308646 872 0.5 15 3310 0.8 0.96 40 TR200096 401340 7308445 86300 0.25 7.9 2360 0.2 0.82 43 TR200097 401439 7308445 86300 0.25 7.9 2360 0.2 0.82 43 TR200097 401439 7308431 1870 1.4 7.5 1190 0.7 1.61 161 TR200098 401450 7308448 87300 0.25 5.1 1100 0.1 0.21 10 TR200099 400550 7306609 1500										
TR200093 398282 7309426 427 4.5 2.5 1210 0.2 1.05 34 TR200094 401264 7308563 1190 0.9 22.1 4440 1 1.1 74 TR200095 401080 7308646 872 0.5 15 3310 0.8 0.96 40 TR200096 401340 7308445 86300 0.25 7.9 2360 0.2 0.82 43 TR200097 401439 7308431 1870 1.4 7.5 1190 0.7 1.61 161 TR200098 401450 7308448 87300 0.25 5.1 1100 0.1 0.21 10 TR200099 400550 7306609 1500 18.8 132 11700 4.4 1.99 54 TR200100 400612 7306801 155 0.6 3.8 682 0.2 0.06 2										
TR200094 401264 7308563 110 10 11 11 74 TR200095 401080 7308663 1190 0.9 22.1 4440 1 1.1 74 TR200096 401080 7308646 872 0.5 15 3310 0.8 0.96 40 TR200096 401340 7308445 86300 0.25 7.9 2360 0.2 0.82 43 TR200097 401439 7308431 1870 1.4 7.5 1190 0.7 1.61 161 TR200098 401450 7308448 87300 0.25 5.1 1100 0.1 0.21 10 TR200099 400550 7306609 1500 18.8 132 11700 4.4 1.99 54 TR200100 400612 7306801 155 0.6 3.8 682 0.2 0.06 2										
TR200095 401080 7308646 872 0.5 15 3310 0.8 0.96 40 TR200096 401340 7308445 86300 0.25 7.9 2360 0.2 0.82 43 TR200097 401439 7308431 1870 1.4 7.5 1190 0.7 1.61 161 TR200098 401450 7308448 87300 0.25 5.1 1100 0.1 0.21 10 TR200099 400550 7306609 1500 18.8 132 11700 4.4 1.99 54 TR200100 400612 7306801 155 0.6 3.8 682 0.2 0.06 2										
TR200096 401340 7308445 86300 0.25 7.9 2360 0.2 0.82 43 TR200097 401439 7308431 1870 1.4 7.5 1190 0.7 1.61 161 TR200098 401450 7308448 87300 0.25 5.1 1100 0.1 0.21 10 TR200099 400550 7306609 1500 18.8 132 11700 4.4 1.99 54 TR200100 400612 7306801 155 0.6 3.8 682 0.2 0.06 2										
TR200097 401439 7308431 1870 1.4 7.5 1190 0.7 1.61 161 TR200098 401450 7308448 87300 0.25 5.1 1100 0.1 0.21 10 TR200099 400550 7306609 1500 18.8 132 11700 4.4 1.99 54 TR200100 400612 7306801 155 0.6 3.8 682 0.2 0.06 2										
TR200098 401450 7308448 87300 0.25 5.1 1100 0.1 0.21 10 TR200099 400550 7306609 1500 18.8 132 11700 4.4 1.99 54 TR200100 400612 7306801 155 0.6 3.8 682 0.2 0.06 2										
TR200099 400550 7306609 1500 18.8 132 11700 4.4 1.99 54 TR200100 400612 7306801 155 0.6 3.8 682 0.2 0.06 2										
TR200100 400612 7306801 155 0.6 3.8 682 0.2 0.06 2										
12200101 401224 7307187 503 5.6 7 1940 0.3 1.46 47										
	TR200101	401224	7307187	503	5.6	7	1940	0.3	1.46	47

07 February 2023

TR200102	401452	7307175	30000	2.7	10.3	1880	0.4	1.05	33
TR200103	401419	7308011	2080	3.2	28	4760	1.3	1.67	53
TR200104	401394	7308002	1020	4	0.7	139	0.2	0.89	36
TR200105	401309	7308083	1480	6.5	3.2	565	0.6	1.34	46
TR200106	400936	7308259	124	1	0.3	67	0.2	0.2	6
TR200107	398891	7308594	560	2.7	1.7	217	0.6	0.48	20
TR200108	398733	7308593	214	4.5	0.3	54	0.3	0.83	27
TR200109	398504	7308653	1450	2.3	30	6010	1.7	1.35	48
TR200110	398607	7308712	141	0.25	0.4	69	0.1	0.07	1
TTSRK001	439018	7282860	769	0.25	2.5	300	0.3	0.15	6
TTSRK002	436747	7279018	124	93.2	1040	54400	27	2.26	15
TTSRK003	437875	7279136	1140	12.7	100	18900	6.2	0.78	17
TTSRK004	438192	7278662	10300	15.1	219	29000	14.1	4	131
TTSRK005	438194	7278661	789	5.9	20.9	3390	4	0.28	5
TTSRK006	438193	7278630	883	33.7	120	17100	6.4	0.35	5
TTSRK007	438472	7278518	891	63.6	299	17000	11.5	0.81	14
TTSRK008	438384	7278841	903	62.5	699	23200	54.1	0.52	5
TTSRK009	438333	7278867	6580	11.6	3.8	494	0.4	5.91	185
TTSRK010	438283	7278931	993	71.5	151	16200	5.1	1.2	17
TTSRK011	438266	7278937	585	41.3	142	11800	7.2	0.32	5
TTSRK012	436841	7279564	313	1.3	246	55500	2.5	0.55	13
TTSRK013	436828	7279569	359	1.3	186	56100	1.6	0.59	13
TTSRK014	436819	7279608	340	2.4	160	57300	1.4	1.34	29
TTSRK015	436825	7279630	435	2.7	49.3	16400	0.6	1.24	30
TTSRK016	436788	7279660	743	5.7	232	65400	2.7	1.71	39
TTSRK017	436787	7279692	1020	2	204	53400	3.1	0.87	17
TTSRK018	436786	7279698	1560	1.8	129	33900	2.2	1.77	54
TTSRK019	436842	7279710	2250	14.1	148	8960	17.5	4.9	115
TTSRK020	436854	7279760	2110	13.3	67.2	6250	3.6	4.55	106
TTSRK021	436876	7279777	1480	2.2	108	19800	2.3	1.3	27
TTSRK022	436905	7280398	484	3.9	241	50200	1.6	0.88	13
TTSRK023	436888	7280385	405	3.7	284	74700	1.9	0.48	7
TTSRK024	436867	7280370	714	7.2	283	59600	1.8	1.18	29
TTSRK025	436846	7280364	716	3.9	214	48200	1.3	1.08	23
TTSRK026	436881	7280385	984	4.1	228	52800	1.4	1.73	35
TTSRK027	436871	7280391	566	6.9	198	46100	1.2	1.79	35
TTSRK028	436916	7280427	683	3.8	218	48100	1.5	0.63	13
TTSRK029 TTSRK030	436726	7280722	1010	7	208	51000	1.9	2.25	55
	436696	7280825	678	4.5	251	45000	3	2.39	55
TTSRK031 TTSRK032	436678	7280837	1380	15.5	310	50300	4.4	4.18	107
TTSRK032 TTSRK033	436679	7280832	492	2.9	305	59200	2	1.6	37
TTSRK035 TTSRK034	436533	7280827	568	6.2	292	52600	3	1.53	38
TTSRK034 TTSRK035	436478	7280818	541	5.8	252	39300	3	0.93	22
TTSRK035	436408	7280842	1120	2.7	206	46200	2.7	2.06	50 0 5
TTSRK030	436369	7280893	365	0.8	280	53800	5	0.06	0.5
TTSRK037 TTSRK038	436312	7280916	509	1.3	220	61000	2	1.46	23
TOKKUSO	436375	7280903	318	1.7	285	78900	4.8	0.13	3

WEB / MEDIA

