ASX Announcement 9 March 2023 # **Exciting Gold Results from**Latest Drilling Program at Sihayo ### **Highlights:** - Ten holes for 3,486 metres of diamond drilling completed to-date in follow-up drilling program testing potential extensions to known deeper high-grade gold mineralisation at Sihayo - Results received for the first four holes completed in the current program, returning significant gold intercepts, including: - Hole SHDD646 intersected; - 5.0m @ 5.50 g/t Au from 257m, and - 8.0m @ 5.48 g/t from 295m, Including 3.0m @ 9.03 g/t Au - Hole SHDD648a intersected; - 4.0m @ 7.10 g/t Au from 211m, and - 8.0m @ 3.41 g/t Au from 248m - Hole SHDD650a intersected; - 5.3m @ 7.26 g/t Au from 222m, and - 5.0m @ 5.93 g/t Au from 300m, and - 2.9m @ 5.43 g/t Au from 309.5m. - Assays are pending from a further five holes (SHDD651 655) with an additional eight holes planned. Visual logging confirms strong jasperoid intercepts in holes SHDD651, SHDD652 and SHDD653 - Mineralisation extends for at least 200 250m down-dip of the known gold resource and it remains open to the south and beneath the planned Sihayo pit - Results from this program will inform an updated Mineral Resource estimate for the deeper higher-grade gold mineralisation, expected to be completed in Q2 CY2023, and to further assess the potential for underground mining opportunities to augment planned open pit mill feed - Work on updates to the 2022 Feasibility Study Update to incorporate the impact of High pH (Caustic) Leaching is nearing completion - Preliminary investigations indicate the potential for a viable underground mining operation based on a drift and fill mining method Sihayo Gold Limited (**ASX:SIH** – "**Sihayo**" or the "**Company**") is pleased to announce the early results of follow-up drilling in progress on the Company's Sihayo Starter Project (the "**Project**") in North Sumatra, Republic of Indonesia. The current program is the second stage of a drilling program targeting extensions to known deeper high-grade gold mineralisation located below the planned Sihayo pit. Sihayo's Executive Chairman, Colin Moorhead, commented on the latest results: "The latest results from the Sihayo underground drilling program continue to confirm the potential to expand the Mineral Resource below the current Sihayo pit. This is consistent with Sihayo's exploration model for the deposit, which we believe is analogous to some of the breccia-hosted Carlin-type deposits in Nevada. Initial assessment of underground mining opportunities indicate that the deposit should be amenable to underground mining based on a drift and fill mining method. Combined with the work we are undertaking on incorporating caustic leaching into the project design, we believe significant value can be added to the Sihayo Starter Project." ### **Drilling Highlights** Drilling in progress at Sihayo is the second stage of a drilling program that follows-up on the encouraging gold intercepts previously reported from the Stage 1 drilling program in 2022 (refer to the ASX:SIH announcement "High-grade gold intercepts from latest drilling program at Sihayo" dated 25 October 2022). These programs aim to test for extensions to deeper zones of gold mineralisation beneath the planned open pit on the Sihayo resource. These are characterised by locally high gold grades defined by historic drilling and confirmed by recent drilling. These deeper zones fall within the Inferred Mineral Resource category and are not included in the current Ore Reserve estimate due to insufficient drilling data being available to accurately define their extent and geometry. The holes are located on the southern end of the proposed Sihayo pit shell (refer to Figure 1). Figure 1: Sihayo Project and surrounding exploration targets Highlighting the location of the current drilling program A total of ten holes for 3,486m has been completed in the follow-up drilling program using two man-portable diamond drill rigs. Drilling commenced in late November 2022 and continues with a further six to eight holes for around 2,500m remaining to be drilled in the current program. This program is expected to be completed in the second quarter of 2023. Strong jasperoid intercepts (Figure 2) with encouraging gold results were received in four of the first five holes (SHDD646, SHDD647, SHDD648a, and SHDD650a) assayed in the current drilling program. These intercepts occur well below the planned pit shell and support the potential for an expanded below-pit higher-grade gold resource (Figure 3). Table 1 provides a summary of the results. Table 2 (Appendix 1) presents the drill hole collar details, and Table 3 (Appendix 1) presents a complete list of mineralised intercepts returned in these first five holes. Figures 4 and 5 present additional drill hole location details. Figure 2: Sihayo 2023 Drilling Program – Selected Core Photos Mineralised jasperoidal and residual clay-sulphide altered polylithic cave-fill breccia Figure 3: Schematic long section of Sihayo underground geology Highlighting Stage 1 & 2 drill hole traces and position of reported intercepts Three of the first five holes returned moderate- to high-grade gold intercepts, confirming the continuity and extension to high-grade gold mineralisation intersected in the Stage 1 program and from historic drilling (Tables 1 and 3). Mineralisation extends for at least 200 – 250m down-dip of the known gold resource and remains open to the south and beneath the planned starter pit. The high-grade gold mineralisation is open in several directions, and with additional drilling, there is potential to establish continuity of some of the currently discrete resource blocks resulting in larger coherent zones of high-grade mineralisation. This additional drilling may also result in the discovery of a higher-grade feeder zones beneath the Sihayo deposit. Updated resource modelling of the higher-grade gold resource will commence soon and is expected to be completed in Q2-CY2023. Assays are pending from a further five holes (SHDD651 – 655) with an additional eight holes planned. Details of these holes are presented in Table 2 of Appendix 1. Visual logging confirms strong jasperoid intercepts in holes SHDD651, SHDD652 and SHDD653. Results from these holes are expected within the next month and will be reported accordingly. Table 1: 2023 Sihayo Drilling Program – Summary of Significant Gold Intercepts | Hole IDE | From
(m) | To
(m) | Length
(m) | Au
(g/t) | True Width
(m) | |-----------|-------------|-----------|---------------|-------------|-------------------| | SHDD646 | 257.0 | 262.0 | 5.0 | 5.50 | 4.5 | | | 295.0 | 303.0 | 8.0 | 5.48 | 7.2 | | Including | 295.0 | 298.0 | 3.0 | 9.03 | 2.7 | | SHDD647 | 244.0 | 248.0 | 4.0 | 2.57 | 3.6 | | | 300.3 | 306.1 | 5.8 | 1.78 | 5.2 | | SHDD648a | 211.0 | 215.0 | 4.0 | 7.10 | 3.6 | | | 248.0 | 256.0 | 8.0 | 3.41 | 7.2 | | SHDD650a | 222.00 | 227.30 | 5.30 | 7.26 | 4.8 | | | 293.30 | 305.00 | 11.70 | 3.18 | 10.5 | | including | 300.00 | 305.00 | 5.00 | 5.93 | 4.5 | | | 309.50 | 312.40 | 2.90 | 5.43 | 2.6 | Notes: 1) Intercepts reported at 0.3 g/t Au cut-off and up to 4 m internal dilution ### **Background** The Company released an updated Mineral Resource and Ore Reserve statement for the Sihayo and Sambung gold deposits earlier this year (refer to the ASX:SIH announcement "Project Update and Launch of Strategic Review Process" dated 17 February 2022). The Company also identified an opportunity to improve the overall metallurgical recoveries on the fresh and transition ore types within the Sihayo deposit by introducing a High pH Leaching step prior to carbon-in-leach ("CIL") gold extraction. An extensive metallurgical test work program incorporating 72 transition and fresh samples was undertaken to assess the High pH Leaching opportunity. The results of this test work were previously outlined in the ASX:SIH announcements "Further Metallurgical Test Work Results" dated 23 September 2021, "Significant Results from High pH Leaching Test Work" dated 31 January 2022, and "High pH Pre-Leaching Test Work Demonstrates Potential for Significant Uplift in Recoveries" dated 5 July 2022. Results from the High pH Leaching CIL test work indicated the potential to increase overall metallurgical recoveries for the Sihayo Starter Project from 71.2% (as assumed in the 2022 Feasibility Study Update ("2022 FSU")) to approximately 80 – 85%. These results have the potential to significantly transform the Sihayo Starter Project through higher gold production from existing Ore Reserves. Higher metallurgical recoveries from High pH Leaching may unlock additional known and yet to be defined high-grade mineralisation located beneath the Sihayo pit, which is not currently included in the current Ore Reserve due to the low metallurgical recoveries previously assumed. The high-grade zones below the planned Sihayo pit are largely underexplored and were previously tested by a relatively low density of drilling. This is therefore a high priority for follow-up drilling following the metallurgical test work program. The recently completed program of first phase of follow-up drilling was designed to infill and extend selected zones within the deeper high-grade Mineral Resource. Figure 4: Sihayo Drill Hole Location Plan Highlighting the reported drill holes and reference long section line Figure 5: Sihayo starter pit shell and below-pit resource blocks (Feb 2022) Highlighting Stage 1 & 2 drill hole traces and position of reported intercepts (isometric view) ### **Geology of the High-Grade Gold Zones** The deeper high-grade gold zones within Sihayo are mainly hosted in Permian karstic limestones intruded by a diorite laccolith and unconformably overlain by Tertiary quartz sandstones and mudstones. The gold mineralisation occurs as sulphide-refractory, sub-micron-size gold in arsenic-rich rims on fine grained pyrite disseminated through decalcified clay-sulphide and jasperoidal silica
altered limestone karst cavity-fill breccias, composed of varying proportions sandy matrix and polylithic clasts of limestone, sandstone, and mudstone (refer to Figure 2 for core photos). The mineralised breccias are generally fresh to locally fractured and oxidised. They are best developed along the contact-unconformity with the overlying Tertiary rocks, and along or near the contacts of the diorite laccolith intrusion. As with the entire Sihayo deposit, the deeper higher grade gold zones are anomalous in arsenic, antimony, mercury and thallium geochemistry. The breccias hosting high-grade gold mineralisation at Sihayo show physical features and alteration-mineralisation characteristics that appear to be similar to those reported in the literature from the Cortez Hills breccia-hosted Carlin-type gold deposit in Nevada (Bradley et al, 2020¹) (**Appendix 2**). Figure 3 shows a schematic of the current understanding of the geology beneath the Sihayo pit. ¹ Bradley, M.A., Anderson, L.P., Eck, N., and Creel, K.D, 2020, Giant Carlin-type gold deposits of the Cortez district, Lander and Eureka Counties, Nevada, in Sillitoe, R.H., Goldfarb, R.J., Robert, F., and Simmons, S.F., eds., Geology of the World's Major Gold Deposits and Provinces: Society of Economic Geologists Special Publication 23, p. 335–353. ### **Underground Mining Potential at the Sihayo Starter Project** The Company engaged Mining One to assess the potential for an underground mining operation at the Sihayo Starter Project as an addition to the proposed open pit operation. The work concluded that an underground drift and fill operation has the potential to be technically and economically feasible, subject to further drilling and feasibility work. The Company intends to revisit this study work once the latest drilling program has been completed and geological models have been updated. ### **Update on Hutabargot Julu** Surface mapping and soil sampling were recently completed on the Panas-Galugur epithermal gold-silver vein target located to the east of the Sihorbo South vein system within the Hutabargot Julu project area (Figure 6). This work has focussed on demonstrating the potential for strike extensions and additional mineralised veins north of historic Dutch workings and beneath an area of extensive gold-arsenic soil anomalism identified in a previous survey by the Company (See SIH:ASX announcement titled "Hutabargot Julu delivers its Maiden Mineral Resource with Sihorbo South – UPDATED" on 7 September 2022; Appendix 1 JORC Code – 2012 Edition, Table 1 – Section 2 Historic Exploration Data). The recently completed soil geochemical survey is an infill program on the previous survey. The grid-based soil survey covered a 600 m x 300 m area with the collection of about 250 soil samples. The purpose of the survey is to assist with defining and outlining the distribution of potential gold-silver mineralisation in the subsurface and to assist with the planning of a scout drilling program. Mapping over the survey area has highlighted the presence of vughy-silicified breccia and possible silica sinter boulders in soil, which may indicate the preservation or shallow erosion of a hot-spring depositional surface and potential for buried mineralised veins at depth. Assays are expected to be received for rock and soil sampling by the end of this month and will be reported soon after. ### **Update on Forestry Permit Extension** The Company is pleased to announce that it has received an extension to its 13,800 ha Forestry Borrow-Use exploration permit, or Ijin Persetujuan Penggunaan Kawasan Hutan – Eksplorasi (IPPKH-Exploration), from the Ministry of Environment and Forestry of the Republic of Indonesia. This permit is located in the CoW North Block and surrounds the Sihayo-1 Starter Project and its near-mine prospects, including Hutabargot Julu. This extension is valid until 4 September 2024 and allows for advanced exploration to be conducted in the protected and production forestry designated areas. The IPPKH-Exploration can be further extended or reapplied for as an IPPKH-Operations on the anniversary of the current extension. ### **Update on CoW South Block** Prospecting and mapping over the past few months have confirmed the presence of chalcopyrite-bornite-mineralised wollastonite-rich skarn recently exposed by local artisanal miners surrounding and extending for up to 1km northwest of the *Pagar Siayu* (*'Tambang Ubi'*) Dutch workings (See SIH:ASX announcement titled "Encouraging surface sample results from Tambang Tinggi" on 6 April for details on these historic workings) (Figure 6). This type of skarn is commonly associated with high-gold grades and initial sampling of the local workings has been completed. A soil sampling program has commenced on this target to help define and outline the distribution of copper-gold mineralisation in the subsurface and to assist with the planning of a scout drilling proposal. The grid-based soil survey is planned to cover a 750m x 750m area with the collection of about 500 soil samples. It is expected to take about two months to completed in difficult rugged terrain. Additional details of this soil program and the results of the initial rock sampling are expected to be reported shortly. ### **Updates to Sihayo Starter Project Feasibility Study** The Company is in the final stages in updating the 2022 FSU to incorporate the impacts of High pH (Caustic) Leaching as well as updated operating and capital cost estimates. These changes will result in an updated Ore Reserve estimate and economic analysis for the Sihayo Starter Project. Results of this work are expected to be released during the March 2023 quarter or early in the June 2023 quarter. Figure 6: PT Sorikmas Mining CoW showing major prospects Including Hutabargot Julu and Tambang Ubi-Dingin This announcement has been authorised by Sihayo's Board of Directors. For further information, please contact: Colin Moorhead Executive Chairman E: colin.moorhead@sihayogold.com Roderick Crowther Chief Financial Officer E: roderick.crowther@sihayogold.com # **Appendix 1: Details of Sihayo drilling program** Table 2: 2022 Sihayo Drilling Program – Stage 2 Drill Hole Collar Details | Hole ID | mE | mN | RL | Dip/Az (°) | Depth(m) | |----------|---------|---------|------|------------------------------------|-------------| | SHDD646 | 548,620 | 102,275 | 1167 | -64 ⁰ /225 ⁰ | 355.20 | | SHDD647 | 548,491 | 102,214 | 1203 | -82º/221º | 458.10 | | SHDD648a | 548,619 | 102,274 | 1167 | -69 ⁰ /201 ⁰ | 262.30 | | SHDD649 | 548,621 | 102,272 | 1167 | -85 ⁰ /200 ⁰ | 340.10 | | SHDD650a | 548,487 | 102,211 | 1203 | -72 ⁰ /221 ⁰ | 360.00 | | SHDD651 | 548,601 | 102,246 | 1178 | -70º/201º | 360.00 | | SHDD652 | 548,486 | 102,211 | 1203 | -62 ⁰ /221 ⁰ | 358.00 | | SHDD653 | 548,601 | 102,245 | 1178 | -69 ⁰ /181 ⁰ | 369.20 | | SHDD654 | 548,488 | 102,211 | 1203 | -770/0400 | 363.50 | | SHDD655 | 548,600 | 102,244 | 1178 | -65 ⁰ /161 ⁰ | 359.90 | | SHDD656 | 548,601 | 102,246 | 1178 | -70º/201º | In progress | | SHDD657 | 548,486 | 102,211 | 1203 | -62 ⁰ /221 ⁰ | In progress | | SHDD658 | 548,601 | 102,245 | 1178 | -69 ⁰ /181 ⁰ | Planned | | SHDD659 | 548,488 | 102,211 | 1203 | -770/0400 | Planned | **Table 3: 2022 Sihayo Drilling Program – Latest significant intercepts**Reported at 0.3 g/t Au cut-off and up to 4m internal dilution | Hole ID | From
(m) | To
(m) | Length
(m) | Au
(g/t) | As
(ppm) | Sb
(ppm) | Est True
Width
(m) | |-----------|---------------|-----------------|----------------|-------------|---------------|-------------|--------------------------| | SHDD646 | 257.0 | 262.0 | 5.0 | 5.50 | 9516 | 382 | 4.5 | | | 273.0 | 293.0 | 20.0 | 1.97 | 6631 | 243 | 18.0 | | including | 282.0 | 286.0 | 4.0 | 4.55 | 4647 | 139 | 3.6 | | | | | | | | | | | | 295.0 | 303.0 | 8.0 | 5.48 | 3904 | 134 | 7.2 | | Including | 295.0 | 298.0 | 3.0 | 9.03 | 9740 | 149 | 2.7 | | | | | | | | | | | SHDD647 | 244.0 | 248.0 | 4.0 | 2.57 | 4815 | 132 | 3.6 | | | 287.0 | 297.0 | 10.0 | 0.80 | 4065 | 84 | 9.0 | | | 300.3 | 306.1 | 5.8 | 1.78 | 277 | 29 | 5.2 | | | 306.7 | 308.0 | 1.3 | 1.66 | 278 | 29 | 1.2 | | SHDD648a | 194.0 | 204.0 | 10.0 | 1.00 | 3332 | 73 | 9.0 | | | 209.0 | 229.0 | 20.0 | 2.06 | 8164 | 226 | 18.0 | | Including | 211.0 | 215.0 | 4.0 | 7.01 | 30442 | 743 | 3.6 | | | | | | | | | | | | 247.0 | 262.3 | 15.3 | 2.81 | 2444 | 159 | 13.8 | | Including | 248.0 | 256.0 | 8.0 | 3.41 | 2740 | 188 | 7.2 | | SHDD649 | No significan | t mineralised i | ntercents | | | | | | SHDD650a | 222.00 | 227.30 | 5.30 | 7.26 | | | 4.8 | | 011220004 | 293.30 | 305.00 | 11.70 | 3.18 | | | 10.5 | | Including | 300.00 | 305.00 | 5.00 | 5.93 | | | 4.5 | | | | | | | | | | | | 309.50 | 312.40 | 2.90 | 5.43 | | | 2.6 | | | 312.75 | 313.60 | 0.85 | 2.77 | | | 0.8 | | | 314.40 | 316.40 | 2.00 | 1.77 | | | 1.8 | | | 318.90 | 319.30 | 0.40 | 1.33 | | | 0.4 | | | | | speroid betwee | | 9.3 m down ho | ole | 1 | | | | | for hole SHDD | | | | | ## **Appendix 2: Cortez Hills analogue** A comparison is drawn between Sihayo and the high-grade multi-million ounce Cortez Hills breccia-hosted Carlin-type gold deposit in Nevada (the latter is described by Bradley et al, 2020, and Jackson et al, 2010²). Both gold deposits share a common set of geological characteristics including: - Hosted in polylithic breccias within karstic carbonate rocks (limestone). - Show strong structural controls and a spatial association with igneous intrusions. - Gold mineralisation accompanied carbonate-dissolution and replacement of the polylithic breccias and enclosing carbonate rocks by varying proportions of hydrothermal clays, jasperoidal silica, and sulphides. - Submicron-size gold occurring within the arsenic-rich rims of fine-grained pyrite and marcasite. A comparison of the breccia hosts in both deposits is shown below: The basis for the comparison is that higher-grade gold mineralisation is associated with fluidised
matrix-supported polylithic breccias that occur as irregular stratabound and discordant bodies (pipe-like) associated with hydrothermal karst developed in the limestone host along unconformities, major faults and/or igneous intrusion contacts. There is an apparent trend of increasing gold grade with increasing depth; extremely high gold-grades are predicted to occur in narrow root or upflow zones along individual breccia bodies. Drilling in progress at Sihayo is testing for high-grade feeder zones to confirm this analogue. ² Jackson, M., Arbonies, D., and Creel, K., 2011, Architecture of the Cortez Hills breccia body, in Steininger, R., and Pennell, B., eds., Great Basin evolution and metallogeny: Geological Society of Nevada Symposium, May 14–22, 2010, Proceedings, p. 97–123. ### Competent Person's Statement ### **Exploration Results** The information in this report which relates to Exploration Results is based on, and fairly represents, information compiled by Mr Bradley Wake (BSc Hons. (Applied Geology)), who is a contract employee of the Company. Mr Wake does not hold any shares in the company, either directly or indirectly. Mr Wake is a member of the Australian Institute of Geoscientists (AIG ID: 3339) and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Wake consents to the inclusion in the report of the matters based on this information in the form and context in which it appears. #### Disclaimer This announcement may or may not contain certain "forward-looking statements". All statements, other than statements of historical fact, which address activities, events or developments that the Company believes, expects or anticipates will or may occur in the future, are forward-looking statements. Forwardlooking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "estimate", "targeting", "expect", and "intend" and statements that an event or result "may", "will", "can", "should", "could", or "might" occur or be achieved and other similar expressions. These forward-looking statements, including those with respect to permitting and development timetables. mineral grades, metallurgical recoveries, potential production reflect the current internal projections, expectations or beliefs of the Company based on information currently available to the Company. Statements in this document that are forward-looking and involve numerous risks and uncertainties that could cause actual results to differ materially from expected results are based on the Company's current beliefs and assumptions regarding a large number of factors affecting its business. Actual results may differ materially from expected results. There can be no assurance that (i) the Company has correctly measured or identified all of the factors affecting its business or the extent of their likely impact, (ii) the publicly available information with respect to these factors on which the Company's analysis is based is complete or accurate, (iii) the Company's analysis is correct or (iv) the Company's strategy, which is based in part on this analysis, will be successful. The Company expressly disclaims any obligation to update or revise any such forward-looking statements. ### No Representation, Warranty or Liability Whilst it is provided in good faith, no representation or warranty is made by the Company or any of its advisers, agents or employees as to the accuracy, completeness, currency or reasonableness of the information in this announcement or provided in connection with it, including the accuracy or attainability of any Forward-Looking Statements set out in this announcement. The Company does not accept any responsibility to inform you of any matter arising or coming to the Company's notice after the date of this announcement which may affect any matter referred to in this announcement. Any liability of the Company, its advisers, agents and employees to you or to any other person or entity arising out of this announcement including pursuant to common law, the Corporations Act 2001 (Cth) and the Trade Practices Act 1974 or any other applicable law is, to the maximum extent permitted by law, expressly disclaimed and excluded. #### **Distribution Restrictions** The distribution of this announcement may be restricted by law in certain jurisdictions. Recipients and any other persons who come into possession of this announcement must inform themselves about and observe any such restrictions. # Appendix 3: JORC Code, 2012 Edition – Table 1 ## **Section 1: Sampling Techniques** | Criteria | JORC Code Explanation | Commentary | |------------------------|--|---| | Sampling
Techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Samples were collected by diamond drilling using PQ3, HQ3 and less commonly, NQ diameter coring sizes. Drilling and the transportation of core in sealed boxes from drill site to the Site Core Shed was fully supervised by the Company's project geologists and geotechnicians. The core was logged and marked up by the project geologists for cutting and sampling. The core was cut using a petrol-driven core saws and sampled by trained geotechnicians under the full supervision of the project geologists at the Site Core Shed. Most holes were split for half-core samples and assayed over continuous 0.5 to 2 metre intervals down the entire length or along selected intervals within each drill hole. Core recovery was recorded for every sample interval. Where possible, all core was oriented and cut along the orientation mark retaining down-hole arrows. Core samples are bagged in numbered calico bags that are each lined with a plastic bag and sample ticket and sealed with heavy duty cable ties. Groups of 5-6 samples are bagged in hessian sacks and sealed with a numbered security tag. The sacks are clearly labelled and transported to the laboratory by road transport under the escort of the Company's security personnel. The number of drill core samples relating to this announcement: Sihayo-1: 2022/23 Stage 2 Drilling Program = 538 samples from holes SHDD646, SHDD647, SHDD648a, SHDD649, SHDD650a | | Drilling techniques | Drill type (eg core, reverse circulation, open-hole
hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | All samples reported in this announcement are from the 2022/23 Stage 2 exploration drilling program: The drilling methods were wire-line triple-tube diamond drilling using PQ3, HQ3, and less commonly, NQ3 diameter coring sizes and using a man-portable diamond drill rig owned and operated by PT Indodrill Indonesia of Bogor, Indonesia. Drilling activities are operated on two 12-hour shifts per day, 7 days per week. The drill holes are surveyed at 25m down-hole intervals using a Digital ProShot downhole camera. Drill core is oriented on each drill run in competent ground conditions using a Coretell ORIshot down-hole orientation tool. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. | Core recoveries were excellent and averaged greater than 95% within the mineralised and wallrock zones. Ground conditions are highly variable and locally poor due to a number of factors: 1) The occurrence of incohesive fault structures related to movements along fault arrays within the active Trans Sumatra Fault Zone, and 2) contrast in rock strength associated with variations in alteration and reactivation by younger fault movements. Core recovery is maximised by the careful control of water/mud injection pressure, use of | | Criteria | JORC Code Explanation | Commentary | |--|--|--| | | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | specialised drilling muds, and the drilling of shorter runs in highly broken ground conditions. Core recoveries (and losses) are directly measured from the inner tube splits after each drill run at the drill site by trained core handling technicians ("core checkers"). The core checker is on-site during the entire 12-hour shift. The core checker takes a photograph of the core from each drill run on the inner tube splits and ensures that the core is properly assembled (reconnected) and the orientation line is properly marked along the core on the inner tube splits before it is transferred into core trays. Drill runs and core losses are marked up by the driller on core blocks placed in the core box after each drill run. The positions of any obvious sections of core loss (e.g. cavities) are noted in the core boxes. The drill intervals, operational activities and core recoveries are recorded on Daily Shift Drilling Reports for each drilling shift. These are checked, validated and approved at the Site Office and the data are entered in an Excel database. The drilling contractor maintains appropriate mud mixtures and a high standard of operational procedure to maximise core recovery. Maximum drill runs are 1.5 m in length and are shortened if necessary to optimise sample recovery in broken ground conditions. The drill rigs are checked daily by the project geologists to ensure that maximised core recoveries, high safety and operating procedures are maintained by the drilling contractor and support personnel. There is no evidence of a grade bias due to variations in core recovery in the results reported. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Drill core recovered from the entire hole(s) is geologically and geotechnically logged by the project geologist(s) and geotechnical engineer(s). Predicted zones of mineralisation and surrounding wall rocks are selected and recorded for mark-up in core trays by the project geologist(s) for geochemical sampling and assaying. Drill hole logs record lithology (rock types), alteration and mineralisation, structure, rock strength and hardness, weathering condition, RQD and other structural defects. A standardised logging coding and nomenclature are used by the project geologist(s) and geotechnical engineers(s). Logging data are captured on A3 paper logging sheets designed for the project and these data are transferred into a digital format using Excel spreadsheet software for import into Micromine. Geological and geotechnical logging are qualitative in nature except for the recoding of logging and sampling intervals, core recoveries, oriented core measurements (α and β), RQD and fracture frequency. All drill core trays are digitally photographed in both wet and dry condition as whole-core, and in both wet and dry condition at half-core splitting and sampling. A complete photographic record of the core trays is kept on file in the Company's project database. Dry Bulk density is measured from 10 cm long blocks of whole core taken at systematic 5 m intervals down the entire hole using the wax-sealed sample submersion/water displacement method. The caliper-method of estimating Dry Bulk Density is used on the same 10 cm long core blocks as a validation-check of the wax-sealed sample submersion/water displacement determinations. Logging is of a suitable standard for detailed geological and geotechnical analysis, and for resource modelling. Revision of the drill logs is done (if necessary) on the receipt of final assay results to assist with the accuracy of interpretations and assessment of the drilling results. | | Sub-sampling
techniques and
sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary | Drill core is manually split (cut) using petrol-driven core saws and diamond-impregnated core saw blades. Continuous half-core samples are split and collected over nominal 0.5 to 2 metre sample intervals down the drill hole. Samples are methodically marked-up, labelled, split and sampled under supervision of project geologist(s) at | | Criteria | JORC Code Explanation | Commentary | |--|---
--| | | split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | the Company's Sihayo core shed located in the project area. The remaining half-cores are stored in the core boxes at the Company's Sihayo core shed as a physical archive of the drilling program(s). Quarter-core samples were collected for duplicate testing of grade variations within core; Quarter core samples were taken at a frequency of 1 in every 30 consecutive samples down each drill hole. The quarter-core duplicate assay results show a generally low variation in grade distribution between the duplicate sample pairs. Boyd crush sample duplicates testing for assaying repeatability were part of the QAQC. These were prepared by PT Intertek Utama Services at their sample preparation facility in Medan. Two duplicate 1-1.5 kg samples are split from core crushed to 95% passing 2 mm from the Boyd crusher at a frequency of 1 in every 15 samples. The Boyd crusher duplicate assay results show low variation and a high degree of repeatability between the duplicate pairs. The nominal 0.5-2 m long PQ3/HQ3 and sometimes NQ3 half-core samples provided sample weights ranging between about 2- to 6-kg and averaged around 3-4 kg. These relatively large sample weights and the sample preparation protocols adopted for these drilling programs are representative and appropriate for the epithermal style of gold mineralization being investigated. QAQC procedures implemented by the Company and results reported by Intertek as part of their own internal QAQC procedures are considered sufficient to highlight any need for revision of the sample preparation procedures in forward drilling programs. However, the QAQC results to-date support that the sample-preparation techniques are robust and appropriate to the determination of the metal grade of the rocks being investigated. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, hand held XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | PT Intertek Utama Services: PT Intertek Utama Services (Jakarta/Medan) was the primary sample preparation and assaying laboratory used for this drilling program. Coarse crush samples were prepared at the Intertek sample preparation facilty in Medan, North Sumatra. Core samples are weighed and dried at 60°C. The entire sample is crushed to P95 (95%) passing minus-2mm and 1.5kg is split off and pulverized to P95 (95%) passing minus-75 microns. Sample pulps prepared at the facility in Medan are air freighted to Intertek's analytical laboratory in Jakarta. The samples were assayed for gold by 50 g charge Pb collection Fire Assay with AAS finish (FA51/AAS) and 46 multi-elements by four-acid digest (HCIO₄, HCI, HNO₃, HF) and a combination of determinations using Inductively Coupled Plasma/Optical Emission Spectrometry (ICP/OES) (Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Sc, Ti, V, Zn) and Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) (Ag, As, Ba, Be, Bi, Cd, Co, Cs, Ga, Ge, Hf, In, Li, Mo, Nb, Pb, Rb, Sb, Se, Sn, Sr, Ta, Te, Th, Tl, U, W, Y, Zr) determinations (4A/OM10). In addition, the mineralised jasperoid intersections were tested for a more comprehensive set of analyses to investigate the geometallurgical properties of the mineralised material. This includes assaying for gold by 200-g accelerated cyanide (LeachWELL) with AAS finish (LW200/AA) and Au-tail analysis by FA (TR200/AA), mercury by Cold Vapour AAS determination (HG1/CV), and several different sulphur and carbon analyses for soluble and insoluble components (sulphates, organic carbon) (CSA03 – determination of Total Carbon & Sulphur by CS analyser, CSA104 – SCIS determination of carbonate-extract for soluble sulphate, C71/CSA – determination of Carbon non-carbonate or Carbon graphitic). The nature of the large core size (PQ3/HQ3/NQ3), the total and partial preparation procedures (total crush to P95 -2mm, 1.5kg split pulverized to P95 -75 micron), and the multiple analytical methods use | | Criteria | JORC Code Explanation | Commentary | |--|--|---| | | | gold (FA, CN) and its associated elements (silver, sulphur, carbon & multielements) are considered appropriate for evaluating the potential geometallurgical characteristics of jasperoid- gold mineralization. • The Company inserted OREAS Certified Reference Materials (CRMs) and blanks at a rate of 1 in every 10-12 core samples (~10%) of the sample sequence to evaluate the lab's sample preparation procedures, analytical quality and/or biases. Intertek also conducts and reports its own internal laboratory QAQC checks which are reviewed as part of the QAQC analysis. The results relating to this announcement fall well within acceptable tolerances of accuracy and precision. | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Assay results are received from the laboratory in digital format and hard-copy final certificates. Digital data are stored on a dedicated database server and back-up database server. Hard-copy certificates are stored in Jakarta Office. Results are received and validated by the Company's Consultant against QAQC protocols. Results are reported by the Company's Competent Person. No adjustments or calibrations are applied to any of the assay results. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole
surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Planned holes were initially staked in the field using a hand-held Garmin GPSMAP 66s with accuracy of ±3-5m. The coordinates presented for drill hole collars and rock sample locations in this announcement are field GPS measurements. The drill hole collars will be accurately surveyed by Total Station. The Grid System used is WGS84/ UTM Zone 47 North. The drill hole paths were surveyed with a Digital Proshot camera at 25-metre down-hole intervals. Drill hole paths are tracked, and data is plotted daily using Micromine software. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | The drilling program is conducted on approximately 50 m spaced lines/sections oriented near-perpendicular to the strike-projection of the gold-jasperoid target. No sample compositing is applied to the samples. | | Orientation of data
in relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Geological modelling of the Sihayo-1 gold deposit shows that the gold mineralization, host stratigraphic package and associated controlling structures related to the Trans-Sumatran Fault Zone are NW-SE striking. The gold-jasperoid target is interpreted to be stratabound by the host Permian limestone-volcaniclastic rock package. This host rock package is interpreted to have a moderate-dip to the northeast. The drilling program was designed in plan and section to test up-dip and along-strike projections of mineralised jasperoid intersected in historic scout drilling programs and 2019 infill drilling. The hole(s) intersect the gold jasperoid target at moderate to high angle to the dip of the interpreted mineralised stratabound zone. | | Criteria | JORC Code Explanation | Commentary | |-------------------|---|--| | Sample Security | The measures taken to ensure sample security. | A detailed Chain-of-Custody protocol is established to ensure the safe and secure transportation of all core samples from the remote project site to the PT Intertek Utama Services sample preparation laboratory in Medan, North Sumatra. Sihayo-1 drilling location is located within a few hundred metres from the Company's Sihayo exploration camp and core shed. On the drill site, the core is checked and recorded by the company's assigned "Core Checkers' (geotechnicians) as drilling proceeds. The core checkers are assigned to the drill rig for the entire shift (night/day) and effectively guard the drill core 24/7. The core checkers are responsible for recording and documenting the drill core, including photographing the core in the inner tube splits as it "comes out of the ground". The shift activities and photographs are reported to the project geologists at the end of each shift. The drill core is packed and sealed in core trays at the drill site; the core trays were sealed with lids and locked with cable-tie strapping, immediately after each tray has been filled with core. The core trays were man-portered daily from the drill site to the Sihayo core shed. The project geologists check the drill site activity daily and directly supervise the security, handling and cleaning of the drill core. After logging and sample splitting at Sihayo core shed, the core samples are each separately bagged and sealed. Each sample package consists of an inner-lining plastic bag with an individual sample ID ticket stub (cable-tied), and an outer-lining calico bag that is marked with the sample ID in permanent marker pen. The bag is then sealed with a cable tie. The core samples are then packed into double-lined hessian (polyweave) sacks which are individually sealed with cable-ties and a unique numbered security tag. The hessian sacks are weighed and registered (hard copy and computer). The hessian sacks are man-portered from Sihayo core shed by local lab | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | The exploration drilling programs are supervised by the Exploration Manager, Chief Geologist and Project Geologists who are based on site The database is internally checked by the Company's Database Manager | ## **Section 2: Reporting of Exploration Results** | Criteria | JORC Code Explanation | Commentary | |---|---|--| | Mineral tenement
and land tenure
status | ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title | The mineral tenement is a 7th Generation Contract of Work (CoW) granted in February 1998 to PT Sorikmas Mining, an Indonesian joint venture company owned by Aberfoyle Pungkut Investments Pte Ltd (75%) and PT Aneka Tambang Tbk (25%). Sihayo Gold Limited (formerly Oropa Limited) acquired all of the shares of Aberfoyle Pungkut Investments Pte Ltd in April 2004. The CoW is located in North Sumatra in the Republic of Indonesia and is approximately 80km south-east from the Martabe Gold Mine. The joint venture remains as Sihayo Gold Limited (ASX:SIH) owning a 75% interest in PT Sorikmas Mining which | | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | in turn holds the Sihayo-Pungkut 7th Generation Contract of Work (" CoW "). PT Aneka Tambang Tbk is the Company's joint venture partner in the CoW with a 25% interest. | | | obtaining a licence to operate in the area. | The original CoW area covered 201,600 hectares. This was reduced to the current 66,200 hectares after two mandatory partial relinquishments; 1) to 151,000 ha in Feb 1999, and 2) to 66,200 ha in Nov 2000. As a consequence of these two partial relinquishments, the current CoW is subdivided into two separate blocks; North block and South block. The tenement is currently under the Operation/Production phase of the CoW. There is no future requirement for area relinquishment. Tenure on the CoW is until 2049 with an option to extend for two additional 10-year periods. | | | | The PT Sorikmas Mining CoW
area is located along on a fertile segment of the Sumatra magmatic arc in North Sumatra. The same arc segment includes the giant Martabe gold-silver deposit (located about 80km NW) and the high-grade Dairi lead-zinc deposit (located about 250km NW). The CoW and is considered highly prospective for gold, silver and base metal mineralisation. Multiple mineral prospects have been identified during previous exploration within the CoW area and various mineralisation target-styles are represented including replacement-style carbonate-hosted gold (Carlin-type), intermediate-sulphidation epithermal gold-silver veins, gold-base metal skarns and porphyry-related copper-gold. | | | | The Sihayo Starter Project is the most advanced project within the CoW and a Definitive Feasibility Study for the project was completed in June 2020. | | | | Updated economics for the Sihayo Starter Project following Optimisation Studies, culminating in the 2022 Feasibility Study Update was released on 17 th February 2022. The project has an updated combined Mineral Resources of about 27.8 Mt at 1.8 g/t for 1.565 Moz of contained gold and an updated Ore Reserve of 11.504 Mt at 2.0 g/t for 741 koz of contained gold in the Sihayo-1 and Sambung gold deposits. The bulk of this gold in the Sihayo-1 gold deposit. | | | | The Company has been active with exploration programs during 2021-22 including exploration and extension drilling within and surrounding the Sihayo-1 gold deposit, notably on the near-mine Sihayo-2 gold jasperoid target, extensive exploration drilling on the large Hutabargot Julu epithermal gold-silver project located 6km south of the Sihayo Starter Project, and target generation, notably recent prospecting in the Tambang Tinggi project area of the South CoW block. | | | | Sihayo Starter Project is located within heavily forested and partly cleared rugged terrain of the Barisan Mountains, in the Siabu subdistrict of Mandailing Natal regency, North Sumatra. The Sihayo and Sambung gold resources are located between about 900m and 1230m elevation above sea level. Field activities are based from Sihayo | | Criteria | JORC Code Explanation | Commentary | |-----------------------------------|---|---| | | | exploration camp. The nearest villages are located within 8 km of the camp on the Batang Gadis river plain of the Panyabungan graben valley, immediately the east of the northern block CoW boundary. | | | | Access to the Sihayo Starter Project is via walking tracks. The camp is located about 8 km walking distance from a vehicle drop-off point at Hutagodang village on the Batang Gadis River. The vehicle drop-off point is located about 10 km from the Company's administration office at Bukit Malintang and is accessible via a largely unsealed government road. | | | | Panyabungan, the closest major regional town to the CoW North block, has a population of just under 100,000 people. Panyabungan is located about 140 km SE from Ferdinand Lumban Tobing airport and about 165 km from the regional city and port of Sibolga. Both the airport and Sibolga are connected to Panyabungan by a major sealed road and can be reached by vehicle in 3.5 hours and 4.5 hours respectively. There are daily flights between Ferdinand Lumban Tobing airport and both Jakarta and Medan. Hutabargot Julu prospect lies within a protected forest designated area however much of it contains a mixture of primary and secondary forest, rubber plantation and areas of fruit and vegetable cultivation under informal landholdings. | | | | Much of the PT Sorikmas Mining CoW is covered by state-owned protected forest that is managed by the Ministry of Environment and Forestry. The Company requires an <i>Ijin Pinjam-Pakai Kawasan Hutan (IPPKH)</i> , translated as a Borrow-Use forestry area permit, from the the Ministry of Environment and Forestry to access and use a forestry area for any purpose that is outside of forestry activities, including mineral exploration and mining activities. The PT Sorikmas Mining CoW contains caveats that allow the Company to conduct open-cut gold mining in protected forest. | | | | The Company holds a valid 485 ha <i>IPPKH</i> (<i>Operasi</i>) permit that contains the proposed Sihayo mine development area and, on the 4 September 2020, was granted a 13,800 ha <i>IPPKH</i> (<i>Eksplorasi</i>) permit that surrounds the operating permit. This allows the Company to conduct exploration activities including drilling on prospects located along the Sihayo Gold Belt in the North Block of the CoW, which includes Hutabargot Julu, Sihayo and near-by prospects. The 13,800 ha <i>IPPKH</i> (<i>Eksplorasi</i>) permit is valid for 2-years until 3 September 2022, and is in the process of being extended. | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Exploration commenced on the PT Sorikmas Mining CoW in 1995, originally under a domestic investment Kuasa Pertambangan (KP) title held by Antam with work managed by PT Aberfoyle Indonesia, a subsidiary of Aberfoyle Limited (Australia). Work continued under a pre-CoW permit (SIPP) from February 1997 to January 1998, and then under the joint venture company, PT Sorikmas Mining, when the CoW was signed in February 1998. Exploration carried out over this initial 3-year period included regional drainage geochemical sampling, prospecting, geological mapping, soil geochemical surveys and investigations on some of the historic Dutch mine workings in the district. Scout drilling was conducted by Aberfoyle on the Mandagang porphyry target in 1996 and produced some broad low-grade Cu-Mo-Au intercepts. The regional work highlighted numerous gold and multielement anomalies across the CoW. Subsequent prospecting identified multiple targets, representing a broad spectrum of precious and base metal mineralisation styles, including: | | | | Carbonate-hosted jasperoid gold at Sihayo, Sambung, Link Zone, Sihayo-2, Sihayo-3, Sihayo-4, Mentari
and Nabontar prospects (North CoW Block); | | Criteria | JORC Code Explanation | Commentary | |----------|-----------------------|--| | | | Epithermal gold-silver veins and disseminated mineralisation at Hutabargot Julu (Dutch working), Sihayo-
5 (North CoW Block), and Tambang Hitam, Tarutung, Babisik, Nalan Jae, Nalan Julu, and Rotap
prospects (South CoW Block); | | | | Porphyry-style copper ± gold-molybdenum mineralisation at Rura Balancing, Singalancar, Sihayo-2
Copper (North CoW Block), and Mandagang, Tambang Tinggi, Namilas and Siandop prospects (South
CoW Block); | | | | Polymetallic skarn at Bandar Lasiak (North CoW Block), and Pagar Gunung, Huta Pungkut prospects and
Tambang Ubi/Pagaran Siayu (Dutch mine) prospects. | | | | Aberfoyle was taken over by Western Metals Ltd in late 1998. Western Metals farmed out part of their beneficial interest in the CoW to Pacmin Mining Corp in 1999. Pacmin funded and managed detailed prospect-scale work at Sihayo and on some neigbouring prospects during 1999 until early 2000. This work included grid-based soil geochemical surveys, ground IP-Resistivity surveys, detailed geological mapping, trenching on various prospects and the first scout drilling program on the Sihayo gold discovery. | | | | The CoW was placed into temporary suspension from November 2000 to February 2003 due to depressed gold prices, lack of funding and changes to the forestry regulations and status that restricted access to the CoW area. | | | | PacMin was taken over by Sons of Gwalia (SoG) (Australia) in late 2001. Oropa Limited entered into an agreement to purchase the 75% beneficial interest in the CoW held by SoG/Western Metals in late 2002. Oropa exercised its option to purchase the 75% beneficial interest in the CoW held by SoG/Western Metals in early 2004. Oropa changed its name to Sihayo Gold Limited in late 2009. Exploration resumed on the
CoW in early 2003, fully funded by Oropa/Sihayo. This work included detailed prospect-scale exploration such as grid-based soil geochemical surveys, ground IP-Resistivity and magnetics surveys, detailed geological mapping, trenching and drilling campaigns in the North Block (Sihayo, Sihayo-2, Link Zone, Sambung & Hutabargot) and South Block (Tambang Tinggi, Tambang Ubi and Tambang Hitam) that steadily increased from 2003 to 2013. An airborne magnetic and radiometric survey was flown over the CoW in 2011. | | | | A total of 86,499 m of diamond drilling in 824 holes was drilled on the CoW up to 2013 including a total of 59,469 m in 547 holes on Sihayo-1 , 12,475 m in 165 holes on Sambung, 1,571 m in 17 holes at Sihayo-2, 6,979.5 m in 57 holes at Hutabargot Julu, and 6,005 m in 38 holes in the Tambang Tinggu district. | | | | Another hiatus in exploration activity occurred from 2013 to early-2019 due to lack of funding. | | | | New investment was injected into Sihayo Gold Limited in 2018 and the Company recommenced ground work at Sihayo in 2019 with an infill drilling program in support of a new Mineral Resource estimate on Sihayo and Sambung gold deposits. A total of 7,338 m in 74 holes of infill drilling was completed at Sihayo in 2019 (See ASX:SIH Quarterly reports released in January 2020, April 2020, and ASX release by Sihayo (ASX:SIH) on 23 June 2020). | | | | Another significant capital raising was achieved in August 2020, the proceeds of which are being used to fund exploration at Hutabargot Julu and elsewhere, early project works on the Sihayo Starter Project and working capital See ASX:SIH Quarterly reports released on 20 August 2020). A total of 4806-m/25 holes of reconnaissance drilling was completed over the greater Hutabargot project area in early 2020, 1740-m/8 holes completed on the Sihorbo North vein target and 2577-m/11 holes on the Penatapan stockwork target were completed in mid-late 2021 (See | | | | 19 | | Criteria | JORC Code Explanation | Commentary | |----------|-----------------------|--| | | | ASX releases by Sihayo ASX:SIH on 12 April 2021, 5 July 2021 and 17 November 2021). 30 diamond drill holes for 5,216 m was completed on the Sihorbo South vein-stockwork target in late 2021-early 2022; and, a Maiden Inferred Mineral Resource Estimate of 6.4 Mt at 0.5 g/t gold and 17 g/t silver (0.7 g/t gold-equivalent), containing 100,000 ounces of gold and 3,600,000 ounces of silver (150,000 gold-equivalent ounces) at a 0.3 g/t gold-equivalent cut-off was announced (See ASX release by Sihayo ASX:SIH on 7 September 2022). | | | | Historic resource estimates previously announced on the Sihayo-1 and Sambung gold deposits. | | | | Historic resource estimates: Sihayo gold deposit | | | | Runge Limited Indicated and Inferred resource of 15.2 Mt at 2.8 g/t Au (1,368,200 oz) at 1.2 g/t Au cut-off in oxide/transitional/fresh ore types. Released by Sihayo (ASX:SIH) on 12 June 2012. | | | | H & S Consultants P/L Measured, Indicated and Inferred resource of 15.3 Mt at 2.7 g/t Au (1,322,000 oz) at 1.2 g/t Au cut-off in oxide/transitional/fresh ore types. Released by Sihayo (ASX:SIH) on 17 June 2013. | | | | PT Sorikmas Mining Measured, Indicated and Inferred resource of 23.399 Mt at 2.11 g/t Au (1,585,000 oz) at 0.6 g/t Au cut-off in oxide/transitional/fresh ore types. Released by Sihayo (ASX:SIH) on 23 August 2018. | | | | Historic resource estimates: Sambung gold deposit | | | | H & S Consultants P/L Indicated and Inferred resource of 1.58 Mt at 2.0 g/t Au (102,025 oz) at 1.2 g/t Au cut-off in oxide/transitional/fresh ore types. Released by Sihayo (ASX:SIH) on 17 June 2013. | | | | Historic resource estimates: Sihayo-1 & Sambung gold deposits (combined) | | | | PT Sorikmas Mining A Sihayo-1/Sambung combined updated Measured, Indicated and Inferred resource of 24 Mt at 2 g/t Au for 1.5 Moz contained-gold at 0.6 g/t Au cut-off, and an updated Ore Reserve of 12.5 Mt at 2.1 g/t for 840 koz of contained gold at 0.6 g/t Au cut-off in oxide/transition/fresh ore types. Released by Sihayo (ASX:SIH) on 23 June 2020. | | | | Illegal (artisanal) gold mining activity has been operating at the top of the Sambung gold deposit since 2012. This has been small-scale highly selective hand-tool mining from reworked regolith, fracture-oxidised jasperoid and oxidised cavity-fill sediments in limestone. Gold is won by amalgamation in tromol barrels that are operated in villages located outside the CoW area. The Company believes that mostly the top 5-meters or less of the Sambung orebody has been depleted by local mining and this is excluded from the Sambung resource reported herewith. | | Criteria | JORC Code Explanation | Commentary | |----------|---|--| | Geology | Deposit type, geological setting and style of | of Regional Setting | | Geology | mineralisation | The CoW is located at the western end of the 7,000 km long Sunda-Banda magmatic arc. Sumatra lies on the south-western margin of the Sundaland promontory at the edge of the Eurasian plate. The promontory basement is composed of accreted and fault-transposed continental plate and magmatic arc terranes that were derived from Gondwana during the Late Palaeozoic and Mesozoic. | | | | The CoW straddles a NW-SE trending collisional boundary separating two basement segments: namely the Late Palaeozoic West Sumatra terrane (eastern segment) and Mesozoic Woyla terrane (western segment). The West Sumatra segment is composed of intermediate-felsic volcano-sedimentary rocks and associated shallow marine carbonate rocks. The Woyla segment is an accretionary complex composed of deep to shallow marine sedimentary rocks and associated mafic volcanic rocks. The collisional contact between these two terranes, referred to as the Medial Sumatra Tectonic Line, is stitched by Mesozoic granitic intrusions. Extension on these basement rocks during the early Palaeogene produced local rift basins that were filled by fluvio-lacustrine, coal-bearing siliciclastic-volcano-sedimentary rocks. These rocks have been uplifted, structurally inverted and partly eroded by the development and formation of the Trans Sumatran Fault Zone (TSFZ), commencing in the Miocene. The evolution of the TSFZ was accompanied by Palaeogene magmatism (diorite/andesite – tonalite/dacite intrusions and volcanics) and associated hydrothermal activity and mineralisation within the CoW and surrounding region. Younger volcanic tephras erupted from nearby Quaternary volcanoes (eg Sorikmarapi, Toba) mantle the landscape in parts of the CoW. | | | | Sihayo Gold Belt | | | | The Sihayo Gold Belt straddles the Angkola fault segment and associated fault strands (western margin) of the Barumun-Angkola dextral transtensional jog in the NW-SE trending TSFZ and is immediately adjacent to a major dilatational pull-apart basin (Panyabungan Graben: approximately 100 km long, 12 km wide and 1 km deep) that is controlled by the TSFZ. The TSFZ and associated deep seated dilatational structures that control the pull-apart basin are interpreted to be major structural controls on the alignment and evolution of Tertiary magmatism and mineralisation within the CoW. | | | | The Sihayo Gold Belt is one of three parallel/near-parallel prospect-aligned mineral belts recognised across the CoW area. It is a +15 km long NW-SW trending corridor of Permian calcareous volcano-sedimentary rocks, Tertiary siliciclastic-volcaniclastic rocks and associated intrusions. These rocks are highly prospective for replacement-style carbonate-hosted gold, epithermal gold-silver veins, polymetallic skarn and porphyry-related gold and copper mineralisation. It is host to the Sihayo-Sambung gold resources and near-mine prospects of Sihayo-2,-3, -4, -5, Bandar Lasiak, Sihayo-Sambung Link Zone, Hutabargot Julu and Dolok. | | | | Sihayo – Sambung gold deposits | | | | Sihayo and Sambung resources are located about 800m apart but are interpreted to occur at about the same stratigraphic position and on the same controlling regional fault structures. | | | | Primary gold mineralisation
is hosted in stacked stratabound lenses of hydrothermally altered ('jasperoid' or sulphidic microcrystalline silicification and argillic/clay-sulphide alteration), microbrecciated silty-sandy ("dirty") limestone and calcareous carbonaceous mudstone-siltstone, and in pods of similarly altered cavity-fill sediments within karstified fossiliferous limestone/marble. These rocks occur at the top of a Permian mixed carbonate-clastic volcano-sedimentary rock unit that has been openly folded and strongly faulted. The Permian rock unit is | | Criteria | JORC Code Explanation | Commentary | |----------|-----------------------|---| | | | unconformably overlain by a package of Tertiary fluvio-lacustrine carbonaceous siliciclastic sedimentary "cap" rocks (sandstone, siltstone, mudstone, lignite, conglomerate, and agglomerate) that are sometimes mineralised at the basal unconformity with the underlying Permian rock unit. Diorite intrusions as dykes, sills and laccolith are locally spatially associated with mineralised jasperoid lenses. | | | | A steeply dipping discordant jasperoid body (feeder structure?) is apparent within the Sambung deposit. Similar large mineralised discordant jasperoid bodies (feeder structures) are predicted to occur below Sihayo. | | | | Sihayo and Sambung are stratabound carbonate-hosted gold deposits or more broadly categorised as Sedimentary Rock Hosted Disseminated Gold Deposit type (SRHGD). Northwest to northerly striking vertical faults controlled by TSFZ dextral movement and associated northeast to easterly striking cross-faults were probably conduits for mineralising hydrothermal fluids from depth. Where vertical structures have met favourable sub horizontal to moderately northeast-dipping lithological contacts, and likely the meteoric fluid interface, hydrothermal fluids have migrated laterally depositing gold mineralisation. | | | | Favourable lithological contacts for the development of gold-bearing jasperoid at Sihayo and Sambung are rheologically different stratigraphic units, most notably: i) on the unconformity/contact between Permian calcareous rocks and Tertiary carbonaceous argillaceous rocks, ii) between silty-sandy ("dirty") limestone and fossiliferous limestone/marble or volcaniclastic rocks within the Permian stratigraphy; iii) within Permian calcareous rocks near diorite intrusion contacts. | | | | The subordinate regolith-hosted (eluvium/colluvium) mineralisation occurs on the present land surface and is associated with Quaternary residual weathering and erosion of the primary mineralisation. | | | | Sihayo gold deportment | | | | A gold deportment study on jasperoid sulphide mineralisation at Sihayo was previously done by researchers of CODES University of Tasmania (Hutchinson et al, 2011). This study was completed on six mineralised core samples taken from holes SHDD491 (54.3m), SHDD492 (207.1m), SHDD494 (208.2m), SHDD495 (139.3m), SHDD497 (140m) and SHDD506 (256.2m). Methodologies used were MLA (Mineral Liberation Analyzer) to search for free gold particles greater than 1 micron-size and La-ICP-MS (Laser ablation inductively coupled mass spectroscopy) to detect gold nano-particles and quantify concentrations of trace elements in the sulphide host minerals (Hutchinson et al, 2011). | | | | The conclusions of this study are summarised as follows: | | | | Main sulphides present are pyrite, subordinate arsenian pyrite and rare arsenopyrite. Common sulphide textures are mm-sized euhedral-sunhedral pyrite cores surrounded by narrow arsenian pyrite rims and sub-rounded aggregates composed of small equigranular to acicular grains of pyrite, arsenian pyrite, and rare arsenopyrite. Most gold (>90% estimated) is "invisible" and concentrated in arsenian pyrite rims and domains within pyrite grains and aggregates but it has not been determined whether it occurs in the host mineral structure or as discrete nano-particles. Free gold (and silver) grains are rare, show a range in size up to a maximum of 40 microns containing >70 wt % Au and <30 wt % Ag (electrum), and often occuring as small 3-5 µm grains within patches of organic carbon between hydrothermal quartz and feldspar. | | Criteria | JORC Code Explanation | Commentary | |---|--|--| | | | | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: | Tables 1-3 provide details of drill hole collar coordinates, hole dip & azimuth, final depths and intercepts for holes completed to-date in drilling program. These holes are of an exploration nature and no material drill hole information has been excluded from this report. | | | easting and northing of the drill hole collar | | | | elevation or RL (Reduced Level – elevation
above sea level in metres) of the drill hole collar | | | | dip and azimuth of the hole | | | | down hole length and interception depth | | | | hole length. | | | | If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. | Length-weighted average gold intercepts are reported at a 0.3 g/t gold cut-off with up to 4-m of consecutive internal dilution allowed. No high-cuts were applied. No metal-equivalent values are used in the reporting of the gold intercepts. | | | Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | | | | The assumptions used for any reporting of metal equivalent values should be clearly stated. | | | Relationship
between
mineralisation
widths and intercept | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be | The results reported in this announcement provide preliminary data on the potential extensions to high-grade gold mineralisation beneath the Sihayo-1 starter pit. There is sufficient data to estimate true-thickness of the mineralised intercepts, however, additional drilling is required to define the actual geometry of the mineralise karst cave-fill zones, which are inherently complex. The results of this initial drilling program will be used to plan follow-up drill testing. Structural data acquired from oriented core in the drilling program generally support the broad structural trend interpreted from extensive previous drilling on Sihayo-1. There is no significant sample bias believed to | | lengths | reported. If it is not known and only the down hole lengths are | | | Criteria | JORC Code Explanation | Commentary | |---|---
---| | | reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | influence or exaggerate the results reported in this announcement, there is sufficient data to support or infer the true-width of the mineralised down-hole intercepts. Details on intercept estimated true-widths are presented in Tables 1 and 3 of this announcement. Data and interpretations derived from this latest drilling program will significantly refine the the geologic model for future drill hole targeting. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | A drill hole location plan showing the hole locations, an isometric view of the drill hole traces below the Sihayo-1 starter pit, are contained in this announcement. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | This announcement is believed to contain sufficient relevant information such as range of exploration results, geologic context, historic results, type and sampling methodology, maps/figures and spatial distribution of data points to represent balanced reporting. | | Other substantive historic exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | For details on the 2019 Sihayo-1 Resource Infill Drilling Program Refer to ASX:SIH Announcement – Results of Feasibility Study – 23 June 2020 For details on the 2022 Sihayo-1 Project Development Update Refer to ASX:SIH Announcement –Project Update and Launch of Strategic Review Process – 17 February 2022 For details on the 2022 Metallurgical Update on Sihayo-1 Refer to ASX:SIH Announcement – High pH Pre-Leaching Test Work Demonstrates Potential for Significant Uplift in Recoveries – 5 July 2022. For details on the 2022 Stage 1 Drilling Program on Sihayo-1 Refer to ASX:SIH Announcement – High-grade gold intercepts from latest drilling program at Sihayo – 25 October 2022. |