

BEST DRILLHOLES DRILLED TO DATE AT NARNDEE

Highlights

- Multiple thick disseminated sulphide intersections identified & sent for expedited analytical testing.
- Holes have ended in mineralisation with Aldoro looking to deepen holes post assay results being released.
- Following receipt of assay up to 6 additional priority diamond holes will be drilled-
- Gradient IP array completed over Narndee northern Target 3 providing additional high interest targets, two of which are being tested by IP sounding.
- NDD0028 & NDD0029 have assisted in confirming the IP modelling. As such the much larger IP targets (3x 6x larger) at Target 3 will now be the focus of the forthcoming diamond drilling program.

Aldoro Resources Ltd ("Aldoro", "The Company") (ASX: ARN) is pleased to announce the completion of the current phase of diamond drilling with 3 additional holes (NDD0027-29) <u>intersecting thick</u> <u>sections of disseminated sulphides with which are undergoing submission for expedited analytical testing</u>. The additional three holes bring the total to 7 diamond holes for 2,949m for the current phase of drilling (Table 1). A total of 264m of visually prospective core over 3 holes is currently undergoing analysis at Intertek Genalysis, see Table 2. Details of the first part of the programme were released 17th January 2023, see ASX:ARN announcements.

Figure 1: Hole NDD0028 chalcopyrite 313mm in a coarsely textured pyroxenite host.

Figure 2: Hole NDD0029 disseminated sulphides ~301m in a pyroxenite host.

Hole_ID	Easting	Northing	Datum	Elevation (m)	Dip	Azm	Depth (m)	IP Line
NDD0023	610098	6805400	GDA94_z50	465	-70	270	571.2	5400
NDD0024	609648	6805398	GDA94_z50	461	-70	270	546.9	5400
NDD0025	610950	6805798	GDA94_z50	465	-75	90	379.0	5800
NDD0026	610946	6805902	GDA94_z50	466	-70	90	354.1	5900
NDD0027	610418	6806702	GDA94_z50	475	-70	90	400.1	6700
NDD0028	611039	6806403	GDA94_z50	467	-75	90	346.8	6400
NDD0029	611041	6806502	GDA94_z50	468	-55	90	351.1	6500
							2949.2	

Table 1: Summary details of the 2022-23 Narndee diamond drilling programme.

		GPS Survey	/	Din	Din	1 m	EOH	IDLing	Sulphid	e Zone f	for Testing	Status
	Easting	Northing	Elevation	ыр	AZIII	Depth (m)	IF LITE	From (m)	To (m)	Interval (m)	Status	
NDD0027	610418	6806702	475	-70	90	400.1	6700	348	400	52	Lodged	
NDD0028	611039	6806403	467	-75	90	346.8	6400	183	247	64	Lodged	
								292	332	40	Lodged	
NDD0029	611041	6806502	468	-55	90	351.1	6500	285	319	34	Lodged	
										190		

Table 2: Selected sulphide bearing intervals for analytical testing for Ni-Cu-PGE and Au

The gradient array IP survey was completed over Narndee Target 3 (northern grid area in Figure 1) revealing continuity in the chargeability trends from the IP sounding conducted in the southern survey area. The recent drilling targeted the Central high chargeability anomaly (NDD0027) and the extension of the Eastern anomaly (NDD0028-29). At hole NDD0027 from 180m onwards fine interstitial pentlandite was visible with the most abundant noted between the 350-380m interval. The 348-400m interval is being cut and analysed at Intertek.

Figure 3: Drill locations, drill traces and IP chargeability image with targets labelled. TheVC01 area is outlined with the 2021 drilling including hole NDD0014 which recovered massive sulphides. Interpreted faults are shown as black lines. The IP profile soundings for the Northwest and Northern Targets are shown in red (see Figures 7 & 8)

Figure 4: Hole NDD0027 Cross section through the 6700 line with the East-West line showing the drill trace through chargeability anomaly.

At the eastern anomaly, the target is over 900m long and hole NDD0025 reported 4m@ 0.57g/t Pd, 0.09g/t Pt and 0.04g/t Au (**0.69g/t 3E**) and 0.54% Ni, 0.15% Cu from 247m (ASX:17 January 2023).

Two additional holes were drilled further along strike in an attempt to intersect thicker mineralisation. Hole NDD0028 intersected pentlandite from 90m and disseminated sulphides to the end of the hole at 346.8m where a large cavity was intersected resulting in the loss of the drill rods & the hole being terminated. Chalcopyrite zones were noted at 304.7m-329m, 339.5m-

EOH. Intertek are analysing a total of 104m of core from hole NDD0028 for intervals between 183m – 247m and 292m – 332m.In the final hole NDD0029 chalcopyrite was noted from 284.9-317m, which will also be analysed at the Intertek laboratory. **The hole ended in mineralisation.**

Figure 5: Hole NDD0028 Cross section through the 6400mN East-West line showing the drill trace through chargeability anomaly.

Figure 6: Hole NDD0029 Cross section through the 6500mN East-West line showing the drill trace through chargeability anomaly.

Three IP sounding traverses were conducted over the two very large new anomalies, the Northwest and Northern targets, shown in Figure 3, which displayed discrete chargeability features as displayed in Figure 7. The Northwest anomaly is deeper and associated with a resistivity low, Figure 8, is most likely fault related, while the Northern anomaly is shallower, more coherent and has only moderate resistivity.

Figure 7: Chargeability cross section through the 8300 line, image showing the Northwest (left) and Northern (right) anomalies along the 6808300mN line.

Figure 8: Resistivity cross section of line 8300 with an image across the Northwest (left) and Northern (right) anomalies along the 6808300mN line.

The Forward Work Programme for Narndee will be assessed on the pending assay results and formal review correlating the drilling results, IP images, geology and structural information.

Wyemandoo Project.

The IP survey crew moved to the Wyemandoo Project (Windimurra Igneous Complex) to undertake a gradient array survey as shown in Figure 9. The Ni-Cu target is based on magnetic features offset from the major NNE-SSW magnetic linear associated with Huntsman's Canegrass Ni-Cu anomalies.

Figure 9: IP gradient array area targeting magnetic features in a fault splay off the Challa shear.

Summary Drill Logs

NDD0027 Summary Log

HoleID	mFrom	mTo	Lithology	Alteration	Comments
NDD0027	0	2	Silica-goethite rock	epidote	
NDD0027	2	4.9	Anorthosite	calcite	
NDD0027	4.9	26.3	Anorthosite	bleached	
NDD0027	26.3	39.5	Anorthosite	argillic	
NDD0027	39.5	39.6	Silicified fault zone	epidote	Fault at 20 degrees to the core axis. No orientation
NDD0027	39.6	44.6	Anorthosite	epidote	
NDD0027	44.6	79.3	Gabbro	chloritic	Hornblende gabbro at 65-68 m thin veins of chrysotile (?)
NDD0027	79.3	80.4	Pyroxenite	chloritic	trace goethite in fracture planes
NDD0027	80.4	91.1	Gabbronorite	chloritic	rare fracture fill chrysotile 1-2mm stringers
NDD0027	91.1	91.9	"Mafic, undifferentiated"	hornfels	aphanitic rock of basaltic appearance, extrusive?
NDD0027	91.9	105.3	Amphibolite		abundant amphiboles (+30%) - amphibolite ?
NDD0027	105.3	105.95	"Mafic, undifferentiated"	carbonate	aphanitic mafic rock, moderate talc-carbonate(?) alteration
NDD0027	105.95	117.9	Amphibolite	carbonate	
NDD0027	117.9	119.5	Amphibolite		asbestiform chrysotile up to 20%
NDD0027	119.5	120.3	Dacite		trace talc alteration
NDD0027	120.3	126.8	Peridotite		
NDD0027	126.8	143.5	Amphibolite	chloritic	
NDD0027	143.5	180.3	Gabbronorite	chloritic	
NDD0027	180.3	193.35	Gabbronorite	chloritic	
NDD0027	193.35	205.9	Pyroxenite	chloritic	trace pyrite in rock matrix
NDD0027	205.9	218	Gabbronorite	chloritic	pyrite developed in selvedges with chlorite
NDD0027	218	233.2	Gabbronorite	chloritic	minor talc + chrysotile in selvedges
NDD0027	233.2	269.4	Pyroxenite	chloritic	partially preserved poikilitic texture
NDD0027	269.4	273.8	Pyroxenite	chloritic	
NDD0027	273.8	277.6	Talc Carb	chloritic	fractured/altered, no residual texture
NDD0027	277.6	293.5	Pyroxenite	chloritic	
NDD0027	293.5	336.1	Troctolite	serpentinised	
NDD0027	336.1	353	Troctolite	calcite	
NDD0027	356.4	371.7	Peridotite	serpentinised	secondary Ni minerals (?) in fractures and stringers in serpentinised areas
NDD0027	353	356.4	Troctolite	chloritic	
NDD0027	371.7	398.2	Troctolite	serpentinised	native copper at 375m depth in fracture in a veinlet
NDD0027	398.2	400.1	Peridotite	chloritic	400.1m EOH

NDD0028 Summary Log

HoleID	mFrom	mTo	Lithology	Alteration	Sulphides	Comments
NDD0028	0	15	Upper saprolite	limonite		
NDD0028	18	30	Lower saprolite	limonite		
NDD0028	30	33.8	Peridotite	propylitic		
NDD0028	33.8	42.4	Gabbronorite	propylitic		
NDD0028	42.4	43.8	Olivine Websterite	silicic	pentlandite 0.5%	foliation/manganese- iron replacement
NDD0028	43.8	66.1	Olivine Websterite	calcite	pentlandite 1%	pentlandite grains often "camouflaged " by abundant pyroxene oikocrysts
NDD0028	66.1	68.8	"Ultramafic, undifferentiated"	calcite		extrusive dyke/vein ?
NDD0028	68.8	73.2	Olivine Gabbronorite	chloritic	pyrite 0.2%	trace euhedral pyrite in silica-calcite veinlets
NDD0029	73.2	86	Pyroxenite	propylitic	pentlandite 1%	abundant pyroxene oikocrysts cumulate texture
NDD0028	86	94.6	Pyroxenite	calcite		
NDD0028	94.6	102	Pyroxenite	chloritic		
NDD0028	102	108.2	Pyroxenite	chloritic		
NDD0028	108.2	115.5	Pyroxenite	chloritic		minor calcite stringers
NDD0028	115.5	133.5	Gabbronorite	propylitic	pentlandite 1%	
NDD0028	133.5	135	Olivine Websterite	propylitic		
NDD0028	135	168.2	Gabbronorite	propylitic	pentlandite 0.5%, chalcopyrite 0.1%	Chalcopyrite and pentlandite blebs gravitate to v. fine-grained ultramafic extrusive
NDD0028	168.2	168.4	Dacite	chloritic	pyrite 0.2%	
NDD0028	168.4	172.9	Gabbro	propylitic		
NDD0028	172.9	184.5	Leucogabbro	bleached		
NDD0028	184.5	197.8	Peridotite	silicic	pyrite 1% pyrrhotite 1% pentlandite 0.5%	
NDD0028	197.8	202.4	Peridotite	silicic	pyrite 1.5%, Chalcopyrite 1%	
NDD0028	202.4	222	Peridotite	propylitic	pyrite 1%, Pentlandite 0.5%	
NDD0028	222	240.4	Peridotite	silicic	pyrite 1%, pyrrhotite 0.5%	
NDD0028	240.4	247.3	Peridotite	serpentinised	pyrite 1%, pyrrhotite 0.5%	
NDD0028	247.3	260	Pyroxenite	chloritic		
NDD0028	260	262.8	Pyroxenite	serpentinised		
NDD0028	262.8	297.3	Pyroxenite	chloritic	pyrite 1%, pyrrhotite 0.5%	
NDD0028	297.3	300.3	Dunite	serpentinised	pyrite 1%	
NDD0028	300.3	301.5	Fault - fault gouge	graphitic		
NDD0028	301.5	305	Dunite	serpentinised		
NDD0028	305	318	Pyroxenite	serpentinised	pyrrhotite 0.5%, Chalcopyrite 0.5%	sulphides appear to be interstitial to mineral grains, syngenetic
NDD0028	318	329.7	Dunite	serpentinised	pyrrhotite 0.5%, Chalcopyrite 0.5%	sulphides syngenetic with intrusion
NDD0028	329.7	331.7	Dunite	serpentinised		
NDD0028	331.7	346.8	Norite	silicic	pyrrhotite 0.5%, Chalcopyrite 0.5%	sulphides at 340.5 and 342.3 associated with coarsening of grainsize/ base of intrusion?

NDD0029 Summary Log

HoleID	mFrom	mTo	Lithology	Alteration	Sulphides	Comments
NDD0029	0	0.2	Residual soil			
NDD0029	0.2	1.7	Upper saprolite			
NDD0029	1.7	2.3	Lower saprolite			
NDD0029	2.3	11	Saprock			
NDD0029	11	33	Saprock			
NDD0029	33	38	Saprock			
NDD0029	38	44.2	Saprock			
NDD0029	44.2	48.5	Pyroxenite	silicic		
NDD0029	48.5	62	Pyroxenite	serpentinised		
NDD0029	62	65.9	Pyroxenite	serpentinised		
NDD0029	65.9	68.5	Pyroxenite	serpentinised		
NDD0029	68.5	68.7	Pyroxenite			
NDD0029	68.7	73.4	Pyroxenite	serpentinised		
NDD0029	73.4	74.2	Shear zone	graphitic		
NDD0029	74.2	83	Pyroxenite	serpentinised		
NDD0029	83	84.4	Pyroxenite		magnetite 5%	
NDD0029	84.4	88.2	Pyroxenite	serpentinised		
NDD0029	88.2	90	Pyroxenite	serpentinised		
NDD0029	90	115	Pyroxenite	serpentinised		
NDD0029	115	119	Pyroxenite			boudinaging and deformation
NDD0029	119	124.1	Dunite	serpentinised		
NDD0029	124.1	158.2	Pegmatite		magnetite 5%, Pyrrhotite 0.5%, Pyrite 0.1%	gabbronorite?
NDD0029	158.2	166.3	Dunite	silicic		graphite fault at 161m
NDD0029	166.3	169	Dunite			
NDD0029	169	225.5	Pyroxenite	silicic		shearing at 197-198m
NDD0029	225.5	227	Pyroxenite	silicic		PFM
NDD0029	227	233.5	Pyroxenite	silicic		
NDD0029	233.5	255	Pyroxenite	serpentinised		small fault at 239-239.4
NDD0029	255	266.3	Pyroxenite	serpentinised		possibly gabbronorite
NDD0029	266.3	287	Pyroxenite		chalcopyrite?	cumulate, faulting at 276, 281, 287 and 293
NDD0029	287	316	Pyroxenite	serpentinised	pyrrhotite 1%, Chalcopyrite?	interstitial pyrrhotite
NDD0029	316	351.1	Pyroxenite	serpentinised		

ENDS

Figure 6. Location of the ARN landholding over the Murchison Terrane

About Aldoro Resources

Aldoro Resources Ltd is an ASX-listed (**ASX: ARN**) mineral exploration and development company. Aldoro has a portfolio of lithium, rubidium and base metal projects, all located in Western Australia. The Company's flagship projects are the Wyemandoo lithium-rubidium-tungsten project and the Niobe lithium-rubidium-tantalum Project. The Company's other projects include the Narndee Igneous Complex, which is prospective for Ni-Cu-PGE mineralisation.

Disclaimer

Some of the statements appearing in this announcement may be in the nature of forward-looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which Aldoro operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forward-looking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by a number of factors and subject to various uncertainties and contingencies, many of which will be outside Aldoro's control.

Aldoro does not undertake any obligation to update publicly or release any revisions to these forwardlooking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of Aldoro, its Directors, employees, advisors or agents, nor any other person, accepts any liability for any loss arising from the use of the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as of the date of this announcement.

This announcement is not an offer, invitation or recommendation to subscribe for or purchase securities by Aldoro. Nor does this announcement constitute investment or financial product advice (nor tax, accounting or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

Competent Person Statement

The information in this announcement that relates to Exploration Results and other technical information complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). It has been compiled and assessed under the supervision of Mark Mitchell, technical director for Aldoro Resources Ltd. Mr Mitchell is a Member of the Australasian Institute of Geoscientists and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Mitchell consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

This announcement has been approved for release by the Board of Aldoro Resources

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling samples comprise of half core nominal 1m lengths cut at a laboratory and the sampling techniques are considered appropriate for exploration purposes for this style of mineralisation and deposit. Diamond drilling produced half NQ2 core samples which were submitted to Intertek Genalysis Laboratory Services Perth for geochemical analysis. Sample intervals were 1m in length based solely on inclined depth. QAQC samples were included at a 15m intervals with quartz wash samples after selected sulphide zones. Sample preparation included drying, crush and pulverisation to - 75µm (SV03) and weighing (WT01) Samples were analysed by 2 total digest methods, 4A/MS multiacid digest including Hydrofluoric, Nitric, Perchloric and hydrochloric acids in Teflon tubes for an ICP-MS finish for 48 elements, 4A/OE using the 4-acid digest but with and ICP-OES finish for Ni Au, Pt, Pd were determined by method FA25/MS (25g lead collection fire assay in new pots with an ICP-MS finish) IP geophysical surveying has been carried out by Echo Vista Pty Ltd to target massive sulphides associated with magmatic Ni-Cu-PGE's in the Narndee Igneous Complex under Aldoro's Narndee project. The Inducted Polarisation sounding method was used with a 5kW transmitter, Model VIP5000 by IRIS instruments, with 10 true differential inputs (10 channel), operating on transmitter frequency range of 0.0625 to 4Hz (by factors of 2) and using industry standard compliant core receiver and current transmission wires. The stations were at 40m intervals along east-west lines (perpendicular to the local geological strike) at various lengths, 800m to 1520m with line spacings of 100m

Criteria	JORC Code explanation	Commentary
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond core drilling was conducted by Orlando Drilling with collars positioned by handheld GPS with a +/-5m accuracy and using an average technique based on time. The top of the collar was reamed using a Chlore tool using to 6m depth. Holes are drilled by HQ3 to fresh rock, cased off and drilled NQ2 to end of the hole. The NQ2 part of the hole is oriented by a Reflex Act-IQ orientation tool. Bottom of the hole is marked on the core surface using an orientation cradle. All holes have been surveyed post drilling using a down hole gyro collecting continuous readings of dip and azimuth down hole.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries are measured using industry-standard logging techniques. Core recoveries average close to 100% in fresh rock, and 90% in weathered material Sample bias is very unlikely given the very good sample recoveries especially below the base of oxidation. As the core loss is relatively low, no sample bias is considered
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Aldoro core is logged using industry-standard semi-quantitative logging templates on handheld digital devices recording lithologies, colour weathering, alteration, mineralisation, veining, gangue and well as α and β structural information. The logging is generally considered both qualitative and quantitative in nature with all cores photographed, both wet and dry. Core lengths are tape measured with any loss recorded both digitally and core markers.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 Selected NQ2 core samples on half cut core based on geology and sulphide occurrence and submitted for geochemical analysis at 1m lengths.

Criteria	JORC Code explanation	Commentary
sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The size of the sample from the diamond drilling method is the industry standard for the mineralisation style analytical technique. Sample preparation includes drying, crushing, splitting and pulverising before analysis. QAQC standard samples of CRM pulps and quartz were included routinely, duplicate aliquots were used at 30m intervals. Sample sizes are considered appropriate for the rock type, style of mineralisation (massive, stringer and disseminated sulphides), the thickness and consistency of the intersections, the sampling methodology and percent value assay ranges for the primary elements within the Narndee Project
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assay and laboratory procedures are industry standard. The technique is considered near total for the elements of interest. A Bruker S1 Titan with factory calibration was used for check pXRF readings. These are not reported due to a lack of confidence due to the small sampling window and the bias this produces. Standard reference materials were analysed routinely by pXRF and found to be reporting withing acceptable limits. Quality control methods to be used include external standards and blanks to establish precision from the lab
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Aldoro's visual intersections are logged, interpreted, and reported by the JORC Competent Person QAQC procedures and documentation of primary data are adopted for the core samples. Twinned holes are not being used or reported. No adjustments are made to assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 Drillhole collars are measured by handheld GPS and checked several times before drilling. Coordinates presented are in GDA94, UTM Zone 50S. Aldoro holes are surveyed by a Reflex GYRO SPRINT-IQ

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	• The holes are yet to be accurately modelled vertically from DEM
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Not relevant as only 4 holes have been completed to test various IP anomalies. The IP survey parameters were designed to give depth penetration to 800m and the orientation to give control in discriminating conductivity changes. A Mineral Resource is not being reported. No sample compositing has been applied, but assay results are reported on a length weighted average
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of drilling is as close to perpendicular to the interpreted key mineralised. The orientation of drilling to key mineralised structures is an evolving interpretation. The geophysical survey has been designed to be orthogonal to the anticipated mineralisation. The interpretated anomalous chargeability/resistivity features identified are consisted with the petrophysical properties targeted, i.e., massive sulphides, however these require validation through drilling to see if they relate to Ni-Cu-PGE mineralisation
Sample security	The measures taken to ensure sample security.	Selected core trays were hand delivered to the assay laboratory for cutting and assaying in Maddington by company personnel
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have been completed given the early stage of the project

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests,	 Tenements E59/2223, E59/2238 and E59/2258 Held by Gunex Pty Ltd, a 100% owned subsidiary of Altilium Metals Pty Ltd, which in turn is a 100% owned subsidiary of Aldoro Resources Limited

Criteria	JORC Code explanation	Commentary
land tenure status	 historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 GSR to original tenement holder The tenements are in good standing, with no native title interests and no known historical or environmentally sensitive areas with the tenement areas
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Previous relevant exploration was undertaken by: Westralian Nickel-INCO (1960s-70s) BHP-Hunter Resources (1985-90) Wedgetail Resources (2001) Apex Minerals-Mark Creasy (2001-06) Falconbridge-Apex-Mark Creasy (2002-03) Maximus Resources (2005-14)
Geology	• Deposit type, geological setting and style of mineralisation.	 The Narndee Project is located within the Youanmi Terrane of the Yilgarn Craton, close to a major structural boundary between the Murchison and Southern Cross Domains. The regional geology is dominated by Archaean granite-greenstone terranes (greenstone 2.8- 3.0 billion years, granites 2.6-2.95 billion years) and the Windimurra Group of layered mafic intrusions (2.847 billion +/- 71 million years). These bodies represent the largest layered mafic-ultramafic intrusive complex in Australia. The Narndee Igneous Complex forms the primary component of the Boodanoo Suite and is divided into three broad units of stratigraphy: Ultramafic Zone, Lower Zone and Main Zone. Historical exploration has generally focused on stratiform PGE-reef mineralisation, whereas Aldoro's focus will be on massive magmatic nickel sulphide deposits
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 Summary information of the diamond holes is provided in the text. The relevant details for Aldoro's drilling are contained in the body of this announcement. The use of any data is recommended for indicative purposes only in terms of potential Ni- Cu-PGE mineralisation and for developing exploration targets.

Criteria	JORC Code explanation	Commentary
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• Full analytical data was not provided in this report only the data pertaining to the style of mineralised being tested PGE-Au-Ni-Cu-Co. XRF data was also not provided as it is considered not representative in nature and is only used for aiding in lithological and mineral context.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Aldoro results will be presented on a length weighted average, in this case 1m intervals No short interval lengths were reported. No metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All results referenced are based on down-hole lengths and may not reflect the true width of mineralisation or thickness of host lithologies, which is unknown
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate maps and tabulations are presented in the body of the announcement
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant and relevant intercepts have been highlighted and key elements have been reported in all tested intervals.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density,	IP sounding and Gradient array techniques have been utilised.

Criteria	JORC Code explanation	Commentary
	groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Short term future work plans are detailed in the body of this announcement. Exploration is at an early stage, and longer-term future work will be results driven

